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Abstract
Test flakiness is a phenomenon occurring when a test case is non-deterministic and exhibits
both a passing and failing behavior when run against the same code. Over the last years, the
problem has been closely investigated by researchers and practitioners, who all have shown
its relevance in practice. The software engineering research community has been working
toward defining approaches for detecting and addressing test flakiness. Despite being quite
accurate, most of these approaches rely on expensive dynamic steps, e.g., the computa-
tion of code coverage information. Consequently, they might suffer from scalability issues
that possibly preclude their practical use. This limitation has been recently targeted through
machine learning solutions that could predict the flakiness of tests using various features,
like source code vocabulary or a mixture of static and dynamic metrics computed on indi-
vidual snapshots of the system. In this paper, we aim to perform a step forward and predict
test flakiness only using static metrics. We propose a large-scale experiment on 70 Java
projects coming from the IDFLAKIES and FLAKEFLAGGER datasets. First, we statistically
assess the differences between flaky and non-flaky tests in terms of 25 test and production
code metrics and smells, analyzing both their individual and combined effects. Based on the
results achieved, we experiment with a machine learning approach that predicts test flaki-
ness solely based on static features, comparing it with two state-of-the-art approaches. The
key results of the study show that the static approach has performance comparable to those
of the baselines. In addition, we found that the characteristics of the production code might
impact the performance of the flaky test prediction models.
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1 Introduction

Regression testing is a widely used approach to verify whether newly committed code
changes introduce software faults (Pezze and Young 2008). Developers rely on test cases
to decide on whether to merge pull requests or even deploy the entire system (Grano et al.
2020). Perhaps more importantly, developer’s productivity is partially dependent on the out-
come of test cases (Catolino et al. 2019; Micco 2017): this is mainly due to their ability to
identify real faults in a timely and reliable fashion (Perez et al. 2017).

Unfortunately, even tests can be affected by defects and, sometimes, they can suffer from
the so-called flakiness (Luo et al. 2014): this happens when a test exhibits both a passing and
failing behavior when run against the same code, being therefore unreliable and producing
a non-deterministic outcome. While the amount of flaky tests in software systems is typi-
cally limited - according to previous literature on the matter (Eck et al. 2019; Fowler 2011;
Micco 2017), flakiness explicitly arises in around 2% of the tests. Nonetheless, it is hard
to precisely estimate the amount of flaky tests because of their intrinsic non-determinism,
i.e., tests might be flaky even though their flakiness does not arise. This is why researchers
advocated the need of considering all tests as potentially flaky (Cordy et al. 2022; Har-
man and O’Hearn 2018). At the same time, flaky tests have a profound impact on testing
activities: (1) They may hide real defects and be hard to reproduce because of their non-
determinism (Luo et al. 2014); (2) They increase testing costs, as developers invest time
debugging failures that are not real (Lacoste 2009); and (3) They can reduce the overall
developer’s confidence on test cases, potentially leading to neglect real defects (Eck et al.
2019). In addition, the presence of flaky tests might impact a number of collateral test-
ing tools. In mutation testing, the mutation score might lead to variations due to flakiness,
confounding this variability with the influence of the quality of the test that the mutation
score aims at addressing (Cordy et al. 2022). Still, in automated program repair, the cer-
tainty that a repair is correct may be affected by flaky tests, other than possibly making the
repair technique unable to localize the point where to attempt a patch (Cordy et al. 2022).
The potential harms of test code flakiness have been made more and more popular by prac-
titioners and companies worldwide (e.g., (Fowler 2011; Micco 2017)), who all called for
automated mechanisms to detect and deal with it.

The software engineering research community has been contributing to the body of
knowledge through empirical investigations aiming at eliciting the causes of flakiness (Eck
et al. 2019; Lam et al. 2020; Lam et al. 2020; Luo et al. 2014; Memon and Cohen 2013)
as well as with the definition of techniques for detecting and addressing them (Bell et al.
2018; Daniel et al. 2009; Terragni et al. 2020; Zhang et al. 2014). Despite the promising
results achieved so far, most of the identification techniques require test cases to be re-run
multiple times: for instance, the most well-known approach is called RERUN and consists
of executing the same test N times, with N being a variable that goes from dozens to hun-
dreds of executions. As the reader may understand, the poor scalability of RERUN makes it
often unusable in practice; in addition, there is no guarantee to discover the flakiness over
the N runs.

To face this limitation, researchers devised alternatives like DEFLAKER (Bell et al. 2018),
that works at commit-level and relies on the differential code coverage extracted from the
analysis of a test execution from a commit to another. In a complementary manner, the use of
machine learning approaches has been proposed. Pinto et al. (Pinto et al. 2020) and further
replications (Camara et al. 2021b; Haben et al. 2021) exploited the test code dictionary to
discriminate the presence of potential flakiness. More recently, Alshammari et al. (2021)
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devised a supervised learning model that, using a mixture of code and coverage metrics, can
predict flaky tests with an accuracy up to 86%. While these previous research efforts have
shown promising results, they all involve steps that might deteriorate the scalability of the
proposed techniques. More particularly, the techniques proposed by Bell et al. (Bell et al.
2018) and Alshammari et al. (Alshammari et al. 2021) require the computation of dynamic
features, while the approach by Pinto et al. (Pinto et al. 2020) relies on natural language
processing, which is known to be costly as the corpus of the text to analyze increases in size
(Banko and Brill 2001).

To face the scalability limitations of the currently available techniques, our previous
work (Pontillo et al. 2021) aimed at conducting a feasibility study to assess whether a static
prediction of test flakiness would be possible, i.e., whether we could identify likely flaky
test cases only based on their design. In particular, we took into account the IDFLAKIES

dataset,1 and investigated the differences between flaky and non-flaky tests in terms of
25 test and production code metrics and smells. We first studied the distribution of these
indicators individually, observing that a number of metrics and smells are more likely to
be observed on flaky tests. Then, we also considered the combined effects of the indica-
tors by computing a logistic regression model relating them to test flakiness: also in this
case, the results showed the presence of static indicators that are statistically connected to
flakiness.

The promising results achieved by our previous work (Pontillo et al. 2021) indicated the
feasibility of devising a static approach to flaky test prediction. Hence, in this paper, first
we extend our preliminary work by replicating the initial analyses on the FLAKEFLAGGER

dataset,2 in an effort of increasing the generalizability of our results. Secondly, we devise a
static flaky test prediction model that can identify flaky tests only considering the design of
test cases. Last but not least, we conduct an empirical study that analyzes the performance
of the devised model, other than comparing it with two baseline approaches based on source
code vocabulary and a mixture of static and dynamic analysis. The key findings of the
paper show that static features can be used to characterize flaky tests: this is especially
true for metrics and smells connected to source code complexity. In addition, the newly
devised machine learning model achieves performance up to 74% in terms of F-Measure,
being no worse than techniques that adopt more complex and/or dynamic computations.
Perhaps more importantly, our approach is, overall, more precise than the others, therefore
minimizing the risks of developers wasting time in diagnosing wrong recommendations. As
such, we conclude that the proposed model can represent a more practical solution, which
makes the flaky test prediction problem more scalable. To sum up, our work provides the
following novel contributions:

1. We provide a large-scale empirical investigation of the distribution of static features
in flaky and non-flaky tests, showing their individual and combined effects on the
likelihood of a test to exhibit a flaky behavior;

2. We devise the first fully static machine learning approach for flaky test prediction,
which relies on the design of test cases and ensures performance comparable with other,
more sophisticated techniques previously proposed;

1The IDFLAKIES dataset: https://sites.google.com/view/flakytestdataset/home.
2The FLAKEFLAGGER dataset: https://zenodo.org/record/4450723#.YXetWprP2Uk.
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3. We release a publicly available replication package (Pontillo et al. 2022), where we
provide access to data, scripts, and results of our experiment. These data can be used by
other researchers to verify, replicate, and further investigate the relation between static
features and flaky tests.

Structure of the paper Section 2 overviews the background and the related literature, sum-
marizing how our work differs from the previous ones. Section 3 describes the research
questions and the context, while Section 4 reports on the empirical variables of the study.
Sections 5 to 8 describe the methodology and the results that address our research questions,
while Section 9 describes the threats to validity of our study, other than the mitiga-
tion strategies applied. Section 10 concludes the paper and outlines our future research
agenda.

2 Background and related work

This section describes the background and the related work that are the foundations of our
contributions.

2.1 Terminology

We provide in the following the definitions of the main elements and concepts targeted by
our empirical investigation. In particular:

‘Test case’. A test case is defined as “a set of inputs, execution conditions, a pass/fail
criterion, an execution environment, its dependencies, and the corresponding production
code”. This is an extended version of the 829-1998 IEEE standard definition of test case
(Association IS 1998): according to previous work (Eck et al. 2019; Luo et al. 2014),
the definition includes the additional factors that may play a role in the specific context
of test code flakiness, like execution environment, test dependencies, and corresponding
production code.
‘Regression testing’. Regression testing is defined as “the verification activity that
allows developers to control newly committed code for the presence of defects” (Wong
et al. 1997). Our work focuses on regression testing activities, as the datasets employed
were originally collected by means of multiple re-runs of test cases against the change
history of the considered projects (more details later in Section 3.2). The granularity of
our experiments is at unit test code level, which means that we target test cases that aim
at exercising individual components of the production code (Pezze and Young 2008).
‘Flaky test’. A flaky test is defined as “a non-deterministic test that exhibits both a
passing and failing behavior when run against the same code. We followed the definition
provided by Luo et al. (Luo et al. 2014), who also indicated that test code flakiness
may arise because of multiple root causes pertaining to how the test code is designed,
executed, or dependent from other code.

2.2 Related work

The problem of flaky tests is becoming more and more serious for both researchers and
developers (Fowler 2011; Micco 2017). Harman and O’Hearn (Harman and O’Hearn 2018)
even suggested that all tests should be considered flaky, recommending the development
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of tools and techniques that can automatically assess the likelihood of a new test becoming
flaky in the future. Comprehensive analyses of the state of the art were presented in the
recent systematic literature reviews conducted by Parry et al. (Parry et al. 2021) and Zheng
et al. (Zheng et al. 2021).

A first research angle frequently treated concerns with the identification of the root
causes making tests flaky. In this respect, Luo et al. (Luo et al. 2014) manually inspected
1,129 commits to elicit a taxonomy reporting ten root causes of test flakiness. Thorve et al.
(Thorve et al. 2018) conducted a similar study in the context of ANDROID apps, concluding
that some root causes are similar to those identified by Luo et al. (Luo et al. 2014), while
others relate to program logic and UI. Eck et al. (Eck et al. 2019) built upon these papers
to identify additional root causes, shedding light on the potential contribution provided by
production code factors. When defining the independent variables to consider in our study,
we took the work by Eck et al. (Eck et al. 2019) into account and computed a number of
production code metrics and smells. Furthermore, the relation between design issues in test
cases, a.k.a. test smells (van Deursen et al. 2001), and test flakiness was observed by Camara
et al. (2021a). As explained later in the paper, this was the main reason why we also consid-
ered test smells as independent variables of the study. Still on the empirical side, Gruber et
al. (Gruber et al. 2021) proposed a new dataset of 7,571 flaky tests in Python, which were
identified by rerunning the test suites 400 times; the authors also suggested that flakiness is
equally prevalent in Python as it is in Java.

Among the various causes of flakiness, the order dependency one has gained more
attention. While Zhang et al. (Zhang et al. 2014) proposed an empirical study on the test
independence assumptions, several techniques have been proposed to detect these types of
flaky tests: for instance, Gyori et al. (Gyori et al. 2015) proposed a technique for finding
shared states between tests, while Bell et al. (Bell et al. 2015) proposed an approach to detect
all dependencies between test cases in large projects. More recently, Shi et al. (Shi et al.
2019) proposed IFIXFLAKIES, a tool that automatically fixes real order-dependent tests. The
authors evaluated this tool on 58 flaky tests and the tool has correctly fixed all of them. With
respect to the research on test order dependency, it is worth clarifying that the goal of the
approach proposed in our experimentation is that of predicting the emergence of a flakiness
behavior, rather than focusing on the classification of the root cause leading to flakiness. As
such, even though issues concerned with test order dependency might be potentially pre-
dicted by means of our approach, it cannot report whether a problem identified is actually
due to this root cause.

Interestingly, researchers and practitioners have been also working together on the inves-
tigation of flaky tests. There is indeed a growing number of industrial studies that propose
empirical investigations and tools. Lampel et al. (Lampel et al. 2021) proposed a new
approach that automatically classifies failing jobs as pertaining to software bugs or flaky
tests. Rehman et al. (Rehman and Rigby 2021) quantified how often a test fails without find-
ing any defect in production code by means of an empirical investigation across four large
projects at ERICSSON.

