
https://doi.org/10.1007/s10664-022-10186-7

On effort-aware metrics for defect prediction

Jonida Çarka1 ·Matteo Esposito1 ·Davide Falessi1

Accepted: 31 May 2022 /
© The Author(s) 2022

Abstract
Context Advances in defect prediction models, aka classifiers, have been validated via
accuracy metrics. Effort-aware metrics (EAMs) relate to benefits provided by a classifier
in accurately ranking defective entities such as classes or methods. PofB is an EAM that
relates to a user that follows a ranking of the probability that an entity is defective, provided
by the classifier. Despite the importance of EAMs, there is no study investigating EAMs
trends and validity.

Aim The aim of this paper is twofold: 1) we reveal issues in EAMs usage, and 2) we propose
and evaluate a normalization of PofBs (aka NPofBs), which is based on ranking defective
entities by predicted defect density.

Method We perform a systematic mapping study featuring 152 primary studies in major
journals and an empirical study featuring 10 EAMs, 10 classifiers, two industrial, and 12
open-source projects.

Results Our systematic mapping study reveals that most studies using EAMs use only a
single EAM (e.g., PofB20) and that some studies mismatched EAMs names. The main result
of our empirical study is that NPofBs are statistically and by orders of magnitude higher
than PofBs.

Conclusions In conclusion, the proposed normalization of PofBs: (i) increases the realism
of results as it relates to a better use of classifiers, and (ii) promotes the practical adoption
of prediction models in industry as it shows higher benefits. Finally, we provide a tool to
compute EAMs to support researchers in avoiding past issues in using EAMs.

Keywords Defect prediction · Accuracy metrics · Effort-aware metrics

Communicated by: Yasutaka Kamei

� Jonida Çarka
jonida.carka@students.uniroma2.eu

Matteo Esposito
m.esposito@ing.uniroma2.it

Davide Falessi
falessi@ing.uniroma2.it

1 University of Rome Tor Vergata, Rome, Italy

Published  online:  6  August  2022

Empirical Software Engineering (2022) 27: 152

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10186-7&domain=pdf
http://orcid.org/0000-0001-9315-3652
http://orcid.org/0000-0002-8451-3668
http://orcid.org/0000-0002-6340-0058
mailto: jonida.carka@students.uniroma2.eu
mailto: m.esposito@ing.uniroma2.it
mailto: falessi@ing.uniroma2.it


1 Introduction

The manner in which defects are introduced into code, and the sheer volume of defects
in software, are typically beyond the capability and resources of most development teams
(Ghotra et al. 2017; Kamei et al. 2012; Kondo et al. 2019; Tantithamthavorn et al. 2019).
Defect prediction models aim to identify software artifacts that are likely to be defective
(Menzies et al. 2010; Ohlsson and Alberg 1996; Ostrand and Weyuker 2004; Ostrand et al.
2005; Turhan et al. 2009; Weyuker et al. 2010). The main purpose of defect prediction is
to reduce the cost of testing, analysis, or code review by prioritizing developers’ efforts on
specific artifacts such as commits, methods, or classes.

Past studies investigated how to use defect prediction models, aka classifiers, to predict
the defectiveness of different types of entities including commits (Fan et al. 2021; Giger
et al. 2012; Herbold 2019; Herbold et al. 2020; Huang et al. 2019; Kondo et al. 2020;
McIntosh and Kamei 2018; Pascarella et al. 2019, 2020; Rodrı́guez-Pérez et al. 2020; Tu
et al. 2020), classes (Amasaki 2020; Bangash et al. 2020; Bennin et al. 2018, 2019; Chen
et al. 2020; Chi et al. 2017; Dalla Palma et al. 2021; Herbold et al. 2017, 2018, 2019;
Hosseini et al. 2019; Jiarpakdee et al. 2020; Jing et al. 2017; Kamei et al. 2016; Kondo
et al. 2019; Lee et al. 2016; Liu et al. 2017; Morasca and Lavazza 2020; Mori and Uchihira
2019; Nucci et al. 2018; Palomba et al. 2019; Peters et al. 2019; Qu et al. 2021a; Shepperd
et al. 2018; Song et al. 2019; Tantithamthavorn et al. 2016c, 2019, 2020; Tian et al. 2015;
Yan et al. 2017; Yu et al. 2019; Zhang et al. 2016, 2017) or methods (Pascarella et al.
2019) by leveraging, for example, product metrics (Basili et al. 1996; Gyimóthy et al. 2005;
Khoshgoftaar et al. 1996; Nagappan and Ball 2005; Hassan 2009), process metrics (Moser
et al. 2008), knowledge from where previous defects occurred (Ostrand et al. 2005; Kim
et al. 2007), information about change-inducing fixes (Kim et al. 2008; Fukushima et al.
2014) and, recently, deep learning techniques to automatically engineer features from source
code elements (Wang et al. 2016).

Accuracy metrics are important to validate the extent to which classifiers are accurate
and would support potential users. The aim of this paper is to focus on a particular fam-
ily of accuracy metrics called effort-aware metrics (EAM) (Jiang et al. 2013; Rahman et al.
2012). EAMs relate to the ranking, as provided by a classifier, of candidate defective enti-
ties (Mende and Koschke 2009). The better the classifier, the higher the number of defective
entities a developer can identify within a given rank. The different EAMs vary in the thresh-
olds used to stop analyzing the ranking and ranking criteria. For instance, PofBx is defined
as the percentage of bugs that a developer can identify by inspecting the top x percent of
lines of code (Chen et al. 2017).

Table 1 reports an example of PofB20. The dataset in Table 1 is 1790 LOC, and it features
seven entities, three of which are defective. Looking at PofB20, a user following the rank
of classes predicted to have the highest probability of defectiveness, as provided by a DMP,
would stop at 20% of the dataset and hence would analyze only up to 358 LOC. Thus, the
user would analyze only the first two entities, finding one-third of the defective entities.
Thus, in this example, PofB20 is 33%.

To better motivate the need to normalize the ranking according to the size of the ranked
entities, we present here the same entities seven entities of Table 1 (Section 1) but with a
normalized ranking. Specifically, Table 2 differently to Table 1, ranks the entities according
to their predicted probability to be defective divided by their size rather than according
to their predicted probability only. Looking at the normalization of PofB20 (Table 2), a
user, following the rank of classes based on the predicted probability to be defective, as

152   Page 2 of 38 Empir Software Eng (2022) 27: 152



Table 1 Example of a dataset to
compute an EAM metric called
PofB20

PofB ranking

ID Size Predicted probability Actual

Entity 1 120 0.89 Defective

Entity 2 100 0.78 Not Defective

Entity 3 250 0.73 Defective

Entity 4 80 0.71 Defective

Entity 5 140 0.59 Not Defective

Entity 6 500 0.53 Not Defective

Entity 7 600 0.51 Not Defective

provided by a classifier, would stop at 20% of the dataset and hence would analyze only up
to 358 LOC. Thus, by following a normalized ranking, the user would analyze the first three
entities, finding two-thirds of the defective entities. Thus, in this example of seven entities,
the normalization increased PofB20 from 33% to 66%.

Despite the importance of EAMs, there is no study investigating EAMs trends and valid-
ity. The aim of this paper is twofold: 1) we reveal issues in EAMs usage, and 2) we propose
and evaluate a normalization of PofB called NPofB. NPofB measures the ranking effec-
tiveness when the ranking is normalized by the size of the ranked, and possibly defective,
entities. In this paper we provide the following contributions:

1. We reveal trends in EAMs usage. Our systematic mapping study, featuring 152 primary
studies, in major software engineering journals, reveals a few issues, including that
most studies using EAMs use only a single EAM (e.g., PofB20) and that some studies
mismatched EAMs names.

2. We suggest normalizing the PofBs. The idea behind normalization is that the user will
follow a ranking based on the probability that an entity is defective, as provided by the
classifier, normalized (i.e., divided) by the size of this entity.

3. We validate the normalization of PofBs. By analyzing ten PofBs, ten classifiers,
two industrial projects and 12 open-source projects, we show that the normaliza-
tion increases the PofBs statistically and by orders of magnitude. This result means
that: 1)studies reporting PofBs, rather than the proposed normalization (i.e., NPofB),
underestimate the benefits of using classifiers for ranking defective classes. 2)The
normalization increases the realism of PofBs due to better use of classifiers.

Table 2 Example of a dataset to
compute the normalized PofB Normalized PofB ranking

ID Size Predicted probability Predicted/Size Actual

Entity 4 80 0.71 0.008875 Defective

Entity 2 100 0.78 0.0078 Not Defective

Entity 1 120 0.89 0.007416667 Defective

Entity 5 140 0.59 0.004214286 Not Defective

Entity 3 250 0.73 0.00292 Defective

Entity 6 500 0.53 0.00106 Not Defective

Entity 7 600 0.51 0.00085 Not Defective

Page 3 of 38    152Empir Software Eng (2022) 27: 152



4. We show that the proposed normalization changes the ranking of classifiers. Specifi-
cally, when considering the same dataset, in most cases, the best classifier for a PofB
resulted as different from the best classifier for that normalized PofB.

5. We show that multiple PofBs are needed to support a comprehensive understanding of
classifiers accuracy.

6. We provide a tool to compute EAMs to support researchers in: 1) avoiding extra effort
in EAMs computation as there is no available tool to compute EAMs, 2) increasing
results reproducibility, and 3) increasing results validity by avoiding EAMs misnaming
and, 4)increasing results generalizability by avoiding single EAM usage.

The remainder of this paper is structured as follows. Section 2 discusses the related
literature, focusing in particular on accuracy metrics for classifiers. Section 3 reports the
design, Section 4 the results, and Section 5 a discussion of our study. Section 6 presents
our ACUME tool. Section 7 provides the threats to validity of our investigation. Finally,
Section 8 concludes the paper and outlines directions for future work.

2 RelatedWork

2.1 Accuracy Metrics

Accuracy metrics evaluate the ability of a classifier to provide correct classifications.
Examples of accuracy metrics include the following:

– True Positive (TP): The class is actually defective and is predicted to be defective.
– False Negative (FN): The class is actually defective and is predicted to be non-defective.
– True Negative (TN): The class is actually non-defective and is predicted to be non-

defective.
– False Positive (FP): The class is actually non-defective and is predicted to be defective.
– Precision: T P

T P+FP
.

– Recall: T P
T P+FN

.

– F1-score: 2∗Precision∗Recall
P recision+Recall

.
– AUC (Area Under the Receiving Operating Characteristic Curve) (Powers 2007) is the

area under the curve, of true positive rate versus false positive rate, that is defined by
setting multiple thresholds. AUC has the advantage of being threshold-independent.

– MCC (Matthews Correlation Coefficient) is commonly used in assessing the perfor-
mance of classifiers dealing with unbalanced data (Matthews 1975), and is defined
as: T P∗T N−FP∗FN√

(T P+FP)(T P+FN)(T N+FP)(T N+FN)
. Its interpretation is similar to correlation

measures, i.e., MCC < 0.2 is considered to be low, 0.2 ≤ MCC < 0.4—fair,
0.4 ≤ MCC < 0.6—moderate, 0.6 ≤ MCC < 0.8—strong, and MCC ≥ 0.8—very
strong.

– Gmeasure: 2∗Recall∗(1−pf )
Recall+(1−pf )

is the harmonic mean between recall and probability of
false alarm (pf ), which denotes the ratio of the number of non-defective modules that
are wrongly classified as defective to the total number of non-defective modules as

FP
FP+T N

.(Chen et al. 2020)

A drawback of the metrics above is that they somehow assume that the costs associated
with testing activities are the same for each entity, which is not reasonable in practice. For

152   Page 4 of 38 Empir Software Eng (2022) 27: 152



example, costs for unit testing and code reviews are roughly proportional to the size of the
entity under test.

2.2 Effort-Aware Metrics

The rationale behind EAM is that they focus on effort reduction gained by using classifiers
(Mende and Koschke 2009).

In general, there are two types of EAM: normalized by size or not normalized by size.
The most known not-normalized EAM is called PofB (Chen et al. 2017; Tu et al. 2020;
Wang et al. 2020; Xia et al. 2016) which is defined as the proportion of defective entities
identified by analyzing the first x% of the code base as ranked according to their probabili-
ties, as provided by the prediction model, to be defective. The better the ranking, the higher
the PofB, the higher the support provided during testing. For instance, a method having a
PofB10 of 30% means that 30% of defective entities have been found by analyzing 10% of
the codebase by using the ranking provided by the method.

Since the PofBX of a perfect ranking is still costly, it is interesting to compare the ranking
provided by a prediction model with a perfect ranking; this helps understanding how the
prediction model performed compared to a perfect model. Therefore, Mende and Koschke
(2009), as inspired by Arisholm et al. (2007), proposed Popt which measures the ranking
accuracy provided by a prediction model by taking into account how it is worse than a
perfect ranking and how it is better than a random ranking. Popt is defined as the area �opt

between the optimal model and the prediction model. In the optimal model, all instances are
ordered by decreasing fault density, and in the predicted model, all instances are ordered by
decreasing predicted defectiveness. The equation of computing Popt is shown below, where
a larger Popt value means a smaller difference between the optimal and predicted model:
Popt = 1 − �opt (Yu et al. 2019).

Popt and PofB are two different metrics describing two different aspects of the accuracy
of a model. Popt and PofB rank entities in two different ways: Popt according to bug density
(i.e., bug probability divided by entity size), PofB according to bug probability. Therefore,
the ranking of classifiers provided by Popt and PofB might differ. Finally, Popt is more
realistic than PofB as the ranking is based on density rather than probability. However, Popt
is harder to interpret than PofB as a classifier with the double of Popt does not provide the
double of benefits to its user. Thus, in this paper, we try to bring the best of PofB and Popt
by proposing a new EAM metric that ranks entities similarly to both Popt and PofB.

In the following we provide a description of additional EAMS.

– Norm(Popt): is introduced by Feng et al. (2021) and coincides with Popt20
– PCI@20% and PMI@20%: have been introduced b (Huang et al. 2019) and Chen et al.

(2021) respectively and they represent the Proportion of Changes Inspected and Pro-
portion of Modules Inspected, respectively, when 20% LOC are inspected. Note that
these metrics are about the ranking of modules in general rather than about the ranking
of defective modules. The idea behind these two similar metrics is that context switches
shall be minimized to support effective testing. Specifically, a larger PMI@20% indi-
cates that developers need to inspect more files under the same volume of LOC to
inspect. Thus bug prediction models should strive to reduce PMI@20% while trying to
increase Popt (Qu et al. 2021b) at the same time.

– PFI@20%: has been introduced by Qu et al. (2021b) and it coincides with PMI@20
(Chen et al. 2021) when the module is a file.

Page 5 of 38    152Empir Software Eng (2022) 27: 152



– IFA: “returns the number of initial false alarms encountered before the first real defec-
tive module is found” (Chen et al. 2021). This effort-aware performance metric has
been considerably influenced by previous work on automatic software fault loca-
tion(Kochhar et al. 2016).When IFA is high then there are many false positives before
detecting the first defective module. (Chen et al. 2021).

– Peffort: has been introduced by D’Ambros et al. (2012) and it is similar to our proposed
NPofB. Peffort uses the LOC metric as a proxy for inspection effort. Peffort evaluates
a ranking of entities based on the number of predicted defects divided by size whereas
our NPofB evaluates a ranking of entities based on the predicted defectiveness divided
by size.

