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Abstract
Mutation testing exploits artificial faults to measure the adequacy of test suites and guide
their improvement. It has become an extremely popular testing technique as evidenced by
the vast literature, numerous tools, and research events on the topic. Previous survey papers
have successfully compiled the state of research, its evolution, problems, and challenges.
However, the use of mutation testing in practice is still largely unexplored. In this paper,
we report the results of a thorough study on the use of mutation testing in GitHub projects.
Specifically, we first performed a search for mutation testing tools, 127 in total, and we
automatically searched the GitHub repositories including evidence of their use. Then, we
focused on the top ten most widely used tools, based on the previous results, and manually
revised and classified over 3.5K GitHub active repositories importing them. Among other
findings, we observed a recent upturn in interest and activity, with Infection (PHP), PIT
(Java) and Humbug (PHP) being the most widely used mutation tools in recent years. The
predominant use of mutation testing is development, followed by teaching and learning,
and research projects, although with significant differences among mutation tools found in
the literature—less adopted and largely used in teaching and research—and those found in
GitHub only—more popular and more widely used in development. Our work provides a
new and encouraging perspective on the state of practice of mutation testing.
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1 Introduction

Mutation testing measures the effectiveness of tests based on their ability to detect arti-
ficial faults. Such faults, so-called mutants, are created by applying syntactic changes
to the original program, for example, by replacing a relational operator by another one:
a < b → a > b. The types of changes applied for the generation of mutants are determined
by transformation rules called mutation operators. The main outcome of mutation testing is
the so-called mutation score, which measures the effectiveness of the test set as the ratio of
detected mutants over the total number of mutants. Any mutant not being detected by the
tests provides helpful information for including additional tests, and therefore guides the
improvement of the test set.

Since its introduction back in the 70s (DeMilo et al. 1978, 1979), research on mutation
testing has thrived until becoming a well-established testing technique. In a recent survey
by Papadakis et al. (2019), the authors identified more than 400 papers published in the
time period 2008-2017 and 87 different mutation tools for a variety of programming lan-
guages and artifacts including Java, C, C++, C#, JavaScript, HTML/CSS, Ruby, and UML
models, among many others. Mutation testing is a recurrent topic in most software test-
ing and software engineering venues, being the central topic of the series of international
workshops on mutation (celebrating its 17th edition in 2022 (https://icst2022.vrain.upv.es/
home/mutation-2022/)) and several special issues in top-tier journals (e.g., Just et al. 2019;
Papadakis and Just 2017).

Previous survey papers on mutation testing have successfully compiled the state of
research, its evolution, fundamental problems, and challenges (Jia and Harman 2011; Offutt
and Untch 2001; Papadakis et al. 2019). They all agree on the relevance of mutation test-
ing in the research arena, especially as a common experimental methodology for evaluating
the effectiveness of testing techniques. Some authors have also explored the benefits and
limitations of using mutation testing in open-source applications (Just et al. 2014) and
industrial projects (Delgado-Pérez et al. 2018). Some recent papers also investigate the use
of mutation testing in large companies such as Google (Petrovic et al. 2021b) and Face-
book (Beller et al. 2021). However, the overall impact of mutation testing beyond research
is still limited (Arcuri 2018) and mostly unexplored: to what extent is mutation testing
adopted in practice? is the impact of the technique on research reflected in real-world soft-
ware projects? which kind of projects is the technique used for? which are the most popular
mutation testing tools in practice? how has the use of mutation testing changed over the
years? These are some of the questions addressed in our work.

In this article, we report the findings of a mining study in GitHub on the use of muta-
tion testing in practice. Specifically, we searched and analyzed the GitHub repositories
including evidence of the use of existing mutation testing tools. The study was performed
in three steps. First, we performed a thorough search for mutation testing tools, identify-
ing a total of 127 tools released in the period 2001-2021, 40 of them new with respect to
the tool compilation by Papadakis et al. (2019). Then, we performed a systematic search
for GitHub repositories including evidence of the use of the mutation tools found. For this
step, we resorted to both automated searches in the web search interface of GitHub and its
GraphQL API (https://docs.github.com/en/graphql). Finally, we selected the top 10 more
popular tools, based on the results of the previous search, and we manually revised and
classified over 3.5K active repositories including evidence of their use.

Among the numerous findings, we observed a significant boost in the number of muta-
tion tools and the number of GitHub repositories including traces of their use in recent
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years. Infection (https://infection.github.io/) (a mutation tool for PHP) is by far the most
widely used tool in GitHub—imported in about one third of the repositories found—
followed by PIT (Coles et al. 2016) (Java), Humbug (https://github.com/humbug/humbug)
(PHP), StrykerJS (https://stryker-mutator.io/docs/stryker-js/introduction) (JavaScript), and
Mutant (https://github.com/mbj/mutant) (Ruby). The predominant use of mutation testing is
development, followed by teaching and learning, and research. We traced 21% of the repos-
itories to industry, 6.8% to academia, and 3.4% to public institutions (e.g., HM Courts &
Tribunals Service from the UK government) and open-source projects (e.g., phpMyAdmin).
Moreover, the identification of mutation tools through two different sources —by literature
review and GitHub search— allowed us to assess the current status of mutation testing from
a new point of view with respect to previous studies on the topic. Overall, we observed
significant differences among the mutation tools reported in the literature and those found
in GitHub and built around open-source communities. Judging by our results, the former
are less spread and have a greater presence in the set of projects related to teaching and
research. The latter, in contrast, are significantly more popular and are mostly used in devel-
opment projects. This leads to mixed conclusions. On the one hand, the degree of adoption
is encouraging with the three most widely used tools referenced above being imported in
more than 500 repositories, some of them being quite active —in terms of commits—and
popular—in terms of watchers, stars or forks. On the other hand, the results show a gap
between the state of research and practice with some of the most widely used tools rarely
being referenced in research papers (e.g., Infection, Humbug or StrykerJS).

The results of our study have direct applications such as pointing readers to the most
widely used tools in practice and promoting the use of the technique beyond academia,
based on its current adoption in industrial projects. However, the main contribution of our
work lies on its novel perspective on the state of practice of mutation testing. This new view
on mutation opens new and promising research directions by leveraging the collected data.
Among others, we envision new empirical studies, both quantitative and qualitative, that
complement our findings and delve into their causes, e.g., conducting surveys among the
developers of the most relevant projects. Finally, our work paves the path for new mining
studies that contribute to closing the gap between research and practice on mutation testing.

The rest of the article is organized as follows. Section 2 introduces mutation testing tech-
nique. Our review method and research questions are described in Section 3. The results of
our study are detailed in Section 4. Section 5 proposes new promising research directions to
complement our findings. Section 6 discusses related work on mutation testing and mining
studies on GitHub. The potential threats to validity are discussed in Section 7. Finally, we
conclude the article in Section 8.

2 Mutation Testing

Mutation testing is a well-known fault-based technique to evaluate and improve the quality
of test suites. This technique not only encourages testers to exercise as much code as possi-
ble but also to uncover possible mistakes made by their programmers. In the absence of real
faults, simple syntactic modifications are inserted in the hope that they resemble plausible
real faults (Competent Programmer Hypothesis (Acree et al. 1979)) and that those simple
changes are able to reveal other more complex ones (Coupling Effect Hypothesis (DeMillo
et al. 1978)). The injected faults are known as mutations and the new faulty versions of
the program under test, as mutants. Once the mutants have been generated, each mutant
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as well as the original program is executed against the test suite to produce an output. An
observable difference between the output of the original version and a mutant serves to
classify that mutant as detected or killed. On the contrary, when the output is the same,
the mutant remains alive and requires further analysis, as it can point out a deficiency in
the fault detection ability of the test suite. This is not always the case, however, because a
mutant can turn out to be functionally equivalent to the original program; these are the so-
called semantically-equivalent mutants. It follows that a tester should aspire to kill as many
mutants as possible to increase the detection power of the test suite. The number of killed
mutants over the whole set of non-equivalent mutants is called mutation score.

The injection of mutations is generally systematized with the development of mutation
tools, which implement different mutation operators. These operators are applied each time
a pattern is found in the program (e.g., each appearance of the relational operator ‘>’ is
replaced by ‘<’). As shown later on, more than one hundred mutation testing tools have
been developed in the past for most of the widely-used programming languages, including
Java, C/C++, Python or C# among many others, and the list has grown in the last years with
new mutation tools for emerging domains such as Deep Mutation systems (Ma et al. 2018)
or Smart Contracts (Li et al. 2019).

Mutation tools can be used or integrated into other software projects for test-
ing purposes through different means including executable files (e.g., https://github.
com/mull-project/mull/releases), static libraries (e.g., https://cs.gmu.edu/∼offutt/mujava/#
Links), build tools like Gradle or Maven (e.g., https://pitest.org/quickstart/maven/, https://
gradle-pitest-plugin.solidsoft.info/), and IDE plugins (e.g., https://github.com/gomezabajo/
Wodel/wiki/Get-Started). The rationale behind our work is that most of these mechanisms
can be traced back to the code of the application under test leaving evidence of the use of
the mutation tools.