In this practitioner’s context, there is also a growing number of studies that target the
developer’s opinion. Habchi et al. (Habchi et al. 2021) conducted an interview study involv-
ing 14 industrial practitioners. Their results confirmed the problem’s relevance, but also
pointed out that in a non-negligible amount of times, flakiness stems from interactions
between the system components, the testing infrastructure, and other external factors. Still,
on a similar line of research, Gruber and Fraser (Gruber and Fraser 2022) surveyed 335 pro-
fessional software developers and testers in different domains; their results confirmed the
relevance of the problem especially using automated testing.
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Another relevant research area pertains to the proposal of tools and techniques to auto-
matically detect flaky tests. Bell et al. (Bell et al. 2018) proposed DEFLAKER, a tool that
analyzes the differences in code coverage between one commit and another to alert devel-
opers of the emergence of some sort of flakiness. Lam et al. (Lam et al. 2019) introduced
IDFLAKIES, a tool that detects flaky tests by rerunning tests in different orders. It is impor-
tant to note that, besides proposing novel techniques, these studies also publicly released
datasets that represented the starting point of later research.

By design, DEFLAKER and IDFLAKIES are able to detect flakiness only after its emer-
gence, namely only after that the developers have introduced flaky tests. In this sense,
they could be useful to diagnose flaky tests, but not for preventing their introduction. For
this reason, a recent trend concerns the definition of predictive methods that could alert
developers of the possible introduction of test flakiness in advance by looking at the static
and/or dynamic characteristics of tests. FLAKEFLAGGER (Alshammari et al. 2021) con-
sidered static and dynamic features to predict flakiness. In this work, Alshammari et al.
(Alshammari et al. 2021) also released their dataset, which was built by executing the same
tests 10,000 times and identifying possible non-deterministic behaviors. Bertolino et al.
(Bertolino et al. 2021), Pinto et al. (Pinto et al. 2020) and their replications (Camara et al.
2021b; Haben et al. 2021) worked on an orthogonal approach, proposing approaches based
on the vocabulary contained in a test method body. They only relied on textual metrics,
without considering other features.

With respect to the studies discussed above and the results obtained from our previous
feasibility study (Pontillo et al. 2021), our work can be considered as complementary, since
it contributes with an additional technique to predict test flakiness that only considers static
metrics. It is important to emphasize that our research is driven by a key consideration:
a prediction only based on static metrics could lead to benefits in terms of (1) computa-
tional costs, as it would avoid the computation of dynamic metrics that would require the
execution of the entire test suite; (2) interpretability, as it would allow developers to focus
on a refactoring of test cases guided by the static metrics and smells that impact more the
likelihood of the test becoming flaky.

3 Research questions and context selection

The goal of the study was to investigate to what extent a fully static approach can pre-
dict the presence of flaky tests, with the purpose of assisting developers in the scalable
identification of test flakiness. The perspective is of both researchers and practitioners: the
former are interested in understanding the capabilities of a prediction model based on code-
and test-related static metrics when it comes to the identification of flaky tests; the latter
are interested in evaluating which are the features more connected to flakiness and that,
therefore, should be kept under control when evolving source code.

3.1 Research questions

Our study was structured around four research questions. We started by considering both
test and production code metrics and smells. Some of these metrics were related to the size
and complexity of both production and test code, e.g., McCabe cyclomatic complexity or the
number of lines of the test suite (TLOC). Other metrics pertained to bad programming prac-
tices applied while developing either production or test code. For instance, we considered
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production code smells (Fowler 2018) such as Complex Class and Spaghetti Code, other
than test smells (van Deursen et al. 2001) like Eager Test and Resource Optimism.

While the research community has identified test-related aspects as those primarily con-
nected to the potential flakiness of test code (Luo et al. 2014), we considered production
code metrics based on the findings reported in a recent work by Eck et al. (Eck et al. 2019).
We chose this dimension because in a non-negligible number of cases, the root-cause of
test flakiness might be due to errors done in the production code, e.g., when managing con-
currency. This reasoning let us define our RQ1: we started by analyzing how the above
mentioned metrics correlate to test flakiness. We focused on their individual effect by sta-
tistically comparing how their values differ in the sets of flaky and non-flaky tests. We
asked:

While the results of the first research question might already provide insights into the
relations between static metrics and test flakiness, we performed an additional step with the
aim of verifying whether the differences observed in RQ1 were still statistically significant
when the considered metrics were combined: as shown in literature (Pecorelli et al. 2021),
this step is required to establish unbiased conclusions on the capabilities of metrics for
predictive models:

Afterwards, we went beyond the statistical analyses and verified the actual effectiveness
of static metrics for the prediction of flaky tests. This led to the definition of a fully static
solution that can identify flaky tests, hence allowing us to measure how good static metrics
are at predicting flakiness. We then evaluated the performance of the proposed approach.
Hence, we asked our third research question:

As a final step of our empirical investigation, we compared the prediction performance
of the proposed static approach to existing techniques, in an effort of understanding how
close are the capabilities of an approach only based on the design of test cases with respect
to approaches that employ more seemingly accurate dynamic or textual metrics. The last
research question therefore assessed the extent to which our approach may be feasible
in practice, namely whether it can be useful in comparison to other existing approaches.
Indeed, should other approaches perform notably better than ours, this would imply that a
practitioner should not prefer our solution but rather go for alternative approaches. Hence,
we asked our final research question (RQ4):

The outcome of our research aimed at enlarging the current body of knowledge on
flaky test prediction, providing insights into the value of design-related characteristics for
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the detection of test flakiness, other than a quantitative assessment of static flaky test
prediction with respect to existing techniques. In terms of reporting, we followed the
ACM/SIGSOFT Empirical Standards3 and, in particular, the “General Standard” and “Data
Science” guidelines.

3.2 Context of the study

The context of our study consisted of Java open-source projects that belong to the
IDFLAKIES and FLAKEFLAGGER datasets.

The rationale behind the selection of these datasets was driven by their availability, other
than their diversity. In particular, the projects are all available on GITHUB and are developed
by different communities—seven projects belong to the APACHE SOFTWARE FOUNDA-
TION. Furthermore, the projects have a size ranging from some hundreds to one million
lines of code. In particular, we analyzed 24 projects coming from FLAKEFLAGGER dataset
and 82 projects deriving from IDFLAKIES dataset. Seven of these projects were in common
between the two datasets, yet they referred to different commits: for this reason, we did not
have duplicates and, therefore, took all projects into account. Looking at the scope of the
various projects, we observed that they vary very much, e.g, some projects relate to http
requests and responses, other to container orchestration. A full report of the domains of
the considered projects is available in our online appendix (Pontillo et al. 2022). Nonethe-
less, the domain observations were already insightful to understand that test code flakiness
is a widespread problem that affects projects independently from the domain. In terms of
testing activities, all the projects make use of a continuous integration pipeline that allows
code changes to be verified against a test suite. With the use of a build tool, e.g., Maven,
developers can configure the test cases that must be run when new changes are pushed onto
the repository. While we cannot know whether the developers of the considered projects
defined a test plan document before configuring the tests to run, it is important to notice that
all projects establish contribution guidelines that contributors must follow and that include
indications on how to conduct testing activities. As such, the testing activities are not left
to the developer’s willingness to perform them, but are defined and updated over time. This
increases our confidence in the quality assurance procedures adopted by the considered
projects.

Perhaps more importantly, we relied on those datasets because of the procedures
followed to identify the flakiness information: when populating IDFLAKIES and FLAKE-
FLAGGER, Lam et al. (Lam et al. 2019) and Alshammari et al. (Alshammari et al. 2021)
indeed ensured the equivalence of test cases and preserved the testing conditions by re-
executing test cases in the exact order intended by the developers of those projects. Indeed,
they re-run tests following the order and testing conditions established through the build
tools.

When addressing the research questions of the study, we considered the two datasets
individually, hence reporting the results for each dataset. This was done because the data
collection methods used to build the two datasets were different and, therefore, we avoided
merging them. In addition, when addressing RQ4, we only focused on the FLAKEFLAGGER

dataset since it reported data on the features employed to build the baseline approaches used
for comparison (more details are reported in Section 8).

3Available at: https://github.com/acmsigsoft/EmpiricalStandards.
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4 Empirical study variables

The first step to address the research questions posed in our study concerned with the defi-
nition of the empirical study variables, namely (1) the dependent variable to predict and (2)
the features to be used as independent variables.

4.1 Dependent variable

The dependent variable of our study is the test flakiness. The information about the flakiness
or non-flakiness of a test case is reported in the IDFLAKIES (Lam et al. 2019) and FLAKE-
FLAGGER datasets (Alshammari et al. 2021). In particular, test cases are either labeled as
“flaky” or “non-flaky”. As such, our statistical exercise will consider a binary dependent
variable.

4.2 Independent variables

The ultimate goal of our work was to verify the extent to which statically computable met-
rics can be adopted to predict test flakiness. We considered a total of 25 factors along three
dimensions i.e., production and test code metrics, code smells, and test smells. Table 1
reports the name and description of the considered metrics, other than the indication of
whether they were computed on production or test code. The rationale and motivations for
selecting them is discussed in the following.

Production and test code metrics This set is composed of ten factors measuring the size
and complexity of production and/or test code. Some of these metrics belong to the Object-
Oriented metric suite proposed by Chidamber and Kemerer (Chidamber and Kemerer 1994),
e.g., coupling between object classes (CBO), while other metrics come from other catalogs,
e.g., the McCabe cyclomatic complexity (McCabe 1976) or the Halstead’s metrics (Murillo-
Morera and Jenkins 2015). The rationale behind the selection of these metrics was driven
by our willingness to verify whether large and/or complex code might have an impact on
the likelihood of observing a flaky behavior of the test case. In addition, previous analyses
(Pecorelli et al. 2021, 2022) investigated those metrics to understand the robustness of test
code. In this sense, our study can complement previous findings through an understand-
ing of the role of production and test code metrics for test flakiness. More particularly, we
computed TLOC and McCabe on the test code, while the other eight metrics were com-
puted on the production code. To compute these metrics, we relied on a tool that we have
developed within our research lab and that was used for a number of previous studies (e.g.,
Pecorelli et al. 2019, 2021, 2022). Its use was not only motivated by our familiarity with
the instrument, but also because of the extensive testing activities we could perform on this
tool over the years. For the sake of replicability, we made this tool available in our online
appendix (Pontillo et al. 2022).

Code smells These indicate the presence of sub-optimal solutions to the development of
source code (Fowler 2018) that might contribute to the increase of technical debt (Palomba
et al. 2018). It is reasonable to believe that writing tests for smelly code may be harder and
might possibly lead them to be less effective—this was somehow showed by Grano et al.
(Grano et al. 2019). Hence, we run our own instance of DECOR (Moha et al. 2009), a state-
of-the-art code smell detector, to count the number of instances of five code smell types
having different characteristics and targeting well-known design issues, i.e., Class Data
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Table 1 List of metrics used as independent variables

Name Description Computed on ...

PRODUCTION AND TEST CODE METRICS

CBO Coupling Between Object, i.e., the number of
dependencies a class has with other classes (Chi-
damber and Kemerer 1994).

Production Class

Halstead Length The total number of operator occurrences and the
total number of operand occurrences.

Production Class

Halstead Vocabulary The total number of distinct operators and
operands in a function.

Production Class

Halstead Volume Proportional to program size, represents the size,
in bits, of space necessary for storing the program.

Production Class

LOC Lines of Code, counting both source and comment
lines.

Production Class

LCOM2 Lack of Cohesion of Methods version 2, i.e., the
percentage of methods that do not access a spe-
cific attribute averaged over all attributes in the
class.

Production Class

LCOM5 Lack of Cohesion of Methods version 5, i.e., the
density of accesses to attributes by methods.

Production Class

McCabe It uses to indicate the number of linearly inde-
pendent paths through a program’s source code
(McCabe 1976).

Test Class

MPC Message Passing Coupling, measures the numbers
of messages passing among objects of the class.

Production Class

RFC Response For a Class, i.e., the number of methods
(including inherited ones) that can potentially be
called by other classes (Chidamber and Kemerer
1994).

Production Class

TLOC Number of lines of code of the Test Suite. Test Class

WMC Weighted Methods per Class, i.e., the sum of the
complexities (i.e., McCabe’s Cyclomatic Com-
plexity) of all the methods in a class (Chidamber
and Kemerer 1994). Note that Chidamber and
Kemerer (Chidamber and Kemerer 1994) did not
define a predefined complexity metric to consider
for the computation of WMC. In our case, we
opted for the McCabe metric to account for the
individual complexity of methods.

Production Class

CODE SMELLS

Class Data Should Be Private When a class exposes its attributes, violating the
information hiding principle.

Production Class

Complex Class When a class has a high cyclomatic complexity. Production Class

Functional Decomposition When in a class inheritance and polymorphism are
poorly used.

