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Abstract
Cloud-native applications constitute a recent trend for designing large-scale software sys-
tems. However, even though several cloud-native tools and patterns have emerged to support
scalability, there is no commonly accepted method to empirically benchmark their scalabil-
ity. In this study, we present a benchmarking method, allowing researchers and practitioners
to conduct empirical scalability evaluations of cloud-native applications, frameworks, and
deployment options. Our benchmarking method consists of scalability metrics, measure-
ment methods, and an architecture for a scalability benchmarking tool, particularly suited
for cloud-native applications. Following fundamental scalability definitions and established
benchmarking best practices, we propose to quantify scalability by performing isolated
experiments for different load and resource combinations, which asses whether specified
service level objectives (SLOs) are achieved. To balance usability and reproducibility, our
benchmarking method provides configuration options, controlling the trade-off between
overall execution time and statistical grounding. We perform an extensive experimen-
tal evaluation of our method’s configuration options for the special case of event-driven
microservices. For this purpose, we use benchmark implementations of the two stream pro-
cessing frameworks Kafka Streams and Flink and run our experiments in two public clouds
and one private cloud. We find that, independent of the cloud platform, it only takes a
few repetitions (≤ 5) and short execution times (≤ 5 minutes) to assess whether SLOs
are achieved. Combined with our findings from evaluating different search strategies, we
conclude that our method allows to benchmark scalability in reasonable time.
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1 Introduction

Following the rise of cloud computing as preferred deployment infrastructure for many
applications, we are now witnessing how large-scale software systems are increasingly
being designed as “cloud-native” applications (Gannon et al. 2017; Kratzke and Quint
2017). Under the umbrella term “cloud-native”, a wide range of tools and patterns emerged
for simplifying, accelerating, and securing the development and operation of software sys-
tems in the cloud. Key concepts are containers, dynamic orchestration, and microservices,
which provide a new level of hardware abstraction, while still providing a high flexibil-
ity regarding the system’s deployment. An entire ecosystem of such tools has grown in
recent years under the umbrella of the Cloud Native Computing Foundation,1 a subor-
ganization within the Linux Foundation. Most prominent among these tools is probably
Kubernetes (Burns et al. 2016), which has become the de-facto standard orchestration
tool for cloud-native applications. Nowadays, all major cloud providers offer managed
Kubernetes clusters. With such offerings, users only specify the desired cluster size (e.g.,
number of virtual or physical nodes and properties of nodes). For the actual operation of
their applications (e.g., scaling, updating, or repairing), they only interact with the Kuber-
netes API. Recently, a further level of abstraction can be observed. For example, the
Google Cloud Platform launched its Kubernetes Autopilot in 2021, which adjusts underly-
ing node pools based on the current demand and only charges users for the containers they
actually deploy.

A definition of the term “cloud-native” is provided by the Cloud Native Computing Foun-
dation, which states that “cloud native technologies empower organizations to build and run
scalable applications in modern, dynamic environments such as public, private, and hybrid
clouds” (Cloud Native Computing Foundation 2018). This definition already includes the
requirement for scalability. Similarly, microservice architectures (a common pattern for
cloud-native applications (Balalaie et al. 2016)) are often adopted to cope with scalability
requirements (Kratzke and Quint 2017; Soldani et al. 2018; Knoche and Hasselbring 2019).
However, although scalability is often named as a crucial motivation for adopting cloud-
native architectures or deployments, research is lacking a commonly accepted method to
empirically assess and compare the scalability of cloud-native applications.

In empirical software engineering research, benchmarks are an established research
method to compare different methods, techniques, and tools based on a standardized method
(Sim et al. 2003; Tichy 2014; Hasselbring 2021). For traditional performance attributes such
as latency or throughput, well-known (and often straightforward) metrics and measurement
methods exists (Kounev et al. 2020). For scalability, in particular in the context of cloud-
native applications, the situation is different: On the one hand, precise definitions exist and
were refined over the last two decades (Jogalekar and Woodside 2000; Duboc et al. 2007;
Weber et al. 2014). On the other hand, we observe that for cloud applications, no com-
monly accepted scalability benchmarking method exists, employed benchmarking methods
are insufficiently described or not aligned with scalability definitions, and benchmarking
methods for other application types cannot be transferred. Even though most studies from
academia and industry share similar understandings of scalability, the lack of well-defined
metrics and measurement methods contradicts the fundamental principle of benchmarking.

With this paper, we aim to bridge the gap between research on defining scalability and
experimental scalability evaluations of cloud-native applications. Our goal is to provide

1https://www.cncf.io
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a solid framework, allowing researchers and practitioners to conduct empirical scalability
evaluations. We propose, discuss, and evaluate a benchmarking method that can be used
by benchmark designers (e.g., standardization organizations or research communities) and
benchmarkers (e.g., software engineers, cloud vendors, or researchers), who wish to bench-
mark the scalability of different software artifacts or deployment options. Our study consists
of two parts: a pre-study for engineering the benchmarking method and an experimental
evaluation.

Pre-study We review scalability definitions and benchmarking best practices from indus-
trial consortia and academia. We analyze which quality attributes of benchmarks have to be
fulfilled by which benchmarking components and derive requirements for fulfilling them for
the special case of scalability benchmarking. Based on the distinction between metric, mea-
surement method, and tool architecture, we engineer a benchmarking method implementing
the particular requirements.

We require that a scalability metric for cloud-native applications should be aligned with
accepted definitions of scalability in cloud computing. We find that this can be achieved by
two scalability metrics that describe scalability as functions. Our demand metric indicates
how the required amount of provisioned resources evolves with increasing load intensities.
Our capacity metric indicates how the processible load intensity evolves with increasing
amounts of provisioned resources. Both metrics use the notion of service level objec-
tives (SLOs) for quantifying whether a certain resource amount can handle a certain load
intensity.

A scalability measurement method should provide statistically grounded results to allow
for reproducibility. On the other hand, it should also not be too time consuming to remain
usable. While measuring scalability according to our proposed metrics provides an accurate
quantification of a system’s scalability, it also requires many experiments to be performed.
Combined with the need for sufficiently long experiment durations or repetitions, this may
lead to long runtimes for benchmarking scalability. Our proposed measurement method pro-
vides several configuration options to balance the overall runtime and statistically grounding
of its results.

For a scalability benchmarking tool, we require in particular usability to support repro-
ducibility and verifiability of benchmarking studies. This includes a simple installation and
the declarative description of benchmarks and their executions. Due to the complexity of
such a benchmarking tool, the tool and corresponding benchmarks should not be coupled.
We propose a benchmarking architecture fulfilling these requirements by adopting common
patterns for managing cloud-native applications. Additionally, this architecture contains a
data model for separately describing benchmarks and their executions, taking the different
types of actors involved in benchmarking into account.

Experimental evaluation We experimentally evaluate whether our proposed method
allows one to obtain statistically grounded results within reasonable execution times. We
use an implementation of our proposed benchmarking tool architecture to experimentally
evaluate the individual configuration parameters, which control the statistically ground-
ing of benchmark results as well as the corresponding execution times. Test subjects of
our experiments are two stream processing engines, which implement a set of four bench-
marks. Our experiments are conducted in Kubernetes clusters running at two public cloud
vendors (Google Cloud Platform and Oracle Cloud Infrastructure) and one private cloud.
Specifically, we address the following research questions:
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RQ 1 For how long should experiments be executed that evaluate whether a certain
combination of load intensity and provisioned resources fulfill the specified SLOs?

RQ 2 How many repetitions of such experiments should be performed?
RQ 3 How does the assessment of SLOs evolve with increasing resource amounts?
RQ 4 How does the assessment of SLOs evolve with increasing load intensities?

We find that in most cases, it only takes a few repetitions (≤ 5) and short execution
times (≤ 5 minutes) to assess whether a certain resource amount can handle a certain load
intensity. When accepting a small error in the derived resource demand, also resource-load
combinations for which this assessment is more extensive can be run with a few repetitions
and short execution times. Moreover, the space of load intensities and resource amounts
experiments are executed for can massively be reduced with search strategies for both our
presented metrics.

Recommendation As benchmarking activities are often restricted in time or resources,
we recommend to focus on expanding the evaluated load and resource space instead of
exhaustively evaluate individual load and resource combinations. While individual experi-
ments should be repeated and warm-up periods should be considered, evaluating more load
intensities or resource amounts allows to gain a better impression of a system’s scalability.

Contributions In summary, the main contributions of this paper are as follows:

– Requirements on scalability benchmarking of cloud-native applications, arranged by
scalability metric, measurement method, and benchmarking tool architecture.

– A scalability measurement method, which performs isolated experiments for different
load intensities and resource amounts in a configurable manner and evaluates whether
specified service level objectives (SLOs) are met.

– An architecture for a cloud-native scalability benchmarking tool implementing the pro-
posed measurement method. It supports different benchmarks, which do not need to be
explicitly designed for scalability benchmarking.

– An extensive evaluation of different configuration options of our proposed method.
A replication package and the collected data of our experiments is published as sup-
plemental material (Henning and Hasselbring 2021b), such that other researchers may
repeat and extend our work.

The remainder of this paper starts by providing the background and context of this study
in Section 2. Based on this overview, we derive requirements for a scalability metric, a mea-
surement method, and a benchmarking tool in Section 3. Afterwards, we propose scalability
metrics in Section 4, a corresponding scalability measurement method in Section 5, and
our scalability benchmarking architecture in Section 6. We experimentally evaluate our pro-
posed benchmarking method in Section 7 and discuss related work in Section 8. Section 9
concludes this paper and points out future research directions.

2 Context and Background

In this section, we provide the context and background of this paper. Benchmarks consist
of multiple components to empirically evaluate a quality, namely scalability in this work.
Figure 1 shows these components and highlights the scope of this paper. The goal of this
paper is not to present new benchmarks, i.e., SUTs and load generator, as those do already
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Fig. 1 Components of a benchmark and scope of this work

exists. Instead, we present a scalability benchmarking method, which consists of metrics,
measurement method, and an architecture for executing such benchmarks. In the following,
we briefly describe the components of benchmarks along with respective quality attributes
in Section 2.1 and provide an overview of scalability definitions in Section 2.2.