2.3 Evaluations

As EAMs drive and impact the results of prediction models evaluations, it is important
to discuss studies about how to evaluate prediction models. The evaluation of prediction
models performed in studies has been largely discussed.

Many papers explicitly criticized specific empirical evaluations. For instance, Herbold
(2017) criticized the use of the ScottKnottESD test in Tantithamthavorn et al. (2016c).

Shepperd et al. (2014) found that the choice of classifier has less impact on results than
the researcher group. Thus, they suggest conducting blind analysis, improve reporting pro-
tocols, and conduct more intergroup studies. Tantithamthavorn et al. (2016b) replied for a
possible explanation for the results aside from researcher’ bias; however, after a few months
Shepperd et al. (2018) concluded that the problem of researcher’ bias remains.

Zhang and Zhang (2007) criticized Menzies et al. (2007b) because, due to the small
percentage of defective modules, their results are not satisfactory for practical use. Zhang
and Zhang (2007) suggest using accuracy metrics, such as Recall and Precision, instead of
pd or pf. Menzies et al. (2007a) replied that it is often required to lower precision to achieve
higher recall and that there are many domains where low precision is useful. Menzies et al.
(2007a), in contrast to Zhang and Zhang (2007), advised researchers to avoid the use of
precision metric; they suggest the use of more stable metrics (i.e., recall (pd) and false alarm
rates) for datasets with a large proportion of negative (i.e. not defective) instances.

Falessi et al. (2020) reports on the importance of preserving the order of data between
the training and testing set. Afterward, the same issue was deeply discussed in Flint et al.
(2021) Thus, results are unrealistic if the underlying evaluation does not preserve the order
of data.

Falessi et al. (2022) show that dormant defects impact classifiers’ accuracy and hence
its evaluation. Specifically, an entity, such as a class or method used in the training/testing
set, can be labeled in the ground-truth as defective only after the contained defect is fixed.
Since defects can sleep for months or years (Ahluwalia et al. 2019; Chen et al. 2014) then
the entity erroneously seems to be not defective until the defect it contains is fixed. Thus,
Ahluwalia et al. (2019) suggest to ignore the most recent releases to avoid that dormant
defects impact classifiers’ accuracy.

Shepperd et al. (2013) commented on the low extent to which published analyses based
on the NASA defect datasets are meaningful and comparable.

Very recently Morasca and Lavazza (2020) proposed a new approach and a new per-
formance metric (the Ratio of Relevant Areas) for assessing a defect proneness model by
taking into account only parts of a ROC curve. They also show the differences and how
more reliable and less misleading their metric is compared to the existing ones.

152   Page 6 of 38 Empir Software Eng (2022) 27: 152



3 Study Design

In this paper we investigate the following research questions:

– RQ1: Which EAMs are used in software engineering journal papers? In this
research question we investigate the trends in EAMs usage, i.e., which and how many
EAMs are used in past studies. We are also interested in understanding if the same study
uses multiple EAMs and if the EAMs are consistently defined and computed across
different studies.

– RQ2: Does the normalization improve PofBs? In this research question we investi-
gate if the normalization of PofBs brings higher accuracy. Higher accuracy means that
if we analyze a percent of lines of code of the possibly defective entities, we cover a
high number of defective entities following a ranking that is based on both the enti-
ties likelihood (to be defective) and its size rather than a ranking that is based only
on the entities likelihood. If the normalization of PofBs brings higher accuracy, then
studies reporting EAMs, unlike our normalized EAMs, underestimate the benefits of
using a classifier for ranking defective classes. Moreover, the normalized EAMs shall
be considered more realistic than EAMs since they relate to better classifiers.

– RQ3: Does the ranking of classifiers change by normalizing PofBs? In this research
question we are interested in understanding if the best classifier of a PofB is also the
best classifier of NPofB; i.e. if a classifier results as best in PofB10 then it might not
be the best in NPofB10. Suppose the normalization changes the ranking of classifiers.
In that case, past studies using PofB are misleading, i.e., past studies might not identify
the classifier providing the highest benefit to the user in ranking defective classes.

– RQ4: Does the ranking of classifiers change across normalized PofBs? In this
research question we are interested in understanding if multiple NPofBs are needed to
support a comprehensive understanding of classifier accuracy. In other words, we want
to know if different NPofBs rank classifiers in the same way. If different NPofBs rank
classifiers differently, then results related to a single NPofB cannot be generalized to
the overall ranking effectiveness provided by classifiers; i.e. if a classifier resulted as
best in NPofB20 then it might not be the best in NPofB10.

3.1 RQ1: Which EAMs are Used in Software Engineering Journal Papers?

To investigate the trends in EAMs usage, we carried out a mapping study (MS) in the first
semester of 2021 by following the Kitchenham and Charters guidelines (Kitchenham and
Charters 2007).

We performed the MS by applying the following query in the tile:

(bug OR def ect) AND (prediction OR estimation)

To make the MS feasible to our effort constraints we focused on the top five journals in
the software engineering areas: IEEE Transactions on Software Engineering, ACM Trans-
actions on Software Engineering and Methodology, Empirical Software Engineering and
Measurement, Journal of Systems and Software, and Information and Software Technology.

We excluded conferences since they pose space constraints. Specifically, we wanted to
be sure that a limited use of EAM was a deliberate design decision of the authors rather than
a decision to meet the (conference) space constraints.

Our search provided us a set of about 179 papers. Then we applied the following exclu-
sion criteria:

Page 7 of 38    152Empir Software Eng (2022) 27: 152



– Comments and answer to comments kind of papers.
– Systematic and mapping study kind of papers.
– Practitioners’ opinions kind of papers.
– Studies about models predicting things other than defectiveness such as ticket resolu-

tion time.

After applying the exclusion criteria, we focused the remainder of the MS on 152 primary
studies.

Once we applied the above-mentioned exclusion criteria for each paper, we checked the
name of the EAMs used and their definition (i.e., how it was computed). Thus, we started
from an empty list of EAMs and we improved the list as we analyzed the papers. The data
extracting and synthesis of all papers have been performed by both authors indepen-
dently after a period of training on a small set of papers. The results of the authors perfectly
coincided.

3.2 RQ2: Does the Normalization Improve PofBs?

In general, EAMs try to measure the ranking effectiveness of prediction models. The ratio-
nale behind EAMs is to measure the effort required by testers to find a specific percent of
defects by following a ranked set of entities possibly containing defects. Since the testing
effort varies according to the size of the entities under test, we had the intuition that the
ranking of entities, is more effective if it takes into consideration both the likelihood of the
entity to be defective and also its size. Therefore, in this paper we propose and validate
a new EAM that measures the ranking effectiveness of prediction models when the rank-
ing is normalized by the size of the ranked entities; i.e., it measures the effectiveness of an
effort-aware ranking.

To investigate if the normalization increases PofBs we perform an empirical study based
on within-project across-release class-level defect prediction. Specifically, we observe if
the PofB of the same classifier on the same dataset increases after the normalization. As
datasets we use the same two industry projects and 12 open-source projects we successfully
used in a recent study (Falessi et al. 2020). The 12 open-source projects have been originally
used by Tantithamthavorn et al. (2016c) which in turn have been selected from a set of 101
publicly-available defect datasets.

We refer to the recent study for details about the size and characteristics of the projects.

3.2.1 Independent Variable

The independent variable of this research question is the presence or absence of normaliza-
tion in computing PofBs. In this study, we use the term, feature, to refer to the input (e.g.,
CHURN) of a classifier. Our independent variable is the normalization of the ranking by
size as this is what we conjecture influences the ranking effectiveness. We note that in some
studies, that are different from the present one, the features are the independent variables.

3.2.2 Dependent Variables

The dependent variable of this research question is the score of PofB with and without the
normalization. As PofBs we considered the spectrum from 10 to 90 with a step of 10. We
neglected PofB0 since this is always zero and PofB100 since this is always 100. We also
considered the AveragePofB as computed as the average between the PofBs from 0 to 100
with a step of 10. Thus we considered ten different PofBs.

152   Page 8 of 38 Empir Software Eng (2022) 27: 152



In addition to comparing the two scores, with versus without the normalization, in
this paper we observe the relative gain provided by the normalization as defined as
(NPof B−Pof B)

Pof B
where NPofB represents the normalized score of PofB.

3.2.3 Measurement Procedure

For each project, we:

1. Perform preprocessing:

– Normalization: we normalize the data with log10 as performed in a related study
(Jiang et al. 2008; Tantithamthavorn et al. 2019).

– Feature Selection: we filter the independent variables described above by using the
correlation-based feature subset selection (Ghotra et al. 2017; Hall 1998; Kondo
et al. 2019). The approach evaluates the worth of a subset of features by consid-
ering the individual predictive capability of each feature, as well as the degree of
redundancy between different features. The approach searches the space of fea-
ture subsets by a greedy hill-climbing augmented with a backtracking facility. The
approach starts with an empty set of features and performs a forward search by
considering all possible single feature additions and deletions at a given point.

– Balancing: we apply SMOTE (Agrawal and Menzies 2018; Chawla et al. 2002) so
that each dataset is perfectly balanced.

2. Create the Train and Test datasets by adopting the above walk-forward validation tech-
nique. Specifically, our context is the within-project across-release class-level defect
prediction. As a measurement procedure, we adopt the walk-forward validation tech-
nique suggested in a recent study (Falessi et al. 2020). In this technique, the project is
first organized in releases. Afterwards, there is a loop for n = 2, n++, up to n = max

releases where the data of the initial n-1 releases is used as training set, and the data of
the last n release is used as testing set. This technique has the advantage of preserving
the order of data and hence avoiding that data from the future is used to predict data in
the past. Moreover, the technique is fully replicable as there is no random mechanism.
The disadvantage is that it requires the project to have at least two releases. The random
aspects in our classifiers, if any, are controlled by seeds that are used as a parameter, i.e.,
input, of the classifiers. Therefore, our classifiers are deterministic rather than stochas-
tic, i.e., our results coincide over multiple runs on the same train-test pair. Thus, there is
no need to perform a sensitivity analysis of our results. Our set of 14 projects, analyzed
via a walk-forward technique, leads to a total of 71 datasets (i.e., 71 specific com-
binations of training and testing sets). For instance, since KeymindA consists of five
releases, then walk-forward on KeymindA leads to 4 datasets. Again, we forward the
reader to the previous study for further details about the datasets (Falessi et al. 2020).

3. Compute predicted probability of defectiveness of each class by using each of the ten
classifiers.

4. Compute PofBs and NPofBs.

As classifiers we used the ones used in a previous study (Falessi et al. 2020):

– Decision Table: Two major parts: schema, the set of features included in the table, and a
body, labeled instances defined by features in the schema. Given an unlabeled instance,
try matching instance to record in the table (Kohavi 1995).

Page 9 of 38    152Empir Software Eng (2022) 27: 152



– IBk: Also known as the k-nearest neighbor’s algorithm (k-NN), which is a non-
parametric method. The classification is based on the majority vote of its neighbors,
with the object being assigned to the class most common among its k nearest neighbors
(Altman 1992). K-nearest neighbors classifier run with k = 1 (Aha and Kibler 1991).

– J48: Generates a pruned C4.5 decision tree (Quinlan 1993).
– KStar: Instance-based classifier using some similarity function. Uses an entropy-based

distance function (Cleary and Trigg 1995).
– Naive Bayes: Classifies records using estimator classes and applying Bayes theorem

(John and Langley 1995) i.e., it assumes that the contribution of an individual feature
towards deciding the probability of a particular class is independent of other features in
that project instance (McCallum and Nigam 1998).

– SMO: John Platt’s sequential minimal optimization algorithm for training a support
vector classifier (Platt 1998)

– Random Forest: Ensemble learning creating a collection of decision trees. Random
trees correct for overfitting (Breiman 2001).

– Logistic Regression: It estimates the probabilities of the different possible outcomes of
a categorically distributed dependent variable, given a set of independent variables. The
estimation is performed through the logistic distribution function (Le Cessie and Van
Houwelingen 1992).

– BayesNet:Bayesian networks (BNs), also known as belief networks (or Bayes nets for
short), belong to the family of probabilistic graphical models (GMs). These graphical
structures are used to represent knowledge about an uncertain domain. In particular,
each node in the graph represents a random variable, while the edges between the nodes
represent probabilistic dependencies among the corresponding random variables. These
conditional dependencies in the graph are often estimated by using known statistical and
computational methods. Hence, BNs combine principles from graph theory, probability
theory, computer science, and statistics (Ben-Gal 2008).

– Bagging: Probably the most well-known sampling approach. Given a training set, bag-
ging generates multiple bootstrapped training sets and calls the base model learning
algorithm with each of them to yield a set of base models (Kotsiantis et al. 2005).

3.2.4 Analysis Procedure

We compare the value of PofBs of the same classifier on the same dataset, with versus
without the normalization.

Since our data strongly deviate from normality, the hypotheses of this research question
are tested using the Wilcoxon signed-rank test (Wilcoxon 1945). The test is paired since
the compared distributions, with versus without normalization, are related to the identical
objects (i.e., the score of the same ten classifiers, ten classifiers, on the same 71 datasets).
We also use the Cliff’s delta (paired) to analyze the effect size (Grissom and Kim 2005).
Table 3 presents the standard interpretation (Vargha and Delaney 2000) of Cliff’s delta
(paired) effect size.

3.3 RQ3: Does the Ranking of Classifiers Change by Normalizing PofBs?

Since the normalization of PofBs results in higher accuracy (RQ2), it is interesting to
understand the validity of past studies since they do not normalize PofBs. Suppose the

152   Page 10 of 38 Empir Software Eng (2022) 27: 152



Table 3 Interpretation of Cliff’s
delta effect size Cliff’s delta value Interpretation

>= 0.11 Small

>= 0.28 Medium

>= 0.43 Large

normalization changes the ranking of prediction models. In that case, past studies using
PofBs are misleading, i.e., past studies might not identify the prediction model providing
the highest benefit to the user.

The dependent variable is the rank of classifiers. The independent variable is the presence
or absence of the PofB normalization.

In this research question, we leverage RQ2 results, i.e., the accuracy of 10 classifiers over
72 datasets grouped in 14 projects. To compare the rankings, we use the Spearman’s rank
correlation (Spearman, 1904) between the ranking of classifiers provided by the same PofB,
with versus without the normalization, in each of the 72 datasets. To compare the rankings
we use the Spearman’s rank correlation (Spearman 1904) between the ranking of classifier
provided by the same PofB, with versus without the normalization. Table 4 presents the
standard interpretation (Akoglu 2018) of Spearman’s ρ.

We also compare, for each dataset and PofB, if the best classifier coincides after the
normalization.