3 ReviewMethod

In this section, we describe the systematic approach followed for studying the use of muta-
tion testing in practice by looking into GitHub. Specifically, we detail the research questions
and the data collection process. All the searches reported were performed on June 2021.

3.1 Research Questions

We aim to answer the following research questions (RQs):

RQ1: What is the current tool support for mutation testing? As a first step, we aim to
study the tool support for mutation testing by looking at the mutation tools that have
been proposed over the years and their target artifacts.

RQ2: To which extent is mutation testing adopted in practice? We aim to study the adop-
tion of mutation testing by examining the number of GitHub projects including
evidence of the use of mutation testing tools. We also intend to identify the most
frequently used tools and usage patterns.

RQ3: Which type of projects are mutation testing tools used for? We aim to analyze the
use of each mutation testing tool on different types of projects including teaching,
research, and software development. We are particularly interested in studying the
use of mutation testing beyond academia.
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RQ4: Which is the activity and relevance of the projects using mutation tools? Finally, we
want to evaluate how active and popular within the community are these projects by
looking at different statistics of the GitHub repositories, including commits (activ-
ity), and contributors, watchers, stars and forks (popularity). While this analysis
cannot give evidence of the particular use given to the mutation tools, it can shed
light on the tools most used in relevant projects (i.e., those highly active and popu-
lar). This can be a valuable source of information for further analyses which attempt
to assess the current practices of developers and companies regarding mutation
testing.

3.2 Data Collection and Analysis

Data collection was performed in three steps, graphically depicted in Fig. 1. First, we
performed a systematic search for mutation testing tools (RQ1). Second, we conducted a
systematic search for GitHub repositories including evidence of use of those tools and,
based on the previous findings, we selected and analyzed the 10 tools most frequently used
in practice (RQ2). Third, we performed a thorough manual revision and classification of
the GitHub repositories using the ten most widely used tools identified in the previous step
(RQ3 and RQ4). In what follows, we describe these steps in detail.

3.2.1 Mutation Tools Search

We started by performing a systematic search for mutation testing tools in three steps.

Previous tool compilation First, we selected the tools identified in the survey on mutation
testing by Papadakis et al. (2019) including papers published between 2008 and 2017. In

Fig. 1 Data collection and analysis process
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particular, the survey includes a compilation of the mutation testing tools introduced or used
in the surveyed papers. This yielded an initial set of 87 mutation testing tools.

Literature search Second, we performed a systematic review of the literature for papers
proposing mutation testing tools published between 2018 (the year in which the survey by
Papadakis et al. was published) and May 2021. In contrast to the survey of Papadakis et
al., focused on mutation testing advances in general, we were only interested in papers ref-
erencing mutation testing tools, and therefore we adjusted our search strings accordingly.
Specifically, we searched for papers including the terms “mutation OR mutation testing OR
mutant generation” and “tool OR system OR application OR framework” within the paper
title, abstract and/or keywords. The search was performed in the online repositories of Sco-
pus, ACM and IEEE Xplore. As a result, we obtained 84 unique papers meeting the search
criteria. Then, we performed a manual revision of the papers for checking whether they
proposed a new mutation testing tool. This was an iterative process where all the authors
participated by reviewing their assigned papers and later meeting together until reaching
a consensus in the cases of doubts. We excluded 49 papers not presenting actual mutation
tools (e.g., theoretical studies) or presenting tools already identified. Original tools and their
extensions are considered together in our work. As a result, we identified 31 new muta-
tion testing tools. The papers identified in the literature search can be found in the online
resource 1 of the supplementary material (https://doi.org/10.5281/zenodo.5713585).

GitHub search During the preparation of our work, we identified some mutation testing
tools that were highly popular in GitHub but, interestingly, were not referenced in the
research literature. In an attempt to complement the set of tools with those, we performed
an additional search in GitHub for mutation testing tools repositories including the search
strings “mutation testing” sorted by “Most stars”. GitHub stars are recognized as a reliable
source of the popularity of GitHub projects (Borges et al. 2016). The search returned hun-
dreds of results. We analyzed the fifteen top results (i.e., those shown in the first results
page), and we selected 9 new mutation tools not included in the tool set derived from the
previous tool compilation and our literature search.

Overall, we identified 127 mutation testing tools: 87 from the literature review by
Papadakis et al. (2019), 31 from an updated literature search, and 9 tools selected among
those with more stars in GitHub. Table 3 shows the list of all mutation testing tools,
including source, name, release year and domain.

3.2.2 Repository Mining in GitHub

Our work is based on the observation that most mutation tools leave evidence of their
(potential) use in the code repository of the applications under test. These pieces of evi-
dence include references to static libraries, dependency declarations, or configuration files,
among others. Based on this, we mined data from GitHub in two steps. First, we searched
for repositories including evidence of the mutation testing tools under study scraping the
web interface of GitHub. We resorted to the web interface, instead of only the GitHub
APIs, because the API constrains searches to user-specified repositories when filtering by
code specifying file names and text content. However, that information was not known in
advance. Once we had the repositories that met the specified code constraints, in a second
step we collected detailed information about each repository using the GitHub GraphQL
API (https://docs.github.com/en/graphql). Next, we explain both steps.
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Repository search The search for repositories including evidence of use of the mutation
tools was performed on the web search interface of GitHub. The search was performed auto-
matically using web scraping, as described later on. It is worth noting that from December
2020 GitHub only indexes repositories that have had recent activity within the last year, this
is, those that have had a commit or have shown up in a search result in the 12 months1.
Hence, the scope of our search is limited to those GitHub repositories with recent activity at
the time of performing our search, in June 2021. Finally, note that repositories forked from
the main repository of the mutation tools under study do not appear in the search; forked
repositories will be treated separately as a complementary metric of the mutation tool’s
relevance.

As an initial step, we designed the search queries for each mutation tool. Specifically,
we analyzed the papers and official sites of each mutation tool to find out the different
ways in which it can be used in third-party projects. For example, PIT can be integrated
by directly importing the “pitest.jar” file or, alternatively, it can be automatically imported
using tools like Maven (https://maven.apache.org/) or Gradle (https://gradle.org/), in which
case their respective configuration files must include the string “org.pitest”. We used this
information to define queries for the search of repositories including evidence of use of
the mutation testing tools under study. For instance, we searched for projects including
the string “org.pitest” in pom.xml or .gradle files and therefore potentially using the tool
PIT. This procedure could not be done however for some of the tools: those with no name,
and those where a website was not available or whose website did not provide enough
information to search for evidence of their use. As a result, we could define the search strings
for 55 out of the initial 127 tools. The search strings and the number of repositories matching
the queries for each mutation tool, 6,633 in total, can be found in the online resource 3
of the supplementary material (https://doi.org/10.5281/zenodo.5713585). Note that when
using the query parameter “filename:” (e.g., filename:Jumble), the GitHub engine searches
for files starting by the specified name followed by any possible string, (e.g., “Jumble-
annotations”).

For automating the search process, we implemented a web scraper using the tool Htm-
lUnit (https://htmlunit.sourceforge.io). The scraper automatically logs into GitHub and runs
the customized queries for each tool in the web search form of GitHub, iterating over all the
result pages until collecting all the names and owners of the returned repositories. Dupli-
cates were automatically discarded. The initial search yielded 6,633 repositories including
evidence of use of 35 out of the 55 mutation tools under study.

Data extraction We proceeded to collect detailed information about each repository.
Specifically, we used the GraphQL API (https://docs.github.com/en/graphql) of GitHub to
automatically extract data from the list of 6,633 repositories obtained in the previous step,
that is, those GitHub projects potentially using the mutation testing tools under study. In par-
ticular, we automatically collected the following data of each repository: name, description,
creation date, last update, URL, owner name, owner bio, owner login (unique username),
company, country; primary language, secondary languages, license, topics, number of com-
mits, date of first and last commit, number of issues, number of contributors, watchers, stars,
and forks. We should note that some of the projects found in GitHub had been migrated
from other GIT-based platforms and, therefore, the number of commits of those projects

1https://github.blog/changelog/2020-12-17-changes-to-code-search-indexing/
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includes the commits received since the creation of the original repository. Collected data
was saved into CSV files for later analyses.

3.2.3 Manual Revision and Classification

At this stage, we manually reviewed the data collected in three steps, namely:

Tool and repository selection As a part of the work, we performed a manual qualitative
analysis of the selected repositories (see details below). To make this analysis affordable,
we first reduced the number of mutation tools under study. Specifically, we selected the
10 mutation tools imported from a higher number of GitHub repositories (ranging from 42
repositories to 1,717) according to our previous search. This decision was also motivated
by the fact that the rest of the mutation tools were found only in a few repositories and
therefore it was difficult to draw meaningful conclusions from them. This reduced the set of
repositories from 6,633 to 6,307. Then, we further reduced the set of repositories, by select-
ing those having at least one commit in the last year; we refer to these as active repositories.
This choice allowed us to filter out repositories with no recent activity making our work
affordable and, at the same time, to show a more precise picture of the adoption of mutation
testing tools at the time of writing this paper. This step reduced the target set of repositories
from 6,307 to 3,644.