2.1 Benchmarking in Empirical Software Engineering

2.1.1 Components of Benchmarks

The recently published ACM SIGSOFT Empirical Standard for Benchmarking (Ralph et al.
2021; Hasselbring 2021) names four essential components of a benchmark:2

– the quality to be benchmarked (e.g., performance, availability, scalability, security)
– the metric(s) to quantify the quality
– the measurement method(s) for the metric (if not obvious)
– the workload, usage profile and/or task sample the system under test is subject to (i.e.,

what the system is doing when the measures are taken)

In addition, benchmarks usually come with a benchmarking tool to automate the bench-
marking process. A typical benchmarking tool architecture contains separate components
for the load generation and SUT (Bermbach et al. 2017). The SUT is either a ready-to-use
software (or service) or a software (or service) that implements a task sample defined by the
benchmark. The load generation component stresses the SUT according to the workload or
usage profile defined by the benchmark. Additional components in a benchmarking archi-
tecture are responsible for experiment controlling, data collection, and data analysis and,
thus, implement the benchmark’s measurement method (Bermbach et al. 2017). Sometimes
also a visualization component for passive observation is included (Bermbach et al. 2017).

2.1.2 Quality Attributes of Benchmarks

A set of five desired quality attributes for benchmarks is presented by v Kistowski et al.
(2015), which represents the perspectives of the SPEC and TPC committees:

– Relevance How closely the benchmark behavior correlates to behaviors that are of
interest to consumers of the results

– Reproducibility The ability to consistently produce similar results when the bench-
mark is run with the same test configuration

2https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=Benchmarking
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– Fairness Allowing different test configurations to compete on their merits with-out
artificial limitations

– Verifiability Providing confidence that a benchmark result is accurate
– Usability Avoiding roadblocks for users to run the benchmark in their test environments

These and similar quality attributes can also be found by Sim et al. (2003), Huppler (2009),
and Folkerts et al. (2013) as well as in textbooks on (cloud) benchmarking (Bermbach et al.
2017; Kounev et al. 2020).

2.1.3 Application-driven Benchmark Design

Often a distinction between microbenchmarking and application benchmarking is made
(Kounev et al. 2020). We focus on benchmarking entire cloud-native applications or inde-
pendently deployable components such as microservices as those can only be scaled at a
whole. This implies that from a benchmarker’s perspective, the SUT is a black box and we
have to rely on metrics exposed by the orchestration platforms, middlewares, or the SUT
itself.

2.2 Definition of Scalability

Initial definitions for scalability of distributed systems were presented by Bondi (2000) and
Jogalekar and Woodside (2000), which were later generalized by Duboc et al. (2007).

2.2.1 Scalability in Cloud Computing

More recently, such definitions have been specified to target the peculiarities of scalability
in cloud computing (Herbst et al. 2013; Lehrig et al. 2015; Brataas et al. 2017). A definition
of scalability in cloud computing is, for example, given by Herbst et al. (2013), which states
that “scalability is the ability of [a] system to sustain increasing workloads by making use of
additional resources”. In a subsequent work, Weber et al. (2014) further refine this definition
and highlight that scalability is characterized by the following three attributes:

Load intensity is the input variable to which a system is subjected. Scalability is evaluated
within a range of load intensities.

Service levels objectives (SLOs) are measurable quality criteria that have to be fulfilled
for every load intensity.

Provisioned resources can be increased to meet the SLOs if load intensities increase.

A software system can be considered scalable within a certain load intensity range if for all
load intensities within that range it is able to meet its service level objectives, potentially by
using additional resources. Both load intensity and provisioned resources can be evaluated
with respect to different dimensions. Typical load dimensions are, for example, the amount
of concurrent users or number of requests, while resources are often varied in the number of
processing instances or equipment of the individual instances. This understanding of scal-
ability (albeit less formally) is shared by textbooks addressed to practitioners (Kleppmann
2017; Gorton 2022).

A similar definition, although formulated inversely, is used in multiple publications of
the “CloudScale” project (Lehrig et al. 2015; Brataas et al. 2017; Brataas et al. 2021).
They define scalability as “a system’s ability to increase its capacity by consuming more
resources” (Brataas et al. 2021), where capacity describes the maximum load the system

143   Page 6 of 42 Empir Software Eng (2022) 27: 143



can handle while fulfilling all “quality thresholds”. Here, the notion of quality thresholds
corresponds to what Weber et al. (2014) and others call SLOs.

2.2.2 Vertical and Horizontal Scalability

A distinction is often made between horizontal and vertical scalability (Michael et al. 2007;
Lehrig et al. 2015). While horizontal scaling refers to adding computing nodes to cope
with increasing load intensities, vertical scaling means adding resources to a single node.
A special case of vertical scaling in cloud computing is migrating from one VM type to
another (Weber et al. 2014). In cloud-native deployments, the underlying physical or vir-
tualized hardware is usually abstracted by containerization and orchestration techniques.
Nevertheless, different types of scaling resources also exist in cloud-native applications. The
scalability definition presented previously covers both horizontal and vertical scalability as
both refer to different types of provisioned resources (Weber et al. 2014).

2.2.3 Scalability vs. Elasticity

Another quality that is often used in cloud computing is elasticity (Lehrig et al. 2015).
Scalability and elasticity are related, but elasticity takes temporal aspects into account and
describes how fast and how precisely a system adapts its provided resources to changing
load intensities (Herbst et al. 2013; Islam et al. 2012). Scalability, on the other hand, is
a prerequisite for elasticity, but is a time-free notion describing whether increasing load
intensities can be handled eventually.

3 Requirements on Scalability Benchmarking

To identify requirements for scalability benchmarking method, we build upon the estab-
lished benchmark quality attributes listed in Section 2.1.2. For each quality attribute, we
identify the benchmark components (cf. Section 2.1.1) that can contribute most to imple-
menting the attribute. Based on this, we derive for each benchmark component covered by
this work (metric, measurement method, and tool architecture) a set of requirements that
needs to be fulfilled for benchmarking scalability.

Table 1 describes the desired behavior of the individual benchmark components in order
to implement the respective quality attribute. We conclude that relevance and fairness have
mainly to be implemented at the level of the task sample and, to some extent, by the metric.
The measurement method and the tool architecture, on the other hand, should primarily be
designed for reproducibility, verifiability, and usability. In the following, we propose a set of
requirements for scalability benchmarking for each of the benchmark components metric,
measurement method, and tool architecture.

3.1 Requirements for Scalability Metrics

As described in Section 2, scalability is defined by the three attributes load intensity, service
levels objectives (SLOs), and provisioned resources. We aim for a general scalability metric,
which is applicable to different types of systems and scalability evaluations. Therefore, we
require that this metric is not restricted to a specific type of any of these attributes.
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Table 1 Quality attributes of benchmarks and benchmarking components required to implement them

Quality Attribute Task Sample Metric Measurement Method Tool Architecture

Relevance represents a relevant
use case for the SUTs
to be benchmarked

quantifies what the
benchmarker really
seeks to measure.

Reproducibility yields statistically
grounded results

supports repeatabil-
ity through simpli-
fied benchmark exe-
cution

Fairness is not tailored
to the strengths
and weaknesses
of certain SUTs

provides an objec-
tive measure, inde-
pendent of the SUT

Verifiability yields statistically
grounded results

Usability allows to execute
benchmarks in rea-
sonable time

simplifies the
execution of (poten-
tially modified)
benchmarks

Support for different load types Various types of load for a cloud-native application exist.
For example, in the context of web-based systems load is often considered as the number of
requests arriving at a web server within some period of time, while in event-driven architec-
tures it is often the amount of messages written to a dedicated messaging system. Such load
types can be further broken down to distinguish, for example, between the amount of con-
current users sending requests and the frequency users send requests with. Other typical load
types are the size per message or request or, in the case of request–response systems (e.g.,
databases), the size of responses. In previous work, we also highlighted domain-specific
load types for the case of big data stream processing (Henning and Hasselbring 2021c).

Support for different SLOs The notion of SLOs in scalability definitions provides us a
measure to check, whether a system is able to handle a certain load intensity. Typical SLOs
are, for example, that no more than a certain percentage of requests or messages may be
processed with a certain latency (e.g., maximum allowed latency at the 99.9 percentile) or
that no more than a certain amount of requests is discarded. The choice of such SLOs always
depends on the application domain and should not be defined by the scalability metric.
Additionally, a metric should also support multiple SLOs, which all have to be fulfilled.

Support for different resource types Depending on the desired deployment, the resources
that can be added to sustain increasing workloads may be of different types. According to
the traditional distinction between vertical and horizontal scalability, this means upgrading
the computing capabilities of existing nodes or expanding the node pool by additional nodes.
In orchestrated cloud-native architectures, the assignment of application or service instances
is usually abstracted and managed by a tool such Kubernetes. One option is to increase
the requested CPU or memory resources for a so-called pod, which may contain multiple
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containers. Kubernetes then ensures that the pod will be scheduled on a node, with provides
sufficient resources. This can be seen as a form of “virtualized” vertical scaling. On the other
hand, pods can also be scaled by increasing their number of replicas, which corresponds to
“virtualized” horizontal scaling. Here, we use the term virtualized since it is not guaranteed
that indeed more nodes or more powerful nodes are used. Nonetheless, even underlying
hardware or VMs should be supported to be scaled such as machine sizes configured via the
cloud provider.

3.2 Requirements for the Scalability Measurement Method

Robust statistical grounding Performance experiments exhibit a large variability in their
results for various reasons (Maricq et al. 2018). For experiments in public cloud environ-
ments, this variability is even larger due to effects of changing physical hardware or software
of different customers running on the same hardware (Abedi and Brecht 2017). In order to
obtain reproducible results, measurements should therefore be repeated and the confidence
in the final results should be quantified (Papadopoulos et al. 2021). Scalability benchmark-
ing conducts performance experiments to assess whether SLOs are achieved. This means
that experiments in scalability evaluations should be executed for a sufficient amount of
time as well as repeated multiple times.

Time-efficient execution Increasing the statistical grounding of performance experiments
as described above leads to longer execution times. Hence, the requirement for reproducibility
conflicts with the requirement for usability and, thus, verifiability as with increasing exe-
cution time also costs increase. For a usable measurement method, we therefore require to
find a balance between statistically grounded results and a time-efficient execution.