3.4 RQ4: Does the Ranking of Classifiers Change Across Normalized PofBs?

Since past studies used a very limited set of EAMs (RQ1), it is interesting to understand
if it is a valid design decision to use a limited set of NPofBs. Suppose different NPofBs
rank classifiers differently. In that case, the results related to a single NPofB cannot be
generalized to the overall ranking effectiveness provided by prediction models; i.e. if a
prediction model resulted as best in NPofB20 then it might not be the best in NPofB10.
Thus, to understand if the use of multiple NPofBs is needed, we need to understand if there
is a difference among NPofBs. We measure the difference among NPofBs as the difference
among their rankings. To compare the rankings we use the Spearman’s rank correlation
(Spearman 1904) between the ranking of classifiers provided by each pair of NPofBx, with
x in the range [10, 90]. As in RQ3, in this research question we leverage RQ2 results.
Specifically, each classifier, in each of the 72 datasets, has a ranking in the range [1,10] (as
we used 10 classifiers) with a specific PofBx. We compute the Spearman’s values across
each combination of NPofBx, with x in the range [10, 90]. We also compare, for each
dataset, the proportion of ten NPofBs sharing the same classifier as best.

Table 4 Interpretation of Rho
Spearman’s values ρ Spearman’s value Interpretation

<0.6 Fair

<0.8 Moderate

<0.9 Very strong

=1 Perfect

Page 11 of 38    152Empir Software Eng (2022) 27: 152



4 Study Results

4.1 RQ1: Which EAMs are Used in Software Engineering Journal Papers?

Table 5 reports the EAMs used in software engineering journal papers. According to Table 5
the most used EAM is AveragePopt and PofB20.

Table 6 reports the number of EAMs used in past studies. According to Table 6 the
majority of the studies used no EAM and hence ignored to validate the model according to
their impact on effort. Moreover, the majority of studies using EAMs used a single EAM
(i.e., 12 out of 20).

Table 7 reports the number of studies correctly or incorrectly naming EAMs according
to their original definitions (Chen et al. 2017; Mende and Koschke 2009). According to
Table 7 seven out of 20 studies incorrectly named EAM.

4.2 RQ2: Does the Normalization Improve PofBs?

Figure 1 reports ten PofBs, and their normalization, of 10 classifiers over the 72 datasets
grouped in 14 projects. Figure 2 reports the gain achieved by normalizing a specific PofB
metric. According to Fig. 2 the normalization increases the performance of the median
classifier of all PofBs in all 14 projects.

Table 8 reports the average gain, across datasets and classifiers, in normalizing a specific
EAM. According to Table 8 the relative gain doubles when decreasing the PofB metric; e.g.,
the relative gain in PofB10 is double than PofB20, which is the double of PofB30.

Table 8 reports the statistical test results comparing a PofB before and after the normal-
ization. According to Table 8, the normalization significantly improves all ten PofB metrics.
Therefore, we can reject H10 for all ten EAMs. Moreover, the effect size resulted as large
for all ten EAMs.

4.3 RQ3: Does the Ranking of Classifiers Change by Normalizing PofBs?

Table 9 reports the correlation between the same PofB before and after the normalization.
According to Table 9 the correlation is only fair between the same PofB before and after the
normalization in nine out of 10 PofBs.

Figure 3 reports the proportion of times the same PofB metrics, with and without normal-
ization, identifies the same classifier as best. According to Fig. 3, the proportion of times
the same PofB metrics, with and without normalization, identifies the same classifier as best
changes across projects and PofBs. Specifically, in half of the datasets, the best classifier
changes in all PofBs after the normalization. Table 10 summarizes Fig. 3 by reporting in
average per specific PofBs, the proportion of times the same PofB metrics, with and with-
out normalization, identifies the same classifier as best. According to Table 10, in all ten
PofBs the proportion of times that the same PofB metrics, with and without normalization,
identifies the same classifier as best is less than half. Thus, the best classifier is more likely
to change than to coincide when considering PofB after the normalization.

Table 5 EAM used in past studies

Popt20 Popt30 Popt40 AveragePopt PCI20 PofB20 Peffort IFA Norm(Popt) PMI@20% PFI@20%

7 1 1 8 1 7 1 4 1 1 1

152   Page 12 of 38 Empir Software Eng (2022) 27: 152



Table 6 Number of EAM used in
past studies # EAM 0 1 2 3 4 ≥ 5

# PS 132 12 5 2 1 0

Table 7 Number of studies
correctly or incorrectly naming
EAM

# PS Correctly naming EAM 13

# PS Incorrectly naming EAM 7

Fig. 1 PofBs, and their normalization (NPofBs), of 10 classifiers over the 14 projects

Page 13 of 38    152Empir Software Eng (2022) 27: 152



Fig. 2 Average by project of the relative gain in normalizing a specific PofB

4.4 RQ4: Does the Ranking of Classifiers Change Across Normalized PofBs?

Table 12 in the appendix reports the correlation among each couple of normalized PofBs.
To better summarize Table 12, Fig. 4 reports the distribution of the correlations among each
couple of NPofBs. Table 11 reports the frequency of interpretations of correlation values
among couples of NPofBs. According to Table 11 no couple of NPofBs is perfectly correlated.
Moreover, only 30 out of 45 couples of NPofBs are very strongly correlated. In conclusion,
Table 11 shows that the rankings of classifiers are far to be identical across different NPofBs.

Figure 5 reports the distribution of the proportion of times the best classifier for a dataset
coincides across NPofBs. According to Fig. 5, in only five out of 41 datasets the best clas-
sifier for a dataset coincides across the ten PofBs. Thus, in about 88% of the cases, the best
classifier varies across NPofBs.

152   Page 14 of 38 Empir Software Eng (2022) 27: 152



Table 8 Relative gain, statistical test and Cliff’s delta results comparing a PofB metric with its normalization

Compared metrics Relative gain Test statistic S Pvalue Cliff’s delta

PofB10 vs. NPofB10 414% 31267 <0.0001 0.5804

PofB20 vs. NPofB20 224% 32089 <0.0001 0.5726

PofB30 vs. NPofB30 147% 33804 <0.0001 0.5588

PofB40 vs. NPofB40 107% 34122 <0.0001 0.5497

PofB50 vs. NPofB50 78% 34119 <0.0001 0.5217

PofB60 vs. NPofB60 51% 33533 <0.0001 0.4965

PofB70 vs. NPofB70 35% 33700 <0.0001 0.4695

PofB80 vs. NPofB80 23% 32107 <0.0001 0.4318

PofB90 vs. NPofB90 11% 31094 <0.0001 0.3540

Average Pofb vs. NAverage Pofb 38% 34446 <0.0001 0.5515

5 Discussion

This section discusses our main results, the possible explanations for the results, implica-
tions, and guidelines for practitioners and researchers.

5.1 RQ1: Which EAMs are Used in Software Engineering Journal Papers?

The main result of RQ1 is that EAMs are used in a minority of defect prediction studies, i.e.,
20 out of 152 software engineering journal papers. One possible reason is that EAMs do not
make much sense in Just-in-time prediction studies, i.e., in studies predicting the defective-
ness of commits. As a matter of fact, in the JIT context, the user is envisioned to consider
the defectiveness prediction just after each single commit, and hence a JIT classifier can-
not help the user in ranking the possibly defective entities (i.e., commits). However, we
observed many JIT studies using EAMs and many non-JIT studies, i.e., studies predicting
a class’s defectiveness or method, not using EAMs. One possible reason for the low EAMs
usage in non-JIT studies is the absence of a tool for EAMs computation. A further possible
reason for the low EAMs adoption could be the lack of awareness about the importance of
EAMs to evaluate the realistic benefits of using prediction models.

Table 9 Correlation between the
same PofB before and after the
normalization

Compared metrics Rho Pvalue Intepretation

PofB10 vs. NPofB10 0.121 <0.0001 Fair

PofB20 vs. NPofB20 0.112 <0.0001 Fair

PofB30 vs. NPofB30 0.219 <0.0001 Fair

PofB40 vs. NPofB40 0.246 <0.0001 Fair

PofB50 vs. NPofB50 0.316 <0.0001 Fair

PofB60 vs. NPofB60 0.349 <0.0001 Fair

PofB70 vs. NPofB70 0.410 <0.0001 Fair

PofB80 vs. NPofB80 0.440 <0.0001 Fair

PofB90 vs. NPofB90 0.607 <0.0001 Moderate

Average PofB vs. NAverage PofB 0.245 <0.0001 Fair

Page 15 of 38    152Empir Software Eng (2022) 27: 152



Fig. 3 Proportion of times the same PofB metric, with and without normalization, identifies the same classi-
fier as best

Another important result of RQ1 is that some EAMs are misnamed and that only one
study used more than one EAM. Again, one possible reason for this result is the absence of
a tool for EAMs computation.

The main implication of RQ1 is that a tool to automate EAMs computation would have
supported a broader and more correct use of EAMs.

Table 10 Proportion of times the same PofB metrics, with and without normalization, identifies the same
classifier as best

Compared metrics Proportion of equivalent best classifiers

PofB10 vs. NPofB10 15%

PofB20 vs. NPofB20 12%

PofB30 vs. NPofB30 10%

PofB40 vs. NPofB40 12%

PofB50 vs. NPofB50 17%

PofB60 vs. NPofB60 15%

PofB70 vs. NPofB70 22%

PofB80 vs. NPofB80 27%

PofB90 vs. NPofB90 29%

Average PofB vs. NAverage PofB 5%

152   Page 16 of 38 Empir Software Eng (2022) 27: 152



Fig. 4 Distribution of correlations among each couple of NPofBs

Table 11 Frequency of
interpretations of correlations
among couples of NPofBs

Interpretation #

Inverse 0

Fair 7

Moderate 8

Very strong 30

Perfect 0

Fig. 5 Distribution of the proportion of datasets where the best classifier coincides across NPofBs

Page 17 of 38    152Empir Software Eng (2022) 27: 152



5.2 RQ2: Does the Normalization Improve PofBs?

The main result of RQ2 is that the proposed normalization increases statistically and of
orders of magnitude the PofBs. While the improvement is statistically significant on all 10
PofBs, we can see that the normalization increased the different PofBs differently. Specifi-
cally, the relative gain provided by the normalization resulted perfectly inversely correlated
with the percent of analyzed LOC related in the specific PofB; the highest gain was observed
in PofB10. This result can be explained by the fact that the ranking quality looses benefit
while the number of analyzed entities are high. In our case, it is obvious that when consid-
ering PofB90 many rankings can result equally beneficial to the user as long as the 10%
of the not analyzed LOC are shared across such rankings. Thus, a better ranking is more
visible in PofB10 than in PofB90.

We also note that the relative gain was higher in some datasets, i..e., xerces, than others,
i.e., ar. The most probable reason is that the range of the relative gain is large when the
accuracy without the normalization is low. Specifically, the PofBs in ar are much higher
than in xerces. In other words, the normalization in ar has less chance of improving the
PofBs since it is already high.

The main implication of RQ2 is that we need to use the normalized PofBs (aka NPofBs)
rather than PofBs. The NPofBs are more realistic than PofBs as they relate to better use of
classifiers. Moreover, studies reporting PofBs, rather than its normalization, underestimate
the benefits of using classifiers for ranking defective classes and hence might have hindered
the practical adoption of defect classifiers.

5.3 RQ3: Does the Ranking of Classifiers Change by Normalizing PofBs?

The main result of RQ3 is that the normalization changes the ranking of classifiers. Specif-
ically, the correlation is only fair between the same PofB before and after the normalization
in nine out of 10 PofBs. Moreover, in more than half of cases a classifier resulting as best
with a PofB is not best with its normalization. The main implication of RQ2 is that past stud-
ies using the not normalized version of PofB likely highlighted a classifier as best despite
another classifier brings the highest benefit in ranking defective classes to the user. Hence,
RQ3 results call for replication of past studies using the not normalized version of PofBs.

5.4 RQ4: Does the Ranking of Classifiers Change Across Normalized PofBs?

The main result of RQ4 is that no couple of NPofBs is perfectly correlated. Moreover, in
88% of the cases, the best classifier varies across the ten considered NPofBs. Thus, the main
implication of RQ4 is that a single EAM does not exhaustively capture classifiers’ ability
to rank defective candidate classes. Thus, researchers shall use multiple EAMs to support a
comprehensive understanding of classifiers accuracy. Past studies that validated classifiers
via a single EAM shall be replicated to increase their results generalizability.

6 The ACUME Tool

In this paper we provide a new tool called ACUME (ACcUracy MEtrics) which can com-
pute PofB, the new proposed NPofB, Popt, IFA, and the performance metrics reported in
Section 2.

In order to run, ACUME requires to:

152   Page 18 of 38 Empir Software Eng (2022) 27: 152



– Download project files from GitHub;
– Place the csv files of the whole dataset in the data folder, and if needed in the test folder

place your test files;
– Update configs.py file to your needs by following the instructions of ReadMe.md file.

In order to run the code, you need python installed; more details are presented in the
Readme file.

ACUME has been developed with clean code principles, kiss principle, and func-
tional/OOP4 programming. There is linear complexity and minimal repetition of calculation
to achieve a fast script with minimal memory usage by sacrificing readability for efficiency.
Within approximately 1000 lines of code, there are two data classes: class DataEntity (no
function) and ProcessedDataEntity (10 functions/methods), six stand-alone models—not
class-dependent as well as many helper functions in each class.

Figure 6 reports the steps of the process on which ACUME works:

1. Step 1: The research teams create or reuse datasets. A name identifies the different
datasets, e.g., KeymindA.csv, ant.csv.

2. Step 2: The research team provides the datatsets to a ML engine, such as Weka. The
ML engine applies one or more defect prediction models that vary in classifiers, feature
selection, balancing, etc.

3. Step 3: The ML engine outputs the predicted file. The predicted file is designed to be
as simple as possible; for each predicted entity (e.g., a class), the predicted file reports
the ID, the size, the predicted probability to be defective, and the actual defectiveness. The
different predicted files are identified simply with a name, e.g., KeymindA RandomFor-
est withFeatureSelection.csv, ant RandomForest withFeatureSelection.csv, etc.

4. Step 4: The research team provides the predicted files to the ACUME tool.
5. Step 5: The ACUME tool outputs a single CSV file reporting, for each row, the

performances of a predicted file in terms of accuracy metrics and EAMs.

We provide online material about ACUME.1

ACUME has been used and validated by several researchers and students at the Univer-
sity of Rome Tor Vergata. We tested ACUME using a set of unit tests hence comparing
the accuracy metrics computed by ACUME with expected values. To compute the expected
values, we used a mixed approach according to metrics under test. Specifically, for met-
rics available in WEKA, such as AUC, we computed the expected values via WEKA on the
project breast-cancer, as natively provided in WEKA. For metrics not available in WEKA,
such as EAMs, we computed the expected values via Excels formulas on the ten projects
used to address the research questions in this paper. The validation was led by the first
author and double-checked by the last author. During the validation process we fixed a few
bugs related to the measurement of the AUC metric. The validation folder in the replication
package reports the validation artifacts.

Finally, since its code is open, we welcome bug reports and feature requests.

7 Threats to Validity

In this section, we report the threats to validity of our study. The section is organized by
threat type, i.e., Conclusion, Internal, Construct, and External.

1https://github.com/jonidacarka/ACUME.git

Page 19 of 38    152Empir Software Eng (2022) 27: 152

https://github.com/jonidacarka/ACUME.git


Fig. 6 Distribution of the correlation among each couple of EAMs

7.1 Conclusion

Conclusion validity concerns issues that affect the ability to draw accurate conclusions
regarding the observed relationships between the independent and dependent variables
(Wohlin et al. 2012).