Identification of false positives False positives are repositories matching the search cri-
teria, but not referencing actual mutation tools. For example, we found some repositories2

including the common word “jumble” not referencing the actual mutation testing tool for
Java Jumble (Irvine et al. 2007). To identify and discard false positives, we split the active
repositories among the authors, who carefully checked whether they included actual ref-
erences to the target mutation tools. At this step, we also removed those repositories not
available at the time of the revision (e.g., repositories removed by their owners). Finally, we
identified the main repository in GitHub of these mutation tools, which are also excluded
from the counting. This makes a total of 3,581 repositories under study.

Table 1 shows the ten mutation testing referenced from a higher number of reposito-
ries. For each tool, the table shows the search queries used in GitHub, the total number
of repositories found, and the number of active repositories, i.e., projects with at least a
commit in the last year. The reduction in the number of repositories varies significantly
from one tool to another. It is notable the reduction of Humbug repositories, which started
with 1,717 and is finally narrowed down to 636 active projects (i.e., with at least one
commit in the last year). This is probably because Infection has replaced Humbug in
recent years —as explained in the main repository of Humbug (https://github.com/humbug/
humbug)—, so many repositories still referencing that tool may have become obsolete.
MuJava also decreases considerably the number of active repositories from 50 to 9. We
observed that many repositories using MuJava were created by students to accomplish uni-
versity course projects; these are mainly single-use repositories, usually abandoned once
the corresponding assignment expires.

Classification Finally, we manually classified the active repositories referencing the 10
selected tools, 3,581 in total. Specifically, repositories were classified according to their

2False positive of Jumble: https://github.com/PABeckett/Jumble-Solver
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Table 1 GitHub search queries and results of repositories for each mutation tool

Name Search queries #Repos #Active repos

Humbug 1. filename:humbug extension:phar 1,717 636

2. filename:humbug.json extension:dist

3. infection/infection filename:composer extension:json

Infection 1. filename:infection extension:phar 1,671 1,213

2. filename:infection.json extension:dist

3. infection/infection filename:composer extension:json

Major 1. XMutator filename:build extension:xml 42 10

2. XMutator filename:run extension:sh

MuJava 1. filename:mujava extension:jar extension:config 50 9

2. filename:jmutation extension:jar extension:config

Mutant 1. mutant-rspec extension:gemspec 749 296

2. mutant-rspec filename:Gemfile

3. mutant-minitest extension:gemspec

4. mutant-minitest filename:Gemfile

Mutmut 1. mumut filename:setup extension:cfg 56 54

2. mutmut filename:travis extension:yml

3. mutmut filename:Makefile

MutPy 1. mutpy filename:tox extension:ini 59 24

2. mutpy filename:mut extension:py

3. mutpy filename:setup extension:py

4. mut.py filename:Makefile

PIT 1. filename:pitest extension:jar

1,340 816

2. org.pitest filename:pom extension:xml

3. org.pitest extension:gradle

4. org.pitest filename:build extension:sbt

5. org.pitest filename:ivy extension:xml

6. info.solidsoft.pitest filename:build extension:gradle

7. pitmp-maven-plugin filename:pom extension:xml

StrykerJS 1. filename:stryker.conf extension:js extension:json 581 487

Stryker.NET 1. filename:stryker-config extension:json 42 36

Total 6,307 3,581

purpose (teaching, learning, research, development or extension) and origin (academia,
industry or public institution). The details of the classification process are given in
Section 4.3. The repositories were distributed among the authors for their review and classi-
fication. Given the high number of repositories, each repository was initially assigned to one
of the authors for its analysis. Doubtful cases were highlighted and additional remarks were
included when necessary or deemed appropriate for later revision. The process involved sev-
eral meetings where the authors refined the classification criteria and discussed doubts until
reaching a consensus. We resorted to browser extensions to automatically translate files not
written in English.
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4 Results

In this section, we present the results of our study and how they answer the target research
questions.

4.1 Mutation Testing Tools

This section addresses RQ1 by studying the current tool support for mutation testing. Table 3
(Appendix) summarizes the list of mutation tools found, 127 in total, released between 2001
and 2020. For each tool, the table shows the source (survey of Papadakis et al. (2019), lit-
erature search or GitHub search), its name, release year and domain. Most tools address
specific programming languages like Java, C, C++, HTML, JavaScript, or Python, among
others. Other tools target high-level artifacts such as design models (e.g., UML) or specifi-
cation languages (e.g., Z). Finally, a diverse group of tools mutates other types of artifacts
including spreadsheets, annotations, regular expressions, security policies, and smart con-
tracts, among others. It is noteworthy that about 35% (45 out of 127) of the tools found had
no name, which suggests that they are research prototypes or proofs of concept.

Figure 2a shows the number of mutations tools released per year. The first mutation
tools reported— Jester (http://jester.sourceforge.net/) for Java and Proteum (Delamaro et al.
2001) for C— were proposed back in 2001. The graph shows a noticeable increase in inter-
est starting in 2008 to date, with between 5 and 13 mutation tools created per year. It is
worth noting the peak in the number of tools proposed in the years 2017-2019. The overall
increasing trend is clearly observed in the cumulative number of mutation tools per year in
Fig. 2b.

Figure 3 depicts the classification of mutation testing tools based on their target artifacts.
Java is the predominant target language (16%), followed by C/C++ (14%), models and spec-
ification languages (10%), web-related technologies (7%), Android applications (5%), and
security-related artifacts (4%). About one third of the tools found (34%)—those classified
as “Others”—target other types of artifacts (e.g., spreadsheets, regular expressions, code
annotations, etc.), and programming languages such as Smalltalk, PHP or Prolog, among
others.

When looking into recent years, the interest in languages like Java and C/C++ seems
to diminish in favor of other languages like JavaScript, Python, Swift, and Solidity (smart
contracts), among others. Out of the 34 mutation testing tools proposed in the time range
2018-2020, only 6 tools target Java or C/C++ programs. This may be explained by the fact
that already exist a good number of mutation tools for Java and C/C++.

We observed a significant divergence among the results of the literature search and
our search in GitHub. Out of the 10 mutation tools with more stars in GitHub, 7 were
not identified in our literature search, namely: StrykerJS (https://stryker-mutator.io/docs/
stryker-js/introduction) (JavaScript), Infection (https://infection.github.io/) (PHP), Hum-
bug (https://github.com/humbug/humbug) (PHP), Stryker.NET (https://stryker-mutator.io/
docs/stryker-net/Introduction) (.Net), Cosmic-Ray (https://cosmic-ray.readthedocs.io/en/
latest/index.html) (Python), Go-Mutesting (https://github.com/zimmski/go-mutesting) (Go)
and Mutmut (https://github.com/boxed/mutmut) (Python). Interestingly, none of those seven
tools target Java or C/C++ programs, despite those being the languages receiving more
attention in research papers. This suggests a gap between the state of practice and research.
We hypothesize that the tools born outside the academic environment are focused from their
conception on usability, that is, they seek to be mainly useful for the community. Within
academia, however, efforts tend to be more dedicated to research, where priority is given to
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Fig. 2 Mutation testing tools released between January 2008 and May 2021

Fig. 3 Classification of mutation testing tools by target artifact
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the evaluation of experimental features (e.g., new mutation operators) and its dissemination
through research papers.

Table 2 shows the top 10 most popular mutation testing tools based on the number of
GitHub repositories including evidence of their use. As explained in Section 3, in what fol-
lows we will focus on these 10 tools to make our work affordable. For each tool, the table
shows its name, references (to the main repository in GitHub and the original research paper,
if any), programming language, and standard statistics of the tool repository in GitHub
(October 2021), namely: number of watchers (i.e, followers), number of stars, number of
forks, number of commits, number of issues, and date of the first and the last commit. Note
that we did not find a main GitHub repository for Major and therefore the corresponding
statistics are missing. Also, the repository hosting MutPy was created before the correspond-
ing mutation tool was released (in 2014), while the repository hosting MuJava was created
well after the first version of the corresponding tool was released (in 2004).

As illustrated in Table 2, the set of tools most widely used based on the traces found
in GitHub addresses six different programming languages (Java, JavaScript, PHP, Python,
Ruby, and .NET), which shows that the impact of mutation testing is not related to spe-
cific domains. Specifically, Java is the dominant target language (Major, MuJava, and PIT),
followed by PHP (Humbug and Infection) and Python (Mutmut and MutPy). The most
popular tools in terms of GitHub watchers, stars and forks are Humbug (PHP), StrykerJS
(JavaScript) and PIT (Java), respectively. Mutant and StrykerJS are the most active projects
in terms of commits (3,612) and issues (868), respectively. Being this list of the most pop-
ular tools —based on the evidence of use found in GitHub—, it is notable that four of them
were conceived in 2016 (Mutmut and StrykerJS) or later (Infection, 2017, and Stryker.NET,
2018). Most of the tools hosted in GitHub are active, having at least one commit in the last
12 months. The exceptions are MuJava (last updated in 2016), Humbug (2017)—its main
repository has been archived by the owner— and MutPy (2019).