3.3 Requirements for the Scalability Benchmarking Architecture

Operating a distributed software system in the cloud is a complex task, which indeed moti-
vated the development of powerful orchestration tools such as Kubernetes (Burns et al.
2016). Typical situations that have to be handled are, for example, unpredictable network
connections, deviations in the underlying hardware or software infrastructure as well as
complex requirements on the order of starting many interacting components. Such situa-
tions must also be accounted for when running benchmarks in orchestrated cloud platforms,
where experiments should be executed for several hours without user intervention to achieve
usability of the benchmarking tool. Hence, we require approaches, which are similar to
those that are used for operating cloud-native applications.

Simple Installation Installing or deploying cloud-native tools is often complex as even for
a single tool or service, several resources have to be deployed, such as Deployments, Ser-
vices, ConfigMaps and many others in the case of Kubernetes. This becomes even more
difficult if for different clusters or cloud providers, different adjustments have to be made.
With our Theodolite benchmarking tool (Henning and Hasselbring 2021c), for example,
we experienced that persistent volumes are created differently for different cloud providers,
components must explicitly be deployed on certain node classes, or certain features of a
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benchmarking setup should be disabled due to missing permissions. To simplify the instal-
lation of a benchmarking tool, we thus require the adoption of patterns and tools that are
established for setting up cloud-native applications in production.

Declarative benchmark and experiment definition A common situation when operating
software systems in orchestrated cloud platform is that the desired and previously config-
ured system state deviates form the actual state. Orchestration tools such as Kubernetes
address this by providing declarative APIs, which are used to describe the desired state of
the system. The orchestration tools continuously compare the actual state to the desired state
and perform the necessary reconfigurations. Accordingly, we also require that cloud-native
benchmarking tools should be designed in a way such that users only describe what sys-
tem they would like to benchmark with which configuration, while the benchmarking tool
handles the actual execution.

Support for different benchmarks and SUTs There already exists a set of reference imple-
mentations and benchmarks for different types of systems, focusing on different attributes.
For a generic benchmarking tool, we require that it should be able to support different
benchmarks.

Support for different SUT configurations With benchmarks, often not only different sys-
tems or frameworks are compared, but also different configurations or deployment options.
A generic benchmarking tool should support setting these configurations via its declarative
API such that no new installation or even re-building of the benchmark implementation is
required.

4 Scalability Metrics

We proposed and discussed the scalability metrics presented in this section at the Inter-
national Workshop on Load Testing and Benchmarking of Software Systems 2021 for the
special case of stream processing systems (Henning and Hasselbring 2021a). From there,
we received the feedback that these preliminary metrics could be widened in their scope to
cover cloud-native applications in general.

Our metrics take up the three attributes of scalability in cloud computing presented in
Section 2.2.1 and generalize them according to our requirements from Section 3. We define
the load type as the set of possible load intensities for that type, denoted as L. For example,
when studying scalability regarding the number of incoming messages per unit of time, L

would simply be the set of natural numbers. Similarly, we define the resource type as the set
of possible resources, denoted as R. While for horizontal scalability, R is typically the set
of possible instance numbers (e.g., container or VM instances), for vertical scalability, R is
the set of possible CPU or memory configurations (e.g., for a container or VM). We also
require that there exists an ordering on both sets L and R. We define the set of all SLOs as
S and denote an SLO s ∈ S as Boolean-valued function

slos : L × R → {false, true}
with slos(l, r) = true if a system deployed with r resource amounts does not violate SLO s

when processing load intensity l.
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Based on the previous characterization of scalability, we propose two functions as met-
rics for scalability. In many cases, both functions are inverse to each other. However, we
expect both metrics to have advantages, as discussed in our previous paper (Henning and
Hasselbring 2021a).

Resource Demand Metric The first function maps load intensities to the resources, which
are at least required for handling these loads. We denote the metric as demand: L → R,
defined as:3

∀l ∈ L : demand(l) = min{r ∈ R | ∀s ∈ S : slos(l, r) = true}
The demand metric shows how the resource demand evolves with increasing load inten-

sities. Ideally, the resource demand increases linearly. However, in practice higher loads
often require excessively more resources or cannot be handled at all, independently of the
provisioned resources.

Load CapacityMetric Our second metric maps provisioned resource amounts to the maximum
load, these resources can handle. We denote this metric as capacity: R → L, defined as:

∀r ∈ R : capacity(r) = max{l ∈ L | ∀s ∈ S : slos(l, r) = true}
Analogously to the demand metric, the capacity metric shows at which rate processing capa-
bilities increase with increasing resources. It allows to easily determine whether a system
only scales up to a maximum resource amount (e.g., when a maximum degree of parallelism
is reached). This is the case if increasing resources do not lead to higher load capacities.

According to the requirements identified in Section 3, both our metrics do not make
any assumption on the type of load, resource, or SLO. This implies that these metrics
allow to evaluate the same system with respect to different load and resources of varying
dimensions. Typical load dimensions are, for example, the number of concurrent users at
a system, the amount of parallel requests, or the size of requests. Also multi-dimensional
load and resource types (e.g., different VM configurations) could be evaluated, provided
that there is an ordering on the load or resource values to be tested. For cloud configura-
tion options, such an ordering usually exists in terms of the costs per configuration (Brataas
et al. 2017).

5 Scalability Measurement Method

Our scalability measurement method approximates our scalability metrics by running exper-
iments with finite subsets of the considered load and resource types, L′ ⊆ L and R′ ⊆ R.
The sizes of the chosen subsets L′ and R′ determine the resolution of the metrics, but also
the overall runtime of the method. The basic idea of our measurement method is to run iso-
lated experiments for various load l ∈ L′ and resource r ∈ R′ combinations, which serve to
evaluate whether specified SLOs are met. We decided to run these experiments in isolation
as scalability does not take temporal aspects into account (e.g., how fast can a SUT react
to a changing load, cf. Section 2.2.3). Measuring the throughput for a fixed, high load or
increasing the load at runtime might cause wrong results (Henning and Hasselbring 2021a).
Testing only at a fixed high load also fails to reveal deviations from expected trends, such as

3Note that we use a different definition of demand than used for operational analysis of queuing networks
(Denning and Buzen 1978).
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a linear increase in resource utilization with the load and nearly constant memory occupancy
at constant load.

In the following, we describe the two main components of our proposed measurement
method: the execution of experiments to evaluate whether SLOs are met and search strate-
gies, which determine the SLO experiments to be executed. Afterwards, we discuss how the
requirements for statistical grounding and time-efficient execution relate with each other.

5.1 SLO Experiments

Formally, an SLO experiment determines whether for a given set of SLOs S, a SUT
deployed with r ∈ R′ resources can handle a load l ∈ L′ in a sense that each SLO s ∈ S is
met, i.e., slos(l, r) = true.

Our measurement method deploys the SUT with r resources and generates the constant
load l over some period of time. During this time, the SUT is monitored and data is col-
lected, which is relevant to evaluate the SLOs. For example, for an SLO that sets a limit on
the maximal latency of processed messages, monitoring would continuously measure the
processing latency. The duration for which SLO experiments are executed should be cho-
sen such that enough measuring data is available to draw statistically rigorous conclusions.
On the other hand, this duration should not be unnecessarily long to achieve the required
time-efficient execution and, thus, increase usability. To meet the requirement for statisti-
cally grounded results, measured values of an initial time period are discarded (warm-up
period). Measurements during this time usually deviate from those of the further execution
as, for example, optimizations are performed after start-up. Another measure to increase
statistical rigor is to repeat SLO experiments with the same load and resource combination.
To finally compute slos(l, r), the monitored data points of all repetitions are aggregated in
an SLO-specific way.

5.2 Search Strategies

Our proposed scalability measurement method is configurable by a search strategy, which
determines the SLO experiments that will be performed to accurately approximate the scal-
ability metrics. In the case of the demand metric, the goal is to find the minimal required
resources for each load intensity l ∈ L′. For the capacity metric, the maximal processible
load intensity for each resource configuration r ∈ R′ should be found.

Figure 2 gives an overview of selected search strategies, which we describe in the follow-
ing for the case of the demand metric. Nonetheless, these strategies can easily be transferred
to the capacity metric. Apart from these examples, also more complex strategies are con-
ceivable. Figure 3 provides an illustrative example of our measurement method for each
strategy. A colored cell corresponds to an SLO experiment for a certain load intensity and

Fig. 2 UML class diagram of different search strategies
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Fig. 3 Comparison of selected search strategies

resource configuration, which is executed by the respective search strategy. Green cells
represent that the corresponding SLO experiment determined that the tested resources are
sufficient to handle the tested load. Red cells represent that the resources are not suffi-
cient. Framed cells indicate the lowest sufficient resources per load intensity. The resulting
demand function is plotted in Fig. 3a.

Full search The full search strategy (see Fig. 3a) performs SLO experiments for each com-
bination of resource configuration and load intensity. Its advantage is that it allows for
extensive evaluation after the benchmark has been executed. This also includes that based
on the same SLO experiments, both the demand and the capacity metric can be evaluated.
However, this comes at the cost of significantly longer execution times.

Linear search The linear search strategy (see Fig. 3b) reduces the overall execution time
by not running SLO experiments whose results are not required by the metric. That is, as
soon as a sufficient resource configuration for a certain load intensity is found, no further
resource configurations are tested for that load.

Binary search The binary search strategy (see Fig. 3c) adopts the well known algorithm for
sorted arrays. That is, the strategy starts by performing the SLO experiments for the middle
resource configuration. Depending on whether this experiment was successful or not, it then
continues searching in the lower or upper half, respectively. The binary search is particularly
advantageous if the search space is very large (i.e, larger than in Fig. 3). However it is based
on the assumption that with additional resources for the same load, performance does not
substantially decrease. More formally, this strategy assumes:

∀l ∈ L′, r, r ′ ∈ R′ : r ′ > r ∧ slos(l, r) = true ⇒ slos(l, r
′) = true
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We evaluate this assumption for the special case of event-driven microservices in Section 7.4
and show that it does not hold in all cases.

Lower bound restriction The lower bound restriction (see Fig. 3d–f) is an example for a
search strategy that uses the results of already performed SLO experiments to narrow the
search space. It starts searching (with another strategy) beginning from the minimal required
resources of all lower load intensities. Note that when combined with the binary search
strategy, the lower bound restriction may also cause different experiments to be performed
(see upper right of Fig. 3f). The lower bound restriction is based on the assumption that with
increasing load intensity, the resource demand never decreases. More formally, this strategy
assumes:

∀l, l′ ∈ L′ : l′ > l ⇒ demand(l′) ≥ demand(l)

In Section 7.4, we show that for the special case of event-driven microservices, we are safe
to make this assumption.