Production Class

God Class When a class has huge dimension and implement-
ing different responsibilities.

Production Class

Spaghetti Code When a class has no structure and declares long
method without parameters.

Production Class
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Table 1 (continued)

Name Description Computed on ...

TEST SMELLS

Assertion Density Percentage of assertion statements in the test
code.

Test Class

Assertion Roulette When a test method has multiple non-documented
assertions.

Test Class

Conditional Test Logic Conditional code within a test method negatively
impacts the ease of comprehension by developers.

Test Class

Eager Test When a test method invokes several methods of
the production object.

Test Class

Fire and Forget A test that is at risk of exiting prematurely because
it does not properly wait for the results of external
calls.

Test Class

Mystery Guest When a test method utilizes external resources
(e.g., files, database, etc.).

Test Class

Resource Optimism When a test method makes an optimistic assump-
tion that the external resource (e.g., File), utilized
by the test method, exists.

Test Class

Sensitive Equal. When the toString method is used within a test
method.

Test Class

Should Be Private, Complex Class, Functional Decomposition, God Class, and Spaghetti
Code (Fowler 2018). Our tool implements the original rules proposed by Moha et al. (Moha
et al. 2009). These code smells were computed on production code only, as our goal was
to consider the potential effect that design issues in production code have on the likeli-
hood of tests to be flaky. While other code smell detectors have been proposed in literature
(Azeem et al. 2019; de Paulo Sobrinho et al. 2018), we opted for DECOR for three main
reasons. First, it has been widely experimented in literature, showing good detection perfor-
mance (Moha et al. 2009; Palomba et al. 2014; Palomba et al. 2017). Secondly, it might be
employed when performing large-scale studies, given its lightweight nature (Tufano et al.
2017). Third, its usage allowed us to focus on a larger variety of code smell types: other
detectors can indeed identify a lower amount of code smells (dos Reis et al. 2021). To
enable replications, we made our own version of DECOR accessible in our online appendix
(Pontillo et al. 2022).

Test smells Similarly to code smells, these are defined as bad programming practices in
unit test code (van Deursen et al. 2001). As originally defined, test smells may indeed reveal
the presence of issues that induce test flakiness (van Deursen et al. 2001). Moreover, Camara
et al. (Camara et al. 2021a) showed a correlation between test smells and flaky tests. For
these reasons, we run a state-of-the-art test smell detector named VITRUM (Pecorelli et al.
2020) to verify whether test smells have an impact on flakiness. The detector identifies
seven test smell types, i.e., Assertion Roulette, Conditional Test Logic, Eager Test, Fire and
Forget, Mystery Guest, Resource Optimism, and Sensitive Equality. Also in this case, it is
worth pointing out that other detectors have been proposed over the last decade (Greiler et al.
2013; Lambiase et al. 2020; Palomba et al. 2018; Peruma et al. 2020; Van Rompaey et al.
2007). In this case, the selection of VITRUM was driven by two observations. On the one
hand, this is a tool we have a direct access to and, for this reason, we could directly interact
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and run it against the considered datasets. On the other hand, the tool implements multiple
test smell types that have been originally associated to test flakiness, hence allowing us to
assess their actual relation to flaky tests.

When computing metrics and smells on production code, we had to link test cases to
their correspondent production code—otherwise, we could not investigate the value of the
production code metrics. In this respect, we used a pattern matching approach based on
naming conventions and already used in previous work (e.g., (Grano et al. 2019; Haben
et al. 2021; Pecorelli et al. 2021)). This approach simply uses the name of a production
class (e.g., ‘ClassName’) as the base for finding the corresponding test class, which will
be the one whose name is the same as the one of the production class, but includes the
prefix/postfix ‘Test’ (e.g., ‘TestClassName’ or ‘ClassNameTest’ ). Whenever this pattern
matching failed, the production class associated with the test class could not be detected
and, for this reason, we had to discard the test from our analysis. Despite this practical
limitation, the selection of this pattern matching approach was mainly driven by the good
compromise between accuracy and scalability that it ensures; more complex approaches,
e.g., those based on static and dynamic slicing (Qusef et al. 2013), can be hardly employed
on a large scale. In an effort of conducting a larger experimentation of our approach, we
therefore accepted the intrinsic limitation of the pattern matching method and excluded the
tests/projects where the developers did not use the appropriate naming conventions.

The outcome of this linking process led to the modification of the initial datasets.
In particular, we had to discard five projects from the FLAKEFLAGGER dataset and 31
projects from the IDFLAKIES one. In all these cases, the developers did not follow the
above-mentioned naming conventions, hence not allowing us to properly link production
and test classes. As for the remaining projects, the outcome of the linking process led us to
the removal of some test cases, including all methods called ‘setUp’ and ‘tearDown’—these
represent fixtures that only enable the correct allocation an de-allocation of the resources to
be used by the tests and could not clearly linked to any production class. As a consequence
of these filtering actions, the IDFLAKIES dataset finally contained 44,592 test cases (includ-
ing 281 flaky tests) pertaining to 51 projects, while the FLAKEFLAGGER dataset contained
10,914 test cases (including 671 flaky tests) of 19 projects. For the sake of verifiability, in
our online appendix (Pontillo et al. 2022) we reported the list of the projects discarded from
the analysis.

5 RQ1 - The individual effects of metrics on test flakiness

This section discusses the research methodology and the results achieved when we analyzed
the individual effects of metrics considered.

5.1 Researchmethodology

We assessed if the independent variables were different in the set of flaky and non-flaky
sets in both datasets. As a first step, we normalized the metric values through the min-max
scaling—this was needed because the metric values came in different range of values and,
as such, we used a min-max scaling to have them under the same representation range (Han
et al. 2011). We reported in our online appendix (Pontillo et al. 2022) the updated dataset
used to address the research question.

We showed boxplots depicting the distribution of the metrics and smells. Then, we com-
puted the Mann-Whitney and Cliff’s Delta tests to verify the statistical significance of the
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observed differences and their effect size. The choice of non-parametric methods came from
the verification of the normality of the distributions. The data indeed followed a non-normal
distribution even after the min-max scaling normalization.

5.2 Analysis of the results

Figures 1 and 2 depict the boxplots of the distributions of metrics and smells which exhibit
some differences between the sets of flaky and non-flaky tests in the two datasets. The box-
plots showing all factors are reported in our replication package (Pontillo et al. 2022). We
can observe that some factors vary in the two sets in both boxplots: this is especially true
when considering the production and test code metrics for which the medians of flaky tests
and corresponding production code are often higher than those of non-flaky tests. These
results confirm that flaky tests have a different metric profile than other tests. In particu-
lar, we observe differences in terms of control flow graph-related metrics (e.g., production
WMC metric computed on tests) and complexity of the expressions used in the code (e.g.,
the Halsteald’s metrics). This seems to suggest that the development of test cases is heavily
impacted by complexity measures, possibly increasing the likelihood to induce flakiness. As
for the test-related factors, the higher median of assertion density in the flaky test set might
be connected to the fact that having more assertions increases the chances to induce flaki-
ness due to restrictive ranges in the values compared within assert statements (Eck et al.
2019). Finally, we observe the severity of the Eager Test smell as a metric that differs in two
sets as distribution but not as median. This smell measures how focused a test is, namely
whether it exercises more methods of the production code. Based on our results, we may
conjecture that the lack of focus of tests does not allow them to properly set the environ-
ment needed to exercise the production code: as a consequence, their outcome may depend

assertionDensity

assertionRoulette

cbo

conditionalTestLogic

eagerTest

halsteadLength

halsteadVocabulary

halsteadVolume

lcom2

lcom5

loc

mpc

rfc

tloc

tmcCabe

wmc

0.00 0.25 0.50 0.75 1.00
set Flaky NoFlaky

Boxplot Independent Variables iDFlakies dataset

Fig. 1 RQ1. Analysis of the metric profiles of flaky and non-flaky tests on the IDFLAKIES dataset
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Fig. 2 RQ1. Analysis of the metric profiles of flaky and non-flaky tests on the FLAKEFLAGGER dataset

on the order of execution of test methods, i.e., the outcome may change if the environment
is (not) set before calling the smelly test.

The results of the statistical tests are reported in Tables 2 and 3 and confirm the discussion
provided so far. Most of the metrics (17 for the first dataset, 22 for the second) presented

Table 2 Mann-Whitney and Cliff’s Delta Tests for the IDFLAKIES dataset. N, S, M, and L indicate negligible,
small, medium and large effect size, respectively. Significant p-value and δ value are reported in bold-face

Statistic tests

p-value δ p-value δ

CBO 1.34e−13 S Complex Class 9.85−11 N

Halstead Length 1.17e−06 S FD 0.03 N

Halstead Vocab. 4.70e−09 S God Class 0.38 N

Halstead Volume 3.78e−07 S Spaghetti Code 8.47e−11 N

LOC 7.84e−11 S Assertion Density 1.69e−8 S
LCOM2 < 2.2e−16 S Assertion Roulette 3.81e−10 S
LCOM5 1.63e−14 S Cond. Test Logic 0.10 N

McCabe 0.20 N Eager Test 2.03e−13 S
MPC 1.04e−7 S Fire and forget 0.74 N

RFC 6.56e−11 S Mystery Guest 0.40 N

TLOC 1.16e−8 S Resource optimism 0.12 N

WMC 1.80e−12 S Sensitive equality 0.17 N

CDSBP 1.30e−9 N
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Table 3 Mann-Whitney and Cliff’s delta tests for the FLAKEFLAGGER dataset. N, S, M, and L indicate
negligible, small, medium and large effect size, respectively. Significant p-value and δ value are reported in
bold-face

Statistic tests

p-value δ p-value δ

CBO < 2.2e−16 S Complex Class < 2.2e−16 N

Halstead Length < 2.2e−16 S FD 0.049 N

Halstead Vocab. < 2.2e−16 S God Class 7.7e−4 N

Halstead Volume < 2.2e−16 S Spaghetti Code < 2.2e−16 N

LOC < 2.2e−16 S Assertion Density 5.09e−4 N

LCOM2 < 2.2e−16 S Assertion Roulette 4.28e−3 N

LCOM5 < 2.2e−16 N Cond. Test Logic 3.91e−7 N

McCabe < 2.2e−16 S Eager Test 0.93 N

MPC < 2.2e−16 S Fire And Forget 8.73e−14 N

RFC < 2.2e−16 S Mystery Guest < 2.2e−16 S
TLOC < 2.2e−16 S Resource Optimism 0.10 N

WMC < 2.2e−16 S Sensitive Equality 1.5e−2 N

CDSBP 0.3887 N

a ρ-value<0.05, meaning that the differences between the distributions of flaky and non-
flaky tests are statically significant. These differences have, however, a small effect size in
14 cases for the first dataset and in 12 cases for the second dataset. When combining the
boxplots with the statistical results, we could observe cases where the distributions were
very similar yet statistically different, possibly indicating interpretation errors. These are,
for instance, the cases of the McCabe metric and the Conditional Test Logic smell. We
took a closer look at these cases, finding that the differences among the distributions were
so small that they could not be visible with a boxplot representation. Nonetheless, some
statistical differences still arose. As an example, the Cliff’s Delta test for Conditional Test
Logic reported negligible differences, while the test for the McCabe metric reported small
differences. This analysis reinforced the need for considering both boxplots and statistical
perspectives to better interpret our findings.

The statistical results are summarized in Table 4 - for each metric, a gray cell represents
that it is statistically significant on a dataset; white otherwise. Looking at the table, we can

Table 4 Summary of statistical significance of metrics between the two datasets. The gray color indicates
that a metric is statistically significant in the dataset, while it is white otherwise
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observe that there are some differences between the two datasets, some metrics are statisti-
cally significant only in IDFLAKIES dataset, i.e., Class Data Should Be Private, and Eager
Test, while other metrics are statistically significant only in FLAKEFLAGGER dataset, i.e.,
McCabe, God Class, Conditional Test Logic, Fire and Forget, Mystery Guest, and Sensi-
tive Equality. These differences may depend on the different nature of the datasets, e.g., the
number of flaky tests or the number of test cases, yet there are still a number of metrics that
are statistically significant in both datasets, such as those related to code complexity.

Finally, we identified the presence of Assertion Roulette smell instances to be statistically
significant in both datasets, while other smells are often significant in only one of them.

6 RQ2 - The combined effects of metrics on test flakiness

This section discusses the research methodology and the results achieved when we analyzed
the combined effects of metrics considered.