Table 2 Mutation testing tools under study: W (watchers), S (stars), F (forks), C (commits), I (issues), FC
(first commit) and LC (last commit)

Name & Refs Language Tool main repository in GitHub

W S F C I FC LC

Humbug (https://github.com/humbug/
humbug)

PHP 58 1,154 75 733 134 2015 2017

Infection (https://infection.github.io/) PHP 33 1,538 129 1,290 421 2017 2021

Major (Just 2014) Java – – – – – – –

MuJava (https://github.com/jeffoffutt/
muJava: Ma et al. 2005)

Java 9 57 38 19 18 2015 2016

Mutant (https://github.com/mbj/mutant) Ruby 36 1,782 141 3,612 489 2012 2021

Mutmut (https://github.com/boxed/mutmut) Python 10 530 58 429 150 2016 2021

MutPy (https://github.com/mutpy/mutpy;
Derezińska and Hałas 2014)

Python 10 267 32 327 33 2011 2019

PIT (https://github.com/hcoles/pitest;
Coles et al. 2016)

Java 57 1,295 297 1,908 620 2010 2021

StrykerJS (https://stryker-mutator.io/docs/
stryker-js/introduction)

JavaScript 28 2,004 182 2,817 868 2016 2021

Stryker.NET (https://stryker-mutator.io/
docs/stryker-net/Introduction)

.NET 24 618 115 838 525 2018 2021
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Summary of answers to RQ1:

1. Tool support for mutation testing is rich with at least 127 mutation tools created
between 2001 and 2020.

2. Over one third of the mutation tools found in the literature has no name, which
suggests that they are research prototypes.

3. The trend of creation of new mutation tools shows an increasingly steep curve
with a boost in interest starting in 2008. 2018-2019were the most prolific years
with 13 tools released per year.

4. Java and C/C++ are the dominant target programming languages of existing
mutation tools. However, about two thirds of the tools found address other types
of artifacts and programming languages.

5. In recent years, the interest in languages like Java and C/C++ seems to diminish
in favor of trending languages such as JavaScript and Solidity.

6. There seems to be a gap between the state of research and practice with seven
of the top ten most popular tools in GitHub (based on the number of stars) not
being reported in the research literature.

7. The top ten most popular mutation tools, based on our search, target 6 different
programming languages, which suggests that the impact of mutation testing
transcends specific domains. Among them, Java (3 mutation tools), Python (2)
and PHP (2) appear as the predominant programming languages.

8. The ranking of the top ten tools is mainly topped by active and recently cre-
ated mutation tools. Notably, the main repository of 6 of them has at least one
commit in 2021 and four of these repositories were created within the last five
years (between 2016 and 2018).

9. Most of the repositories hosting the top ten mutation tools have attracted the
attention of the GitHub community.Humbug, Infection, Mutant, PIT and Stryk-
erJS count with more than 1K stars. They are also quite active in terms of
commits and issues.

4.2 Adoption of Mutation Testing

This section addresses RQ2 by studying the number and the general characteristics of
the 3,581 GitHub repositories including evidence of use of the ten mutation testing tools
under study, i.e., those found in a larger number of repositories. Specifically, all these tools
were used through a library import, and thus in what follows we will refer to repositories
importing the mutation testing tools.

For each mutation tool, Table 1 shows its name, the search queries used, the total number
of repositories found, and the total number of active repositories. Recall that, to make the
manual revision of repositories affordable and identify more accurately the use of mutation
testing tools at present, our study is based on the analysis of active repositories, i.e., those
having a commit in the last 12 months. Regarding the number of active repositories, Infec-
tion is by far the most popular tool being imported in 1,213 repositories; followed by PIT
(816), Humbug (636), StrykerJS (487) and Mutant (296). At the other extreme are Mutmut
(54), Stryker.NET (36), MutPy (24), Major (10) and MuJava (9).

Figure 4 depicts the number of repositories importing each mutation tool created per year
in the last decade. Notice that the corresponding mutation tool may have been imported in a
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Fig. 4 Number of new repositories per mutation tool and year (y-axis on logarithmic scale)

later commit and not necessarily when the repository was created. For instance, some repos-
itories importing Infection were created before 2017, the year when the first commit for
this tool was made (according to Table 2). The number of new repositories importing Infec-
tion, Humbug, PIT, StrykerJS, Mutant and, on a smaller scale, Mutmut and Stryker.NET,
has notably increased in the period 2018-2020. Indeed, all of them reach their peak in 2020,
but we should interpret this information cautiously; unlike the rest of the years, part of the
repositories in 2020 may appear as active simply because they were created that year. Also,
note that we performed our search in June 2021, so the graph only reflects the reposito-
ries created during the first half of this year (that explains the decrease in the number of
repositories from 2020 to 2021 in almost all the tools). The case of Infection is especially
remarkable, with an increment in the number of repositories importing it from 10 in 2017 to
519 in 2020. It is also noteworthy the case of PIT, which shows a positive upward tendency
since 2012, remaining as the most imported tool during the last decade until 2020, when
it was surpassed by Infection and Humbug. We think this is due to the good support and
documentation of PIT and the fact that the tool is popular inside and outside academia. Con-
versely, we cannot appreciate any clear increase trend for the rest of the tools. For instance,
we found a single repository importing MutPy in the years 2014, 2016, 2017 and 2018.
Similarly, the creation of the nine repositories integrating MuJava is well spread between
2012 and 2021, with a maximum of two repositories in 2018 and 2020. It is significant that
MuJava, a tool widely known in the scientific community, does not present a greater num-
ber of active repositories using it. This may be explained by the fact that the tool has not
been updated since 2016 —the date of its last commit.

As previously mentioned, the mutation tools under study were used through a library
import in all the repositories found. Specifically, some applications use a direct import, this
is, they include the mutation library directly (e.g., Jar files in Java or Phar files in PHP),
whereas others resort to automated dependency management using build automation tools
like Gradle, Maven or Tox. We did not observe any correlation between the import method
and the adoption of the mutation tools. Instead, import methods vary among tools and lan-
guages. For example, direct import through a Jar file is the method offered by MuJava
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(Java), and tools like Mutant (Ruby), StrykerJS (JavaScript) and Stryker.NET (.Net) offer
build automation tools as the main way of import. Some other tools for Java (e.g., PIT),
PHP (e.g., Infection) and Python (e.g., MutPy) provide both methods of import, but build
automation tools is the clear choice when both ways are available –according to the num-
ber of traces found of each type when executing the search strings–. Overall, the majority
of projects using mutation testing tools prefer build automation tools as means of import.

Summary of answers to RQ2:

1. The number of repositories importing any of the 10 mutation tools under study
is relevant, with at least 3,581 active repositories detected and three of the
tools—Infection, PIT and Humbug—being imported in more than 500 GitHub
projects.

2. The most popular mutation tool by far is Infection, being imported in 1,213
repositories out of 3,581.

3. The repositories importing Humbug, Infection, Mutmut, StrykerJS and
Stryker.NET represent 67.7% of the whole set of repositories. It is notewor-
thy that these five tools were identified in our GitHub search and not in the
literature.

4. The number of projects importing Infection, Humbug, PIT, StrykerJS and
Mutant has substantially increased in recent years. Such trend is not observed
in the tools MutPy, Major and MuJava.

5. PIT has been the most imported tool in the last decade, only surpassed by
Infection and Humbug in 2020.

6. Import methods vary among tools and programming languages, being build
automation tools the most common mechanism of integration.

4.3 Classification of Repositories

In this section, we address RQ3 by studying the types of repositories importing mutation
testing tools. Specifically, we classified the GitHub projects into five main groups according
to their purpose: research, teaching, development, learning and extension. We classified as
research those repositories including evidences of the use of mutation in research activities,
for example, replication packages associated with research papers3. Teaching projects are
those using mutation testing for teaching, including university courses4, tutorials, books, or
programming katas. We classified as development those repositories including evidence of
the use of mutation testing for actual software development5. We identified a good num-
ber of personal repositories including toy examples used to learn how mutation and other
technologies work, we classified those as learning projects6. We also found a few projects
that were extensions of the mutation testing tools under study. We marked them as exten-
sion projects7. To categorize the repositories, we manually examined all the information

3Research project: https://github.com/DPerf-Github/DPerf
4Teaching project: https://github.com/andrewt0301/qa-testing-course
5Development project: https://github.com/ecphp/php-directive-bundle
6Learning project: https://github.com/MartinThoma/algorithms
7Extension project: https://github.com/saiema/MuJava
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Fig. 5 Classification of repositories by category (all mutation testing tools under study)

available in the corresponding repositories, including their name, description, available doc-
umentation, and, exceptionally, even the source code. Despite our best efforts, there were
cases where we were unable to identify the category a repository belongs to, for example, in
repositories with no documentation nor descriptive names or description. We labeled these
as unclassified8.