We tested all hypotheses with a non-parametric test (e.g., Wilcoxon Signed Rank)
(Wilcoxon 1945) which is prone to type-2 error, i.e., not rejecting a false hypothesis. We
have rejected the hypotheses in all cases; thus, the likelihood of a type-2 error is null. More-
over, the alternative would have been using parametric tests (e.g., ANOVA) that are prone
to type-1 error, i.e., rejecting a true hypothesis, which is less desirable than type-2 error in
our context.

7.2 Internal

Internal validity concerns the influences that can affect the independent variables concern-
ing causality (Wohlin et al. 2012). A threat to internal validity is the lack of ground truth for
class defectiveness, which could have been underestimated in our measurements. To avoid
this threat, we used a set of projects already successfully used in our recent study (Falessi
et al. 2020). Such datasets have been derived from a set of publicly available datasets which
have been originated far before many issues were known, including mislabeling (Bird et al.
2009; Herzig et al. 2013; Kim et al. 2011; Rahman et al. 2013; Tantithamthavorn et al.
2015), snoring (Falessi et al. 2022), and wrong origin (Rodrı́guez-Pérez et al. 2018b). Thus,
despite being publicly available and largely used, our datasets might be inaccurate.

152   Page 20 of 38 Empir Software Eng (2022) 27: 152



As many other studies on defect prediction (Falessi et al. 2020, 2022; Fukushima et al.
2014; Tantithamthavorn et al. 2016c, 2019; Turhan et al. 2009; Vandehei et al. 2021); we do
not differentiate among severity levels of the (predicted) defects.

7.3 Construct

Construct validity is concerned with the degree to which our measurements indeed reflect
what we claim to measure (Wohlin et al. 2012).

In order to make our empirical investigation reliable, we used the walk-forward technique
as suggested in our recent study (Falessi et al. 2020). It could be that our results are impacted
by our specific design choices, including classifiers, features, and accuracy metrics. In order
to face this threat, we based our choice on past studies.

Despite many studies suggest the tuning of hyperparameters (Fu et al. 2016; Tan-
tithamthavorn et al. 2019), we used default hyperparameters due to resource constraints and
to the static time-ordering design of our evaluation. Moreover, tuning might be relevant in
studies aiming at improving the accuracy of classifiers whereas in this study tuning might be
irrelevant as we aim at measuring the accuracy of classifiers, regardless of their tuning sta-
tus. Finally, as our paper suggests, we plan to validate hyperparameters tuning via multiple
and normalized PofBs.

Finally, the labeling of entities as defective or not has been subject to significant effort,
and we still do not know how to perfectly label entities (Vandehei et al. 2021). To avoid this
type of noise in the data, we used data coming from the literature and largely used in the
past (Falessi et al. 2020).

7.4 External

External validity is concerned with the extent to which the research elements (subjects,
artifacts, etc.) are representative of actual elements (Wohlin et al. 2012).

This study used a large set of datasets and hence could be deemed of high generaliza-
tion compared to similar studies. Moreover, in this study, we used both open-source and
industry-type of projects.

Finally, to promote reproducible research, all datasets, results and scripts for this paper
are available online1.

8 Conclusion

Despite the importance of EAMs, there is no study investigating EAMs usage trends and
validity. Therefore, in this paper, we analyze trends in EAMs usage in the software engi-
neering literature. Our systematic mapping study found 152 primary studies (referenced in
the appendix, Section A.1) in major software 630 engineering journals, and it shows that
most studies using EAMs use only a single EAM 631 (e.g., Popt or PofB20) and that some
studies mismatched EAMs names.

To improve the internal validity of results provided by PofBs, we proposed normalization
of PofBs. The normalization is based on ranking the defective candidates by the probability
of the candidate to be defective divided by its size. We validated the normalization of PofBs
by analyzing 10 PofBs, 10 classifiers, two industrial projects and 12 open-source projects.
Our results show that the normalization increases statistically and of orders of magnitude
the PofBs. Thus, past studies reporting PofBs underestimate the benefits of using classifiers

Page 21 of 38    152Empir Software Eng (2022) 27: 152



for ranking defective classes and might have hindered the practical adoption of prediction
models in the industry. The proposed normalization increases the realism of PofBs values
as it relates to better use of classifiers and promotes the practical adoption of prediction
models in the industry.

We showed that when considering the same dataset, in most of the cases, the best clas-
sifier for a PofB changes when considering the normalized version of that PofB. Thus, past
studies that used the non-normalized version of PofBs likely identified the wrong best clas-
sifier, i.e., past studies likely identified as best a classifier not providing the highest benefit
to the user in ranking defective classes.

In this paper, we also showed that multiple PofBs are needed to support a comprehensive
understanding of classifiers accuracy. Thus, we provide a tool to compute EAMs automati-
cally; this aims at supporting researchers in: 1) avoiding extra effort in EAMs computation
as there is no available tool to compute EAMs, 2) increasing results reproducibility as the
way to compute EAMs is shared across researchers, 3) increasing results validity by avoid-
ing the observed EAMs misnaming and, 4) increase results generalizability by avoiding
single EAMs usage.

Researchers and practitioners involved in validating defect prediction models shall
always consider using several EAMs. Researchers shall try to propose and evaluate EAMs,
or new normalization, that more realistically measure the benefits provided by classifiers
when ranking candidate defective entities.

In the future, we plan to replicate the validation of past defect prediction studies that
considered a single EAM by including multiple EAMs. Hence, we want to check if the
observed best classifier varies when considering multiple EAMs. We also plan to validate
past studies by using the proposed normalization of PofBs rather than the original PofBs.
Thus, we want to check if the observed best classifier varies when considering the proposed
normalization. Finally, we plan to investigate the opinions of developers on EAMs and
specifically on the validated new NPofB metric.

Appendix

Table 12 Correlations among specific couples of normalized PofBs

Compared variables Rho Pvalue Intepretation

NAverage PofB vs. NPofB10 0.783856 <0.0001 Very strong

NAverage PofB vs. NPofB20 0.85454 <0.0001 Very strong

NAverage PofB vs. NPofB30 0.946433 <0.0001 Very strong

NAverage PofB vs. NPofB40 0.964284 <0.0001 Very strong

NAverage PofB vs. NPofB50 0.958544 <0.0001 Very strong

NAverage PofB vs. NPofB60 0.922743 <0.0001 Very strong

NAverage PofB vs. NPofB70 0.855365 <0.0001 Very strong

NAverage PofB vs. NPofB80 0.809668 <0.0001 Very strong

NAverage PofB vs. NPofB90 0.537388 <0.0001 Moderate

NPofB20 vs. NPofB10 0.932106 <0.0001 Very strong

NPofB30 vs. NPofB10 0.779776 <0.0001 Very strong

NPofB30 vs. NPofB20 0.846695 <0.0001 Very strong

NPofB40 vs. NPofB10 0.731393 <0.0001 Very strong

152   Page 22 of 38 Empir Software Eng (2022) 27: 152



Table 12 (continued)

Compared variables Rho Pvalue Intepretation

NPofB40 vs. NPofB20 0.800647 <0.0001 Very strong

NPofB40 vs. NPofB30 0.966495 <0.0001 Very strong

NPofB50 vs. NPofB10 0.651501 <0.0001 Moderate

NPofB50 vs. NPofB20 0.727009 <0.0001 Very strong

NPofB50 vs. NPofB30 0.909338 <0.0001 Very strong

NPofB50 vs. NPofB40 0.95835 <0.0001 Very strong

NPofB60 vs. NPofB10 0.578208 <0.0001 Moderate

NPofB60 vs. NPofB20 0.650734 <0.0001 Moderate

NPofB60 vs. NPofB30 0.823908 <0.0001 Very strong

NPofB60 vs. NPofB40 0.880341 <0.0001 Very strong

NPofB60 vs. NPofB50 0.939176 <0.0001 Very strong

NPofB70 vs. NPofB10 0.486744 <0.0001 Fair

NPofB70 vs. NPofB20 0.562888 <0.0001 Moderate

NPofB70 vs. NPofB30 0.717087 <0.0001 Very strong

NPofB70 vs. NPofB40 0.781574 <0.0001 Very strong

NPofB70 vs. NPofB50 0.850415 <0.0001 Very strong

NPofB70 vs. NPofB60 0.930698 <0.0001 Very strong

NPofB80 vs. NPofB10 0.474829 <0.0001 Fair

NPofB80 vs. NPofB20 0.561707 <0.0001 Moderate

NPofB80 vs. NPofB30 0.684472 <0.0001 Moderate

NPofB80 vs. NPofB40 0.714814 <0.0001 Very strong

NPofB80 vs. NPofB50 0.777562 <0.0001 Very strong

NPofB80 vs. NPofB60 0.844337 <0.0001 Very strong

NPofB80 vs. NPofB70 0.916603 <0.0001 Very strong

NPofB90 vs. NPofB10 0.185601 <0.0001 Fair

NPofB90 vs. NPofB20 0.313019 <0.0001 Fair

NPofB90 vs. NPofB30 0.3962 <0.0001 Fair

NPofB90 vs. NPofB40 0.458927 <0.0001 Fair

NPofB90 vs. NPofB50 0.497088 <0.0001 Fair

NPofB90 vs. NPofB60 0.5854 <0.0001 Moderate

NPofB90 vs. NPofB70 0.71 <0.0001 Very strong

NPofB90 vs. NPofB80 0.739416 <0.0001 Very strong

A.1 Primary Studies

Sistematic Litterature Review Studies

Afric, P., Sikic, L., Kurdija, A. S., & Silic, M. (2020). REPD: source code defect prediction
as anomaly detection. J. Syst. Softw., 168, 110641. doi:10.1016/j.jss.2020.110641

Ali, A., Khan, N., Abu-Tair, M. I., Noppen, J., McClean, S. I., & McChesney, I. R.
(2021). Discriminating features-based cost-sensitive approach for software defect predic-
tion. Autom. Softw. Eng., 28(2), 11. doi:10.1007/s10515-021-00289-8

Page 23 of 38    152Empir Software Eng (2022) 27: 152



Almhana, R., & Kessentini, M. (2021). Considering dependencies between bug reports
to improve bugs triage. Autom. Softw. Eng., 28(1), 1. doi:10.1007/s10515-020-00279-2

Amasaki, S. (2020). Cross-version defect prediction: Use historical data, crossproject
data, or both? Empir. Softw. Eng., 25(2), 1573–1595. doi:10.1007/s10664-019-09777-8

Andreou, A. S., & Chatzis, S. P. (2016). Software defect prediction using doubly stochas-
tic poisson processes driven by stochastic belief networks. J. Syst. Softw., 122, 72–82.
doi:10.1016/j.jss.2016.09.001

Balaram, A., & Vasundra, S. (2022). Prediction of software fault-prone classes using
ensemble random forest with adaptive synthetic sampling algorithm. Autom. Softw. Eng.,
29(1), 6. doi:10.1007/s10515-021-00311-z

Bangash, A. A., Sahar, H., Hindle, A., & Ali, K. (2020). On the time-based conclusion
stability of cross-project defect prediction models. Empir. Softw. Eng., 25(6), 5047–5083.
doi:10.1007/s10664-020-09878-9

Bell, R. M., Ostrand, T. J., & Weyuker, E. J. (2013). The limited impact of individ-
ual developer data on software defect prediction. Empir. Softw. Eng., 18(3), 478–505.
doi:10.1007/s10664-011-9178-4

Bennin, K. E., Keung, J. W., & Monden, A. (2019). On the relative value of data
resampling approaches for software defect prediction. Empir. Softw. Eng., 24(2), 602–636.
doi:10.1007/s10664-018-9633-6

Bennin, K. E., Keung, J., Phannachitta, P., Monden, A., & Mensah, S. (2018).
MAHAKIL: diversity based oversampling approach to alleviate the class imbalance
issue in software defect prediction. IEEE Trans. Software Eng., 44(6), 534–550.
doi:10.1109/TSE.2017.2731766

Bowes, D., Hall, T., & Gray, D. (2014). Dconfusion: A technique to allow cross study
performance evaluation of fault prediction studies. Autom. Softw. Eng., 21(2), 287–313.
doi:10.1007/s10515-013-0129-8

Chang, C., Chu, C., & Yeh, Y. (2009). Integrating in-process software defect prediction
with association mining to discover defect pattern. Inf. Softw. Technol., 51(2), 375–384.
doi:10.1016/j.infsof.2008.04.008

Chen, H. [Haowen], Jing, X., Li, Z., Wu, D., Peng, Y., & Huang, Z. (2021). An empirical
study on heterogeneous defect prediction approaches. IEEE Trans. Software Eng., 47(12),
2803–2822. doi:10.1109/TSE.2020.2968520

Chen, X., Mu, Y., Liu, K., Cui, Z., & Ni, C. (2021). Revisiting heteroge-
neous defect prediction methods: How far are we? Inf. Softw. Technol., 130, 106441.
doi:10.1016/j.infsof.2020.106441

Chen, X., Zhang, D., Zhao, Y., Cui, Z., & Ni, C. (2019). Software defect num-
ber prediction: Unsupervised vs supervised methods. Inf. Softw. Technol., 106, 161–181.
doi:10.1016/j.infsof.2018.10.003

Chen, X., Zhao, Y., Wang, Q., & Yuan, Z. (2018). MULTI: multi-objective
effort-aware just-in-time software defect prediction. Inf. Softw. Technol., 93, 1–13.
doi:10.1016/j.infsof.2017.08.004

D’Ambros, M., Lanza, M., & Robbes, R. (2012). Evaluating defect prediction
approaches: A benchmark and an extensive comparison. Empir. Softw. Eng., 17(4–5),
531–577. doi:10.1007/s10664-011-9173-9

Dalla Palma, S., Di Nucci, D., Palomba, F., & Tamburri, D. A. (2021). Within-
project defect prediction of infrastructure-as-code using product and process metrics. IEEE
Transactions on Software Engineering, 1–1. doi:10.1109/TSE.2021.3051492

152   Page 24 of 38 Empir Software Eng (2022) 27: 152



Devine, T. R., Goseva-Popstojanova, K., Krishnan, S., & Lutz, R. R. (2016). Assessment
and cross-product prediction of software product line quality: Accounting for reuse across
products, over multiple releases. Autom. Softw. Eng., 23(2), 253–302. doi:10.1007/s10515-
014-0160-4

dos Santos, G. E., Figueiredo, E., Veloso, A., Viggiato, M., & Ziviani, N. (2020). Under-
standing machine learning software defect predictions. Autom. Softw. Eng., 27(3), 369–392.
doi:10.1007/s10515-020-00277-4

Ekanayake, J., Tappolet, J., Gall, H. C., & Bernstein, A. (2012). Time variance and defect
prediction in software projects - towards an exploitation of periods of stability and change as
well as a notion of concept drift in software projects. Empir. Softw. Eng., 17(4–5), 348–389.
doi:10.1007/s10664-011-9180-x

Eken, B., & Tosun, A. (2021). Investigating the performance of personalized models for
software defect prediction. J. Syst. Softw., 181, 111038. doi:10.1016/j.jss.2021.111038

Fan, Y., Xia, X., da Costa, D. A., Lo, D., Hassan, A. E., & Li, S. (2021). The impact of
mislabeled changes by SZZ on just-in-time defect prediction. IEEE Trans. Software Eng.,
47(8), 1559–1586. doi:10.1109/TSE.2019.2929761

