
https://doi.org/10.1007/s10664-022-10146-1

CSMITHEDGE: more effective compiler testing
by handling undefined behaviour less conservatively

Karine Even-Mendoza1 ·Cristian Cadar1 ·Alastair F. Donaldson1

Accepted: 14 March 2022 /
© The Author(s) 2022

Abstract
Compiler fuzzing techniques require a means of generating programs that are free from
undefined behaviour (UB) to reliably reveal miscompilation bugs. Existing program gen-
erators such as CSMITH achieve UB-freedom by heavily restricting the form of generated
programs. The idiomatic nature of the resulting programs risks limiting the test coverage
they can offer, and thus the compiler bugs they can discover. We investigate the idea of
adapting existing fuzzers to be less restrictive concerning UB, in the practical setting of
C compiler testing via a new tool, CSMITHEDGE, which extends CSMITH. CSMITHEDGE

probabilistically weakens the constraints used to enforce UB-freedom, thus generated pro-
grams are no longer guaranteed to be UB-free. It then employs several off-the-shelf UB
detection tools and a novel dynamic analysis to (a) detect cases where the generated pro-
gram exhibits UB and (b) determine where CSMITH has been too conservative in its use
of safe math wrappers that guarantee UB-freedom for arithmetic operations, removing the
use of redundant ones. The resulting UB-free programs can be used to test for miscompi-
lation bugs via differential testing. The non-UB-free programs can still be used to check
that the compiler under test does not crash or hang. Our experiments on recent versions of
GCC, LLVM and the Microsoft Visual Studio Compiler show that CSMITHEDGE was able
to discover 7 previously unknown miscompilation bugs (5 already fixed in response to our
reports) that could not be found via intensive testing using CSMITH, and 2 compiler-hang
bugs that were fixed independently shortly before we considered reporting them.

Keywords Compilers · Fuzzing · Csmith · GCC · LLVM · MSVC

Communicated by: Dan Hao

� Karine Even-Mendoza
k.even-mendoza@imperial.ac.uk

Cristian Cadar
c.cadar@imperial.ac.uk

Alastair F. Donaldson
alastair.donaldson@imperial.ac.uk

1 Imperial College London, Department of Computing, London, UK

Published online: 8 July 2022

Empirical Software Engineering (2022) 27: 129

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10146-1&domain=pdf
http://orcid.org/0000-0002-3099-1189
http://orcid.org/0000-0002-3599-7264
http://orcid.org/0000-0002-7448-7961
mailto: k.even-mendoza@imperial.ac.uk
mailto: c.cadar@imperial.ac.uk
mailto: alastair.donaldson@imperial.ac.uk

1 Introduction

The critical role of compilers, which underpin practically all deployed software, has led to
a lot of interest in techniques for automated compiler testing, with a surge of interest in this
topic over the last decade (see Chen et al. 2020 for a recent survey). In particular, compiler
fuzzers have proven successful at finding bugs in mature compilers via randomised test-
ing (Yang et al. 2011; Le et al. 2014; Nakamura and Ishiura 2016; Livinskii et al. 2020; Lid-
bury et al. 2015; Donaldson et al. 2017; Marcozzi et al. 2019). A popular method for finding
miscompilation bugs—where a compiler silently generates wrong code—is differential tes-
ting (McKeeman 1998; Groce et al. 2007). Employed by tools such as CSMITH (Yang et al.
2011) and YARPGEN (Livinskii et al. 2020), this involves comparing the result obtained by
running a program after compilation by distinct compilers or by a single compiler at dif-
ferent optimisation levels, with result mismatches indicating bugs. This avoids the oracle
problem (Barr et al. 2015): it flags up differences in results that are expected to be the same,
yet does not require knowing which (if any) result is correct.

Dealing with the oracle problem in this manner when testing C and C++ compilers relies
on a source of programs that are free from undefined behaviour (UB). Examples of UB in C
include using uninitialised variables, accessing invalid pointers, overflow of signed integer
arithmetic operations, division by zero, and unsequenced accesses to variables (International
Organization for Standardization 2018). A program that exhibits UB has arbitrary seman-
tics, so optimising compilers are permitted to assume that input programs are free from
undefined behaviour (UB-free) and optimise them based on that assumption. In practice,
compilers do take advantage of UB to generate efficient code (Wang et al. 2013) (we give
an example in Section 2.1), thus when a program triggers UB, the results of cross-checking
the program’s results between multiple compilers or optimisation levels are meaningless:
the program can legitimately yield any result when executed.