Figure 5 shows the percentage of projects belonging to each category. As illustrated,
almost half of the repositories under study, 45.2% (1,617 out of 3,581) are dedicated to
development, 18.5% (662) to teaching, 7.1% (254) to learning, 1.1% (40) to research, and
0.7% (24) to extensions of the mutation tools under study. Unclassified repositories repre-
sent 27.5% of the total of repositories. However, when analyzing the data, we observed some
significant differences among the mutation tools found in our GitHub search (Humbug,
Infection, Mutmut, StrykerJS and Stryker.NET) and those found in the literature (Major,
MuJava, Mutant, MutPy and PIT). To investigate this, we performed a similar classifica-
tion of the repositories importing both sets of tools, shown in Fig. 6a and b, respectively.
Interestingly, we observe an increase in the percentage of projects dedicated to develop-
ment and a decrease in the number of teaching repositories when focusing on tools found
only in GitHub. On the contrary, mutation tools found in the literature (Fig. 6b) show the
opposite behavior, with a considerable reduction in the percentage of repositories dedi-
cated to development (35.8% vs 49.6%) and an increase up to double in the number of
teaching repositories (28.4% vs 13.8%), research repositories (2.4% vs 0.5%) and learning
repositories (10.3% vs 5.6%). Therefore, it seems that a higher proportion of the projects
using tools from GitHub –presumably from outside the scientific world– have a devel-
opmental purpose, possibly because they have attracted more interest from non-academic
developers. On the other hand, the tools found in the literature seem to be used in almost
equal proportion in both development and teaching projects, and the sum of repositories
from the categories teaching, learning and research is higher than the number of reposito-
ries dedicated to development. We hypothesize that tools found in the literature, possibly
related to a scientific origin, have drawn more interest from the research and teaching
community.

Figure 7 shows the number of repositories per tool involved in each category on a loga-
rithmic scale. Development is the dominant category in the repositories importing the tools

8Unclassified project: https://github.com/douniaharag/GSB-Frais
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Fig. 6 Classification of repositories by category, divided by tools found in GitHub and in the literature

Humbug, Infection, Mutmut, MutPy, PIT and Stryker.NET. Teaching seems to be the most
common use of the tools Major, Mutant and StrykerJS. MuJava seems to be mostly used in
research projects. It is noteworthy that only three tools, Infection, PIT and StrykerJS, are
imported in projects from all categories.

To investigate the origin of the repositories using mutation testing tools, we manually
analyzed the information related to the ownership of the repositories. We labeled reposito-
ries as Industry if the owner’s affiliation is related to the industry, either as an employee or
freelance, Academia if the owner’s affiliation is linked to a teaching center, and as Public
when the owner is associated with a public institution, a non-profit organization or a known
open-source community. Unfortunately, only 31.1% of the repositories (1,112 out of 3,581)
included ownership information and therefore the results should be taken cautiously. The
bulk of classified repositories sourced from industry (20.9%, 747 out of 3,581) with own-
ers working in private companies9; followed by academia (6.8%, 242), like those owned
by University professors10 or students11; and a minority from public institutions, non-profit
organizations or open-source communities (3.4%, 123). As examples, we found some pop-
ular repositories using Infection owned by the open-source community phpMyAdmin12,
a set of open-source projects developed by the European Commission13, and the not-for-
profit UK Centre for Ecology & Hydrology14. Interestingly, we also observed differences
when analyzing the origin of repositories associated with mutation tools found in GitHub
and tools found in the literature. The former ones come mostly from industry, 21.8% out
of 31.1% of classified repositories, with a small percentage reserved for academia (4.3%)
and public institutions (1.7%), whereas the latter are equally sourced from industry (19%)
and from academia (11.9%) plus public institutions (7.2%). These results show that the
uses of the mutation tools found in GitHub seem to be closely related to development
projects and industry owners, while those tools found in the literature present more variety
of uses and origins.

9Industrial owner: https://github.com/gwillem/flarum-multitenant
10Academic owner: https://github.com/andrewt0301/qa-testing-course
11Academic owner: https://github.com/enginyenice/Object-Detection-With-Smart-Phones
12Public institution: https://github.com/phpmyadmin/phpmyadmin
13Public institution: https://github.com/ecphp/php-directive-bundle
14Public institution: https://github.com/NERC-CEH
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Summary of answers to RQ3:

1. The predominant use of the repositories under study is development (45.2%),
followed by teaching (18.5%), learning (7.1%) and research projects (1.1%).
Extensions of the mutation tools under study were scarce (0.7%). About 27%
of the repositories remained unclassified because of the lack of information.

2. Six out of the ten tools under study are mostly used for development purposes
(Humbug, Infection, Mutmut, MutPy, PIT and Stryker.NET), whereas three
of them are predominantly used for teaching (Major, Mutant and StrykerJS).
MuJava is mostly used for research and PIT is the tool with more repositories
dedicated to research (21).

3. Based on the owners’ information, 20.9% of the repositories were linked to
industry, 6.8% related to academia, and 3.4% to public institutions. Only one
third of the repositories had this information available.

4. We found differences between the purpose and origin of the classified repos-
itories that import mutation tools found in GitHub and those found in the
literature. The former ones are mostly linked to development and mainly have
their origin in the industry; the latter, more frequently linked to academia than
the others, have a greater presence in the set of projects related to teaching,
learning and research.

4.4 Repository Activity and Relevance

This section seeks to answer RQ4 by studying the activity and relevance of the repositories
importing the mutation testing tools under study. To do this, we analyzed the values of
different measures extracted from GitHub related to activity (commits of the repositories)
and popularity (contributors, watchers, stars and forks), and calculated several statistics by
mutation tool. This allows us to observe the tools attracting more attention from highly
active and popular projects.

Figure 8 displays quartiles, median, minimum and maximum values of commits submit-
ted to repositories importing each mutation tool. The highest median of commits is found
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Fig. 8 Commits per mutation tool (y-axis on logarithmic scale)

in Mutmut, with 79 commits. However, Mutmut and also MuJava are the only tools not ref-
erenced in at least one project with more than 1K commits. In a second group, Mutant, PIT,
StrykerJS and Stryker.NET present a similar distribution, with medians in the range 45-60
commits. It is surprising, however, the low median of commits in repositories importing
Infection and Humbug (9 and 5, respectively), being these two of the most used tools. This
might be due to the boost in the number of repositories created in 2021 that use these two
tools in comparison to other tools (see Fig. 4) —that is, the period of activity of those repos-
itories is shorter—. It might also suggest that many of their repositories will not be active
the next year. Regardless of its low median, Infection appears in a good number of projects
with a high volume of commits —shown as outliers—. Namely, 16 out of the 19 projects
with more than 10,000 commits reference Infection. This includes the project with the max-
imum number of commits observed overall (235,708)15 —related to the procurement of
masks in Taiwan—, followed by two projects belonging to phpMyAdmin —composer16 and
phpMyAdmin’s main repository (see footnote 12)— with 123,474 and 121,828 commits,
respectively.

Figure 9 shows the distribution of repositories based on the total number of commits
overall, and per category. As illustrated in Fig. 9a, 41.8% of the repositories (1,488 out of
3,581) received 10 or fewer commits, and 26% (927 out of 3,581) received between 11
and 50 commits. This reflects a limited activity in the projects importing mutation tools.
This low activity was especially observed in unclassified (Fig 9g) and learning projects
(Fig 9f) where 81.1% and 78% of the projects, respectively, received 50 commits or fewer.
As observed in our manual revision, a large portion of these projects are often small and
poorly documented examples or proofs of concepts with limited activity. On the contrary,
projects extending the mutation tools under study (Fig. 9e) are more active with 50% of
the projects having received 51 commits or more. In the middle, we find teaching (Fig 9c),
research (Fig 9d) and development projects (Fig 9b) with 40.4%, 40% and 38.2% of the
projects, respectively, having received 51 commits or more. Finally, 79% of the projects

15https://github.com/kiang/pharmacies
16https://github.com/phpmyadmin/composer
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Fig. 9 Distribution of commits

with more than 500 commits (162 out of 205) fall into the category development, being PIT,
Infection and StrykerJS the main mutation testing tools used by these repositories. Teaching
projects occupy the second position in this ranking with 17 repositories (8%) with more than
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500 commits, leading the list of imports PIT, StrykerJS and Mutant. These results reflect
that the most active projects are those dedicated to development, regardless of the mutation
tool used.