Feng, S., Keung, J., Yu, X., Xiao, Y., Bennin, K. E., Kabir, M. A., & Zhang,
M. (2021). COSTE: complexity-based oversampling technique to alleviate the class
imbalance problem in software defect prediction. Inf. Softw. Technol., 129, 106432.
doi:10.1016/j.infsof.2020.106432

Feng, S., Keung, J., Yu, X., Xiao, Y., & Zhang, M. (2021). Investigation on the stability
of smote-based oversampling techniques in software defect prediction. Inf. Softw. Technol.,
139, 106662. doi:10.1016/j.infsof.2021.106662

Feng, S., Keung, J., Zhang, P., Xiao, Y., & Zhang, M. (2022). The impact of the distance
metric and measure on smote-based techniques in software defect prediction. Inf. Softw.
Technol., 142, 106742. doi:10.1016/j.infsof.2021.106742

Fenton, N. E., Neil, M., Marsh, W., Hearty, P. S., Radlinski, L., & Krause, P. (2008). On
the effectiveness of early life cycle defect prediction with bayesian nets. Empir. Softw. Eng.,
13(5), 499–537. doi:10.1007/s10664-008-9072-x

Ferenc, R., Gyimesi, P., Gyimesi, G., Tóth, Z., & Gyimóthy, T. (2020). An automatically
created novel bug dataset and its validation in bug prediction. J. Syst. Softw., 169, 110691.
doi:10.1016/j.jss.2020.110691

Gadelha, G., Ramalho, F., & Massoni, T. (2021). Traceability recovery between bug
reports and test cases-a mozilla firefox case study. Automated Software Engineering, 28.
doi:10.1007/s10515-021-00287-w

Gomes, L. A. F., da Silva Torres, R., & Cortes, M. L. (2019). Bug report severity
level prediction in open source software: A survey and research opportunities. Inf. Softw.
Technol., 115, 58–78. doi:10.1016/j.infsof.2019.07.009

Goswami, D., Chakrabarti, S., & Bilgaiyan, S. (2020). Effort estimation of web
based applications using erd, use case point method and machine learning. (pp. 19–37).
doi:10.1007/978-3-030-38006-9 2

Haider, S. W., Cangussu, J. W., Cooper, K. M. L., Dantu, R., & Haider, S. (2008). Esti-
mation of defects based on defect decay model: Edˆ{3}m. IEEE Trans. Software Eng., 34(3),
336–356. doi:10.1109/TSE.2008.23

Hassouna, A., & Tahvildari, L. (2010). An effort prediction framework for software
defect correction. Inf. Softw. Technol., 52(2), 197–209. doi:10.1016/j.infsof.2009.10.003

Page 25 of 38    152Empir Software Eng (2022) 27: 152



He, P., Li, B., Liu, X., Chen, J., & Ma, Y. (2015). An empirical study on soft-
ware defect prediction with a simplified metric set. Inf. Softw. Technol., 59, 170–190.
doi:10.1016/j.infsof.2014.11.006

He, Z., Shu, F., Yang, Y., Li, M., & Wang, Q. (2012). An investigation on the feasibility
of cross-project defect prediction. Autom. Softw. Eng., 19(2), 167–199. doi:10.1007/s10515-
011-0090-3

Herbold, S. (2019). On the costs and profit of software defect prediction. CoRR,
abs/1911.04309. arXiv: 1911.04309. Retrieved from http://arxiv.org/abs/1911.04309

Herbold, S., Trautsch, A., & Grabowski, J. (2017). Global vs. local models for cross-
project defect prediction - A replication study. Empir. Softw. Eng., 22(4), 1866–1902.
doi:10.1007/s10664-016-9468-y

Herbold, S., Trautsch, A., & Grabowski, J. (2018). A comparative study to benchmark
cross-project defect prediction approaches. IEEE Trans. Software Eng., 44(9), 811–833.
doi:10.1109/TSE.2017.2724538

Herbold, S., Trautsch, A., & Trautsch, F. (2020). On the feasibility of automated predic-
tion of bug and non-bug issues. Empir. Softw. Eng., 25(6), 5333–5369. doi:10.1007/s10664-
020-09885-w

Herbold, S., Trautsch, A., & Trautsch, F. (2021). On the feasibility of automated pre-
diction of bug and non-bug issues. In A. Koziolek, I. Schaefer, & C. Seidl (Eds.), Software
engineering 2021, fachtagung des gifachbereichs softwaretechnik, 22.–26. februar 2021,
braunschweig/virtuell (Vol. P-310, pp. 55–56). doi:10.18420/SE2021 16

Honsel, D., Herbold, V., Waack, S., & Grabowski, J. (2021). Investigation and predic-
tion of open source software evolution using automated parameter mining for agent-based
simulation. Autom. Softw. Eng., 28 (1), 3. doi:10.1007/s10515-021-00280-3

Hosseini, S., Turhan, B., & Mantyla, M. (2018). A benchmark study on the effectiveness
of search-based data selection and feature selection for cross project defect prediction. Inf.
Softw. Technol., 95, 296–312. doi:10.1016/j.infsof.2017.06.004

Huang, L., Ng, V., Persing, I., Chen, M., Li, Z., Geng, R., & Tian, J. (2015). Autoodc:
Automated generation of orthogonal defect classifications. Autom. Softw. Eng., 22(1), 3–46.
doi:10.1007/s10515-014-0155-1

Huang, Q., Xia, X., & Lo, D. (2019). Revisiting supervised and unsupervised mod-
els for effort-aware just-in-time defect prediction. Empir. Softw. Eng., 24(5), 2823–2862.
doi:10.1007/s10664-018-9661-2

Jiarpakdee, J., Tantithamthavorn, C. K., Dam, H. K., & Grundy, J. (2022). An empirical
study of model-agnostic techniques for defect prediction models. IEEE Transactions on
Software Engineering, 48(1), 166–185. doi:10.1109/TSE.2020.2982385

Jing, X., Wu, F., Dong, X., & Xu, B. (2017). An improved SDA based defect prediction
framework for both within-project and cross-project class-imbalance problems. IEEE Trans.
Software Eng., 43(4), 321–339. doi:10.1109/TSE.2016.2597849

Kamei, Y., Fukushima, T., McIntosh, S., Yamashita, K., Ubayashi, N., & Hassan, A.
E. [Ahmed E.]. (2016). Studying just-in-time defect prediction using cross-project models.
Empir. Softw. Eng., 21(5), 2072–2106. doi:10.1007/s10664-015-9400-x

Keung, J., Kocaguneli, E., & Menzies, T. (2013). Finding conclusion stability for select-
ing the best effort predictor in software effort estimation. Autom. Softw. Eng., 20(4),
543–567. doi:10.1007/s10515-012-0108-5

Kondo, M., Bezemer, C., Kamei, Y., Hassan, A. E., & Mizuno, O. (2019). The impact of
feature reduction techniques on defect prediction models. Empir. Softw. Eng., 24(4), 1925–
1963. doi:10.1007/s10664-018-9679-5

152   Page 26 of 38 Empir Software Eng (2022) 27: 152



Kondo, M., Germán, D. M., Mizuno, O., & Choi, E. (2020). The impact of con-
text metrics on just-in-time defect prediction. Empir. Softw. Eng., 25(1), 890–939.
doi:10.1007/s10664-019-09736-3

Kpodjedo, S., Ricca, F., Galinier, P., Gueheneuc, Y.-G., & Antoniol, G. (2011). Design
evolution metrics for defect prediction in object oriented systems. Empir. Softw. Eng., 16(1),
141–175. doi:10.1007/s10664-010-9151-7

Laradji, I. H., Alshayeb, M., & Ghouti, L. (2015). Software defect prediction
using ensemble learning on selected features. Inf. Softw. Technol., 58, 388–402.
doi:10.1016/j.infsof.2014.07.005

Larson, E. (2010). SUDS: an infrastructure for creating dynamic software defect
detection tools. Autom. Softw. Eng., 17(3), 301–346. doi:10.1007/s10515-010-0067-7

Lee, T., Nam, J., Han, D., Kim, S., & In, H. P. (2016). Developer micro interaction
metrics for software defect prediction. IEEE Trans. Software Eng., 42(11), 1015–1035.
doi:10.1109/TSE.2016.2550458

Lessmann, S., Baesens, B., Mues, C., & Pietsch, S. (2008). Benchmarking classification
models for software defect prediction: A proposed framework and novel findings. IEEE
Trans. Software Eng., 34(4), 485–496. doi:10.1109/TSE.2008.35

Li, M., Zhang, H., Wu, R., & Zhou, Z. (2012). Sample-based software defect pre-
diction with active and semi-supervised learning. Autom. Softw. Eng., 19(2), 201–230.
doi:10.1007/s10515-011-0092-1

Li, N., Shepperd, M. J., & Guo, Y. (2020). A systematic review of unsupervised
learning techniques for software defect prediction. Inf. Softw. Technol., 122, 106287.
doi:10.1016/j.infsof.2020.106287

Li, W., Zhang, W., Jia, X., & Huang, Z. (2020). Effort-aware semi-supervised just-in-
time defect prediction. Inf. Softw. Technol., 126, 106364. doi:10.1016/j.infsof.2020.106364

Li, Z., Jing, X., Wu, F., Zhu, X., Xu, B., & Ying, S. (2018). Cost-sensitive transfer ker-
nel canonical correlation analysis for heterogeneous defect prediction. Autom. Softw. Eng.,
25(2), 201–245. doi:10.1007/s10515-017-0220-7

Li, Z., Jing, X., Zhu, X., Zhang, H., Xu, B., & Ying, S. (2019). Heterogeneous
defect prediction with two-stage ensemble learning. Autom. Softw. Eng., 26(3), 599–651.
doi:10.1007/s10515-019-00259-1

Limsettho, N., Bennin, K. E., Keung, J. W., Hata, H., & Matsumoto, K. (2018). Cross
project defect prediction using class distribution estimation and oversampling. Inf. Softw.
Technol., 100, 87–102. doi:10.1016/j.infsof.2018.04.001

Liparas, D., Angelis, L., & Feldt, R. (2012). Applying the mahalanobis-taguchi strategy
for software defect diagnosis. Autom. Softw. Eng., 19(2), 141–165. doi:10.1007/s10515-
011-0091-2

Liu, C., Yang, D., Xia, X., Yan, M., & Zhang, X. (2019). A two-phase transfer
learning model for cross-project defect prediction. Inf. Softw. Technol., 107, 125–136.
doi:10.1016/j.infsof.2018.11.005

Ma, Y., Luo, G., Zeng, X., & Chen, A. (2012). Transfer learning for cross-
company software defect prediction. Inf. Softw. Technol., 54(3), 248–256.
doi:10.1016/j.infsof.2011.09.007

Mahmood, Z., Bowes, D., Hall, T., Lane, P. C. R., & Petric, J. (2018). Reproducibility
and replicability of software defect prediction studies. Inf. Softw. Technol., 99, 148–163.
doi:10.1016/j.infsof.2018.02.003

Malhotra, R., & Khanna, M. (2017). An exploratory study for software change prediction
in object-oriented systems using hybridized techniques. Autom. Softw. Eng., 24(3), 673–717.
doi:10.1007/s10515-016-0203-0

Page 27 of 38    152Empir Software Eng (2022) 27: 152



Maruf, M., & Ozturk. (2017). Which type of metrics are useful to deal with
class imbalance in software defect prediction? Inf. Softw. Technol., 92, 17–29.
doi:10.1016/j.infsof.2017.07.004

McIntosh, S., & Kamei, Y. (2018). Are fix-inducing changes a moving target? A lon-
gitudinal case study of just-in-time defect prediction. IEEE Trans. Software Eng., 44(5),
412–428. doi:10.1109/TSE.2017.2693980

Menzies, T., Butcher, A., Cok, D. R., Marcus, A., Layman, L., Shull, F., ... Zimmermann,
T. (2013). Local versus global lessons for defect prediction and effort estimation. IEEE
Trans. Software Eng., 39(6), 822–834. doi:10.1109/TSE.2012.83

Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., & Bener, A. B. (2010). Defect
prediction from static code features: Current results, limitations, new approaches. Autom.
Softw. Eng., 17(4), 375–407. doi:10.1007/s10515-010-0069-5

Minku, L. L., & Yao, X. (2017). Which models of the past are relevant to the present?
A software effort estimation approach to exploiting useful past models. Autom. Softw. Eng.,
24(3), 499–542. doi:10.1007/s10515-016-0209-7

Mo, R., Wei, S., Feng, Q., & Li, Z. (2022). An exploratory study of bug pre-
diction at the method level. Information and Software Technology, 144, 106794.
doi:https://doi.org/10.1016/j.infsof.2021.106794

Morasca, S., & Lavazza, L. (2020). On the assessment of software defect prediction
models via ROC curves. Empir. Softw. Eng., 25(5), 3977–4019. doi:10.1007/s10664-020-
09861-4

Mori, T., & Uchihira, N. (2019). Balancing the trade-off between accuracy and
interpretability in software defect prediction. Empir. Softw. Eng., 24(2), 779–825.
doi:10.1007/s10664-018-9638-1

Nair, T. R. G., & Selvarani, R. (2012). Defect proneness estimation and feedback
approach for software design quality improvement. Inf. Softw. Technol., 54(3), 274–285.
doi:10.1016/j.infsof.2011.10.001

Nam, J., Fu, W., Kim, S., Menzies, T., & Tan, L. (2017). Heterogeneous defect prediction.
IEEE Trans. Software Eng., 44(9), 874–896. doi:10.1109/TSE.2017.2720603

Ni, C., Chen, X., Wu, F., Shen, Y., & Gu, Q. (2019). An empirical study on pareto based
multi-objective feature selection for software defect prediction. J. Syst. Softw., 152, 215–
238. doi:10.1016/j.jss.2019.03.012

Ni, C., Xia, X., Lo, D., Chen, X., & Gu, Q. (2020). Revisiting supervised and unsu-
pervised methods for effort-aware cross-project defect prediction. IEEE Transactions on
Software Engineering, 1–1. doi:10.1109/TSE. 2020.3001739

Nizamani, Z. A., Liu, H., Chen, D. M., & Niu, Z. (2018). Automatic approval
prediction for software enhancement requests. Autom. Softw. Eng., 25(2), 347–381.
doi:10.1007/s10515-017-0229-y

Nucci, D. D., Palomba, F., Rosa, G. D., Bavota, G., Oliveto, R., & Lucia, A. D. (2018).
A developer centered bug prediction model. IEEE Trans. Software Eng., 44(1), 5–24.
doi:10.1109/TSE.2017.2659747

Okutan, A., & Yildiz, O. T. (2014). Software defect prediction using bayesian networks.
Empir. Softw. Eng., 19(1), 154–181. doi:10.1007/s10664-012-9218-8

Ozakinci, R., & Tarhan, A. (2018). Early software defect prediction: A systematic map
and review. J. Syst. Softw., 144, 216–239. doi:10.1016/j.jss.2018.06.025

Palomba, F., Zanoni, M., Fontana, F. A., Lucia, A. D., & Oliveto, R. (2019).
Toward a smell-aware bug prediction model. IEEE Trans. Software Eng., 45(2), 194–218.
doi:10.1109/TSE.2017.2770122