5.3 Balancing Statistical Grounding and Time-efficiency

The runtime of a scalability benchmark execution depends on the number of evaluated
resource amounts |R′|, the amount of evaluated load intensities |L′|, the duration of an SLO
experiment τe as well as the associated warm-up period τw , the number of SLO experi-
ment repetitions ρ, and the applied search strategy δ. Likewise, these values also control
the statistical grounding of the results. Table 2 summarizes the effect of each configuration
option on statistical grounding, while the following formulas show the runtime � for both
the demand and the capacity metric:

�demand = |L′| × φδ(|R′|) × ρ × (τe + τw)

�capacity = |R′| × φδ(|L′|) × ρ × (τe + τw)

Table 2 Effect of configuration options on statistical grounding of results

Symbol Configuration option Description

|R′| Resource amounts Higher amounts cause more fine-grained approxima-
tion of the scalability metric function

|L′| Load intensities Higher amounts cause more fine-grained approxima-
tion of the scalability metric function

τe Experiment duration Longer durations cause more stable results

τw Warm-up period duration Higher values increase the certainty that early mea-
surement that are not representative for the system
under normal operation are excluded

ρ Repetitions More repetitions rule out the effect of outliers

δ Search strategy δ Strategies may be based on assumptions that do not
always hold

φδ Runtime of strategy δ Depending on the metric, the runtime of δ either
depends on |R′| or on |L′|.
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6 Scalability Benchmarking Architecture

In this section we propose an architecture for a benchmarking tool that implements our
proposed measurement method and, thus, our proposed scalability metrics. Moreover, our
architecture is designed according to the requirements defined in Section 3. We start by out-
lining our proposed benchmarking process in Section 6.1, which distinguishes the definition
of benchmarks and their execution. Afterwards, we present a data model for defining these
benchmarks and executions in Section 6.2. In Section 6.3, we present how benchmarks and
executions defined with this model can be executed in cloud-native environments.

6.1 Overview of the Benchmarking Process

Figure 4 gives an overview of our proposed scalability benchmarking process. In general,
we can observe two actors involved in benchmarking:

Benchmark designers are, for example, researchers, engineers, or standardization commit-
tees, which are experts regarding a specific type of application or software service. They
are able to construct representative and relevant task samples or workloads for that type
of software. Moreover, they know about relevant load intensity types, resources types, and
SLOs, regrading which scalability should be evaluated. Benchmark designers bundle all
of this in Benchmarks. Benchmarks can be published as supplemental material of research
papers, but ideally they are versioned and maintained in public repositories (e.g., at GitHub).
Benchmarks are stateless as they can be executed arbitrarily often.

Benchmarkers intend to compare and rank different existing SUTs, evaluate new methods
or tools against a defined standard, or repeat previous experiments. A detailed description
of the benchmarker actor can be found by Kounev et al. (2020). Benchmarkers retrieve
existing Benchmarks from their public repositories and execute them in the desired cloud
environment. For this purpose, they describe the experimental setup for running a single
Benchmark in a so-called Execution. Benchmarkers deploy both the Execution and the cor-
responding Benchmark to the benchmarking tool, which applies our proposed scalability

Fig. 4 Context diagram showing how actors interact with our proposed benchmarking tool architecture
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Fig. 5 UML class diagram of our scalability benchmarking data model

measurement method. Executions are then assigned a state, which is typically something
like Pending, Running, Finished, or Failed if an error occurred. Executions can be shared,
for example, as part of a research study that benchmarks the scalability of different SUTs.
The same or other benchmarkers can then again retrieve and copy Executions, for example,
to replicate benchmarking studies.

6.2 Benchmarking Data Model

Based on the previously distinction between benchmarks and their executions, we propose
a data model for defining them in a declarative way. Figure 5 visualizes the central elements
of our data model and their relations as UML class diagram. In the following, we describe
this data model starting from the central entities Benchmark and Execution.

Benchmark A Benchmark is a static representation of a SUT and an associated Load Gen-
erator, where SUT and Load Generator are represented as sets of Deployment Artifacts.
Such Deployment Artifacts are, for example, definitions of Kubernetes resources such as
Pods, Services, or ConfigMaps.4

According to our scalability metrics, benchmarks support different SLOs, Load Types,
and Resource Types. An SLO represents the computations on gathered monitoring data,
which are necessary to check an SLO. This may include the queries to the monitoring sys-
tem, statistical calculation on the returned data, thresholds, or warm-up durations. Load
Types and Resource Types are both represented as sets of Deployment Artifact Patchers.
These patchers are associated with a Deployment Artifact and modify it in a certain way
when running an SLO experiment.

Existing cloud-native benchmarks for other qualities can be utilized to define scalability
benchmarks by aggregating their deployment artifacts and specifying load types, resource
types, and SLOs. Benchmarks do not have a life-cycle and can be executed arbitrarily often
by Executions.

4We decided to use the more general term Deployment Artifact to avoid confusion with the term resources
from our scalability definitions.
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Execution An Execution represents a one-time execution of a benchmark with a specific
configuration. It evaluates a subset of the SLOs provided by the Benchmark, which can
additionally be configured by an SLO Configuration, which adjusts SLO parameters such
as warm-up duration or thresholds. As specified by our measurement method, scalability
is benchmarked for a finite set of load intensities of a certain load type and a finite set of
resource amounts of a certain resource type. In our data model, these sets are represented as
Loads and Resources. Since the Benchmark declares its supported Load Types and Resource
Types, the specified Loads and Resources refer to the corresponding Load Type or Resource
Type, respectively (thus the subset constraints).

Furthermore, an Execution can configure the SUT and the Load Generator by Deploy-
ment Configurations. Such Deployment Configurations consist of a Deployment Artifact
Patcher and a fixed value, which the corresponding deployment is patched with. This
allows, for example, to evaluate different configurations of the same SUT, for example,
via environment variables. An Execution supports the configuration options of our mea-
surement method discussed in Section 5, namely a Search Strategy as well as a Repetition
Count and an Experiment Duration for the SLO experiments. Warm-up period durations are
SLO-specific and, thus, specified as part of SLO Configurations.

In contrast to Benchmarks, Executions have a life-cycle. They can be planned, executed,
or aborted. Each execution of a benchmark is represented by an individual entity. This
supports repeatability as executions can be archived and shared.

6.3 Benchmark Execution in Cloud-Native Environments

We propose a benchmarking tool architecture based on the operator pattern (Ibryam and
Huss 2019). This pattern is increasingly used to reduce the complexity of operating applica-
tions by integrating domain knowledge into the orchestration process. Core of this pattern
are the operator and, in the case of Kubernetes, so-called Custom Resource Definitions
(CRDs). Artifacts (or resources) of these CRDs can be created, altered, or remove by the
user via the API of the orchestration tool. In a sophisticated reconciliation process, the oper-
ator continuously observes the currently deployed artifacts and may react to changes by
creating, modifying or deleting other deployment artifacts.

Figure 6 shows our proposed architecture for a cloud-native scalability benchmarking
tool. We envisage CRDs for the Benchmark and Execution entities of our benchmarking

Fig. 6 Proposed benchmarking tool architecture based on the operator pattern
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data model such that benchmarkers can deploy Benchmarks and Executions to the orches-
tration API. Whenever new Executions are created, the scalability benchmarking operator
is notified and, if no other benchmark is currently executed, it starts executing a bench-
mark according to the specified Execution. This means, it alters the Deployment Artifacts of
the SUT and the load generator according the provided Deployment Configuration, applies
the configured search strategy to decide which SLO experiments should be performed,
and also adjusts the Deployment Artifacts according to the selected load and resources. It
then deploys all (potentially adjusted) Deployment Artifacts for the specified duration and
repeats this procedure multiple times according to the defined Execution.

During this time, a monitoring component such as Prometheus5 collects monitoring
data of the SUT, which is then used by the operator to evaluate the specified SLOs. The
operator stores all (raw) results persistently to allow for offline analysis, archiving, and shar-
ing. Additionally, a visualization tool such as Grafana6 might be used to let benchmarkers
observe the execution of benchmarks.

This architecture causes a significant effort for the installation of the entire benchmarking
infrastructure. To implement the requirement for a simple implementation, we propose to
employ a cloud-native package management tool such as Helm,7 which installs the operator,
the CRDs as well as dependent systems such as the monitoring and the visualization tool.

7 Experimental Evaluation

In this section, we perform an experimental evaluation of our proposed scalability bench-
marking method to answer the research questions posed in Section 1. Specifically, we
empirically evaluate the effect of our benchmarking method’s configuration options (see
Section 5.3) on the statistically grounding of its results. The overarching goal of this
evaluation is to find configuration parameters such that the results are reproducible, while
the overall execution time is kept as short as possible.

We conduct our experiments for multiple SUTs, which implement different benchmarks,
employ different software frameworks, and run in different cloud environments. This way,
we also seek to find out whether the choice of configuration parameters should depend on
the cloud provider, implementation, or benchmark. We focus on benchmarks for a specific
type of cloud-native applications, namely event-driven microservices, to make the indi-
vidual results comparable. However, our evaluation method is also intended to serve as a
blueprint to repeat our evaluation for other SUTs.

After a detailed description of our experimental setup in Section 7.1, we conduct the
following evaluations:

– In Section 7.2, we address RQ 1 and study the duration SLO experiments are executed
for as well as their warm-up period duration. We evaluate how both durations should
be chosen such that we can decide with sufficiently high confidence whether evaluated
SLOs are achieved.

– In Section 7.3, we address RQ 2 and evaluate how many repetitions of an SLO
experiment should be performed to decide with sufficiently high confidence whether
evaluated SLOs are achieved.

5https://prometheus.io
6https://grafana.com/grafana/
7https://helm.sh
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Table 3 Overview of SUTs studied in our evaluation

SUT component Evaluated options �

Benchmarks

Task samples Theodolite’s UC1, UC2, UC3, UC4 4

Load type Messages with distinct keys per second 1

Resource type Number of instances (Kubernetes pods) 1

SLO lag trend metric 1

Stream processing engines Kafka Streams, Flink 2

Cloud providers Google (GCP), Oracle (OCI), private cloud (SPEL) 3

Total amount of SUTs 24

– In Section 7.4, we address RQ 3 and evaluate how the assessment of SLOs evolves
with increasing resource amounts. This evaluation helps in determining whether the
binary search strategy can applied with our demand metric and whether the lower bound
restriction strategy can be applied with our capacity metric.