6.1 Researchmethodology

After studying the statistical significance of the distributions of our independent variables
in both datasets, we proceeded with our second research question. In particular, RQ2 aimed
at assessing whether the statistically significant factors identified in the previous research
question were still significant when combining all metrics: this analysis was required since
the individual effect of a factor might be reduced (or even lost) when other factors come
into play (Pecorelli et al. 2021). Hence, we took the normalized datasets into account
and devised a Logistic Regression Model, which belongs to the class of Generalized Lin-
ear Model (GLM) (Nelder and Wedderburn 1972). We have used this statistical modeling
approach because it does not assume the distribution of data to be normal. In fact, we ver-
ified the normality of the distribution by means of the K-S Lilliefors test (Garson 2012),
which failed to reject the null-hypothesis, i.e., our data is not normally distributed. Further-
more, the Logistic Regression Model can deal with dichotomous dependent variables, hence
fitting our case.

More formally, let Logit (πf ) be the explained test flakiness f , let β0 be the log odds of
the likelihood of flakiness being increased in a test, and let the parameters β1 ·f1 , β2 ·f2, . . . ,
βn ·fn be the differentials in the log odds of being the likelihood of flakiness increased for a
test with characteristics f1, f2, . . . , fn, the statistical model is represented by the function:

Logit (πf ) = β0 + β1 · f1 + β2 · f2 + · · · + βn · fn. (1)
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Table 5 Results for RQ2 achieved by the statistical model and obtained with IDFLAKIES dataset

Generalized linear model

Estimate S.E. Sig. Estimate S.E. Sig.

Intercept -4.06 2.09 . Cond. Test Logic -44.82 13.15 ***

TLOC 6.59 2.34 ** Fire and Forget 0.88 1.98

McCabe 1.06 0.67 LCOM5 -1.71 1.15

Assertion Density 1.41 0.57 * CBO 0.34 0.77

Assertion Roulette -23.64 9.03 ** Halstead Voc. 3.69 0.97 ***

Mystery Guest -1.04 2.69 CDSBP 1.99 1.71

Eager Test 4.91 0.97 *** Complex Class 1.11 0.63 .

Sensitive Equality -7.42 7.53 FD -0.57 0.41

Resource Optimism -4.18 4.51 God Class -1196.50 1867.19

To implement the model, we relied on the glm function available in R toolkit.4 More-
over, to avoid multi-collinearity we used the vif (Variance Inflation Factors) function
implemented in R to discard highly correlated variables, putting a threshold value equal
to 5 (O’brien 2007). The interested reader can find additional information on the corre-
lation between the independent variables in our online appendix (Pontillo et al. 2022). In
particular, we conducted correlation analyses using the non-parametric Spearman’s rank
correlation coefficient (Myers and Sirois 2004) with the aim of providing further insights
into the relations between the considered variables. As a result, we found out that such
a correlation analysis reinforced the results obtained when using the vif function, hence
making us more confident about the decisions made when discarding variables.

6.2 Analysis of the results

Table 5 reports the results of the Logistic Regression Model on the IDFLAKIES dataset. As
the reader might observe, Table 5 reports only 17 of the independent variables; the other
eight factors, i.e., Halstead Length, Halstead Volume, LCOM2, LOC, MPC, RFC, WMC,
and Spaghetti Code, were excluded by the model as a result of the vif analysis. Simi-
larly, Table 6 reports the results of the Logistic Regression Model on the FLAKEFLAGGER

dataset, in which are shown only 16 of the independent variables; the other nine factors, i.e.,
Complex Class, Halstead Length, Halstead Volume, LCOM2, LOC, MPC, RFC, WMC, and
Spaghetti Code, were excluded as a consequence of the multi-collinearity checks.

For each variable, the tables report the value of the estimate, the standard error, and the
statistical significance. The latter is explained by the number of stars, i.e., ‘***’ indicates
a p<0.001, ‘**’ indicates a p<0.01, ‘*’ indicates a p<0.05, and ‘.’ indicates a p<0.1.

For the sake of understandability, we split the following discussion according to the
categories of metrics analyzed.

6.2.1 Results for production and test code metrics

Looking at Table 5, only one metric, namely the test lines of code (TLOC), was statisti-
cally significant on the IDFLAKIES dataset. The value of the estimate was positive (6.56),

4https://www.r-project.org/
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meaning that an increase of lines of test code statistically leads to an increase of the
likelihood of the test being flaky. TLOC was a relevant metric in the context of the
FLAKEFLAGGER dataset too (Table 6), hence confirming that longer tests are statistically
associated to test flakiness. Besides the lines of test code, we could observe other statisti-
cally significant factors on this dataset. These pertain to various aspects of production code
quality, like cohesion, coupling, and complexity. The LCOM5 estimate was equal to -19.08:
the negative estimate of the metric indicates that an increase in LCOM5 values corresponds
to a decrease of the likelihood of tests being flaky. In turn, higher LCOM5 values indicate
lower cohesion, i.e., the LCOM5 is an inverse metric. Hence, we can conclude that the lower
the cohesion the lower the likelihood of tests being flaky. This result looks unexpected and
points out the need for further analyses of how cohesion influences software testability. On
the other side, coupling (CBO) and complexity metrics (McCabe and Halstead Vocabulary)
had a positive correlation to flaky tests. Also, in this case, the results seem to highlight the
relevance of production code maintainability for source testability: an increase in coupling
and complexity may indeed make harder for developers to verify the source code, potentially
leading to the introduction of flakiness.

6.2.2 Results for code smells

When analyzing the correlation between code smells and flakiness, we could delineate a
limited relation. Both Tables 5 and 6 show that most of the code smells were not statisti-
cally significant. Particularly interesting was the case of God Class (also known as Blob),
which appears when a class is poorly cohesive and maintainable (Fowler 2018): because of
its properties, the code smell has been often associated to various forms of technical debt
(Khomh et al. 2012; Palomba et al. 2018), including a decrease of the overall effectiveness
of test cases (Grano et al. 2019; Spadini et al. 2018). According to our results, the negative
effects of God Class do not increase the likelihood of the corresponding tests being flaky.
The only two exceptions to this general discussion were Complex Class on the IDFLAKIES

dataset and Class Data Should be Private on the FLAKEFLAGGER dataset. While the pres-
ence of a high cyclomatic complexity seems to confirm the results obtained in RQ1, the
second does not have obvious connections to flakiness. Looking at the definition, this
smell affects classes that do not encapsulate fields, hence providing public access to their

Table 6 Results for RQ2 achieved by the statistical model and obtained with FLAKEFLAGGER dataset

Generalized linear model

Estimate S.E. Sig. Estimate S.E. Sig.

Intercept -11.63 168.77 Cond. Test Logic -2.22 1.14 .

TLOC 4.95 0.78 *** Fire and Forget 3.10 0.97 **

McCabe 2.58 0.40 *** LCOM5 -19.08 2.78 ***

Assertion Density 0.53 0.44 CBO 0.61 0.26 *

Assertion Roulette 0.29 0.85 Halstead Voc. 5.58 0.57 ***

Mystery Guest 6.55 0.55 *** CDSBP -1.74 0.84 *

Eager Test -7.16 1.12 *** FD -0.16 0.20

Sensitive Equality -1.13 1.13 God Class 176.33 3657.57

Resource Optimism -6.63 1.42 ***
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attributes. To provide an interpretation of this finding, we manually dived into the FLAKE

FLAGGER dataset and analyzed a sample of the production classes affected by this smell.
We randomly selected 20 classes affected by each smell and tried to establish a motivation
for the statistical results obtained—this process was mainly conducted by the first author of
the paper, who was supported by the other authors whenever needed. As a result, we could
discover that the examined classes had, however, high cyclomatic complexity and, most
likely, the statistical significance was due to a casual reflection of the high co-occurring
complexity. In other words, it is not the presence of this code smell to directly influence the
test flakiness but rather a co-occurring phenomenon. We believe this is reasonable, as code
smell capture orthogonal dimensions with respect to complexity metrics.

6.2.3 Result for test smells

We observed different - or even contrasting - results when considering test smells over
the two considered datasets. The first discussion concerns Eager Test, which appeared to
be positively correlated (estimate=5.07) on the IDFLAKIES dataset and negative correlated
(estimate=-7.16) with test flakiness on the FLAKEFLAGGER one. This smell arises when a
unit test exercises more production methods, hence not being focused on a specific target
(van Deursen et al. 2001), and has been previously correlated to a decrease of test code
effectiveness (Spadini et al. 2018). Our findings are not definitive, as flakiness appears to be
impacted by the lack of focus of the Eager Test smell depending on the cases. In this sense,
it is reasonable to believe that co-occurring phenomena might affect the likelihood of tests
to be both smelly and flaky. Further empirical investigations might therefore analyze these
phenomena further.

Test smells such as Conditional Test Logic and Assertion Roulette were negatively cor-
related to flakiness on the IDFLAKIES dataset, meaning that an increasing amount of these
smells does not imply an increase of the likelihood of the affected tests to become flaky. On
the one hand, the result obtained for Conditional Test Logic is somehow unexpected. A test
affected by this smell has multiple paths and exercises more execution paths of production
code, possibly being more likely to be non-deterministic. Our findings seem to suggest that
this is not true in general but, perhaps, only specific circumstances influence the harmful-
ness of the smell. On the other hand, the presence of an Assertion Roulette implies the lack
of documentation. Our findings suggest that having multiple non-documented assertions
does not risk to become harmful for flakiness. Interestingly enough was, however, the role
of the assertion density—which measures the amount of assertions per lines of test code.
We found a positive correlation (estimate=1.43). This indicates that, while missing docu-
mentation has a limited connection to flakiness, the presence of too many assertions can
potentially impact flakiness.

When analyzing the FLAKEFLAGGER dataset, we found two more positive correlations
due to Fire and Forget and Mystery Guest. The former highlights a technical debt caused
by the sub-optimal use of threads: by nature, this smell is related to concurrency and asyn-
chronous wait issues (Camara et al. 2021a), which are among the most diffused root causes
of test flakiness (Eck et al. 2019; Luo et al. 2014). The latter refers to the use of external
resources within the test code, which make tests more dependent on those resources. Also
in this case, the reliance on external sources is known to be a root cause of flakiness (Eck
et al. 2019; Luo et al. 2014); our findings suggest that test smell detectors can be a useful
means to identify potential cases of flakiness.

In any case, it is worth remarking that the differences noticed between the two statistical
models may be attributable to the different size of the datasets, other than to the number
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of flaky tests present, i.e., 281 in the IDFLAKIES dataset and 671 in the FLAKEFLAGGER

dataset.

7 RQ3 - An approach to predict test flakiness statically

While the correlations identified in RQ2 do not necessarily indicate causation, they may
suggest some sort of relation between static metrics and test flakiness. The analyses done
in RQ2 were indeed preliminary and had the goal to understand whether it is in principle
possible to consider static metrics for flakiness prediction. The promising results achieved
let us believe that a fully static approach to the prediction of flaky tests would have been
possible. Hence, this section discusses the research methodology and the results achieved
when exploring such a possibility.

7.1 Researchmethodology

The methodology employed to address RQ3 concerned with the definition of a machine
learning pipeline that would produce reliable measurements of the performance of a static
flaky test predictor based on the most relevant metrics explored in our study.

The first step is related to the feature engineering process, that is, the identification of the
relevant metrics to use as predictors. While the statistical exercise conducted in the previous
research question already provided indications on which features are more connected to test
flakiness, it does not necessarily provide insights into the predictive power of the considered
metrics (Azhagusundari et al. 2013). In other words, RQ2 only reported correlations, while
we were interested in assessing the value of the metrics as features of a machine learner
more precisely. Hence, we performed a further step ahead by (1) running the vif analysis
to discard highly correlated variables (O’brien 2007); and (2) quantifying the predictive
power of each metric in terms of information gain (Quinlan 1986). While the former analysis
allowed us to limit the scope of our investigation to the actually relevant features, the latter
is a measure of how much a model would benefit from the presence of a certain predictor.
More formally, let P be the flaky test predictor, let F = {f1, f2, ..., fn} be the set of features
composing P , an information gain algorithm (Quinlan 1986) computes the difference from
before to after splitting P on an attribute fi in terms of entropy. It specifically applies the
following formula:

Inf oGain(P, fi) = H(P ) − H(P |fi) (2)

where the function H(P ) measures the entropy of the model relying on fi as predictor
and the function H(P |fi) represents the entropy of the model that does not rely on fi as

Empir Software Eng (2022) 27:187187 Page 20 of 44



predictor. The specific measure of entropy is based on the Shannon’s definition (Shannon
1948), namely:

H(P ) = −
n∑

i=1

prob(fi) log2 prob(fi) (3)

Hence, the algorithm measures how much the uncertainty of the model P is reduced
because of a predictor fi . In our work, we computed this measure by using the Gain Ratio
Feature Evaluation algorithm (Quinlan 1986). This ranks features in descending order of
expected information gain, putting the most valuable features at the top. Similarly to pre-
vious work in the field (Alshammari et al. 2021; Catolino et al. 2019), we considered the
predictors having an information gain higher than zero as those to use for the machine
learning exercise, i.e., we discarded the metrics that did not provide any expected beneficial
effect on the performance.