152   Page 28 of 38 Empir Software Eng (2022) 27: 152



Pascarella, L., Palomba, F., & Bacchelli, A. (2019). Fine-grained just-in-time defect
prediction. J. Syst. Softw., 150, 22–36. doi:10.1016/j.jss.2018.12.001

Pascarella, L., Palomba, F., & Bacchelli, A. (2020). On the performance of method-level
bug prediction: A negative result. J. Syst. Softw., 161. doi:10.1016/j.jss.2019.110493

Peters, F., Menzies, T., Gong, L., & Zhang, H. (2013). Balancing privacy and util-
ity in cross-company defect prediction. IEEE Trans. Software Eng., 39(8), 1054–1068.
doi:10.1109/TSE.2013.6

Peters, F., Tun, T. T., Yu, Y., & Nuseibeh, B. (2019). Text filtering and rank-
ing for security bug report prediction. IEEE Trans. Software Eng., 45(6), 615–631.
doi:10.1109/TSE.2017.2787653

Qu, Y., Chi, J. [Jianlei], & Yin, H. (2021). Leveraging developer informa-
tion for efficient effort-aware bug prediction. Inf. Softw. Technol., 137, 106605.
doi:10.1016/j.infsof.2021.106605

Qu, Y., Zheng, Q., Chi, J., Jin, Y., He, A., Cui, D., ... Liu, T. (2021). Using k-core
decomposition on class dependency networks to improve bug prediction model’s practical
performance. IEEE Trans. Software Eng., 47(2), 348–366. doi:10.1109/TSE.2019.2892959

Rana, R., Staron, M., Berger, C., Hansson, J., Nilsson, M., & Meding, W. (2016).
Analyzing defect inflow distribution and applying bayesian inference method for soft-
ware defect prediction in large software projects. J. Syst. Softw., 117, 229–244.
doi:10.1016/j.jss.2016.02.015

Rodrı́guez-Pérez, G., Nagappan, M., & Robles, G. (2021). Watch out for extrin-
sic bugs! A case study of their impact in just-in-time bug prediction models on
the openstack project. CoRR, abs/2103.15180. arXiv: 2103.15180. Retrieved from
https://arxiv.org/abs/2103.15180

Rodrı́guez, D., Ruiz, R., Riquelme, J. C., & Harrison, R. (2013). A study of sub-
group discovery approaches for defect prediction. Inf. Softw. Technol., 55(10), 1810–1822.
doi:10.1016/j.infsof.2013.05.002

Rodrı́guez, R. J. (2017). A petri net tool for software performance estimation based on
upper throughput bounds. Autom. Softw. Eng., 24(1), 73–99. doi:10.1007/s10515-015-0186-
2

Ryu, D., Choi, O., & Baik, J. (2016). Value-cognitive boosting with a support
vector machine for cross-project defect prediction. Empir. Softw. Eng., 21(1), 43–71.
doi:10.1007/s10664-014-9346-4

Shippey, T., Bowes, D., & Hall, T. (2019). Automatically identifying code features
for software defect prediction: Using AST n-grams. Inf. Softw. Technol., 106, 142–160.
doi:10.1016/j.infsof.2018.10.001

Song, Q., Guo, Y., & Shepperd, M. J. (2019). A comprehensive investigation of the role
of imbalanced learning for software defect prediction. IEEE Trans. Software Eng., 45(12),
1253–1269. doi:10.1109/TSE.2018.2836442

Song, Q., Jia, Z., Shepperd, M. J., Ying, S., & Liu, J. (2011). A general soft-
ware defect-proneness prediction framework. IEEE Trans. Software Eng., 37(3), 356–370.
doi:10.1109/TSE.2010.90

Tan, Y., Xu, S., Wang, Z., Zhang, T., Xu, Z., & Luo, X. (2020). Bug severity predic-
tion using question-and-answer pairs from stack overflow. J. Syst. Softw., 165, 110567.
doi:10.1016/j.jss.2020.110567

Tantithamthavorn, C., Hassan, A. E., & Matsumoto, K. (2020). The impact of class rebal-
ancing techniques on the performance and interpretation of defect prediction models. IEEE
Trans. Software Eng., 46(11), 1200–1219. doi:10.1109/TSE.2018.2876537

Page 29 of 38    152Empir Software Eng (2022) 27: 152



Tantithamthavorn, C., McIntosh, S., Hassan, A. E., & Matsumoto, K. (2017). An empir-
ical comparison of model validation techniques for defect prediction models. IEEE Trans.
Software Eng., 43(1), 1–18. doi:10.1109/TSE.2016.2584050

Tantithamthavorn, C., McIntosh, S., Hassan, A. E., & Matsumoto, K. (2019). The impact
of automated parameter optimization on defect prediction models. IEEE Trans. Software
Eng., 45(7), 683–711. doi:10.1109/TSE.2018.2794977

Tarvo, A., & Reiss, S. P. (2018). Automatic performance prediction of multithreaded pro-
grams: A simulation approach. Autom. Softw. Eng., 25(1), 101–155. doi:10.1007/s10515-
017-0214-5

Thummalapenta, S., & Xie, T. (2011). Alattin: Mining alternative patterns for defect
detection. Autom. Softw. Eng., 18(3–4), 293–323. doi:10.1007/s10515-011-0086-z

Thung, F., Lucia, Lo, D., Jiang, L., Rahman, F., & Devanbu, P. T. (2015). To what extent
could we detect field defects? an extended empirical study of false negatives in static bug-
finding tools. Autom. Softw. Eng., 22(4), 561–602. doi:10.1007/s10515-014-0169-8

Tian, Y., Lo, D., Xia, X., & Sun, C. (2015). Automated prediction of bug report priority
using multi-factor analysis. Empir. Softw. Eng., 20(5), 1354–1383. doi:10.1007/s10664-014-
9331-y

Tong, H., Liu, B., & Wang, S. (2018). Software defect prediction using stacked denois-
ing autoencoders and two-stage ensemble learning. Inf. Softw. Technol., 96, 94–111.
doi:10.1016/j.infsof.2017.11.008

Tong, H., Liu, B., & Wang, S. (2021). Kernel spectral embedding transfer ensem-
ble for heterogeneous defect prediction. IEEE Trans. Software Eng., 47(9), 1886–1906.
doi:10.1109/TSE.2019.2939303

Tong, H., Lu, W., Xing, W., Liu, B., & Wang, S. (2022). SHSE: A subspace hybrid
sampling ensemble method for software defect number prediction. Inf. Softw. Technol., 142,
106747. doi:10.1016/j.infsof.2021.106747

Tosun, A., Bener, A. B., Turhan, B., & Menzies, T. (2010). Practical consider-
ations in deploying statistical methods for defect prediction: A case study within
the turkish telecommunications industry. Inf. Softw. Technol., 52(11), 1242–1257.
doi:10.1016/j.infsof.2010.06.006

Tu, H., Yu, Z., & Menzies, T. (2022). Better data labelling with emblem (and how that
impacts defect prediction). IEEE Transactions on Software Engineering, 48(1), 278–294.
doi:10.1109/TSE.2020.2986415

Turhan, B., Menzies, T., Bener, A. B., & Stefano, J. S. D. (2009). On the relative value
of cross-company and within-company data for defect prediction. Empir. Softw. Eng., 14(5),
540–578. doi:10.1007/s10664-008-9103-7

Wang, S., Liu, T., Nam, J., & Tan, L. (2020). Deep semantic feature learn-
ing for software defect prediction. IEEE Trans. Software Eng., 46(12), 1267–1293.
doi:10.1109/TSE.2018.2877612

Wang, T., Zhang, Z., Jing, X., & Zhang, L. (2016). Multiple kernel ensemble learning for
software defect prediction. Autom. Softw. Eng., 23(4), 569–590. doi:10.1007/s10515-015-
0179-1

Weyuker, E. J., Ostrand, T. J., & Bell, R. M. (2008). Do too many cooks spoil the broth?
using the number of developers to enhance defect prediction models. Empir. Softw. Eng.,
13(5), 539–559. doi:10.1007/s10664-008-9082-8

Wu, X., Zheng, W., Chen, X., Zhao, Y., Yu, T., & Mu, D. (2021). Improving high-impact
bug report prediction with combination of interactive machine learning and active learning.
Inf. Softw. Technol., 133, 106530. doi:10.1016/j.infsof.2021.106530

152   Page 30 of 38 Empir Software Eng (2022) 27: 152



Xia, X., & Lo, D. (2017). An effective change recommendation approach for supplemen-
tary bug fixes. Autom. Softw. Eng., 24(2), 455–498. doi:10.1007/s10515-016-0204-z

Xia, X., Lo, D., Pan, S. J., Nagappan, N., & Wang, X. (2016). HYDRA: massively com-
positional model for cross-project defect prediction. IEEE Trans. Software Eng., 42(10),
977–998. doi:10.1109/TSE.2016.2543218

Xia, X., Lo, D., Shihab, E., Wang, X., & Zhou, B. (2015). Automatic, high accuracy
prediction of reopened bugs. Autom. Softw. Eng., 22(1), 75–109. doi:10.1007/s10515-014-
0162-2

Xiao, P., Liu, B., & Wang, S. (2018). Feedback-based integrated prediction: Defect pre-
diction based on feedback from software testing process. J. Syst. Softw., 143, 159–171.
doi:10.1016/j.jss.2018.05.029

Xu, Z., Li, L., Yan, M., Liu, J., Luo, X., Grundy, J., ... Zhang, X. (2021). A comprehen-
sive comparative study of clustering-based unsupervised defect prediction models. J. Syst.
Softw., 172, 110862. doi:10.1016/j.jss.2020.110862

Xu, Z., Li, S., Luo, X., Liu, J., Zhang, T., Tang, Y., ... Keung, J. (2019). TSTSS: A two-
stage training subset selection framework for cross version defect prediction. J. Syst. Softw.,
154, 59–78. doi:10.1016/j.jss.2019.03.027

Xu, Z., Li, S., Xu, J., Liu, J., Luo, X., Zhang, Y., ... Tang, Y. (2019). LDFR:
learning deep feature representation for software defect prediction. J. Syst. Softw., 158.
doi:10.1016/j.jss.2019.110402

Xu, Z., Liu, J. [Jin], Luo, X., Yang, Z., Zhang, Y., Yuan, P., ... Zhang, T. (2019). Software
defect prediction based on kernel PCA and weighted extreme learning machine. Inf. Softw.
Technol., 106, 182–200. doi:10.1016/j.infsof.2018.10.004

Yang, X., Lo, D., Xia, X., & Sun, J. (2017). TLEL: A two-layer ensemble learn-
ing approach for just-in-time defect prediction. Inf. Softw. Technol., 87, 206–220.
doi:10.1016/j.infsof.2017.03.007

Yao, J., & Shepperd, M. J. (2021). The impact of using biased performance
metrics on software defect prediction research. Inf. Softw. Technol., 139, 106664.
doi:10.1016/j.infsof.2021.106664

Yu, Q., Jiang, S., & Zhang, Y. (2017). A feature matching and transfer approach for cross-
company defect prediction. J. Syst. Softw., 132, 366–378. doi:10.1016/j.jss.2017.06.070

Yu, T., Wen, W., Han, X., & Hayes, J. H. (2019). Conpredictor: Concurrency
defect prediction in real-world applications. IEEE Trans. Software Eng., 45(6), 558–575.
doi:10.1109/TSE.2018.2791521

Zhang, F., Hassan, A. E., McIntosh, S., & Zou, Y. (2017). The use of summation to aggre-
gate software metrics hinders the performance of defect prediction models. IEEE Trans.
Software Eng., 43(5), 476–491. doi:10.1109/TSE.2016.2599161

Zhang, F., Mockus, A., Keivanloo, I., & Zou, Y. (2016). Towards building a universal
defect prediction model with rank transformed predictors. Empir. Softw. Eng., 21(5), 2107–
2145. doi:10.1007/s10664-015-9396-2

Zhang, Z., Jing, X., &Wang, T. (2017). Label propagation based semi-supervised learn-
ing for software defect prediction. Autom. Softw. Eng., 24(1), 47–69. doi:10.1007/s10515-
016-0194-x

Zhao, Y., Yang, Y., Lu, H., Liu, J., Leung, H., Wu, Y., ... Xu, B. (2017). Understand-
ing the value of considering client usage context in package cohesion for fault-proneness
prediction. Autom. Softw. Eng., 24(2), 393–453. doi:10.1007/s10515-016-0198-6

Zhou, T., Sun, X., Xia, X., Li, B., & Chen, X. (2019). Improving defect prediction with
deep forest. Inf. Softw. Technol., 114, 204–216. doi:10.1016/j.infsof.2019.07.003

Page 31 of 38    152Empir Software Eng (2022) 27: 152



Zhou, Y., Yang, Y., Lu, H., Chen, L., Li, Y., Zhao, Y., ... Xu, B. (2018). How far we have
progressed in the journey? an examination of cross-project defect prediction. ACM Trans.
Softw. Eng. Methodol., 27(1), 1:1–1:51. doi:10.1145/3183339

Zhu, K., Ying, S., Zhang, N., & Zhu, D. (2021). Software defect prediction based on
enhanced metaheuristic feature selection optimization and a hybrid deep neural network. J.
Syst. Softw., 180, 111026. doi:10.1016/j.jss.2021.111026

Zou, Q., Lu, L., Yang, Z., Gu, X., & Qiu, S. (2021). Joint feature representation learn-
ing and progressive distribution matching for cross-project defect prediction. Inf. Softw.
Technol., 137, 106588. doi:10.1016/j.infsof.2021. 106588

Acknowledgements We thank Bailey Renee Vandehei for proofreading this article.

Funding Open access funding provided by Università degli Studi di Roma Tor Vergata within the CRUI-
CARE Agreement.