– In Section 7.5, we perform a similar evaluation to address RQ 4 and evaluate how the
assessment of SLOs evolves with increasing load intensities. This evaluation helps in
determining whether the binary search strategy can be applied with our capacity metric
and whether the lower bound restriction strategy can be applied with our demand metric.

In all four sections, we first describe the employed experiment design, before we present
and discuss the experiment results. Finally, we discuss threats to validity in Section 7.6.

7.1 Experiment Setup

In the following, we present the general experiment setup for the following evaluations.
First, we introduce our Theodolite scalability benchmarking tool, which implements our
proposed benchmarking method. Afterwards, we describe the SUTs used for our eval-
uations. Our SUTs are implementations of benchmarks for event-driven microservices.
Event-driven microservices are an emerging architectural style, in which microservices
primarily communicate via asynchronous messaging. To parallelize data processing, such
microservices employ distributed stream processing techniques (Fragkoulis et al. 2020).
We consider 4 benchmarks, which are implemented by 2 stream processing engines and
executed in 3 cloud environments. This results in 24 SUTs as summarized in Table 3.

7.1.1 The Theodolite Reference Implementation

Our cloud-native benchmarking tool Theodolite implements the architecture presented
in Section 6 and, thus, our proposed benchmarking method. Theodolite is open source8

research software (Hasselbring et al. 2020) with publicly available documentation.9 We
presented an early version of Theodolite in a previous publication (Henning and Hassel-
bring 2021c) along with benchmarks for distributed stream processing engines. Section 8
discusses how we extend our previous work.

8https://github.com/cau-se/theodolite
9https://www.theodolite.rocks
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We use the following technologies in Theodolite: Kubernetes as orchestration tool, Helm
as package manager, Prometheus for monitoring the SUT, and Grafana for the visualization.
These technologies are generally understood as being part of the cloud-native landscape.10

In addition to our proposed architecture, Theodolite includes first-class support for con-
figuring and monitoring a messaging system. Such a messaging system is used in almost
all benchmarking studies for distributed stream processing and should therefore be also
included in a scalability benchmarking tool (Henning and Hasselbring 2021c). For the
implementation of our proposed architecture, this means that for an SLO experiment not
only Kubernetes resources are deployed, but also corresponding messaging topics are cre-
ated. We decided to not consider the messaging system as part of the SUT as, for example,
in the case of Apache Kafka, its deployment takes a significant amount of time.

7.1.2 The Theodolite Stream Processing Benchmarks

Theodolite accepts benchmarks that are defined according to the data model depicted in
Fig. 5. That is, a benchmark consists of a task sample (SUT and load generator) as well as
supported load types, resource types, and SLOs. Theodolite comes with 4 benchmarks for
event-driven microservices, which we use for our evaluation. In the following, we give an
overview of these benchmarks and show how we employ them.

Task Samples In our previous paper (Henning and Hasselbring 2021c), we derived 4 task
samples from common stream processing use cases for analyzing Industrial Internet of
Things sensor data (Henning et al. 2021). The individual tasks samples are:

UC1 Incoming messages are written to an external database. This task sample focuses
solely on data processing and, therefore, is stateless.

UC2 Incoming messages are aggregated by a message key within fixed-size, non-sliding
time windows to reduce the total quantity of messages (downsampling).

UC3 Incoming messages are aggregated by their key and a time attribute (e.g., day of
week) in large sliding windows. Such computations are common to compute a seasonal
trend over a long period of time (e.g., an aggregated weekly course over a period of
several months).

UC4 Incoming messages are aggregated to groups and groups of groups in a hierarchical
fashion (Henning and Hasselbring 2020).

For a more detailed description, please refer to our original publication (Henning and
Hasselbring 2021c).

We evaluate implementations of these tasks samples with the two stream processing
engines Apache Kafka Streams (Wang et al. 2021) and Apache Flink (Carbone et al. 2015).

Load type A stream processing engine is usually subject to a load of messages coming
from a central messaging system. In many of such systems, messages contain a key, which
is used for data partitioning and, thus, the major means for parallelizing stream process-
ing tasks (Fragkoulis et al. 2020). In our evaluation, we therefore focus on scaling with the
amount of distinct message keys per unit of time. For benchmark UC1, UC2, and UC3, the
load type corresponds to the amount of keys, where for each key one message per second is
generated. For benchmark UC4, the load type corresponds to nested groups n (Henning and

10https://landscape.cncf.io
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Fig. 7 Examples of the monitored lag and the trend line computed using linear regression (Henning and
Hasselbring 2021c)

Hasselbring 2021c), which results in 4n keys, generating one message per second. For rea-
sons of conciseness, we present the generated load also as 4n messages per second instead
of the group size n in the results tables of our evaluation.

Resource type The resource type used in our evaluation is the number of instances of the
stream processing engine. This corresponds to what we referred to as “virtualized” horizon-
tal scaling in Section 3. For Kafka Streams, this is simply the amount of pods, containing the
same Kafka Streams application. All necessary coordination among instances to distribute
tasks and data is then handled by the Kafka Streams framework. For Flink, the resource
type is the amount of Taskmanager pods. Additionally, an environment variable has to be
set, which notifies the Flink instances about the desired parallelism, which in our case cor-
responds to the amount of Taskmanager pods. Flink’s coordinating Jobmanager pod is not
scaled, which is the suggested deployment.11

SLO The SLO we use for this evaluation is based on the lag trend metric (Henning and
Hasselbring 2021a). The lag of a stream processing job describes how many messages are
queued in the messaging system, which have not been processed yet. The lag trend describes
the average increase (or decrease) of the lag per second. It can be measured by monitoring
the lag and computing a trend line using linear regression. The slope of this line is the lag
trend. Figure 7 illustrates the concept of the lag trend.

We use the lag trend metric to define an SLO, whose function evaluates to true if the lag
trend does not exceed a certain threshold. The basic idea is: A fluctuating lag is acceptable
(e.g., because message are consumed in batches) as long as the amount of queued messages
does not increase over a longer period of time. Ideally, the threshold should be 0 as a non-
positive lag trend means that messages can be processed as fast as they arrive. However, it
makes sense to allow for a small increase as even when observing an almost constant lag, a
slightly rising or falling trend line will be computed due to outliers.

We expect that in most cases, checking the lag trend alone suffices as an SLO for stream
processing engines. The architectures of modern engines make it unlikely that SLOs such as
a maximum tolerable processing latency can be fulfilled by scaling provisioned resources.
An advantage of defining an SLO based on the lag is that it can be collected very efficiently

11https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/deployment/resource-providers/
standalone/kubernetes/#standby-jobmanagers
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Table 4 Configuration of Kubernetes clusters used for our evaluation, running at Google Cloud Platform
(GCP), Oracle Cloud Infrastructure (OCI), and a private cloud (SPEL)

GCP OCI SPEL

Nodes 3 3 5

CPU cores 4 4 2 × 16

RAM 16 GB 16 GB 384 GB

Machine type e2-standard-4 VM.Standard.E2.4 Intel Xeon Gold 6130

Kubernetes version 1.19.9-gke.1900 1.19.7 1.18.6

Kafka brokers 3 3 10

and does require data from the stream processing engine, which might be incorrect under
high load. In our experiments, Prometheus queries the current lag every 15 s from Apache
Kafka, the messaging system used in our experiments.

7.1.3 Evaluated Cloud Platforms

The experimental evaluations presented in this section are performed in two public and one
private cloud platforms. The two public cloud vendors are Google Cloud Platform (GCP)
and Oracle Cloud Infrastructure (OCI), where we rely on the managed Kubernetes services
with virtual machine nodes. We chose Google Cloud Platform as it is one of the largest cloud
providers, whose Kubernetes offering can be regarded as most matured since Google signif-
icantly leads the Kubernetes development. Oracle Cloud Infrastructure is representative of a
niche cloud provider, which provides a less sophisticated managed Kubernetes service. As
private cloud infrastructure, we chose the Software Performance Engineering Lab (SPEL)
at Kiel University. In contrast to the public clouds, its Kubernetes cluster runs on 5 bare
metal nodes with considerably more powerful hardware. Besides also representing a real-
istic deployment platform used in many industries, the private cloud serves as a reference,
ruling our the influence of public cloud performance peculiarities. Table 4 summarizes the
configuration of the Kubernetes clusters, we use in our evaluation.

7.1.4 Replication Package

We provide a replication package and the collected data of our experiments as supplemental
material (Henning and Hasselbring 2021b), allowing other researchers to repeat and extend
our work. Our replication package includes the Theodolite Executions (see Section 6.2) used
in our experiments and interactive notebooks used for analyzing our experiment results. An
additional online version of our notebooks is available as a web service.12

7.2 Evaluation of Warm-up and SLO Experiment Duration

Our scalability measurement method and, thus, our proposed benchmarking tool architec-
ture is configurable by the duration, SLO experiments are executed for, and by the duration
that is considered as warm-up period. We evaluate how the choice of warm-up period and

12https://mybinder.org/v2/zenodo/10.5281/zenodo.5596982
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duration influences the result of the SLO experiments. Goal of this evaluation is to minimize
the experiment duration, without substantially scarifying the quality of the results.

7.2.1 Experiment Design

With this evaluation, we perform SLO experiments for all 24 SUTs depicted in Table 3. For
each SUT, we aim to select SLO experiments, in which the resource amounts approximately
correspond to the resource demand of the load. Those are probably the most difficult to
access, while combinations of high load and few resources or vice versa are likely to require
less time to be evaluated.

We performed preliminary experiments to find reasonable load-resource combinations to
evaluate. For each SUT, we determine an approximation of the load that can be handled by
4–5 instances. We found those instance counts to be reliably working in all cloud platforms.
To find suitable load-resource combinations, we run single, explorative experiments for a
short time and manually observe the lag via Theodolite’s dashboard (Henning and Hassel-
bring 2021c). These results are not statistically grounded and do not necessarily represent
the real resource demand. Instead, they represent a deployment, in which the provisioned
resources approximately match the resource demand to bootstrap the following experimen-
tal evaluations. In addition to the resource amounts that approximately match the demand of
a load, we perform experiments for one instance more and less, representing a slight over or
underprovisioning. In our private cloud environment, we additionally perform these experi-
ments with loads twice as high. Also for this case we find approximately matching instance
counts, but due to higher instance numbers, we use two instances more and less to represent
over or underprovisioning. Table 5 shows the load intensities and resource amounts that we
use for the following evaluation.