Figure 10 shows several boxplots with the distribution of different popularity-related
metrics of the GitHub projects importing the mutation testing tools under study. Specif-
ically, the graphs show on a logarithmic scale the distribution of contributors, watchers,
stars, and forks, including their quartiles, median value, minimum, maximum, and outliers.
As illustrated, distributions are generally low, with noticeable exceptions in the forms of
outliers, especially in Infection, Mutant, PIT and StrykerJS. Thus, to simplify the analysis
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Fig. 10 Contributors, watchers, stars and forks (y-axis on logarithmic scale)
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of the results, outliers over 50 in contributors, watchers, stars, or forks will be deemed as
highly popular or relevant projects.

Regarding contributors, all the mutation tools are imported in repositories with 10 or
fewer contributors —excluding outliers—, with MuJava being the only tool with a median
value over one (2). This clearly shows that most of these repositories were generated with
individualistic purposes (e.g., to perform a lab activity, to develop basic or ad hoc appli-
cations, or to store personal resources), while only a few of them stem from the joint
collaboration of a large group of developers in a community, public entity or company.
Regarding the latter, interestingly, 74 repositories integrating PIT count with 418 contrib-
utors, all from the same owner (HM Courts & Tribunals Service, UK government). Apart
from those, half of the repositories with over 50 contributors import StrykerJS (18 out of 36).
Most repositories have 5 watchers or fewer, again with MuJava having the highest median
value (2). Among the set of repositories that are watched by 50 or more GitHub users, PIT is
the tool with more associated repositories (17 out of 23). With regard to stars and forks, the
median value is 0 for all the tools. Altogether, the low number of watchers, stars and forks
in general, reflects that most of these repositories contain toy, small-sized or still incom-
plete projects that are not meant to be distributed globally. Contrarily, some of them may
have not received much attention from the community despite that being the original inten-
tion (as it can be grasped from the details of installation and use in some of the readme
files). Using 50 as a threshold, PIT (26 repositories), StrykerJS (23) and Infection (20) are
the tools more frequently integrated into the most starred repositories. Similarly, PIT (14
repositories), Infection (10) and StrykerJS (4) are the tools more commonly imported in
highly forked repositories. Among the most relevant projects based on these metrics, we
can cite the main repository of Checkstyle17 (using PIT), with 6,072 stars and 7,894 forks,
and phpMyAdmin (using Infection), with 291 watchers.

Summary of answers to RQ4:

1. Two thirds of the repositories importing mutation testing tools received 50
commits or fewer, which reflects a limited overall activity.

2. Most of the projects with more than 500 commits are classified as development
(162 out of 205, 79%). PIT, Infection and StrykerJS are the main mutation
testing tools used by these repositories.

3. Repositories classified as extensions are by far the most active ones. Learning
projects appear as the least active.

4. Commits to repositories importing Mutmut, StrykerJS, Mutant, Stryker.NET
and PIT are quite more numerous than to those referencing Humbug or
Infection. However, Infection is currently in use in particularly active projects.

5. Judging by the median of contributors (1), watchers (1), stars (0) and forks (0),
we can say that most of these repositories have limited popularity. However, we
did find a number of highly popular repositories with at least 50 contributors
(110 repositories), 50 watchers (23), 50 stars (88) or 50 forks (34).

6. PIT and, to a lesser extent, Infection and StrykerJS, are the most commonly
imported tools in that set of highly popular repositories in terms of watchers,
stars and forks. StrykerJS is, however, the most frequently integrated tool in
repositories developed by groups of 50 or more contributors.

17https://github.com/checkstyle/checkstyle
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5 Action Points

The results of our study open new promising research directions. Among others, we identify
the following action points to complement our findings and delve into their causes.

1. Further investigation of mutation tools. Our results show that some mutation testing
tools are clearly more popular than others and that the popularity of a tool in the research
arena and in practice does not usually go hand in hand. The results of our study, and
in particular our dataset, may be an excellent starting point for investigating the causes
behind these findings, for example, by conducting a survey among the developers of
the most popular projects using each mutation tool.

2. Understanding the use of mutation testing in practice. Our study investigates what
mutation testing tools are used in practice, but not how. Such investigation would be
of great interest to better understand the strengths and drawbacks of the technique in
practice. For example, are all mutation operators equally used? is mutating testing used
during the whole development process or only at certain phases? is it integrated into
CI/CD pipelines? Answering these and other questions would certainly require inter-
acting with developers and, again, our dataset could act as a useful source to identify
promising subject projects.

3. Collecting the opinions of users. Related to the previous point, it would be very help-
ful to collect the opinions of the actual users of the technique regarding its benefits
and limitations. Such insights would be of interest to foster the development of tools
and techniques driven by the actual needs of practitioners. Again, our work could be a
good starting point to identify popular and mature projects where the different mutation
testing tools are currently in use.

4. Comparison of mutation testing tools. We identified some of the most popular mutation
tools in practice, including their target artifacts and programming languages, but we did
not perform a rigorous comparison of their main features. Such comparison would be
of great interest to better understand the potential of current tool support and, perhaps,
to explain why some tools are more popular than others. Also, such comparison could
serve as the starting point for the definition of guidelines for the development of better
mutation testing tools.

5. Conducting further repository mining studies. The results of our study show the poten-
tial of repository mining to better understand the current state of practice on mutation
testing, but it only scratches the surface. Hence, for example, our work could be com-
plemented with similar studies in other platforms such as Bitbucket or GitLab. Also,
it would be nice to increase the degree of automation of the analysis of the reposito-
ries. Ideally, this would serve as an effective mechanism to monitor the use of mutation
testing in practice. Last, but not least, similar studies could be conducted with different
objectives such as understanding the evolution of projects using mutation testing or the
performance of the technique when used at scale.

6 RelatedWork

In this section, we discuss the related work on mutation testing and repository mining.
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6.1 Mutation Testing

Mutation testing has been extensively analyzed and studied in the literature. Several sys-
tematic literature reviews (Jia and Harman 2011; Offutt and Untch 2001; Papadakis et al.
2019) addressed mutation testing from a general point of view or focused on more particu-
lar issues within the topic, such as the techniques to reduce its cost (Pizzoleto et al. 2019;
Usaola and Mateo 2010). Some other studies examine various mutation testing tools and
compare them following a variety of perspectives. A recent work assesses the effectiveness
of the three mutation tools for Java (PIT, MuJava and Major) in the detection of faults (Kin-
tis et al. 2018). The experiments conducted demonstrate that, while none of these mutation
tools completely subsumes the others, an improved version of PIT with research purposes is
the more effective tool at inducing test cases that could reveal real faults. Another group of
papers deepens on technical aspects regarding the usage of mutation testing tools, such as
the efficiency, controllability or the compatibility and integration with a test environment.
Although most of these studies focus on Java tools (Delahaye and du Bousquet 2015; Márki
and Lindström 2017), some other programming languages have been considered too, like
C# (Uzunbayir and Kurtel 2019). The study by Delahaye and du Bousquet (2015) identifies
three different profiles that can influence the election of a mutation tool: teaching, research
and industry. They conclude that PIT is a good choice for the industry and the teaching pro-
file, where tools should be easy to apply and, in the particular case of the industry, should
have a good balance between efficiency and meaningfulness of results. According to the
survey by Papadakis et al. (2019), PIT, MuJava and Major for Java, and Proteum for C are
the mutation tools more frequently used in experimental studies. Some of these results are
reflected in our study mining GitHub. MuJava mostly appears in research projects and PIT
is mainly imported in development and teaching repositories, but it is also the tool with
more repositories dedicated to research.

As for the application of mutation tools in the development of software projects, some
works have shown the possible benefits of transferring mutation testing concepts from
academia to industry, carrying out empirical studies with open-source applications (Just
et al. 2014) and industrial projects (Delgado-Pérez et al. 2018). In fact, a recent study by
Petrović et al. (2021a) reveals that mutation testing has positive long-term effects on the
testing practices of developers. Also, some recent studies analyze the use of the technique
in large companies. Google (Petrovic et al. 2021b) implements its own mutation system
for seven programming languages and applies a diff-based probabilistic approach to reduce
the prohibitive computational expenses of traditional mutation analysis. In the study by
Beller et al. (2021), more than half of the mutants generated –based on some error-inducing
patterns– were not detected by Facebook’s rigorous tests.

This study complements previous work by providing a detailed and updated picture of
the state of mutation testing in practice by looking into GitHub. Rather than focusing on
specific companies or tools, we provide a general overview of the use of the technique in
the wild providing helpful insights and trends that will hopefully contribute to narrow the
gap between research and practice.

6.2 Repository Mining

Data mining is defined as the process of exploring and analyzing large data sets (e.g., from
databases or information repositories) in order to discover meaningful patterns and rules
(Aggarwal and Zhai 2012; Pujari 2001; Witten et al. 2017). Data mining has become a
highly-demanded task with wide applications, which has attracted many researchers and
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developers. Among the most commonly mined data sources in recent times, we find GitHub,
which is the platform of reference when mining open-source repositories to learn from past
experiences (Borges et al. 2016; Cosentino et al. 2016; Gonzalez et al. 2020; Gousios and
Spinellis 2017; Kalliamvakou et al. 2014; Xiong et al. 2017).