Declarations

Conflict of Interest The authors have no relevant financial or non-financial interests to disclose. The authors
have no conflicts of interest to declare that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Agrawal A, Menzies T (2018) Is “better data” better than “better data miners”?: On the benefits of tun-
ing SMOTE for defect prediction. In: Proceedings of the 40th international conference on software
engineering, ICSE 2018, Gothenburg, Sweden, May 27–June 03, 2018, pp 1050–1061

Aha D, Kibler D (1991) Instance-based learning algorithms. Mach Learn 6:37–66
Ahluwalia A, Falessi D, Penta MD (2019) Snoring: a noise in defect prediction datasets. In: Storey

MD, Adams B, Haiduc S (eds) Proceedings of the 16th international conference on mining software
repositories, MSR 2019, 26–27 May 2019, Montreal, Canada, pp 63–67. https://doi.org/10.1109/MSR.
2019.00019

Akoglu H (2018) User’s guide to correlation coefficients. Turk J Emerg Med 18(3):91–93. https://doi.org/
10.1016/j.tjem.2018.08.001

Altman NS (1992) An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat
46(3):175–185. Retrieved from http://www.jstor.org/stable/2685209

Amasaki S (2020) Cross-version defect prediction: use historical data, crossproject data, or both? Empir
Softw Eng 25(2):1573–1595

Arisholm E, Briand LC, Fuglerud M (2007) Data mining techniques for building fault-proneness models in
telecom java software. In: ISSRE 2007, the 18th IEEE international symposium on software reliability,
Trollhättan, Sweden, 5–9 November 2007, pp 215–224. https://doi.org/10.1109/ISSRE.2007

Bangash AA, Sahar H, Hindle A, Ali K (2020) On the time-based conclusion stability of cross-project defect
prediction models. Empir Softw Eng 25(6):5047–5083

Basili VR, Briand LC, Melo WL (1996) A validation of objectoriented design metrics as quality indicators.
IEEE Trans Softw Eng 22(10):751–761

152   Page 32 of 38 Empir Software Eng (2022) 27: 152

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/MSR.2019.00019
https://doi.org/10.1109/MSR.2019.00019
https://doi.org/10.1016/j.tjem.2018.08.001
https://doi.org/10.1016/j.tjem.2018.08.001
http://www.jstor.org/stable/2685209
https://doi.org/10.1109/ISSRE.2007


Ben-Gal I (2008) Bayesian networks. https://doi.org/10.1002/9780470061572. eqr089. eprint: https://
onlinelibrary.wiley.com/doi/pdf/10.1002/9780470061572.eqr089

Bennin KE, Keung J, Phannachitta P, Monden A, Mensah S (2018) MAHAKIL: diversity based oversampling
approach to alleviate the class imbalance issue in software defect prediction. IEEE Trans Softw Eng
44(6):534–550. https://doi.org/10.1109/TSE.2017.2731766

Bennin KE, Keung JW, Monden A (2019) On the relative value of data resampling approaches for software
defect prediction. Empir Softw Eng 24(2):602–636

Bird C, Bachmann A, Aune E, Duffy J, Bernstein A, Filkov V, Devanbu PT (2009) Fair and balanced?:
Bias in bug-fix datasets. In: van Vlie H, Issarny V (eds) Proceedings of the 7th joint meeting of the
european software engineering conference and the ACM SIGSOFT international symposium on foun-
dations of software engineering, 2009, Amsterdam, The Netherlands, August 24–28, 2009, pp 121–130.
https://doi.org/10.1145/1595696.1595716

Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-sampling

technique. J Artif Intell Res 16:321–357
Chen T-H, Nagappan M, Shihab E, Hassan AE (2014) An empirical study of dormant bugs. In:

Proceedings of the 11th working conference on mining software repositories - MSR, p 2014.
https://doi.org/10.1145/2597073.2597108

Chen H, Liu W, Gao D, Peng X, Zhao W (2017) Personalized defect prediction for individual source files.
Comput Sci 44(4):90–95. https://doi.org/10.11896/j.issn.1002-137X.2017.04.020

Chen H, Jing X, Li Z, Wu D, Peng Y, Huang Z (2020) An empirical study on heterogeneous defect prediction
approaches. IEEE Trans Softw Eng (01):1–1. https://doi.org/10.1109/TSE.2020.2968520

Chen X, Mu Y, Liu K, Cui Z, Ni C (2021) Revisiting heterogeneous defect prediction methods: how far are
we? Inf Softw Technol 130:106441. https://doi.org/10.1016/j.infsof.2020.106441

Chi J, Honda K, Washizaki H, Fukazawa Y, Munakata K, Morita S, Yamamoto R (2017) Defect analysis and
prediction by applying the multistage software reliability growth model. In: IWESEP. IEEE Computer
Society, pp 7–11

Cleary JG, Trigg LE (1995) K*: an instance-based learner using an entropic distance measure. In: 12th
International conference on machine learning, pp 108–114

Dalla Palma S, Di Nucci D, Palomba F, Tamburri DA (2021) Withinproject defect predic-
tion of infrastructure-as-code using product and process metrics. IEEE Trans Softw Eng 1–1.
https://doi.org/10.1109/TSE.2021.3051492

D’Ambros M, Lanza M, Robbes R (2012) Evaluating defect prediction approaches: a benchmark and an
extensive comparison. Empir Softw Eng 17(4–5):531–577. https://doi.org/10.1007/s10664-011-9173-9

Falessi D, Huang J, Narayana L, Thai JF, Turhan B (2020) On the need of preserving order
of data when validating within-project defect classifiers. Empir Softw Eng 25(6):4805–4830.
https://doi.org/10.1007/s10664-020-09868-x

Falessi D, Ahluwalia A, Penta MD (2022) The impact of dormant defects on defect prediction: a study of 19
apache projects. ACM Trans. Softw Eng Methodol 31(1):4:1–4:26. https://doi.org/10.1145/3467895

Fan Y, Xia X, da Costa DA, Lo D, Hassan AE, Li S (2021) The impact of mislab eled
changes by SZZ on just-in-time defect prediction. IEEE Trans Software Eng 47(8):1559–1586.
https://doi.org/10.1109/TSE.2019.2929761

Feng S, Keung J, Yu X, Xiao Y, Bennin KE, Kabir MA, Zhang M (2021) COSTE: complexity-based over-
sampling technique to alleviate the class imbalance problem in software defect prediction. Inf Softw
Technol 129:106432. https://doi.org/10.1016/j.infsof.2020.106432

Flint SW, Chauhan J, Dyer R (2021) Escaping the time pit: Pitfalls and guidelines for using time-based git
data. In: 18th IEEE/ACM international conference on mining software repositories, MSR 2021, Madrid,
Spain, May 17–19, 2021, pp 85–96. https://doi.org/10.1109/MSR52588.2021.00022

Fu W, Menzies T, Shen X (2016) Tuning for software analytics: is it really necessary? Softw Technol 76:135–
146. https://doi.org/10.1016/j.infsof.2016.04.017

Fukushima T, Kamei Y, McIntosh S, Yamashita K, Ubayashi N (2014) An empirical study of just-in-time
defect prediction using crossproject models. In: Proceedings of the 11th working conference on mining
software repositories, pp 172–181

Ghotra B, McIntosh S, Hassan AE (2017) A large-scale study of the impact of feature selection techniques
on defect classification models. In: 2017 IEEE/ACM 14th international conference on mining software
repositories (msr). IEEE, pp 146–157

Giger E, D’Ambros M, Pinzger M, Gall H (2012) Method-level bug prediction, pp 171–180.
https://doi.org/10.1145/2372251.2372285

Grissom RJ, Kim JJ (2005) Effect sizes for research: a broad practical approach, 2nd edn. Lawrence Earlbaum
Associates

Page 33 of 38    152Empir Software Eng (2022) 27: 152

https://doi.org/10.1002/9780470061572
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470061572.eqr089
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470061572.eqr089
https://doi.org/10.1109/TSE.2017.2731766
https://doi.org/10.1145/1595696.1595716
https://doi.org/10.1145/2597073.2597108
https://doi.org/10.11896/j.issn.1002-137X.2017.04.020
https://doi.org/10.1109/TSE.2020.2968520
https://doi.org/10.1016/j.infsof.2020.106441
https://doi.org/10.1109/TSE.2021.3051492
https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1007/s10664-020-09868-x
https://doi.org/10.1145/3467895
https://doi.org/10.1109/TSE.2019.2929761
https://doi.org/10.1016/j.infsof.2020.106432
https://doi.org/10.1109/MSR52588.2021.00022
https://doi.org/10.1016/j.infsof.2016.04.017
https://doi.org/10.1145/2372251.2372285


Gyimóthy T, Ferenc R, Siket I (2005) Empirical validation of objectoriented metrics on open source software
for fault prediction. IEEE Trans Softw Eng 31(10):897–910

Hall MA (1998) Correlation-based feature subset selection for machine learning (Doctoral dissertation
University of Waikato, Hamilton, New Zealand)

Hassan AE (2009) Predicting faults using the complexity of code changes. In: 31st International conference
on software engineering, ICSE 2009, May 16–24, 2009, Vancouver, Canada, proceedings, pp 78–88.
https://doi.org/10.1109/ICSE.2009.5070510

Herbold S (2017) Comments on scottknottesd in response to “an empirical comparison of model
validation techniques for defect prediction models”. IEEE Trans Softw Eng 43(11):1091–1094.
https://doi.org/10.1109/TSE.2017.2748129

Herbold S (2019) On the costs and profit of software defect prediction. CoRR. arXiv:1911.04309
Herbold S, Trautsch A, Grabowski J (2017) Global vs. local models for cross-project defect prediction—a

replication study. Empir Softw Eng 22(4):1866–1902
Herbold S, Trautsch A, Grabowski J (2018) A comparative study to benchmark cross-project defect predic-

tion approaches. IEEE Trans Softw Eng 44(9):811–833. https://doi.org/10.1109/TSE.2017.2724538
Herbold S, Trautsch A, Grabowski J (2019) Correction of “a comparative study to benchmark cross-project

defect prediction approaches”. IEEE Trans Softw Eng 45(6):632–636
Herbold S, Trautsch A, Trautsch F (2020) On the feasibility of automated prediction of bug and non-bug

issues. Empir Softw Eng 25(6):5333–5369
Herzig K, Just S, Zeller A (2013) It’s not a bug, it’s a feature: how misclassification impacts bug predic-

tion. In: Notkin D, Cheng BHC, Pohl K (eds) 35th International conference on software engineering,
ICSE ’13, San Francisco, CA, USA, May 18–26, 2013, pp 392–401. https://doi.org/10.1109/ICSE.2013.
6606585

Hosseini S, Turhan B, Gunarathna D (2019) A systematic literature review and meta-analysis on cross project
defect prediction. IEEE Trans Softw Eng 45(2):111–147

Huang Q, Xia X, Lo D (2019) Revisiting supervised and unsupervised models for effort-aware just-in-time
defect prediction. Empir Softw Eng 24(5):2823–2862

Jiang T, Tan L, Kim S (2013) Personalized defect prediction. https://doi.org/10.1109/ASE.2013.6693087
Jiang Y, Cukic B, Menzies T (2008) Can data transformation help in the detection of fault-prone modules?

In: Devanbu PT, Murphy B, Nagappan N, Zimmermann T (eds) Proceedings of the 2008 workshop on
defects in large software systems, held in conjunction with the ACM SIGSOFT international symposium
on software testing and analysis (ISSTA 2008), DEFECTS 2008, Seattle, Washington, USA, July 20,
2008, pp 16–20. https://doi.org/10.1145/1390817.1390822

Jiarpakdee J, Tantithamthavorn C, Dam HK, Grundy J (2020) An empirical study of model-agnostic tech-
niques for defect prediction models. IEEE Trans Softw Eng 1–1. https://doi.org/10.1109/TSE.2020.
2982385

Jing X, Wu F, Dong X, Xu B (2017) An improved SDA based defect prediction framework for both within-
project and cross-project classimbalance problems. IEEE Trans Softw Eng 43(4):321–339

John GH, Langley P (1995) Estimating continuous distributions in bayesian classifiers. In: Eleventh
conference on uncertainty in artificial intelligence. Morgan Kaufmann, San Mateo, pp 338–345

Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, Ubayashi N (2012) A large-scale empirical
study of just-in-time quality assurance. IEEE Trans Softw Eng 39(6):757–773

Kamei Y, Fukushima T, McIntosh S, Yamashita K, Ubayashi N, Hassan AE (2016) Studying just-in-time
defect prediction using cross-project models. Empir Softw Eng 21(5):2072–2106

Khoshgoftaar TM, Allen EB, Goel N, Nandi A, McMullan J (1996) Detection of software modules with
high debug code churn in a very large legacy system. In: Seventh international symposium on software
reliability engineering, ISSRE 1996, white plains, NY, USA, October 30, 1996–Nov. 2, 1996, pp 364–
371. https://doi.org/10.1109/ISSRE.1996.558896

Kim S, Zimmermann T Jr, Whitehead EJ, Zeller A (2007) Predicting faults from cached history. In: 29th
International conference on software engineering (ICSE 2007), Minneapolis, MN, USA, May 20–26,
2007, pp 489–498. https://doi.org/10.1109/ICSE.2007.66

Kim S Jr, Whitehead EJ, Zhang Y (2008) Classifying software changes: clean or buggy. IEEE Trans Softw
Eng 34(2):181–196

Kim S, Zhang H, Wu R, Gong L (2011) Dealing with noise in defect prediction. In: Taylor RN, Gall HC, Med-
vidovic N (eds) Proceedings of the 33rd international conference on software engineering, ICSE 2011,
Waikiki, Honolulu, HI, USA, May 21–28, 2011, pp 481–490. https://doi.org/10.1145/1985793.1985859

Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software
engineering, EBSE 2007-001. Keele University and Durham University Joint Report, (Jul 9 2007)

Kochhar PS, Xia X, Lo D, Li S (2016) Practitioners’ expectations on automated fault localization. In:
Proceedings of the 25th international symposium on software testing and analysis, pp 165–176.
https://doi.org/10.1145/2931037.2931051

152   Page 34 of 38 Empir Software Eng (2022) 27: 152

https://doi.org/10.1109/ICSE.2009.5070510
https://doi.org/10.1109/TSE.2017.2748129
http://arxiv.org/abs/1911.04309
https://doi.org/10.1109/TSE.2017.2724538
https://doi.org/10.1109/ICSE.2013.6606585
https://doi.org/10.1109/ICSE.2013.6606585
https://doi.org/10.1109/ASE.2013.6693087
https://doi.org/10.1145/1390817.1390822
https://doi.org/10.1109/TSE.2020.2982385
https://doi.org/10.1109/TSE.2020.2982385
https://doi.org/10.1109/ISSRE.1996.558896
https://doi.org/10.1109/ICSE.2007.66
https://doi.org/10.1145/1985793.1985859
https://doi.org/10.1145/2931037.2931051


Kohavi R (1995) The power of decision tables. In: 8th European conference on machine learning. Springer,
pp 174–189

Kondo M, Bezemer C-P, Kamei Y, Hassan AE, Mizuno O (2019) The impact of feature reduction techniques
on defect prediction models. Empir Softw Eng 24(4):1925–1963

Kondo M, German DM, Mizuno O, Choi E (2020) The impact of context metrics on just-in-time defect
prediction. Empir Softw Eng 25(1):890–939

Kotsiantis S, Tsekouras G, Pintelas P (2005) Bagging model trees for classification problems
Le Cessie JC, Van Houwelingen S (1992) Ridge estimators in logistic regression. Applied statistics
Lee T, Nam J, Han D, Kim S, In HP (2016) Developer micro interaction metrics for software defect

prediction. IEEE Trans Softw Eng 42(11):1015–1035
Liu J, Zhou Y, Yang Y, Lu H, Xu B (2017) Code churn: a neglected metric in effort-aware just-in-time defect

prediction. In: ESEM. IEEE Computer Society, pp 11–19
Matthews BW (1975) Comparison of the predicted and observed secondary structure of t4 phage lysozyme.