Once we had completed the feature engineering process, we proceeded with the identifi-
cation of the machine learning algorithm to use. The literature on flaky test prediction is still
embryonic (Parry et al. 2021) and, for this reason, only a few studies have been conducted on
the best classifiers to use. Therefore, we took this as an opportunity to benchmark learning
algorithms with different characteristics and making different assumptions on the underly-
ing data. We evaluated Decision Trees (Freund and Mason 1999), Naive Bayes (Webb et al.
2010), Multilayer Perceptron (Taud and Mas 2018), and Support Vector Machine (Noble
2006) as basic classifiers. Additionally, we also considered two ensemble techniques such
as Ada Boost (Schapire 2013) and Random Forest (Ho 1995)—the latter was the one used
by Alshammari et al. (Alshammari et al. 2021). To implement the algorithms, we employed
the SCIKIT-LEARN library (Kramer 2016) in PYTHON, which provides public APIs that let
configure, execute, and validate all the above-mentioned classifiers.

In terms of training, we had to deal with the fact that the flaky test problem is an unbal-
anced problem. The number of flaky test instances represented the 0.9% and 6.8% of the
total amount of test cases in the IDFLAKIES and FLAKEFLAGGER datasets, respectively.
As such, the test flakiness was largely underrepresented, threatening the ability of machine
learning algorithms to properly learn the characteristics of flaky tests. Hence, we faced the
problem by (i) experimenting with multiple under- and over-sampling techniques to balance
our data and (ii) comparing them to the results obtained without any balancing technique. As
for under-sampling, we made use of NEARMISS 1, NEARMISS 2, and NEARMISS 3 algo-
rithms (Yen and Lee 2006). These techniques first compute the distance between instances
of the majority and minority class. Then, they select for removal instances of the major-
ity class that have the shortest distance with instances of the minority class: the underlying
idea is indeed that of removing the most similar majority samples to increase the diversity
of the training set and, therefore, let a machine learner more appropriately learn features.
The three versions of the NEARMISS algorithm differ for the distance function used in the
first computational step. In addition to these algorithms, we also experimented with a RAN-
DOM UNDERSAMPLING approach that explored the distribution of majority instances in a
random fashion and under-samples them. As for over-sampling, we experimented with Syn-
thetic Minority Oversampling Technique, a.k.a. SMOTE (Chawla et al. 2002), and advanced
versions of this algorithm such as Adaptive Synthetic Sampling Approach, a.k.a. ADASYN
(He et al. 2008) and the BORDERLINE-SMOTE (Han et al. 2005). While the basic SMOTE
approach uses a simple k-nearest neighbor function to identify the minority class instances
to over-sample, ADASYN attempts to over-sample minority class instances according to
their level of difficulty in learning. Instead, BORDERLINE-SMOTE builds on top of the con-
cept of borderline examples, namely it selects minority class instances to over-sample based
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on how similar they are with respect to the instances of the majority class. In addition to
these algorithms, we also experimented with a RANDOM OVERSAMPLING approach that
explores the distribution of minority instances in a random fashion and over-samples them.

We then followed a similar methodology as previous work (Alshammari et al. 2021;
Pinto et al. 2020) to evaluate the models. We employed a stratified ten-fold cross valida-
tion (Bengio and Grandvalet 2004; Kohavi 1995), applying it on both individual projects
and considering all projects as a unique dataset. More particularly, this strategy first ran-
domly partitions the data into ten folds of equal size. Then, it iteratively selects a single
fold to use as test set, while the other nine are used as training set. It is important to note
that we normalized the metric values through the min-max scaling after splitting the train-
ing and test sets, namely at each iteration of the ten-fold cross validation - this was required
to perform a realistic validation of the model where the training and test sets were individu-
ally normalized based on their own distributions. It is worth remarking that we applied the
different balancing techniques at each iteration of the cross-validation rather than before
evaluating the models. In this way, we could avoid forms of data leakage (Shabtai et al.
2012) due to the fact that the resulting test sets would have been balanced, not represent-
ing a real-case scenario where the number of flaky tests is way lower than the one of stable
tests, i.e., we only balanced the training sets. When training the classifiers, we also opti-
mized the hyper-parameters of the experimented classifiers using the RANDOM SEARCH

strategy (Bergstra and Bengio 2012): this is a search-based algorithm that randomly samples
the hyper-parameter space in order to find the best combination of hyper-parameters maxi-
mizing the F-Measure. For the sake of replicability, we reported the exact hyper-parameter
configuration for each classifier in our replication package (Pontillo et al. 2022).

Finally, to evaluate the performance achieved by the experimented models, we relied
on three metrics such as precision, recall, and F-Measure. We also statistically verified the
validity of our findings exploiting the Nemenyi test (Nemenyi 1963) for statistical signif-
icance and report its results by mean on MCM (Multiple Comparison with the best) plots
(Koning et al. 2005). As a significance level, we used 0.05; the elements plotted above the
gray band in the plots are statistically larger than the others. To perform this last step, we
relied on the nemenyi function available in R toolkit.5

7.2 Analysis of the results

We run each machine learning algorithm experimented against the two datasets. For the
sake of readability, in this section we mainly focus on the best of those algorithms, while
we included the full results in our online appendix (Pontillo et al. 2022). Figure 3 plots the
outcome of the Nemenyi test on the two datasets, which were the means we used to decide
on the best algorithm to explore further. More particularly, the dots in the figures represent
the median F-Measure that the algorithms obtained on the two datasets: a blue dot indi-
cates that the F-Measure of an algorithm is statistically better than the other algorithms,
while the red dots indicate that the performances obtained are not statistically different. As
shown, for both datasets Random Forest was the best classifier but with a different balanc-
ing technique, i.e. RANDOM OVERSAMPLING for the IDFLAKIES dataset and SMOTE for
the FLAKEFLAGGER dataset. It is worth remarking that the ADASYN technique does not
appear in the figure because it failed on some projects, making the comparison with other
techniques unfair. At the same time, the figure does not show the outcome of the models

5https://www.r-project.org/
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Fig. 3 The likelihood of each technique in within prediction in Nemenyi rank in terms of F-Measure. Circle
dots are the median likelihood, while the error bars indicate the 95% confidence interval. 60% of likelihood
means that a classification technique appears at the top-rank for 60% of the studied projects

trained with under-sampling methods: these models were all consistently worse than the oth-
ers and, therefore, we decided not to include them in the figure to ease readability—detailed
results are available in our online appendix (Pontillo et al. 2022).

These preliminary results already provide some insights into the capabilities of learn-
ing flaky tests. First, we could corroborate previous findings on the highest performance of
Random Forest for this problem (Alshammari et al. 2021; Lam et al. 2019). Second, simpler
data over-sampling approaches seem to work better than most sophisticated ones. Indeed,
RANDOM OVERSAMPLING and SMOTE were consistently better on both datasets. The
likely reason behind this finding connects to the peculiarities of the data we are consider-
ing. Advanced over-sampling techniques are based on the identification of instances which
are more difficult to learn (ADASYN) or borderline (BORDERLINE-SMOTE): while future
investigations should be conducted on this matter, it is possible that the features character-
izing flaky and non-flaky tests are diverse enough not to be considered as hard to learn or
borderline, hence making ADASYN and BORDERLINE-SMOTE unable to properly work.
Last but not least, it is worth reporting that under-sampling methods always behaved worse
than both over-sampling approaches and the no-balance cases. Being the problem of flaky
test prediction highly unbalanced, these methods lead to remove way too many samples of
the majority class, hence leading to a deterioration of the performance due to the inability
to learn neither flaky and non-flaky test characteristics.

Table 7 reports the outcome of the feature engineering process, showing the information
gain (IG) obtained when building the Random Forest model. Looking at the two lists, we
can observe that for the IDFLAKIES dataset there are 10 features with an IG>0.001, while
for the FLAKEFLAGGER dataset there are 12 features. In addition, the information gain
values for the first dataset are lower than those of the second. This might be explained by
the nature of the datasets, as IDFLAKIES contains a lower percentage of flaky tests.
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Table 7 List of features not excluded by the VIF analysis and with an information gain (IG) higher 0.001 for
IDFLAKIES and FLAKEFLAGGER datasets

iDFlakies dataset FlakeFlagger dataset

Features IG Features IG

Halstead Vocabulary 0.0338 Halstead Vocabulary 0.1727

CBO 0.0166 Assertion Density 0.0539

LCOM5 0.0089 CBO 0.0359

Complex Class 0.0059 TLOC 0.0284

Eager Test 0.0059 Mystery Guest 0.0157

TLOC 0.0049 McCabe 0.0133

Class Data Should Be Private 0.0021 LCOM5 0.0128

Assertion Roulette 0.0019 Assertion Roulette 0.0107

Assertion Density 0.0010 Conditional Test Logic 0.0076

McCabe 0.0010 Eager Test 0.0066

Fire and Forget 0.0013

Functional Decomposition 0.0011

Analyzing the most relevant features, we could observe that, independently from the
dataset, the higher values were related to production and test code complexity measures.
This is in line with the results of RQ2 and confirms that the development of test cases and
the likelihood to induce flakiness is impacted by complexity measures. Other features with
a relevant IG are Mystery Guest, Conditional Test Logic, Fire and Forget and Functional
Decomposition (for FLAKEFLAGGER dataset), and Eager Test, the assert-related features
(for both datasets), meaning that the presence of design flaws, either in production or test
code, might provide indications of test flakiness.

Based on these results, we then verified the performance of Random Forest in terms
of prediction capabilities. Table 8 presents data on the true positives, true negatives, false
positives, false negatives, precision, recall, and F-Measure achieved on each project of the
two datasets. The last rows (“Total”) report the results when considering all projects as a
unique dataset.

The first thing to discuss is concerned with the fact that, for both the datasets, we could
not produce results for all individual projects. By diagnosing the reasons behind the failures
of the model, we identified a main factor. On 37 projects of IDFLAKIES dataset and one
project of FLAKEFLAGGER dataset, the number of flaky tests was equal to one. This caused
a training error, as the balancing algorithm failed because of the lack of instances to use
when generating artificial elements.

The observations above already let us to point out a limitation in the use of machine
learning for flaky test prediction. According to our data, there are cases where the unbal-
ance problem is such that it is not even possible to train a machine learning model. On the
one hand, this is a common limitation of machine learning applied to software engineer-
ing tasks (Azeem et al. 2019; Hall et al. 2011). On the other hand, our results point out the
need for more specialized software engineering mechanisms to deal with peculiar proper-
ties of test flakiness: as an example, the use of cross-project models might be taken into
consideration.
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Table 8 Results of the best classifiers for both datasets

Project Tests Flaky tests TP TN FP FN Pr R F

iDFlakies Random forest

activiti 221 20 18 195 6 2 83% 90% 82%

admiral 2,082 5 3 2,066 11 3 21% 60% 31%

aletheia 46 3 3 40 3 0 50% 100% 66%

elastic-job-lite 564 3 2 554 7 1 22% 66% 33%

fastjson 544 12 8 530 2 4 75% 70% 70%

hadoop 12,838 58 36 12,766 14 22 77% 62% 66%

http-request 309 28 25 280 1 3 96% 90% 91%

incubator-dubbo 1,768 20 8 1,736 12 12 41% 40% 37%

java-websocket 135 27 26 92 16 1 63% 96% 75%

pippo 240 5 5 230 5 0 90% 100% 93%

querydsl 1,926 3 0 1,920 3 3 0% 0% 0%

struts 2,577 4 4 2,571 2 0 87% 100% 91%

wildfly 982 38 30 937 7 8 86% 79% 80%

Total 24,233 226 156 23,937 69 70 69% 69% 68%

FlakeFlagger Random forest

achilles 1,053 4 2 1,049 0 2 100% 50% 66%

activiti 169 16 5 141 12 11 25% 25% 23%

alluxio 186 122 117 60 4 5 97% 96% 97%

ambari 294 52 47 241 1 5 98% 90% 93%

elastic-job-lite 521 3 0 518 3 1 0% 0% 0%

hbase 368 121 105 233 14 16 89% 87% 87%

hector 121 33 26 75 13 7 76% 81% 74%

httpcore 524 15 8 503 6 7 50% 60% 53%

http-request 161 18 13 132 11 5 55% 75% 61%

incubator-dubbo 1,681 18 11 1,658 5 7 76% 65% 68%

java-websocket 107 21 20 86 0 1 100% 96% 98%

logback 655 15 3 637 3 12 50% 20% 28%

ninja 352 16 16 330 6 0 81% 100% 88%

okhttp 782 108 70 565 109 38 39% 65% 48%

orbit 26 4 2 20 2 2 50% 50% 50%

spring-boot 1,634 82 61 1,542 10 21 87% 74% 79%

undertow 48 6 2 39 3 4 40% 33% 26%

wro4j 1,103 16 3 1,084 3 13 14% 15% 12%

Total 9,785 670 446 8,957 158 224 74% 66% 70%
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The inability to execute all models had an impact on the amount of our analysis. We
could consider 13 projects of the IDFLAKIES dataset (for a total of 226 flaky tests on 24,232
test cases) and 18 projects of the FLAKEFLAGGER dataset (for a total of 670 flaky tests on
9,785 test cases).