We found some recent studies on mining data from repositories in GitHub (Borges
et al. 2016; Kalliamvakou et al. 2014). Borges et al. (2016) proposed a study on the pop-
ularity of software systems hosted at GitHub. This study reveals that repositories owned
by organizations are more popular than those owned by individuals. They also reported a
strong correlation between stars and forks, and the importance of a large number of con-
tributors to the success of open-source software. In the experience by Kalliamvakou et al.
(Kalliamvakou et al. 2014), the best way to identify the software projects with more activ-
ity is to consider those projects that have a good balance of number of commits and pull
requests, and have a number of committers and authors larger than 2. The number of issues
can also be used as an indicator, but not all active projects use GitHub’s issue tracker.

There exist different alternatives to retrieve automatically information from GitHub. In
(Mombach1 and Valente 2018), the authors made a comparative study among the three most
used methods to mining data from GitHub up to 2018: GitHub REST API, GHTorrent and
GitHub Archive. They concluded that REST API was more appropriate when it is important
to retrieve the most recent data up to date. GitHub Archive collected data since 2011 and
GHTorrent from 2012 to June 2019, when part of its functionality was no longer supported
(Cosentino et al. 2016; Gousios 2013; Kalliamvakou et al. 2014; Mombach1 and Valente
2018). Recently, Brito et al. (Brito and Valente 2020) published an experiment comparing
REST API vs GraphQL, the most popular tools for mining GitHub nowadays. The authors
found that GraphQL requires less effort to implement API queries than REST API, and it
provides GraphiQL, a web app to test GraphQL queries with autocomplete options.

Compared to previous work, in this paper we provide a novel application of repository
mining in GitHub: studying the use of mutation testing in practice.

7 Threats to Validity

The factors that could have influenced our study are summarized in the following internal
and external validity threats.

Internal validity. This refers to whether there is sufficient evidence to support the conclu-
sions and the sources of bias that could compromise those conclusions. Our work is based
on the assumption that software projects importing a mutation testing tool (e.g., library)
most likely use or have used that tool at some point, although this might not be always true.
This threat is minimized by the number of manually reviewed repositories, over 3.5K, which
dilutes the potential effect of these unlikely cases where the mutation tool is imported, but
not used.

The data collection method could also threaten the validity of our work. To mitigate this
threat, we resorted to automated methods whenever it was possible, including the use of
web scraping and automated queries on the GraphQL API of GitHub. We managed to define
search strings for 55 out of the 83 mutation tools with a name (this could not be done for
some tools as we did not find a website that provided the required information). Despite
our best efforts analyzing individually each tool, we may have missed some search strings.
However, the fact that we found more than 6K repositories with traces of 44 different tools
makes us confident that the procedure followed has been adequate. We manually checked
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the validity of the data at each step, for example, by randomly comparing the data returned
by the scrapper and the web API with those observed in the GitHub web platform.

The manual review and classification of the repositories could also threaten the valid-
ity of the results, since some repositories could have been misclassified. To minimize this
threat, the four authors of the paper participated actively in the review process following
a common review procedure. We found some repositories that were hard to classify with
confidence. For instance, sometimes it was difficult to discern whether a repository with
some toy examples had been created for a teaching/tutorial session or by a novice program-
mer that sought to learn a particular technology. These repositories were reviewed by all
the authors in several working sessions until reaching a consensus. Regarding the classifi-
cation of repositories into industry, academia or public institution, we based on the profile
of the repository’s owner; however, whether this information was conveniently updated by
the owners on the platform (e.g., when changing from academia to industry or vice-versa)
cannot be ascertained. Similarly, we cannot determine whether a project was developed in a
moment when the owner had a different role than the one currently stated in the profile. To
mitigate this threat, most of the analyses were performed manually checking all the infor-
mation available in the corresponding repositories, including the links to external resources
and, exceptionally, even the source code. This threat is also partially mitigated by the num-
ber of reviewed repositories, over 3.5K, which minimizes the effect of possible misclassified
repositories.

Finally, our work is focused on the study of public repositories only, but surely there
exists private repositories importing the mutation testing tools under study. Unfortunately,
the analysis of such repositories is beyond our reach.

External validity. This refers to the generalizability of the conclusions. Widening the
scope of our work to other platforms beyond GitHub (e.g., Bitbucket (https://bitbucket.
org/)) could have yielded different results. However, the size and the popularity of GitHub
in related mining studies make us confident in the validity of the reported trends.

Also, our study focuses on mutation tools leaving traces of their use in GitHub, e.g.,
libraries. However, there exist other ways of using mutation tools that do not usually leave
traces in code repositories like, for example, those released as an IDE plugin, as an exe-
cutable file, or as a docker image. A more comprehensive analysis of such uses would
require other experimental means (e.g., surveys) and is beyond the scope of this article.

Finally, we focused on active projects (i.e., those with at least one commit in the last 12
months) due to the search restrictions of GitHub and to make our work affordable. This also
allowed us to study the current use of mutation testing in practice. Removing this restriction,
however, would certainly throw different results.

8 Conclusions

In this paper, we report the findings of a study on the use of mutation testing in practice
by looking into GitHub. Specifically, we systematically searched for GitHub repositories
including traces of the use of 127 different mutation testing tools released in the last two
decades. Then, we focused on the top ten more widely used tools and manually revised
the active repositories importing them, over 3.5K. The results show a notable upturn in
interest and activity in recent years, mostly focused on a small set of highly popular tools.
The impact of the technique transcends specific programming languages with the ten most
widely used tools targeting Java, JavaScript, PHP, Python, Ruby, and .Net. The predominant
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use of mutation testing is development, followed by teaching and learning, and research.
We found notable users of the technique including public institutions and relevant open-
source projects. Interestingly, some of the most widely used tools in GitHub are rarely
found in research papers, this is the case of Infection and Humbug for PHP, and StrykerJS
for JavaScript. Our results open new promising research directions including new empirical
studies, both quantitative and qualitative, that complement our finding and delve into their
causes. Overall, our work provides a novel perspective on the use of mutation testing in the
wild and show the potential of repository mining studies to close the gap between research
and practice.

Appendix: Mutation Tools

Table 3 List of mutation tools. References to the tools with source “Papadakis et al.” can be found in the
review by Papadakis et al. (2019); “Literature” refers to tools found between 2018 and 2020 in our review of
the literature; Tools labeled as “GitHub” were found in our GitHub search of tools with more stars

Source Name Year Domain

Papadakis et al. mutate N/A C/C++

Papadakis et al. Jester 2001 Java

Papadakis et al. Proteum 2001 C/C++

Papadakis et al. mutgen 2003 C/C++

Papadakis et al. MuJava 2004 Java

Papadakis et al. ByteME 2006 Java

Papadakis et al. SQLMutation 2006 SQL

Papadakis et al. Jumble 2007 Java

Papadakis et al. ESTP 2008 C/C++

Papadakis et al. Not Named 2008 Others programming languages (Sulu)

Papadakis et al. Milu 2008 C/C++

Papadakis et al. Not Named 2008 Model/Specification (NuSMV models)

Papadakis et al. Not Named 2008 Simulink

Papadakis et al. Not Named 2008 Security (Security policies)

Papadakis et al. Not Named 2008 Model/Specification (LOTOS)

Papadakis et al. Not Named 2008 AspectJ

Papadakis et al. Javalanche 2009 Java

Papadakis et al. JDama 2009 SQL

Papadakis et al. AjMutator 2009 AspectJ

Papadakis et al. GAmera 2009 Web (WS-BPEL)

Papadakis et al. Not Named 2009 Others (Boolean logic)

Papadakis et al. PASTE 2009 Model/Specification (TFSM)

Papadakis et al. Not Named 2009 Model/Specification (Z)

Papadakis et al. Not Named 2009 Others (GCC-XML)

Papadakis et al. Not Named 2009 Others programming languages (Lustre)

Papadakis et al. Not Named 2009 Java

Papadakis et al. PIT 2010 Java
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Table 3 (continued)

Source Name Year Domain

Papadakis et al. MutMut 2010 Java

Papadakis et al. GenMutants 2010 .Net

Papadakis et al. Judy 2010 Java

Papadakis et al. webMuJava 2010 Web (HTML/JSP)

Papadakis et al. Bacterio 2010 Java

Papadakis et al. Not Named 2010 N/A

Papadakis et al. Major 2011 Java

Papadakis et al. Paraµ 2011 Java

Papadakis et al. ILMutator 2011 C#

Papadakis et al. SMutant 2011 Others programming lang. (Smalltalk)

Papadakis et al. MuBPEL 2011 Web (WS-BPEL)

Papadakis et al. jMuHLPSL 2011 Security (HLPSL)

Papadakis et al. Not Named 2011 Others (SPADE)

Papadakis et al. Not Named 2011 Others (Aglets)

Papadakis et al. Not Named 2011 Java

Papadakis et al. SMT-C 2012 C/C++

Papadakis et al. mutant (muRuby) 2012 Ruby

Papadakis et al. Not Named 2012 Security (Obligation policies)