Biochim Biophys Acta (BBA 2(405):442–451
McCallum A, Nigam K (1998) A comparison of event models for naive Bayes text classification. In: Learning

for text categorization: papers from the 1998 AAAI workshop, pp 41–48. Retrieved from http://www.
kamalnigam.com/papers/multinomial-aaaiws98.pdf

McIntosh S, Kamei Y (2018) Are fix-inducing changes a moving target? A longitudinal case study of just-
in-time defect prediction. IEEE Trans Softw Eng 44(5):412–428

Mende T, Koschke R (2009) Revisiting the evaluation of defect prediction models. In: Ostrand TJ (ed) Pro-
ceedings of the 5th international workshop on predictive models in software engineering, PROMISE
2009, Vancouver, BC, Canada, May 18–19, 2009, p 7. https://doi.org/10.1145/1540438.1540448

Menzies T, Dekhtyar A, Stefano JSD, Greenwald J (2007a) Problems with precision: a response to “com-
ments on ‘data mining static code attributes to learn defect predictors”’. IEEE Trans Softw Eng
33(9):637–640. https://doi.org/10.1109/TSE.2007.70721

Menzies T, Greenwald J, Frank A (2007b) Data mining static code attributes to learn defect predictors. IEEE
Trans Softw Eng 33(1):2–13. https://doi.org/10.1109/TSE.2007.256941

Menzies T, Milton Z, Turhan B, Cukic B, Jiang Y, Basar Bener A (2010) Defect prediction from static code
features: current results, limitations, new approaches. Autom Softw Eng 17(4):375–407

Morasca S, Lavazza L (2020) On the assessment of software defect prediction models via ROC curves. Empir
Softw Eng 25(5):3977–4019

Mori T, Uchihira N (2019) Balancing the trade-off between accuracy and interpretability in software defect
prediction. Empir Softw Eng 24(2):779–825

Moser R, Pedrycz W, Succi G (2008) A comparative analysis of the efficiency of change metrics and static
code attributes for defect prediction. In: 30th International conference on software engineering (ICSE
2008), Leipzig, Germany, May 10–18, 2008, pp 181–190

Nagappan N, Ball T (2005) Use of relative code churn measures to predict system defect density. In: Roman
G, Griswold WG, Nuseibeh B (eds) 27th International conference on software engineering (ICSE 2005),
15–21 May 2005, St. Louis, Missouri, pp 284–292. https://doi.org/10.1145/1062455.1062514

Nucci DD, Palomba F, Rosa GD, Bavota G, Oliveto R, Lucia AD (2018) A developer centered bug prediction
model. IEEE Trans Softw Eng 44(1):5–24

Ohlsson N, Alberg H (1996) Predicting fault-prone software modules in telephone switches. IEEE Trans
Softw Eng 22(12):886–894. https://doi.org/10.1109/32.553637

Ostrand TJ, Weyuker EJ (2004) A tool for mining defect-tracking systems to predict fault-prone files. In:
Hassan AE, Holt RC, Mockus A (eds) Proceedings of the 1st international workshop on mining software
repositories, msr@icse 2004, Edinburgh, Scotland, UK, 25th May 2004, pp 85–89

Ostrand TJ, Weyuker EJ, Bell RM (2005) Predicting the location and number of faults in large software
systems. IEEE Trans Softw Eng 31(4):340–355

Palomba F, Zanoni M, Fontana FA, Lucia AD, Oliveto R (2019) Toward a smell-aware bug prediction model.
IEEE Trans Softw Eng 45(2):194–218

Pascarella L, Palomba F, Bacchelli A (2019) Fine-grained just-in-time defect prediction. J Syst Softw
150:22–36

Pascarella L, Palomba F, Bacchelli A (2020) On the performance of method-level bug prediction: a negative
result. J Syst Softw 161

Peters F, Tun TT, Yu Y, Nuseibeh B (2019) Text filtering and ranking for security bug report prediction.
IEEE Trans Softw Eng 45(6):615–631

Platt J (1998) Fast training of support vector machines using sequential minimal optimization. In: Schoelkopf
B, Burges C, Smola A (eds) Advances in kernel methods—support vector learning. MIT Press. Retrieved
from http://research.microsoft.com/%5C∼jplatt/smo.html

Powers DMW (2007) Evaluation: from precision, recall and F-measure to ROC, informedness, markedness
& correlation. J Mach Learn Technol 2(1):37–63

Page 35 of 38    152Empir Software Eng (2022) 27: 152

http://www.kamalnigam.com/papers/multinomial-aaaiws98.pdf
http://www.kamalnigam.com/papers/multinomial-aaaiws98.pdf
https://doi.org/10.1145/1540438.1540448
https://doi.org/10.1109/TSE.2007.70721
https://doi.org/10.1109/TSE.2007.256941
https://doi.org/10.1145/1062455.1062514
https://doi.org/10.1109/32.553637
http://research.microsoft.com/%5C~jplatt/smo.html


Qu Y, Zheng Q, Chi J, Jin Y, He A, Cui D (2021a) Using k-core decomposition on class dependency networks
to improve bug prediction model’s practical performance. IEEE Trans Softw Eng 47(2):348–366

Qu Y, Chi J, Yin H (2021b) Leveraging developer information for efficient effort-aware bug prediction. Inf
Softw Technol 137:106605. https://doi.org/10.1016/j.infsof.2021.106605

Quinlan R (1993) C4.5: programs for machine learning. Morgan Kaufmann Publishers, San Mateo
Rahman F, Posnett D, Devanbu PT (2012) Recalling the “imprecision” of cross-project defect predic-

tion. In: Tracz W, Robillard MP, Bultan T (eds) 20th ACM SIGSOFT symposium on the foundations
of software engineering (fse-20), sigsoft/fse’12, Cary, NC, USA—November 11–16, 2012, p 61.
https://doi.org/10.1145/2393596.2393669

Rahman F, Posnett D, Herraiz I, Devanbu PT (2013) Sample size vs. bias in defect prediction. In: Meyer
B, Baresi L, Mezini M (eds) Joint meeting of the european software engineering conference and the
ACM SIGSOFT symposium on the foundations of software engineering, esec/fse’13, Saint Petersburg,
Russian Federation, August 18–26, 2013, pp 147–157. https://doi.org/10.1145/2491411.2491418

Rodrı́guez-Pérez G, Zaidman A, Serebrenik A, Robles G, González-Barahona JM (2018b) What if a bug
has a different origin?: Making sense of bugs without an explicit bug introducing change. In: Oivo
M, Fernández DM, Mockus A (eds) Proceedings of the 12th ACM/IEEE international symposium on
empirical software engineering and measurement, ESEM 2018, Oulu, Finland, October 11–12, 2018,
pp 52:1–52:4. https://doi.org/10.1145/3239235.3267436

Rodrı́guez-Pérez G, Nagappan M, Robles G (2020) Watch out for extrinsic bugs! A case study of their
impact in just-in-time bug prediction models on the openstack project. IEEE Trans Softw Eng 1–1.
https://doi.org/10.1109/TSE.2020.3021380

Shepperd M, Song Q, Sun Z, Mair C (2013) Data quality: some comments on the nasa software defect
datasets. IEEE Trans Softw Eng 39(9):1208–1215

Shepperd M, Bowes D, Hall T (2014) Researcher bias: the use of machine learning in software defect
prediction. IEEE Trans Softw Eng 40(6):603–616. https://doi.org/10.1109/TSE.2014.2322358

Shepperd MJ, Hall T, Bowes D (2018) Authors’ reply to “comments on ‘researcher bias: the use of machine
learning in software defect prediction”’. IEEE Trans Softw Eng 44(11):1129–1131

Song Q, Guo Y, Shepperd MJ (2019) A comprehensive investigation of the role of imbalanced learning for
software defect prediction. IEEE Trans Softw Eng 45(12):1253–1269

Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15(1):72–
101

Tantithamthavorn C, McIntosh S, Hassan AE, Ihara A, Matsumoto K (2015) The impact of mislabelling on
the performance and interpretation of defect prediction models. In: Bertolino A, Canfora G, Elbaum
SG (eds) 37th IEEE/ACM international conference on software engineering, ICSE 2015, Florence, Italy,
May 16–24, 2015, vol 1, pp 812–823. https://doi.org/10.1109/ICSE.2015.93

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2016b) Comments on “researcher bias: the
use of machine learning in software defect prediction”. IEEE Trans Softw Eng 42(11):1092–1094.
https://doi.org/10.1109/TSE.2016.2553030

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2016c) An empirical comparison of model
validation techniques for defect prediction models. IEEE Trans Softw Eng 43(1):1–18

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2019) The impact of automated
parameter optimization on defect prediction models. IEEE Trans Softw Eng 45(7):683–711.
https://doi.org/10.1109/TSE.2018.2794977

Tantithamthavorn C, Hassan AE, Matsumoto K (2020) The impact of class rebalancing techniques on the
performance and interpretation of defect prediction models. IEEE Trans Softw Eng 46(11):1200–1219.
https://doi.org/10.1109/TSE.2018.2876537

Tian Y, Lo D, Xia X, Sun C (2015) Automated prediction of bug report priority using multi-factor analysis.
Empir Softw Eng 20(5):1354–1383

Tu H, Yu Z, Menzies T (2020) Better data labelling with emblem (and how that impacts defect prediction).
IEEE Trans Softw Eng 1–1. https://doi.org/10.1109/TSE.2020.2986415

Turhan B, Menzies T, Bener AB, Di Stefano J (2009) On the relative value of cross-company and within-
company data for defect prediction. Empir Softw Eng 14(5):540–578. https://doi.org/10.1007/s10664-
008-9103-7

Vandehei B, da Costa DA, Falessi D (2021) Leveraging the defects life cycle to label affected versions and
defective classes. ACM Trans Softw Eng Methodol 30(2):24:1–24:35

Vargha A, Delaney HD (2000) A critique and improvement of the cl common language effect size statistics
of Mcgraw and Wong. J Educ Behav Stat 25(2):101–132

Wang S, Liu T, Tan L (2016) Automatically learning semantic features for defect prediction. In: Proceedings
of the 38th international conference on software engineering, ICSE 2016, Austin, TX, USA, May 14–22,
2016, pp 297–308

152   Page 36 of 38 Empir Software Eng (2022) 27: 152

https://doi.org/10.1016/j.infsof.2021.106605
https://doi.org/10.1145/2393596.2393669
https://doi.org/10.1145/2491411.2491418
https://doi.org/10.1145/3239235.3267436
https://doi.org/10.1109/TSE.2020.3021380
https://doi.org/10.1109/TSE.2014.2322358
https://doi.org/10.1109/ICSE.2015.93
https://doi.org/10.1109/TSE.2016.2553030
https://doi.org/10.1109/TSE.2018.2794977
https://doi.org/10.1109/TSE.2018.2876537
https://doi.org/10.1109/TSE.2020.2986415
https://doi.org/10.1007/s10664-008-9103-7
https://doi.org/10.1007/s10664-008-9103-7


Wang S, Liu T, Nam J, Tan L (2020) Deep semantic feature learning for software defect prediction. IEEE
Trans Software Eng 46(12):1267–1293. https://doi.org/10.1109/TSE.2018.2877612

Weyuker EJ, Ostrand TJ, Bell RM (2010) Comparing the effectiveness of several modeling methods for fault
prediction. Empir Softw Eng 15(3):277–295. https://doi.org/10.1007/s10664-009-9111-2

Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1(6):80. https://doi.org/10.2307/
3001968

Wohlin C, Runeson P, Hst M, Ohlsson MC, Regnell B, Wessln A (2012) Experimentation in software
engineering. Springer Publishing Company Incorporated

Xia X, Lo D, Pan SJ, Nagappan N, Wang X (2016) HYDRA: massively compositional model for cross-project
defect prediction. IEEE Trans Softw Eng 42(10):977–998. https://doi.org/10.1109/TSE.2016.2543218

Yan M, Fang Y, Lo D, Xia X, Zhang X (2017) File-level defect prediction: unsupervised vs. supervised
models. In: ESEM. IEEE Computer Society, pp 344–353

Yu T, Wen W, Han X, Hayes JH (2019) Conpredictor: concurrency defect prediction in real-world
applications. IEEE Trans Softw Eng 45(6):558–575

Zhang H, Zhang X (2007) Comments on “data mining static code attributes to learn defect predictors”. IEEE
Trans Softw Eng 33(9):635–637. https://doi.org/10.1109/TSE.2007.70706

Zhang F, Mockus A, Keivanloo I, Zou Y (2016) Towards building a universal defect prediction model with
rank transformed predictors. Empir Softw Eng 21(5):2107–2145

Zhang F, Hassan AE, McIntosh S, Zou Y (2017) The use of summation to aggregate software metrics hinders
the performance of defect prediction models. IEEE Trans Softw Eng 43(5):476–491

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Jonida Çarka is a Ph.D. student at the University of Rome Tor Ver-
gata, Italy. She is also an academic staff member of the University of
Tirana, Faculty of Economics, Department of Statistics and Applied
Informatics. Her main research interest is in measuring the impact
of defect classifiers on software development. She received her MSc
in Information Systems in Economy and BSc degrees in Economic
Informatics.

Matteo Esposito is a Ph.D. student at the University of Rome Tor
Vergata, Italy. He is also a Secure Software Engineer for Multitel
SRL. He is the Chairman of the ACM Rome Tor Vergata Student
Chapter. His main research interest is in using machine learning to
support software security. He received his MSc and BSc degrees in
Computer Engineering from the University of Rome Tor Vergata,
Italy.

Page 37 of 38    152Empir Software Eng (2022) 27: 152

https://doi.org/10.1109/TSE.2018.2877612
https://doi.org/10.1007/s10664-009-9111-2
https://doi.org/10.2307/3001968
https://doi.org/10.2307/3001968
https://doi.org/10.1109/TSE.2016.2543218
https://doi.org/10.1109/TSE.2007.70706


Davide Falessi is an Associate Professor of Software Engineering at
the University of Rome Tor Vergata, Italy. He is the Associate Edi-
tor in Software Economics of IEEE Software and a senior member of
IEEE. He is a reviewer board member of the IEEE Transactions on
Software Engineering. He has been the Guest Editor of special issues
in several journals, including the Empirical Software Engineering
Journal, the Journal of Systems and Software and IEEE Software. His
main research interest is in devising and empirically assessing scal-
able solutions for the development of software-intensive systems. He
received his Ph.D., MSc, and BSc degrees in Computer Engineering
from the University of Rome Tor Vergata, Italy.

152   Page 38 of 38 Empir Software Eng (2022) 27: 152


	On effort-aware metrics for defect prediction
	Abstract
	Introduction
	Related Work
	Accuracy Metrics
	Effort-Aware Metrics
	Evaluations

	Study Design
	RQ1: Which EAMs are Used in Software Engineering Journal Papers?
	RQ2: Does the Normalization Improve PofBs?
	Independent Variable
	Dependent Variables
	Measurement Procedure
	Analysis Procedure

	RQ3: Does the Ranking of Classifiers Change by Normalizing PofBs?
	RQ4: Does the Ranking of Classifiers Change Across Normalized PofBs?

	Study Results
	RQ1: Which EAMs are Used in Software Engineering Journal Papers?
	RQ2: Does the Normalization Improve PofBs?
	RQ3: Does the Ranking of Classifiers Change by Normalizing PofBs?
	RQ4: Does the Ranking of Classifiers Change Across Normalized PofBs?

	Discussion
	RQ1: Which EAMs are Used in Software Engineering Journal Papers?
	RQ2: Does the Normalization Improve PofBs?
	RQ3: Does the Ranking of Classifiers Change by Normalizing PofBs?
	RQ4: Does the Ranking of Classifiers Change Across Normalized PofBs?

	The ACUME Tool
	Threats to Validity
	Conclusion
	Internal
	Construct
	External

	Conclusion
	Appendix: 
	A.1 Primary Studies
	Sistematic Litterature Review Studies
	References