Looking at the performance obtained on the individual projects of the IDFLAKIES

dataset, another interesting observation could be made. In one case, i.e., on the QUERYDSL

project, the machine learner behaved as a pessimistic classifier, predicting the non-flakiness
of all test cases. This was clearly due to the few flaky test instances available in the dataset.
Once again, this result seems to suggest that the balancing operations that might be rea-
sonably performed might still be not enough. For this reason, alternative solutions to the
prediction might be worth to explore.

In cases where the model could be built, the performance was reasonable and ranged
between 31% and 93% of F-Measure. Diving into these projects, it is worth observing
the presence of five projects, i.e., ADMIRAL, ALETHEIA, ELASTIC-JOB-LITE, PIPPO and
STRUTS, that had a low amount of flaky tests but for which the model could still be
built. To further understand the differences between these cases and the previously dis-
cussed one, we manually looked at the test code of the projects and the values for each
feature. In particular, the first author examined the code and attempted to identify pat-
terns that might explain why the model could be actually built. While the replication of
such a qualitative analysis on a larger sample would be desirable, we could conjecture that
in two projects the diversity of flaky cases was lower than the one of the project where
the model could not be built. More specifically, the flaky tests of these projects belong
to single test suites. The metric values computed on the test suites and the correspond-
ing production classes are similar, in terms of lines of code and other design metrics.
On the one hand, this is reasonable since these tests have been likely developed by the
same developer, following the same design approach. On the other hand, some of our met-
rics aim at capturing aspects connected to the entire class, e.g., the TLOC metric: this
implies that the value of some metrics is exactly the same, since test cases belong to the
same class. As such, the balancing operation produced instances that, despite being arti-
ficial, could still be representative because derived from similar metric profiles. Such a
rudimentary analysis seems to suggest that more comprehensive conceptual frameworks
able to suggest when to use machine learning for flaky test prediction might be worth to
devise.

Turning our attention to the FLAKEFLAGGER dataset, we can observe that there is only
one project where the number of true positives was zero, i.e., ELASTIC-JOB-LITE Besides
this case, we could observe that the performance is almost always good, except for four
projects in which the F-Measure does not even reach 50%. When putting all projects
together, the number of true positives was high (446) and the number of false positives was
low (158), with the performance metrics ranging from 66% to 74%.

In conclusion, our results provide two main insights. First, a fully static approach could
reach high levels of accuracy in situations where the number of flaky tests is large enough
or their diversity is low enough to ensure the learning of their characteristics. Second,
there exist projects for which the use of machine learning does not look reasonable: fur-
ther research effort should be spent to investigate when to use machine learning or to
complement it with heuristic approaches that could assist when learning is not a suitable
option.
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8 RQ4 - Comparing the performance of the static approach
with existing baselines

Our last research question aimed at comparing the performance of the static flaky test pre-
dictor with the currently existing baselines. This section reports on the methodological
choices done and the results achieved.

8.1 Researchmethodology

To address RQ4, we had to compare our fully static approach with existing baselines.
To avoid threats to construct validity due to the re-implementation of the baselines, we
decided to only focus on the FLAKEFLAGGER dataset, which also provided data concerned
with three baseline approaches such as (1) FLAKEFLAGGER (Alshammari et al. 2021); (2)
the textual-based approach proposed by Pinto et al. (Pinto et al. 2020), which we refer
to as VOCABULARY in the remainder of this section; and (3) the combination of the two
(Alshammari et al. 2021), which we refer to as COMBINED in this section. Based on this
methodological decision, we therefore decided not to consider the IDFLAKIES dataset in
the context of RQ4.

More specifically, the data available pertain to the metrics used by the baseline
approaches, namely the predictors employed to feed FLAKEFLAGGER, VOCABULARY, and
COMBINED. On this basis, we could then proceed with the empirical comparison. To enable
a fair comparison, we re-executed the same pipeline applied in RQ3 on the original features
that have been released by Alshammari et al. (Alshammari et al. 2021). As such, we applied
the vif function and computed the information gain (Quinlan 1986) to discard metrics not
providing any gain. Afterwards, we trained a Random Forest algorithm—the choice was the
result of a benchmark study where we experimented with multiple learning algorithms and
under-/over-sampling strategies against the baseline data, finding that Random Forest com-
bined with SMOTE was the best option to use to train the baselines. We then executed the
models, collecting their performance and comparing them with our approach in terms of the
same evaluation metrics employed in RQ3, i.e., precision, recall, and F-Measure. Finally,
the Nemenyi test was applied to assess the statistical significance of the results achieved.

8.2 Analysis of the results

Table 9 reports the information gain of each baseline feature in the FLAKEFLAGGER dataset
(Alshammari et al. 2021). To ease the comparison, we also reported the information gain
data of our approach.
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Table 9 List of features not excluded by the VIF analysis and with an information gain (IG) higher 0.001 for
FlakeFlagger, Vocabulary approach, combined approach, and our model

Static approach FlakeFlagger

Features IG Features Type IG

Halstead Vocabulary 0.1727 Execution Time FlakeFlagger 0.1414

Assertion Density 0.0539 Project Source Lines Covered FlakeFlagger 0.0869

CBO 0.0359 Project Source Classes Covered FlakeFlagger 0.0790

TLOC 0.0284 Covered Lines FlakeFlagger 0.0400

Mystery Guest 0.0157 Covered Changes (past 500 commits) FlakeFlagger 0.0328

McCabe 0.0133 Test Length FlakeFlagger 0.0299

LCOM5 0.0128 Covered Changes (past 10000 commits) FlakeFlagger 0.0258

Assertion Roulette 0.0107 Covered Changes (past 75 commits) FlakeFlagger 0.0253

Conditional Test Logic 0.0076 Covered Changes (past 100 commits) FlakeFlagger 0.0249

Eager Test 0.0066 Covered Changes (past 50 commits) FlakeFlagger 0.0231

Fire and Forget 0.0013 mtfs Token 0.0227

Functional Decomposition 0.0011 tfs Token 0.0217

External Library FlakeFlagger 0.0188

tachyon Token 0.1716

for Token 0.0162

Covered Changes (past 10 commits) FlakeFlagger 0.0148

fileid Token 0.0132

create Token 0.0128

int Token 0.0128

ioexception Token 0.0126

master Token 0.0124

writetype Token 0.0120

testutils Token 0.0117

assertthat Token 0.0112

tachyonfile Token 0.0110

throws Token 0.016

createbytefile Token 0.0101

Fire and Forget FlakeFlagger 0.0101

client Token 0.0099

Number of Assertions FlakeFlagger 0.0097

invalidpathexception token 0.0095

testfile Token 0.0094

that Token 0.0088

Covered Changes (past 5 commits) FlakeFlagger 0.0087

filealreadyexistexception Token 0.0085

file Token 0.0083

should Token 0.0081

cluster Token 0.0081

createfile Token 0.0079
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Table 9 (continued)

Mystery Guest FlakeFlagger 0.0078

Resource Optimism Token 0.0077

new Token 0.0071

return Token 0.0071

asserttrue Token 0.0069

increasing Token 0.0068

null Token 0.0067

then Token 0.0065

throws Token 0.0064

thenreturn Token 0.0064

already Token 0.0063

true Token 0.0063

mkdir Token 0.0061

cli Token 0.0060

conf Token 0.0060

if Token 0.0060

Covered Changes (past 25 commits) FlakeFlagger 0.0058

According to the data shown in the table, we could provide two main observations.
First, we could confirm once again the role of code complexity. Indeed, among the most
informative features considered by us and the baselines, we found both static and dynamic
metrics related to complexity. For instance, features like execution time, test length, or
number of external libraries are among the most relevant metrics. The role of complex-
ity is also partially visible when looking at the tokens considered within the approach by
Pinto et al. (Pinto et al. 2020). Indeed, terms like for or cli (the command line inter-
face) suggest that the fact that a test performs complex tasks is an indication of flakiness.
In addition, the most informative terms are connected to the management of files. As the
reader might notice, the vast majority of the textual features in Table 9 pertain to exceptions
(e.g., throws, ioexception, invalidpathexception, etc.) or to the creation of
files (e.g., mkdir, createfile, createbytefile, etc.). Elaborating on the rele-
vance of file-related terms, it may be reasonable to believe that an approach based on
vocabulary is particularly suitable to identify flaky tests whose root cause depends on the
sub-optimal management of files—this aspect might be interesting to consider in further
experimentations on root cause classification.

In the second place, it is worth commenting on the fact that some features have different
information gain when considered in our approach and in the baseline ones. Test smells
are the main example. According to Alshammari et al. (Alshammari et al. 2021), “none of
the test smells [...] collected had a strong information gain, which may indicate that test
smells are not well-correlated with test flakiness”. Indeed, all the test smells appeared in the
bottom of the ranked list of the baselines. In our case, the situation is slightly different: while
the test smells scored lower than other features, their contribution seems to be comparable,
hence possibly influencing test flakiness.

Such a difference could be explained by two factors. On the one hand, the static met-
rics could have less relevance than the dynamic ones when considered together. In other
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terms, the weight of the static features might be lower when dynamic information are avail-
able, hence leading these metrics to lose significance. On the other hand, Alshammari et al.
(Alshammari et al. 2021) computed test smells in a different manner. As explained by the
original authors, their goal was to “not precisely detect test smells [...] but rather, to find
features that may be representative of flaky tests”. For this reason, they “decided to expand
[the] definition of many of these smells to be inclusive of all code executed by a test, rather
than just the code contained in the test method body itself”. In other terms, this detection
mechanism aims at maximizing the recall, compromising the precision. As a consequence,
the study by Alshammari et al. (Alshammari et al. 2021) might include a number of false
positive test smell instances that could have biased the information gain computation. Our
mechanism, instead, is based on a test smell detector that aims at optimizing the compro-
mise between precision and recall (Pecorelli et al. 2020), hence providing a lower amount
of false positives. Based on these observations, we argue the existence of a relation between
test smells and flaky tests that might be worth to further explore—this relation was indeed
partially confirmed by Camara et al. (Camara et al. 2021a), other than theorized in previous
work (Palomba 2019).

Table 10 reports the results obtained by the three baselines, showing the true positives,
true negatives, false positives, false negatives, precision, recall, and F-Measure for each
project and for the entire dataset. To ease the comparison, we also reported the results of
our static approach. In addition, for a visual understanding of the results, Figure 4 depicts
barplots of the F-Measure values obtained for each project by the experimented models.

Analyzing the results obtained for the entire dataset (row “Total”), we could first observe
that the number of true positives of our approach is slightly lower with respect to the one
of FLAKEFLAGGER (446 vs 448) and COMBINED (446 vs 463), but higher to the one of
VOCABULARY (446 vs 423). Elaborating on these results, we could argue that it is rea-
sonable to expect to identify less true positives, overall, since our approach is not boosted
with dynamic features that would provide orthogonal pieces of information. Nonetheless,
we could still observe similar levels of accuracy, especially when considering recall: this is
indeed higher when compared to VOCABULARY (66% vs 63%), equal to FLAKEFLAGGER

(66% vs 66%) and only slightly lower than COMBINED (66% vs 68%). From a practical per-
spective, these results imply that a similar amount of actual flaky tests can be identified in a
more efficient manner by just looking at the design of test cases. The similar recall is payed
in terms of precision: our approach outputs more false positives, overall. Nonetheless, the
lower precision is not visible on all individual projects.