Papadakis et al. Not Named 2012 N/A

Papadakis et al. CCMUTATOR 2013 C/C++

Papadakis et al. Comutation 2013 Java

Papadakis et al. SchemaAnalyst 2013 SQL

Papadakis et al. XACMUT 2013 Security (XACML)

Papadakis et al. Mutandis 2013 JavaScript

Papadakis et al. Not Named 2013 Web (Web service compositions)

Papadakis et al. Not Named 2013 Security (Security policies)

Papadakis et al. Not Named 2013 Model/Specification (Feature models)

Papadakis et al. MutPy 2014 Python

Papadakis et al. MuCheck 2014 Others programming languages (Haskell)

Papadakis et al. HOMAJ 2014 Java

Papadakis et al. Not Named 2014 Web (HTML/CSS)

Papadakis et al. Not Named 2014 Model/Specification (EFSM)

Papadakis et al. Not Named 2014 Others (Data flow languages)

Papadakis et al. MutaLog 2014 Others (Logic Mutation)

Papadakis et al. REDECHECK 2015 Web (HTML/CSS)

Papadakis et al. Not Named 2015 Others (Spreadsheets)

Papadakis et al. Not Named 2015 Model/Specification (FSM)

Papadakis et al. Not Named 2015 Model/Specification (Sequence diagrams)

Papadakis et al. Not Named 2015 Web (HTML /JavaScript)

Papadakis et al. Not Named 2015 C/C++

Papadakis et al. Not Named 2015 Android

Papadakis et al. MoMut 2015 Model/Specification (UML models)

Papadakis et al. MuVM 2016 C/C++
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Table 3 (continued)

Source Name Year Domain

Papadakis et al. Not Named 2016 Others programming languages (FBD)

Papadakis et al. Not Named 2016 Simulink

Papadakis et al. Not Named 2016 C/C++

Papadakis et al. Not Named 2016 C/C++

Papadakis et al. Not Named 2016 C/C++

Papadakis et al. Not Named 2016 N/A

Papadakis et al. Vibes 2016 Model/Specification (Transition syst.)

Papadakis et al. µDroid 2017 Android

Papadakis et al. MDroid+ 2017 Android

Papadakis et al. Not named 2017 Others (Source code)

Papadakis et al. LittleDarwin 2017 Java

Papadakis et al. MuCPP 2017 C/C++

Papadakis et al. MutRex 2017 Others (Regular Expressions)

Papadakis et al. BacterioWeb 2017 Android

Papadakis et al. Not Named 2017 C/C++

Papadakis et al. Not Named 2017 C/C++

Papadakis et al. Not Named 2017 Java

Literature WODEL (Gómez-Abajo et al.
2018)(Gómez-Abajo et al. 2018)

2018 Model/Specification

Literature MuTomVo (Cañizares et al. 2018) 2018 C/C++

Literature µUTA (Siavashi et al. 2018) 2018 Model/Specification

Literature MUSIC (Phan et al. 2018) 2018 C/C++

Literature Mull (Denisov and Pankevich 2018) 2018 C/C++

Literature Mutode (Rodrı́guez-Baquero and
Linares-Vásquez 2018)

2018 JavaScript

Literature universalmutator (Groce et al. 2018) 2018 Others (General)

Literature MuAlloy (Wang et al. 2018) 2018 Others programming lan-
guages (Alloy)

Literature DeepMutation (Ma et al. 2018; Hu
et al. 2019)

2018 Python

Literature Not Named (Bashir and Nadeem 2018) 2018 Java

Literature MUTWEB (Suguna Mallika and
Rajya Lakshmi 2019)

2019 Web (Java/Servlet)

Literature Deviant (Chapman et al. 2019) 2019 Solidity

Literature SRCIROR (Hariri et al. 2019) 2019 Others (LLVM-IR)

Literature Edroid (Luna and Ariss 2018) 2019 Android

Literature MuEPL (Gutiárrez-Madroñal et al. 2019) 2019 Others (EPL)

Literature Not Named (Efremidis et al. 2018) 2019 Others programming lan-
guages (Prolog)

Literature Not Named (Ngambenchawong
and Suwannasart 2019)

2019 Model/Specification (BPMN)

Literature Not Named (Momigliano and Ornaghi 2019) 2019 Others programming lan-
guages (aProlog)

Literature eMuJava (Bashir and Nadeem 2019) 2019 Java
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Table 3 (continued)

Source Name Year Domain

Literature MutAPK (Escobar-Velásquez et al.
2019; Escobar-Velásquez et al.
2020)

2019 Android

Literature MuSC (Li et al. 2019) 2019 Solidity

Literature OSWN (Sadath and Nair 2019) 2019 N/A

Literature Mart (Chekam et al. 2019) 2019 Others (LLVM-IR)

Literature Not Named (Van Phol and Binh 2020) 2020 Others programming lan-
guages (Lustre)

Literature MuHyb (Ahmed et al. 2020) 2020 Web (Angular)

Literature Not Named (Rodrigues et al. 2020) 2020 Java

Literature Styx (Liu et al. 2020) 2020 Others (Training data)

Literature Mutation tool for annotations (Pin-
heiro et al. 2020)

2020 Others (Java/C# annotations)

Literature TECAMU (Jovanovikj et al. 2020) 2020 Others (EMSL)

Literature RegularMutator (Ivanova and Khritankov 2020) 2020 Solidity

Literature Muteria (Chekam et al. 2020) 2020 Others (General)

GitHub Bamsurgeon (https://github.com/
adamewing/bamsurgeon)

2012 Others (.bam files)

GitHub Humbug (https://github.com/humbug/humbug) 2014 PHP

GitHub Go-Mutesting (https://github.com/
zimmski/go-mutesting)

2014 Others programming lan-
guages (Go)

GitHub Cosmic-Ray (https://cosmic-ray.
readthedocs.io/en/latest/index.html)

2015 Python

GitHub StrykerJS (https://stryker-mutator.
io/docs/stryker-js/introduction)

2016 JavaScript

GitHub Mutmut (https://github.com/boxed/mutmut) 2016 Python

GitHub Infection (https://infection.github.io/) 2017 PHP

GitHub Stryker-NET (https://
stryker-mutator.io/docs/
stryker-net/Introduction)

2018 Others programming lan-
guages (.Net)

GitHub Muter (https://github.com/
muter-mutation-testing/muter)

2018 Others programming lan-
guages (Swift)

Supplementary Information (SI) For the sake of replicability, we provide a supplementary package
containing the data related to our study, available at reference (https://doi.org/10.5281/zenodo.5713585).
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Delgado-Pérez P, Habli I, Gregory S, Alexander R, Clark J, Medina-Bulo I (2018) Evaluation
of mutation testing in a nuclear industry case study. IEEE Trans Reliab 67(4):1406–1419.
https://doi.org/10.1109/TR.2018.2864678

DeMillo RA, Lipton RJ, Sayward FG (1978) Hints on test data selection: Help for the practicing programmer.
Computer 11(4):34–41. https://doi.org/10.1109/C-M.1978.218136

DeMillo RA, Lipton RJ, Sayward FG (1979) Program mutation: A new approach to program testing. In:
Infotech State of the Art Report, Software Testing, pp 107–126

Denisov A, Pankevich S (2018) Mull it over: Mutation testing based on LLVM. In: 2018 IEEE inter-
national conference on software testing, verification and validation workshops (ICSTW), pp 25–31.
https://doi.org/10.1109/ICSTW.2018.00024
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Gómez-Abajo P, Guerra E, de Lara J, Merayo MG (2018) Towards a model-driven engineering solution for

language independent mutation testing. In: JISBD2018. SISTEDES. http://hdl.handle.net/11705/JISBD/
2018/052

Gonzalez D, Zimmermann T, Nagappan N (2020) The state of the ML-Universe: 10 years of artificial intel-
ligence & machine learning software development on GitHub. In: Proceedings of the 17th international
conference on mining software repositories. MSR ’20. Association for Computing Machinery, New
York, NY, USA, pp 431–442. https://doi.org/10.1145/3379597.3387473

Gousios G, Spinellis D (2017) Mining software engineering data from GitHub. In: 2017 IEEE/ACM 39th
international conference on software engineering companion (ICSE-C), pp 501–502. https://doi.org/
10.1109/ICSE-C.2017.164

Gousios G (2013) The GHTorent dataset and tool suite. In: Proceedings of the 10th working conference on
mining software repositories. MSR ’13. IEEE Press, pp 233–236

Gradle Build Tool. https://gradle.org/. accessed in October 2021
Groce A, Holmes J, Marinov D, Shi A, Zhang L (2018) An extensible, regular-expression-based tool for

multi-language mutant generation. In: Proceedings of the 40th international conference on software engi-
neering: companion proceeedings. ICSE ’18. Association for Computing Machinery, New York, NY,
USA, pp 25–28, https://doi.org/10.1145/3183440.3183485
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