To obtain an approximation of the true, long-term lag trend, we perform the SLO exper-
iments in this evaluation over a period of one hour. According to our measurement method
and the lag trend SLO, we let Theodolite monitor the lag during this time. For each experi-
ment, we compute the lag trend over the entire experiment duration with different warm-up
periods. The computed lag trends serve as reference values, used in the following approach
to reduce the experiment duration.

For each experiment and evaluated warm-up period, we now evaluate how much shorter
the experiment duration can be chosen such that the result of the SLO evaluation does
not deviate from the reference value. For this purpose, we retroactively reduce the experi-
ment duration by discarding the latest measurements. We evaluate two options as decision
criterion for when no further measurements should be discarded:

1. We reduce the duration as long as the computed trend slope does not deviate by more
than a certain error from the reference value.

2. We reduce the duration as long the binary result of the SLO evaluation does not change.
More specifically, we first determine whether the reference values exceeds a threshold
t . Then we reduce the duration as long as the lag trend does not rises above t or falls
below t .

Our replication package (Henning and Hasselbring 2021b) allows to evaluate our experi-
ment results according to the described method for different warm-up durations, allowed
errors and lag trend thresholds.
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Table 5 Chosen load intensities and resource amounts for the SUTs, used for the evaluation of experi-
ment duration and repetition count. The load type corresponds to messages per second. Resource amounts
are numbers of instances, representing underproviding (inst∨), overprovisioning (inst∧), and resources that
approximately match the demand (inst≈)

SUT Load Resource amounts

cloud Engine bench. mes./s inst∨ inst≈ inst∧

GCP Flink UC1 200 000 4 5 6

UC2 150 000 3 4 5

UC3 60 000 5 6 7

UC4 65 536 1 2 3

KStreams UC1 300 000 4 5 6

UC2 150 000 5 6 7

UC3 20 000 4 5 6

UC4 65 536 4 5 6

OCI Flink UC1 200 000 4 5 6

UC2 150 000 3 4 5

UC3 60 000 4 5 6

UC4 65 536 1 2 3

KStreams UC1 300 000 5 6 7

UC2 150 000 4 5 6

UC3 30 000 5 6 7

UC4 65 536 4 5 6

SPEL Flink UC1 300 000 3 4 5

600 000 8 10 12

UC2 150 000 3 4 5

300 000 6 8 10

UC3 60 000 2 3 4

240 000 8 10 12

UC4 65 536 1 2 3

KStreams UC1 300 000 4 5 6

600 000 5 7 9

UC2 150 000 3 4 5

300 000 7 9 11

UC3 30 000 4 5 6

60 000 8 10 12

UC4 65 536 3 4 5

7.2.2 Results and Discussion

Our results show that when using a maximum allowed error as decision criterion, the time
required to reach a stable value decreases with increasing allowed error. Figure 8 illustrates
this for errors of 1%, 10%, and 20% with a warm-up duration of 120 s. However, we observe
the same trend also for other errors and warm-up durations. We cannot identify a significant
impact of the cloud provider or the stream processing engine on the required execution
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time. Our results suggest that more complex stream processing benchmarks require shorter
execution times, but this would need further experiments.

When using a maximum allowed error as decision criterion, we observe that even with
an allowed error of 20%, the required execution time remains excessively high: For example
with the data presented in Fig. 8, more than 50% of the experiments, require more than half
an hour execution time for a single SLO experiment. Referring to the runtime formula of
our method (see Section 5.3), this would quickly lead to a total runtime of several days.
On the other hand, the time required to decide whether the lag trend exceeds a threshold
is significantly lower, independently of the cloud provider, stream processing engine, and
benchmark. While Fig. 8 illustrates this observation for a threshold of t = 2000 with a
warm-up duration of 120 s, the results for other thresholds t > 0 and warm-up durations
are quite similar. Thresholds close to t = 0 require longer experiment durations, but as
described in Section 7.1.2 allowing for a small lag trend increase is sensible. As for our
scalability metric we are ultimately only interested in whether the SLO is met, we only look
at the executing times required to decide if the lag trend does not exceed the threshold.

Figure 9 summarizes the required execution times with a threshold of t = 2000 for dif-
ferent warm-up durations between 30 s and 480 s (multiples of the sampling interval) and
all evaluated SUTs as box plots. We observe that in the vast majority of cases, warm-up
periods of 60 s and 120 s result in required execution times of less than 5 minutes. Sum-
marized over all SUTs, longer warm-up durations lead to less variability in the required
execution duration, but also cause longer execution times in most of the cases. We make
similar observations independently of the chosen threshold.

Fig. 8 Box plots showing the required execution duration among all SUTs and cloud providers for different
decision criterion. Whiskers are restricted to 1.5×IQR (interquartile range) and outliers lying below or above
the whiskers are omitted for readability

Page 25 of 42    143Empir Software Eng (2022) 27: 143



From our experiment results, we consider a warm-up duration of 120 s to be a good trade-
off. In contrast to 60 s warm-up, 120 s result in longer median execution times, but minimize
the execution duration for the vast majority of experiments (see the upper whisker). When
only looking at the private cloud or benchmark UC3, also significant shorter warm-up
durations of 30 s could be chosen.

Table 6 shows the execution times for all evaluated SUTs for a warm-up duration of
120 s and a threshold of t = 2000. In line with Fig. 9, we see that certain resource-load
combinations require significant longer execution times. However, we can observe that in
these cases testing the same load with slightly less or slightly more instances only requires
a fraction of the time. Hence, with a significantly shorter execution time, we can get a good
approximation of the resource demand.

Fig. 9 Box plots showing the required execution duration among all SUTs and cloud providers for different
warm-up durations. Whiskers are restricted to 1.5×IQR and outliers laying below or above the whiskers are
omitted for readability
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Table 6 Required experiment duration of SLO experiments for different SUTs, load intensities (mes./s), and
resource amounts (inst∨, inst≈, and inst∧) with a warm-up duration of 120 s

7.3 Evaluation of Repetition Count

Our scalability measurement method and, thus, our proposed benchmarking tool archi-
tecture support repeating SLO experiments multiple times to increase the confidence of
their result. In this section, we evaluate how many repetitions are required to decide with
sufficiently high confidence whether SLOs are met.

7.3.1 Experiment Design

As in the previous evaluation, we perform SLO experiments for all 24 SUTs depicted in
Table 3 with the same amounts of resources and load intensities (see Table 5). According
to our results from the evaluation of warm-up and experiment duration, we run each SLO
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Fig. 10 Box-plots showing the required number of repetitions of SLO experiments for different thresh-
olds. Whiskers are restricted to 1.5×IQR and outliers laying below or above the whiskers are omitted for
readability

experiment for 5 minutes with the first 2 minutes considered as warm-up period. We perform
30 repetitions of each experiment as suggested, for example, by Kounev et al. (2020) to
apply the Central Limit Theorem.

For the majority of SUTs, we observed a normal distribution on the computed lag trend
slopes. Deriving mean x and standard deviation s (with N − 1 degrees of freedom) of the
lag trend slopes for an SUT, we can now approximate how many repetitions are required
to obtain a certain confidence interval for the true mean (Kounev et al. 2020). However,
similar to the previous evaluation, we are ultimately only interested in whether the lag trend
slope is above or below a threshold t . Thus, we do not need to approximate the number of
repetitions to obtain a two-sided confidence interval with a certain error around the mean,
but instead only consider a one-sided confidence interval of (−∞, t) or (t, ∞), respectively.
We approximate the required number of repetitions n for such a 95% confidence interval
with:

n =
(

z0.05s

t − x

)2

7.3.2 Results and Discussion

Figure 10 summarizes the approximated number of repetitions for different thresholds t

as box plots. Our replication package (Henning and Hasselbring 2021b) allows to obtain
these values also for other thresholds. We observe that independent of the chosen thresh-
old, the required number of repetitions for most SUTs is very low: 50% of all SUTs only
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require 1–2 repetitions. Furthermore, the observed variability decreases with higher thresh-
olds. While in most cases for t = 0 up to 12 repetitions are necessary, this value decreases
to 6 repetitions for t = 1000 and 5 repetition for t = 2000. For t = 10000 even in the
vast majority of cases only one repetition is necessary. However, a threshold of t = 10000
means that an increase of 10 000 messages per second is tolerable, which in some evaluated
configurations already corresponds to half the generated load. This raises the chance of con-
sidering resource amounts as sufficient which in fact are not. A dependency on the threshold
can be observed independently of the cloud platform, stream processing engine, and the
benchmark. Generally, when looking at thresholds t ≥ 1000, slightly more repetitions are
required in the public clouds (with more repetitions in the Google cloud than in the Oracle
cloud). A possible explanation is that performance in public clouds is often influenced by
co-located tenants (“noisy neighbor”) and, thus, is less stable (Leitner and Cito 2016). In
the private cloud, on the other hand, we exclusively control the entire hardware. However,
the observed deviation between public and private cloud is rather low. Another explanation,
thus, could simply be that considerably more computing resources are available in our pri-
vate cloud, resulting in a lower hardware utilization. It is also noticeable that Flink requires
more repetitions than Kafka Streams. We cannot identify a clear pattern suggesting that
particular benchmarks require more repetitions than others.

Table 7 shows the approximated number of repetitions of all evaluated SUTs and load
intensities for different numbers of instances and a threshold of t = 2000. In addition to
the box plots presented in Fig. 10, we can see that in certain cases very high numbers of
repetitions (highlighted in red) would be required in order to tell with sufficiently high
confidence whether the lag trend slope is above or below the threshold. However, in almost
all of these cases, we would only need a few repetitions when evaluating the same SUT with
slightly more or fewer instances. We also observed this when choosing a different threshold.
Transferred to our scalability measurement method, this means that only a few repetitions
are required to obtain a good approximation of the resource demand. Therefore, only a few
repetitions are required to determine the demand function when accepting a small error in
the function.

Required number of repetitions

7.4 Evaluation of SLOwith Increasing Resources

In this section, we evaluate how the computed lag trend evolves with increasing the pro-
visioned resource amounts, while keeping the generated load constant. The goal of this
evaluation is to analyze whether SLOs might be violated for higher resource amounts when
they have been achieved before for lower resource amounts.