When looking at the results achieved on the individual projects, some considerations
can be made. First, we could notice some complementarity between the experimented
approaches. There are indeed cases where our approach cannot identify any flaky test, while
the baselines can, and viceversa. This is, for instance, the case of the ACTIVITI, where the
static approach performed worst than all other baselines. This project makes available a
lightweight open-source business process management platform. In doing so, the source
code implements a data-driven client-server architecture where data are sent back and forth
to be verified. The corresponding tests are therefore called to verify that the data exchange
processes work fine. By nature, the flakiness of these test cases might be more easily
identified using dynamic or textual features: the former could help pinpointing edge cases
through data-flows analysis, while the latter might exploit peculiar terms connected to the
sub-optimal use of network protocols. On the contrary, the static metrics considered by our
approach might not be effective in this case because none of them explicitly target the prop-
erties of source code. As a consequence, the baseline approaches tend to work better than
ours.
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Table 10 RQ4. Comparison between our model and the existing flaky test prediction models against the
FLAKEFLAGGER dataset

Project TP TN FP FN Pr R F TP TN FP FN Pr R F

FlakeFlagger Vocabulary approach

achilles 2 1,049 0 2 100% 50% 66% 2 1,049 0 2 100% 50% 66%
activiti 5 143 10 10 31% 30% 29% 11 146 7 5 54% 70% 59%
alluxio 122 63 1 0 99% 100% 99% 121 64 0 1 100% 99% 99%
ambari 44 237 5 8 92% 84% 87% 43 241 1 9 97% 83% 89%
elastic-job-lite 1 515 3 2 25% 33% 27% 0 518 0 3 0% 0% 0%
hbase 110 236 11 11 91% 90% 90% 95 223 24 26 79% 78% 78%
hector 27 79 9 36 73% 81% 76% 26 83 5 7 87% 80% 81%
httpcore 12 496 13 3 48% 80% 58% 10 502 7 5 59% 75% 64%
http-request 11 127 16 7 39% 65% 45% 6 140 3 12 45% 30% 35%
incubator-dubbo 9 1,662 1 9 76% 50% 58% 10 1,661 2 8 71% 55% 59%
java-websocket 19 85 1 2 96% 91% 92% 20 86 0 1 100% 96% 98%
logback 1 636 4 14 10% 10% 10% 0 636 4 15 0% 0% 0%
ninja 16 336 0 0 100% 100% 100% 16 336 0 0 100% 100% 100%
okhttp 45 603 70 64 41% 41% 39% 33 650 23 76 58% 30% 38%
orbit 3 19 3 1 25% 30% 26% 2 21 1 2 15% 20% 16%
spring-boot 61 1,544 8 21 90% 74% 80% 59 1,544 8 23 88% 72% 78%
undertow 2 40 2 4 20% 50% 20% 1 40 2 5 33% 14% 19%
wro4j 1 1,086 1 15 50% 50% 66% 4 1,087 0 72 40% 25% 29%
Total 448 9,002 112 222 80% 66% 72% 428 9,006 108 242 80% 63% 70%

Combined approach Static approach

achilles 0 1,049 0 0 0% 0% 0% 2 1,049 0 2 100% 50% 66%

activiti 11 147 6 5 56% 70% 61% 5 141 12 11 25% 25% 23%

alluxio 122 64 0 0 100% 100% 100% 117 60 4 5 98% 90% 93%

ambari 47 242 0 5 100% 90% 94% 47 241 1 5 98% 90% 93%

elastic-job-lite 0 518 0 3 0% 0% 0% 0 518 3 1 0% 0% 0%

hbase 112 238 9 9 92% 92% 92% 105 233 14 16 89% 87% 87%

hector 28 85 3 5 92% 86% 88% 26 75 13 7 76% 81% 74%

httpcore 9 501 8 6 44% 65% 50% 8 503 6 7 50% 60% 53%

http-request 10 140 3 8 70% 55% 58% 13 132 11 5 55% 75% 61%

incubator-dubbo 12 1,661 2 6 91% 70% 76% 11 1,658 5 7 76% 65% 68%

java-websocket 20 86 0 1 100% 96% 98% 20 86 0 1 100% 96% 98%

logback 2 638 2 13 50% 13% 20% 3 637 3 12 50% 20% 28%

ninja 16 336 0 0 100% 100% 100% 16 330 6 0 81% 100% 88%

okhttp 35 660 13 74 74% 31% 43% 70 565 109 38 39% 65% 48%

orbit 2 21 1 2 66% 50% 56% 2 20 2 2 50% 50% 50%

spring-boot 62 1,544 8 20 89% 75% 81% 61 1,542 10 21 87% 74% 79%

undertow 1 40 2 5 33% 16% 22% 2 39 3 4 40% 33% 26%

wro4j 3 1,087 0 13 100% 18% 30% 3 1,084 3 13 14% 15% 12%

Total 463 9,057 57 207 89% 68% 77% 446 8,957 158 224 74% 66% 70%

The table shows true positives, true negatives, false positives, false negatives, precision, recall, and F-Measure
for each project and for the entire dataset. We report the results of both our static approach and the techniques
already presented in the literature to facilitate comparison
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Fig. 4 Barplot of the F-Measure achieved for each project when comparing the baselines to our static
approach. The orange color represents FLAKEFLAGGER, the green color represents our static approach, the
blue color represents the VOCABULARY, and the purple color represents the COMBINED

On the other hand, let consider the LOGBACK project, which implements a framework
to log Java code. In this case, the operations performed in the source code are mostly
related to the management of files, e.g., by adding log statements to existing Java files. The
corresponding test cases are therefore responsible to verify the correctness of such a file
management. The detection of test flakiness, in this case, seems to be more connected to the
static profile of a test, for instance to the way it handles the communication with files. This
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is a likely reason that makes our approach better than FLAKEFLAGGER, other than the pos-
sible imprecision that the baseline has when computing certain static properties of source
code, like test smells. Perhaps more interestingly, VOCABULARY reached 0% precision and
recall on this project, acting as a pessimistic classifier. We looked deeply into this case to
understand the reason why an approach that mostly relies on file-related features failed so
evidently. While we could not determine the exact reasons behind this failure, we noticed
that the lack of natural language normalization might have impacted the performance of
VOCABULARY. Indeed, most file-related terms are taken as they are, even when different
terms have the same (or similar) meaning. For instance, the source code of the LOG-
BACK project makes use of terms such as file and resilientfileoutputstream,
file header, file footer, and others. While the terms actually refer to various spe-
cific properties or actions performed on files, a fully textual approach might not properly
assess the likelihood of test flakiness because of the many different terms associated to the
same potential issue arising with the management of files. In this sense, further improve-
ments of the VOCABULARY approach that take text normalization into account might be
worth to explore.

There are, however, some exceptions to this discussion. In some cases the flaky tests can
be predicted with a similar accuracy independently from the source of information exploited
- for instance, in the cases of ALLUXIO or NINJA. Likely, this is due to the fact that either
the static or dynamic metrics can capture the relevant aspects that may lead to the flakiness
prediction.

To further elaborate on the complementarity among the experimented techniques, we
conducted an additional analysis focused on understanding the overlap among them. Given
two prediction models mi and mj , we computed (1) the amount of flaky tests correctly
predicted by both mi and mj and (2) the amount of flaky tests correctly predicted by mi

only and missed by mj . In addition, given the four experimented prediction models mi , mj ,
mk , and mp we computed (1) the amount of flaky tests correctly predicted by all models
and (2) the amount of flaky tests correctly predicted by mi only and missed by mj , mk ,
and mp . Such an analysis could provide insights into the complementarity of the experi-
mented techniques, other than assessing the actual value of our model with respect to the
baselines.

The overlap results are reported in Table 11. The findings indicate a clear trend. When
comparing our model with the baselines, we could observe that 72% of the correct predic-
tions are in common. This means that the vast majority of the flaky tests can be detected
independently from the model exploited. The complementarity is limited to the remain-
ing portion of flaky tests. Our model can, for instance, identify 14% of flaky tests that
FLAKEFLAGGER cannot detect, and viceversa. This suggests that the cases of ACTIVITI

and LOGBACK previously discussed represent exceptions to the general trend, while in most
cases our model provides the same predictions as baselines that exploit additional dynamic
or textual information.

Besides the relation between our model and the baselines, our analysis also indicates
that the discussion is similar when comparing the other models against each other. Table 11
indeed reports that most of the flaky tests can be correctly identified by two baselines, with
a limited amount of flaky tests detected by only one of them.

The results are further confirmed when looking at the bottom of Table 11. When study-
ing the amount of flaky tests correctly identified by all approaches, we could see that this
happened in 38% of the cases. The contributions of the individual models reach up to 17%
in the case of COMBINED.
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Table 11 The overlap results. First, we reported the results obtained by comparing our model with the base-
lines, then we reported the results obtained by comparing the baselines with each other. Finally, the results
obtained by comparing the values predicted correctly by a single model that were not predicted by the other
three are reported

Static vs. FLAKEFLAGGER

Static corr ∩ FlakeFlagger corr Static corr \ FlakeFlagger corr FlakeFlagger corr \
Static corr

72% 14% 14%

Static vs. VOCABULARY

Static corr ∩ Vocabulary corr Static corr \ Vocabulary corr Vocabulary corr \
Static corr

72% 16% 12%

Static vs. COMBINED

Static corr ∩ Combined corr Static corr \ Combined corr Combined corr \
Static corr

72% 14% 14%

FLAKEFLAGGER vs. VOCABULARY

FlakeFlagger corr ∩
Vocabulary corr

FlakeFlagger corr \
Vocabulary corr

Vocabulary corr \
FlakeFlagger corr

70.7% 16.4% 12.9%

FLAKEFLAGGER vs. COMBINED

FlakeFlagger corr ∩
Combined corr

FlakeFlagger corr \
Combined corr

Combined corr \
FlakeFlagger corr

78.8% 8.6% 12.7%

VOCABULARY vs. COMBINED

Vocabulary corr ∩
Combined corr

Vocabulary corr \
Combined corr

Combined corr \
Vocabulary corr

82.6% 5.1% 12.3%

Static corr \ (FlakeFlagger corr ∪
Vocabulary corr ∪ Combined corr )

FlakeFlagger corr \ (Static corr ∪
Vocabulary corr ∪ Combined corr )

15.5% 15.7%

Vocabulary corr \ (Static corr ∪
FlakeFlagger corr ∪ Combined corr )

Combined corr\ (Static corr ∪ Flake-
Flagger corr ∪ Vocabulary corr )

13.2% 17.4%

(Static corr ∩ FlakeFlagger corr ∩ Vocabulary corr ∩ Combined) \ (Static corr ∪ FlakeFlagger corr ∪
Vocabulary corr ∪ Combined corr )

38.2%

To conclude, the observations above—especially those related to the overlap analysis—
seem to reinforce and extend what discovered in RQ3: a fully static approach that does not
require expensive dynamic or textual computation can provide insights into the flakiness of
test cases with an accuracy close (or higher, in some cases) of more sophisticated baselines.
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9 Threats to validity

When it comes to the limitations of the study, there are some factors that might have biased
our conclusions. This section discusses these factors and the mitigation strategies applied to
limit their influence on our results.

9.1 Construct validity

The main threat related to the relationship between theory and observation is concerned with
possible imprecision in the data used in the study. We relied on publicly available sources
built in the context of previous researches (Alshammari et al. 2021; Lam et al. 2019) and
that have been already used and validated. This makes us confident of the reliability of the
datasets; yet, we cannot exclude imprecision, especially in terms of the flaky tests identi-
fied, e.g., some tests might have not exposed their unreliability over the multiple executions
performed by the authors of the datasets. In this sense, further replications conducted on
different datasets might be worth to increase the confidence on the validity of our results.

Another discussion point concerns with the computation of the independent variables
through automated tools. We are aware of the possible noise that might be introduced, for
instance in terms of false positive code and test smells. Yet, we had to necessarily accept
this limitation, as our study targeted large datasets for which a manual detection process was
infeasible. To partially mitigate this threat, we selected well-established tools that have been
previously evaluated, showing good accuracy. In addition, we defined independent variables
by computing metrics on either production or test code, while additional analyses might
consider the effects of computing metrics on both of them. For instance, some code smells
(e.g., Complex Code) might be a potentially relevant indicator of test flakiness. Further
investigations on this matter are part of our future research agenda.

When computing independent variables, we had to link test classes to the corresponding
production classes. To this aim, we relied on a pattern matching approach relying on nam-
ing conventions. Multiple observations should be made on this choice. In the first place,
the choice of using it comes from the good compromise between accuracy and scalabil-
ity it guarantees. As already mentioned in Section 4, alternative approaches based on more
complex algorithms, e.g., static and dynamic slicing (Qusef et al. 2013), are typically more
effective but poorly scalable on a large scale. In our study, we accepted the limitations of
the pattern matching approach with the aim of conducting a larger scale evaluation. How-
ever, we took some precautions. In particular, the approach may output false positive links
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in cases where two or more production classes have identical names, but different paths.
Dealing with these cases was not necessary in our case, as there were no cases of produc-
tion classes with identical names but different paths. Nonetheless, replications of our study
on different systems may need to consider this potential concern to improve the linking
capabilities of the pattern matching approach.

Finally, in the context of RQ4, we decided to only focus on the FLAKEFLAGGER

dataset. While this decision let us reduce the amount of data, it allowed us to avoid the re-
implementation of the baselines. Being not the original authors of those approaches, our
re-implementation could have introduced bias, affecting the validity and fairness of the
comparison.

9.2 Conclusion validity

Threats to conclusion validity are related to the relationship between treatment and out-
come. As for the statistical methods employed in RQ2, we selected the Generalized Linear
Model after verifying its suitability for our purpose, e.g., its ability to deal with dichoto-
mous variables. In addition, to ensure that the model did not suffer from multi-collinearity,
we applied a stepwise procedure, using the vif function, aimed at discarding non-relevant
independent variables. These procedures followed established guidelines (O’brien 2007),
making us confident of the validity of the conclusions drawn.

With respect to the machine learning exercises conducted in RQ3 and RQ4, we bench-
marked multiple learning algorithms, trained using different under- and over-sampling
strategies, in order to identify the best performing one. The performance of Random Forest
in terms of F-Measure were better than the other models, overall, as shown by the Nemenyi
test. Our online appendix (Pontillo et al. 2022) includes the data and analysis scripts used to
reach this conclusion. Moreover, the quantitative results have been backed-up with the use
of appropriate statistical tests and more qualitative, manual analyses conducted to verify the
rationale behind some of the observed findings.

Another relevant discussion point concerns with the validation strategy used to reach
conclusions. In our study, we work in the context of a cross-validation scenario. Nonethe-
less, we are aware of the possible limitations coming from this design choice: flakiness data
are indeed likely to be time-sensitive and a validation strategy accounting for this aspect
might substantially vary the interpretation of the performance metrics. There are, however,
two main observations to make in this respect.

First and foremost, previous work on flaky test prediction, i.e., all the experimented
baselines (Alshammari et al. 2021; Lam et al. 2019; Pinto et al. 2020), employed a cross-
validation procedure. As such, a variation of the validation strategy would not have allowed
us to perform a fair, precise comparison to quantify the value of statically-computable
metrics with respect to the others previously proposed in literature.

Perhaps more importantly, a time-sensitive validation would have required a dedi-
cated research design, other than expensive computations due to the mining of flaky
tests over the history of the considered software systems. More particularly, while the
datasets employed in the study provide information on the commits where a flaky
test was detected, the mining procedure followed to identify those flaky tests was not
meant to conduct a time-sensitive validation and might therefore require some tun-
ing/adjustments. For the sake of concreteness, let us consider the case of the com-
mit 7e3801e19fb43183c59607663ebd53c27a95cf77 of the WRO4J project,
where the test case named testbourboncssprocessor.shouldbethreadsafe
was detected as flaky. By analyzing this case further, we found out that the commit
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did not modify the test nor the associated production class (i.e., the class named
bourboncssprocessor). In addition, the modified classes did not have any structural
relation with neither the production nor test class. Yet, the flakiness of the test emerged. In
other terms, the flakiness affecting the test manifested itself independently from the actions
performed by developers within the commit. This implies that the test might have possibly
been flaky even in previous commits of the project, despite not being detected. The exam-
ple has two main implications. First, novel strategies to identify flakiness-inducing commits
should be devised, as they should not only rely on the information coming from an individ-
ual commit of the change history (as the flakiness might have been previously emerged),
but rather should mark flakiness by also looking at the specific change history of tests (e.g.,
starting from the emergence of a flaky test, they may traverse in reverse order the commits
until the last modification of the test). Second, the information available in current datasets
might potentially lead to biased observations when flaky test prediction models are experi-
mented in a time-sensitive fashion, as they were not collected by explicitly considering the
many perils of mining flaky test data. For these reasons, we believe that such an analysis
would require a brand new set of research questions, methodology, and analyses, and is,
therefore, out of the scope of our current submission.

Finally, it is worth discussing about the relation between the performance observed when
executing our model and complexity. Throughout the analysis of the results we have high-
lighted the role of complexity metrics to discriminate the flakiness of a test case. This may
potentially lead to a practical limitation of our approach: there is no guarantee that fixing a
flaky test would reduce its complexity, which is apparently what is useful to identify them,
whereas dynamic metrics would supposedly find differences (e.g., different coverage). In
this case, the approach would potentially not be useful to developers that would get false
positives from the model once their flaky tests have been fixed. There are two observations
to make in this respect. First, it is reasonable to believe that the problem mostly pertains
to code complexity metrics computed on production code. Indeed, while the complexity of
the exercised code may provide hints to our prediction model, previous work (Lam et al.
2019; Luo et al. 2014) pointed out that the fixing of a flaky test often revolves around the
modification of the test code only, hence increasing the risk of future misclassifications of
our model. The same may not be immediately applicable to complexity metrics computed
on test code: the likelihood of a fixing operation reducing test code complexity is higher, as
any modification induces changes in terms of metrics. Our model relies on complexity met-
rics computed on both test and production code (see Table 1) and, according to the results
achieved in RQ3, the Information Gain analysis revealed that the complexity of test code
(as indicated by the McCabe metric) appeared to be important in both datasets. As such,
the real-world capabilities of our model may be driven by multiple complexity metrics that
capture aspects connected to both test and production code.

In any case, to further analyze the practical capabilities of our approach, we performed an
additional analysis aiming at verifying the behavior of the model when applied before and
after fixes to flaky tests. To this aim, we exploited the IFIXFLAKIES dataset (Shi et al. 2019).
In particular, in the context of their work, Shi et al. (Shi et al. 2019) opened 32 pull requests
proposing to the contributors of the considered projects to integrate changes that would
have fixed flaky tests of their applications. 23 of these pull requests were finally accepted
and integrated. Shi et al. (Shi et al. 2019) also provided an online appendix reporting the
results of the pull request analysis.6 We used this dataset to identify the flaky tests whose

6Available at: https://sites.google.com/view/ifixflakies
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fixes were accepted by contributors and that are in common with our dataset - recall that we
had to discard some tests or projects because of our requirement of detecting the production
class associated with the test taken into account (see Section 4). Among the 23 cases of
accepted pull requests, we could identify four cases suitable for the additional analysis. First
and foremost, in all cases our model was able to correctly classify the flakiness of the tests
before and after the fix. Analyzing the metric profile of the tests further, we could observe
that in two cases the intensity of the Eager Test smell instances affecting the earlier version
of the test was reduced during the fixing process. More importantly, the value of metrics
such as WMC, RFC, MPC, and Halstead’s vocabulary was reduced, meaning that the fixes
induced changes that had the effect of reducing the overall complexity of the code - hence,
positively influencing the model’s capabilities. In the remaining two cases analyzed, we
observed no variation in terms of test code metrics, yet the Halstead’s vocabulary metric
value of the production code was reduced.

We are aware that the limited extent of the analysis does not allow us to generalize the
results achieved. At the same time, the few cases analyzed seem to highlight some pecu-
liarities of the flaky test fixing process: not only this leads to the removal of the flakiness,
but also tends to induce variations in the metric profile of both test and production code,
especially in terms of code complexity. This is the likely reason why our model could cor-
rectly discriminate the flakiness of test cases both before and after the fixes. Of course,
further investigations should corroborate our initial findings - and further datasets should be
developed so that these kind of analyses may be enabled.

9.3 External validity

Threats to external validity regard the generalizability of the results. We conducted our study
focusing on the IDFLAKIES and FLAKEFLAGGER datasets (Alshammari et al. 2021; Lam
et al. 2019), which are limited to open-source projects written in Java. In this respect, it is
important to note that the projects have different scope and characteristics that allow us in
part to mitigate this threat. While this is still a limitation of our study, there are two con-
siderations to make. First, the vast majority of the datasets collecting information on flaky
tests pertain to Java projects. This is the reason why we decided to focus on Java in the
first place. This recalls the need for additional datasets targeting different programming lan-
guages: while some attempts have been made in the recent past (Gruber et al. 2021; Dutta
et al. 2020), our work further remarks this need. In the second place, it is reasonable to
believe that our approach might work when applied to other object-oriented applications,
where the static metrics considered could be computed. Of course, an extension of this
type would require additional investigations and instruments. For example, specialized code
and test smell detectors have been proposed for Python (Vavrová and Zaytsev 2017; Wang
et al. 2021), yet these target peculiar design issues arising in Python code. As such, repli-
cations of our work aiming at understanding the relation between Python-specific code/test
smells and test flakiness should be devised before considering the effect of static indicators
for flaky test prediction. In a similar vein, our approach could be experimented on other
object-oriented programming languages. As for other types of programming languages (e.g.,
procedural ones), it is important to notice that the concepts used in our study can be adapted
as well: code metrics and smells might be defined and detected in procedural languages as
well (e.g., (de Almeida Filho et al. 2019)), hence making a wider application of our work
potentially feasible. In any case, extensions like those mentioned above are part of our future
research agenda.
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An addition point concerns with the practical adoption of our approach. The method-
ology employed to link test to production classes naturally limits the applicability of the
current version of the approach to the projects that actually employ naming conventions.
Nonetheless, the choice of using the pattern matching approach does not necessarily influ-
ence the practical deployment of our approach. Developers interested in using our solution
may indeed configure it so that the linking process is performed according to the stan-
dards/guidelines they normally apply to develop code, leading our approach to be fed with
even more data. In other terms, the empirical choices applied in our study were taken to pro-
vide a larger-scale experimentation of the approach, but in a real-world case the availability
of a stronger or ad-hoc linking solution might potentially lead to having larger datasets to
train our model, which is supposed to further increase the performance reported in our paper.

10 Conclusion, discussion, and future work

Test flakiness concerns with the non-determinism of test cases, which might lead devel-
opers to waste time in diagnosing source code, other than increasing the overall testing
costs. While the most common approach to their detection is represented by the multiple
re-execution of test cases, a number of recent studies proposed the adoption of machine
learning approaches that could predict flaky tests in advance. Nonetheless, most of these
artificial intelligence solutions require the computation of dynamic metrics, like code cover-
age, or the analysis of textual properties of test code. These still make the prediction exercise
not scalable, possibly impacting their practicality.

In this paper, we conducted an empirical study to analyze whether and to what extent
static metrics might be used to predict test flakiness. We selected features of different nature,
including test and production code metrics and smells. First, we studied how these features
correlate with test flakiness: this was done by analyzing both features individually and in
combination. The promising results obtained from such an investigation allowed us to verify
how the considered factors could be employed within machine learning solutions. Hence,
we devised a fully static approach to test flakiness prediction. The empirical investigation
aimed at (1) measuring the performance of the approach and (2) comparing them with those
achieved by three baselines based on dynamic features, source code vocabulary, and their
combination. This empirical study provided a number of notable findings:

– Code complexity metrics are the ones that differ the most between flaky and non-flaky
tests. Not only this result was confirmed on both the considered datasets, but also when
looking at the most relevant features employed by the fully static approach. This has
two main implications. On the one hand, practitioners might use our findings to justify
the adoption of instruments to take code complexity under control. On the other hand,
more research on code complexity and how it affects test code quality might be worth
to further elaborating instruments to support developers.

– When analyzing the value of the features used by our approach and by the baselines,
we observed that some of them have a different weight. Particularly, while test smells
were not deemed relevant for FLAKEFLAGGER, they contributed to our approach in a
comparable manner with respect to other features. This opens up new research oppor-
tunities into the relation between test smells and flakiness. Some research on the matter
has been recently proposed (Camara et al. 2021a), yet we argue that more empirical
investigations might be conducted to further understand how test code quality impacts
the likelihood of test flakiness.
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– A fully static approach to test flakiness prediction reaches comparable results with
respect to the baselines—the F-Measures ranged from 17% to 99% on the two con-
sidered datasets. Perhaps more importantly, our approach has higher precision, hence
representing a more practical solution for developers. While additional investigations
into the matter are already part of our future research agenda, our results have already
implications for researchers and practitioners. The former are called to devise and study
novel, more powerful metrics that could contribute to the improvement of the flakiness
prediction capabilities. The latter may rely on an approach that does not need dynamics
computations to verify the quality and reliability of the test cases developed within their
own organization. From a practical standpoint, the static nature of the experimented
model would let it be run among the other continuous checks that developers normally
do to verify the presence of regressions in newly committed code (Vassallo et al. 2020).

– Our study revealed some peculiarities of the flakiness data that might lead machine
learning approaches to work differently. In particular, we identified the diversity of
test cases as a relevant factor to even allow a machine learner to work. In addi-
tion, we also found some interesting complementarity between our approach and the
baselines, which suggests that improvements are still possible. On the basis of these
conclusions, we argue that the results of this paper might lead to further research on
novel software engineering practices for flaky test prediction, namely instruments and
methodologies that are aware of the flakiness data properties and may act accordingly,
for instance by dynamically selecting the approach to use or the pre-processing steps to
apply.

The output of this study represents the input of our future research agenda, which will
be focused on further understanding the relation between static metrics (e.g., code com-
plexity, code smells, or test smells) and test flakiness. In addition, we aim at conducting
additional investigations on how to best configure and evaluate machine learning pipelines
for the problem of flaky test prediction. Part of these investigations will also revolve around
the problem of mining flakiness-inducing commit, which may enable further time-sensitive
analysis of flaky test prediction models other than investigations into the flakiness detec-
tion and fixing process. Finally, we aim at devising novel artificial intelligence techniques
that could combine existing instruments, other than recommending when to use a technique
rather than another.
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