7.4.1 Experiment Design

In this evaluation, we evaluate selected SUTs in more detail. From our previous evaluation,
we observed that the results for both public clouds do not differ significantly. The same
applies for the benchmarks. To not go beyond the scope of this paper, we focus on the two
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Table 7 Required number of repetitions of SLO experiments for different SUTs, load intensities (mes./s),
and resource amounts (inst∨, inst≈, and inst∧). The threshold for the lag trend is t = 2000

benchmarks UC2 and UC3 and restrict our experiments to the private cloud and the Google
cloud. This results in 8 SUTs (see Table 8).

For each SUT, we conduct a set of isolated SLO experiments, in which we generate a con-
stant load, equal to the loads of Table 5, and different resource amounts. We repeat each SLO
experiment 5 times with 5 minutes of experiment duration including 2 minutes of warm-up.
Table 8 summarizes the experiment set-up. For each SLO experiment, we compute the lag
trend allowing us to analyze how the lag trend evolves with increasing resource amounts.
In Google Cloud Platform, we additionally performed SLO experiments in a Kubernetes
cluster with 6 instead of 3 nodes as explained in the following section.
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Table 8 SUT configuration for evaluations of the SLO with increasing resources

SPEL GCP

Kafka Streams Flink Kafka Streams Flink

UC2 UC3 UC2 UC3 UC2 UC3 UC2 UC3

mes./s 300 000 60 000 300 000 240 000 150 000 20 000 150 000 60 000

Instances ≤ 15 ≤ 20 ≤ 20 ≤ 25 ≤ 10 ≤ 10 ≤ 10 ≤ 10

Duration 5 minutes, including 2 minutes warm-up

Repetitions 5

7.4.2 Results and Discussion

Figure 11 shows for each evaluated SUT how the median lag trend evolves with increasing
resource amounts. Additionally, a horizontal line at a lag trend of 2000 is drawn to visualize
a possible threshold for the lag trend metric.

In general, we can observe that in the private cloud the lag trend decreases with increasing
amounts of instances, until it reaches a value of approximately 0 and, thus, falls below the
defined threshold. This marks the resource demand of the tested load intensity according
to our demand metric. After that, the lag trend fluctuates considerably for 3 out of 4 SUTs,
before it stabilizes at around 0. These fluctuations occur more strongly with Flink than with
Kafka Streams and more strongly with UC3 than with UC2. In particular, we can observe
that 10 instances seem to perform better than 9 and 11 instances. One possible reason for this
may be found in the fact that we use 40 Kafka partitions and the stream processing engines
might work particularly efficiently if the partition count is a multiple of the instance count.

For the experiments in the public cloud, these effects can not clearly be observed. How-
ever, we observe that with a cluster size of 3 nodes, the lag trend increases again after some
point when further instances are added. As we expect this to be due to exhausted node
resources, we repeat the same experiments in a Kubernetes cluster with twice the number of
nodes. From this, we can see that the same instance numbers result in lower lag trends and,
especially, the lag trend remains below the threshold for higher instance numbers. Thus,
we see our assumption confirmed that the increase for higher loads is caused by a high
utilization of the cluster.

Regardless of the actual reasons for both observations, we can conclude that the lag trend
is not always decreasing with higher resource amounts. Therefore, our proposed binary
search strategy must be used with caution for the demand metric. For our capacity metric,
this means that increasing resources might also lead to violations of SLOs such that the
lower bound restriction can not always be applied.

SLO assessment with increasing resources
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Fig. 11 Lag trend with increasing resource amounts for different SUTs. In the Google cloud, the red line
represents the lag trend for a 3 node cluster, while the blue line represents the 6 node cluster

7.5 Evaluation of SLOwith Increasing Load

In this section, we now evaluate how the lag trend slope evolves with increasing loads, while
fixing the number of processing instances. The goal is to analyze whether SLOs might be
violated for lower load intensities while they are achieved for higher loads.
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7.5.1 Experiment Design

Similar to the previous evaluation, we now fix the amount of instances and perform a set of
SLO experiments for increasing load intensities. The remaining setup corresponds to that of
Section 7.4 and is summarized in Table 9.

7.5.2 Results and Discussion

Figure 12 shows for each evaluated SUT how the median lag trend evolves with increasing
load intensities. Again, a horizontal line at a lag trend of 2000 visualizes a possible threshold
for the lag trend metric.

For 7 out of 8 evaluated SUTs, we observe that for low load intensities the lag trend stays
reasonably constant and fluctuates only slightly around 0, until a certain load intensities is
reached. In all of these cases, it does not exceed 2000, which suggests that t = 2000 is a
reasonable order of magnitude for the threshold. For the Kafka Streams implementation of
UC3 in Google Cloud Platform, the lag trend is always greater than the threshold since our
evaluated load intensities are too high. For all other SUTs, we can first observe a slight drop
in the lag trend once a certain load intensity is exceeded, which is followed by monotonically
increase. This marks the capacity of the evaluated resource configuration according to our
capacity metric, i.e., the maximal load it can process. The drop can be explained by the fact
that the load is already high enough such that messages are massively queuing up while the
SUT starts up. Once the SUT reaches its normal throughput, messages have already been
accumulated and are then continuously processed, leading to a decrease in the lag. The drop
of Flink deployments is stronger compared to Kafka Streams since Flink has a longer start-
up time as we investigated manually. Again, the Kafka Streams implementation of UC3 in
Google Cloud Platform is the only SUT, for which the the lag trend is not monotonically
increasing. More specifically, for load intensities of 20 000 and 40 000 messages per second,
the lag decreases. However, as we can not make this observation on other than the median
data, we expect this to be outliers.

In summary, we conclude that the binary search strategy can be used to evaluate large
sets of load intensities with the capacity metric, at least when benchmarking event-driven
microservices with an SLO based on the lag trend metric. As furthermore the computed lag
trend is monotonically increasing after exceeding the defined threshold, we expect also the
lower bound restriction to be applicable for the demand metric.

Table 9 SUT configuration for evaluations of SLO with increasing load

SPEL GCP

Kafka Streams Flink Kafka Streams Flink

UC2 UC3 UC2 UC3 UC2 UC3 UC2 UC3

mes./s ≤ 500000 ≤ 100000 ≤ 500000 ≤ 400000 ≤ 250000 ≤ 50000 ≤ 250000 ≤ 100000

Instances 10 13 11 20 6 5 5 6

Duration 5 minutes, including 2 minutes warm-up

Repetitions 5
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Fig. 12 Lag trend with increasing load for different SUTs

SLO assessment with increasing load
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7.6 Threats to Validity

The goal of this experimental evaluation was to assess how configuration options of our
scalability benchmarking method influence their results. In the following, we report on the
threats and limitations to the validity of our evaluation.

Threats to Internal Validity Cloud platforms in general allow to make only little assump-
tions regarding the underlying hardware or software infrastructure (Bermbach et al. 2017).
Due to techniques such as containerization, cloud-native application abstract this even fur-
ther. Hence, we only have little influence on the execution environment and cannot control
possible influences on our result. Major part of this evaluation was to investigate the vari-
ability of results and hence the underlying processing capabilities of stream processing
engines. Nevertheless, we reused the same clusters among all our experiments such that we
cannot rule out that a recreation of the cluster on potential other hardware or with other
co-located VMs will cause different results. Furthermore, we only performed our experi-
ments in a relatively short time frame. We performed experiments of the same type mostly
in a sequence such that we cannot rule out that general performance variations over several
hours bias our results. While early works on cloud benchmarking found that performance
exhibits clear seasonal patterns (Iosup et al. 2011), more recent research were not able to
confirm this (Leitner and Cito 2016). Our cluster configuration of the private cloud and the
public clouds is very different, which may make it difficult to compare them.

Threats to External Validity With our Theodolite benchmarking tool, we only evaluated
one type of cloud-native applications, namely event-driven microservice that use distributed
stream processing engines. Our results regarding required experiment duration and required
number of repetitions should therefore not be generalized for other types of cloud-native
applications, which potentially use other SLOs. Furthermore, we only considered two
stream processing engines and focused on single types of load and resources. Similar limi-
tations apply to the evaluated cloud environments. In the public clouds, we only evaluated
virtual machines, while in the private cloud, we only evaluated bare metal servers. Further-
more, the nodes in the VM were of medium size resulting in an overall small cluster, while
the powerful nodes in private cloud provide much more computing capacity. To increase the
external validity of our results, it might be advisable to perform additional evaluations with
other cluster sizes.

8 RelatedWork

In this section, we discuss related work regarding our proposed scalability benchmarking
metrics, measurement method, and tool architecture.

8.1 Scalability Metrics

Both our proposed metrics are functions. Lehrig et al. (2018) point out that scalability
should be quantified as a function since capacity (or resource demand) does not increase at
a constant rate when adding resources (or increasing the load).

In traditional parallel and distributed systems research, it is common to describe scal-
ability as a function mapping processors or computing nodes to the time they require to
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compute some problem. In particular in high-performance computing (HPC), the distinction
between strong and weak scalability is common (Hoefler and Belli 2015): Strong scalabil-
ity describes how the completion time evolves with increasing processors for a fixed-size
problem. Weak scalability describes how the completion time evolves with increasing pro-
cessors while also scaling the problem size. This distinction cannot directly be transferred
to cloud-native applications. Such applications are usually not designed for solving a single,
compute-intensive problem, but are subjected to a permanent load, such as requests from
their users. Hence, the goal of scalability evaluations is to access whether a cloud-native
applications is still functioning if the load increases. This is what Bondi (2000) defines as
load scalability.

Also originating from traditional parallel and distributed systems research, the Univer-
sal Scalability Law (Gunther 2007; Gunther et al. 2015) is a general performance model
for system scalability. Similar to our capacity metric, it describes scalability as capacity in
function of processors. The Universal Scalability Law is based on the assumption that scal-
ability of arbitrary systems can be described using a non-linear rational function with two
system-specific coefficients, representing contention and coherency. Quantifying scalability
by two coefficients has the significant advantage that it allows to easily rank different SUTs.
However, to the best of our knowledge, there is no study so far that evaluates how well
these coefficients can be derived from empirical measurements when considering capacity
as discrete values, as obtained with our proposed measurement method.

In their seminal work on cloud benchmarking, Kossmann et al. (2010) measure scal-
ability of different cloud services by evaluating the number of successful requests while
increasing the number of parallel requests. Similar to our demand metric, they thus consider
the varying load as input variable. This allows to detect if an increasing load cannot be han-
dled anymore at some point. In contrast to this work, the authors focus on cloud services,
which are automatically scaled by the cloud provider. With such services, customers are not
directly charged for the underlying hardware resources, but instead based on application-
level metrics (such as requests per hour). For orchestrated cloud-native applications as
studied in this paper, resources are manually scaled to achieve the desired SLOs. Hence, we
assume that a metric for such type of systems should quantify the resource demand.

Along with establishing precise definitions of scalability in cloud computing, Lehrig
et al. (2015) and Becker et al. (2015) used systematic methods to derive scalability metrics.
Lehrig et al. (2015) conducted a systematic literature review and found only one scalabil-
ity metric evaluated in a practical setting at the time of the study (Tsai et al. 2011). This
metric requires scaling to be quick, which contradicts most scalability definitions (Lehrig
et al. 2015). Becker et al. (2015) use the goal question metric (GQM) method to derive
two scalability metrics. The first metric “scalability range” describes the maximum load a
SUT can handle without violating its SLOs. This metric can also be derived directly from
both our scalability metrics. The second metric is called “scalability speed” and describes
whether a SUT can achieve its SLOs if the load increases by a certain rate (load per unit
of time). As highlighted in Section 2.2.3, using time for describing scalability is uncom-
mon. Both metrics from Becker et al. (2015) do not consider the resource amounts needed
to achieved its SLOs.

More recently, Brataas et al. (2017) proposed a scalability metric function relating load,
resources, and SLOs. This metric matches our capacity metric, although formalized dif-
ferently. In our previous work (Henning and Hasselbring 2021a), we emphasize that our
demand metric is more strictly aligned to scalability definitions as it considers load to be the
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input variable. However, the capacity metric may have the advantage to show the resource
amounts with which adding further resources result in worse performance.

The domain-based metric was recently presented by Avritzer et al. (2020) to access the
scalability of microservice deployment options. It aims at measuring scalability as a sin-
gle value, quantifying how increasing workload situations can be handled without violating
SLOs. In contrast to our metric, the domain-based metric does not allow for resources
being added in order to satisfy SLO requirements. Instead, different resource amounts are
considered as separate deployment options.

8.2 Scalability Measurement Methods

While several scalability evaluations describe scalability as functions of resources, many
of them do not conduct isolated experiments for different load intensities (Brunner et al.
2015; Al-Said Ahmad and Andras 2019; Karakaya et al. 2017; Nasiri et al. 2019; Karimov
et al. 2018). Instead, they continuously increase the load on a system and measure when
SLOs cannot be fulfilled anymore. In our previous work, we highlighted limitations of this
method for the case of stream processing (Henning and Hasselbring 2021a). Sometimes also
the provisioned resources are auto-scaled in the background (Brunner et al. 2015; Al-Said
Ahmad and Andras 2019), which serves a different purpose than our scalability bench-
marking method. Different methods for scalability benchmarking of database systems in the
cloud are discussed by Kuhlenkamp et al. (2014), which, however, do not include running
isolated experiments for different load resource combinations.

Scalability evaluations similar to our proposed measurement method can be found for
the case of Infrastructure-as-a-service (IaaS) clouds (Brataas et al. 2017; Cunha et al. 2017).
As Brataas et al. (2017) use a scalability metric similar to our capacity metric, they pursue
similar ideas for bounding the execution times of their experiments. In line with our linear
search strategy, they stop testing higher load intensities once they detect that a load inten-
sity cannot be handled anymore by a certain resource level. However, their paper discusses
this topic only briefly and does not provide a systematic measurement method. As Brataas
et al. (2017) analyze scalability only with respect to increasing resources, they do not apply
strategies such as our lower bound restriction. Although without explicitly stating scalabil-
ity metrics and measurement methods, Cunha et al. (2017) employ a similar approach for
evaluating horizontal and vertical scalability for IaaS cloud environments. They conduct
three isolated experiments for different resource amounts and load intensities and evalu-
ate whether service level objectives are achieved. The authors do not use any techniques to
reduce the search space.

Related work quantifying the variability of short running performance experiments in
the cloud can, for example, be found by Iosup et al. (2011), Leitner and Cito (2016), Abedi
and Brecht (2017), Maricq et al. (2018), or Laaber et al. (2019). He et al. (2019) and He
et al. (2021) and Bulej et al. (2020) propose methods for reducing the amount of experiment
repetitions while preserving a high measurement accuracy. These methods differ from ours
in that they aim to accurately measure the performance of a system, while for benchmarking
scalability, we only need to accurately assess whether a system fulfills specified SLOs.
Combining the methods of He et al. (2019) and He et al. (2021) with ours is basically
possible, but would lead to benchmark execution durations of several weeks, which we
consider impractical.

For measuring their domain-based metric, Avritzer et al. (2020) proposed a novel
approach for deriving SLOs based on a low workload. Additionally, they use operational
profiles for representative workloads, which may be extracted from monitoring data.
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8.3 Scalability Benchmarking Architectures

Most benchmarking studies, which benchmark scalability in the cloud, do not provide
a benchmarking tool or a corresponding architecture (Kuhlenkamp et al. 2014; Al-Said
Ahmad and Andras 2019; Karimov et al. 2018). General architectures for cloud benchmark-
ing tools are presented, for example, by Bermbach et al. (2017) and Iosup et al. (2014). Our
architecture builds upon such architectures but is particular suited for cloud-native environ-
ments by relying on established cloud-native tools and patterns. Additionally, we allow for
defining benchmarks declaratively. Declarative benchmark description is also suggested by
Cunha et al. (2017), but without distinguishing between benchmarks and executions. We
expect the separation of benchmark and its execution to particularly foster reproducibility.

Recently, Avritzer et al. (2021) presented an architecture for measuring their domain-
based metric (Avritzer et al. 2020). In contrast to this study, the authors do not aim for
executing independently provided benchmarks, but instead perform scalability tests as part
of a software’s quality assurance. For this reason, and because scalability is studied with
respect to a different metric, they do not provide a data model, which is comparable to
the one we presented in this study. Similar to our proposed architecture, the authors utilize
cloud-native technologies for monitoring and visualization. However, they do not integrate
their architecture in the underlying orchestration tool (Docker swarm in their case) as we do
by adopting the operator pattern.

In our previous publication (Henning and Hasselbring 2021c), we presented a first pro-
totypical architecture for an initial version of our scalability benchmarking method. The
presented architecture did already rely on cloud-native technologies, but was tailored to run
specific benchmarks for stream processing engines. With this paper, we substantially extend
the experiment control component of that architecture to increase usability. Specifically, we
propose to apply the operator pattern along with a flexible data model for defining bench-
marks and their executions in a declarative manner. In general, the focus of our previous
publication was proposing specific benchmarks for microservices that use stream processing
frameworks, while with this work, we present a general scalability benchmarking method
for cloud-native applications.

To the best of our knowledge, we present the first scientific approach for applying the
operator pattern to benchmark cloud-native applications. Recently, (Merenstein et al. 2020)
proposed an architecture based on the operator pattern for benchmarking cloud-native stor-
age infrastructure. Similar to our identified requirements, the authors highlight that such an
architecture can improve usability, which is particularly important in complex cloud-native
environments. Additionally, some benchmark operators emerged in the cloud-native com-
munity for benchmarking the performance of Kubernetes installations.13 In contrast to our
architecture, all of these operators do not distinguish between CRDs for benchmarks and
their executions, which we expect to be a key feature for enabling reproducibility.

9 Conclusions and FutureWork

This paper studied how scalability of cloud-native applications can be benchmarked. Based
on a set of requirements derived as part of this study, we presented a benchmarking method,

13https://kubestone.io, https://github.com/cloud-bulldozer/benchmark-operator
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consisting of two scalability metrics, a corresponding measurement method, and an archi-
tecture for a scalability benchmarking tool. Our scalability metrics are strictly aligned with
definitions of scalability in cloud computing. They support arbitrary types of applications,
which may be subject to different types of load, may react to these load by increasing
different types of resource, and may have different SLOs. These scalability metrics can
be measured with our proposed scalability measurement method. It supports configura-
tion options to individually balance the trade-off between a time-efficient execution and
statically grounded results. Our benchmarking tool architecture provides a platform for exe-
cuting scalability benchmarks according to our proposed metrics and measurement method.
Its design focuses on usability by adopting common cloud-native patterns.

In an extensive experimental evaluation, we analyze the trade-off between a time-
efficient execution and statically grounded results for the case of cloud-native applications
that employ stream processing engines. We run experiments in two public and one private
cloud infrastructure and find that in most cases only little (≤ 5) repetitions and short exe-
cution times (≤ 5 minutes) are necessary to assess whether certain resource amounts can
handle a load intensity. Additionally, our results show that for both our scalability metrics
search strategies can be used to massively reduce the amount of individual experiments.
Based on our experimental results, we recommend that benchmarkers focus on evaluat-
ing larger load and resource sets instead of on exhaustive repetitions of individual SLO
experiments, as the former is more likely to present a fairly accurate picture of a systems
scalability.

With this study, we lay the foundation for comprehensive scalability benchmarking of
cloud native applications. Interesting future research directions to explore are, for instance,
benchmarking different cloud-native technologies such as the stream processing engines
studied in this paper, comparing scalability with different types of resources (e.g., vertical
vs. horizontal scaling), or evaluating how costs in public clouds evolve with increasing load
intensities and, thus, increasing resource demands.

Besides actual scalability benchmarking, future work may also extend the evaluation of
our method. Possible extensions are evaluating how cloud configurations such as cluster
size or node type influence the results as well as repeating our experiments at different times
of day. Also an evaluation with other benchmarks, applications, load types, resource types,
and SLOs would emphasize the applicability of our proposed method.
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Avritzer A, Camilli M, Janes A, Russo B, Jahč J, Hoorn A, Britto R, Trubiani C (2021) PPTAMλ: What,
where, and how of cross-domain scalability assessment. In: 2021 IEEE 18th international conference on
software architecture companion (ICSA-C). https://doi.org/10.1109/ICSA-C52384.2021. 00016

Avritzer A, Ferme V, Janes A, Russo B, van Hoorn A, Schulz H, Menasché D, Rufino V (2020) Scal-
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