To counter this, compiler fuzzers go to great lengths to generate UB-free programs.
For instance, the CSMITH program generator (Yang et al. 2011) guards every instance of
a signed arithmetic operation with an overflow check that only performs the operation if
overflow will not occur, and uses conservative static analysis during generation to ensure
that pointer arguments to functions always refer to valid data so that they can be deref-
erenced without error. The problem with such strategies is that generated programs have
a restricted, idiomatic form, which can limit the extent to which they exercise the com-
piler under test. For example, certain peephole optimisations may be inapplicable if every
arithmetic operation is enclosed in a conservative check for potential UB.

After a sufficiently long testing campaign, the idiomatic form of the programs generated
by a particular compiler fuzzer leads to the compilers under test becoming “immune” to the
fuzzer: the compiler bugs that remain either cannot be triggered by the kinds of programs
the fuzzer generates, or can be triggered only with very low probability. For example, John
Regehr, one of the authors of CSMITH, tweeted during July 2019: “I hadn’t run Csmith for
a while and it turns out LLVM is now amazingly resistant to it, ran a million tests overnight
without finding a crash or miscompile” (Regehr 2019).

A heavyweight solution to this immunity problem is to write a brand new fuzzer, and
indeed the recent YARPGEN (Livinskii et al. 2020) was able to find a large number of
bugs in mainstream compilers that could not be found by CSMITH. But writing an entirely
new compiler fuzzer is a large undertaking, and the compilers under test may soon become
immune to the new fuzzer (as has reportedly happened with YARPGEN and LLVMBabokin
2019).

129 Page 2 of 35 Empir Software Eng (2022) 27: 129

Our contribution In this work we are interested in whether a compiler’s apparent immunity
to a particular fuzzer might be lessened via coercing the fuzzer into generating more diverse
programs by having it be less conservative about UB. We investigate the following research
question:

Can a program generator that conservatively enforces UB-freedom be made less conser-
vative such that:

a) it can still be used as a source of programs for differential testing, and
b) the resulting programs lead to more thorough compiler testing, in terms of bugs found

and code covered in the compiler code base?

We present a new open-source tool, CSMITHEDGE (CsmithEdge - Homepage 2022), an
extension of CSMITH. CSMITHEDGE employs three steps to make generated programs less
restricted, which are summarised in Fig. 1a.

First, it probabilistically relaxes some of the generation-time static analyses that CSMITH

uses to ensure UB-freedom. Relaxing these analyses makes them unsound, such that
generated programs might actually trigger the UB that the analyses aimed to avoid.

Second, CSMITHEDGE runs each generated program using a collection of off-the-shelf
UB detection tools that either show that the program does exhibit UB, or establish with high
confidence that it is UB-free; we have manually tuned the range of probabilities associated
with relaxation so that the rate of programs that trigger UB is not too high.

Third, if the program is judged to be UB-free, CSMITHEDGE uses a novel yet simple
dynamic analysis to identify cases where safety checks for UB on arithmetic operations
inserted by CSMITH are redundant, and removes these checks.

The resulting relaxed, UB-free program can then be used to test a set of compilers for
miscompilation bugs via cross-checking. If, during the second step, the UB detection tools
show that the generated program exhibits UB, it cannot be used for miscompilation testing,

Relaxed
Generator

 UB Detector

Crash
Testing

Relax
Arithmetic

Checks

program

program
with UB

UB-free
program

Relaxation
Probabilities

not
detecteddetected

 UB-free
program

crash

Reporting
Bugs

Differential/
Crash Testing

crash or mismatch

(a) CSMITHEDGE conceptual approach

Relax

Arithmetic

Checks

 UB Detector
not detected

mismatch

program

Relaxed

Generator

 Relaxation

Probabilities

program

Differential/

Crash Testing

crash

Reporting

Bugs

(b) CSMITHEDGE lazy approach

Fig. 1 Program generation with relaxed methods during and post code generation

Page 3 of 35 129Empir Software Eng (2022) 27: 129

but can still be used to test the compilers of interest to find programs that lead to crashes or
hangs.

To avoid consistently incurring the high overhead associated with UB detection, we apply
a lazy approach in practice. That is, postpone UB detection to the differential testing phase,
and only perform UB detection on programs that trigger a result mismatch between the
compilers under test. We summarise the process with the lazy approach in Fig. 1b and
discuss it in detail in Section 3.3.

Our approach aims to improve compiler testing by increasing the size of the space of test
cases that can be generated. By relaxing UB-related compile-time generation constraints,
CSMITHEDGE can generate test cases that are not in the vocabulary of regular CSMITH.
This is in contrast to methods that improve the diversity of generated tests by changing the
manner in which the test generator is configured, such as through swarm testing (Groce
et al. 2012) (a technique that CSMITHEDGE also incorporates, as discussed in Section 3.4),
or based on historical information (Chen et al. 2019). Such methods leave the set of poten-
tial test cases unchanged, but may dramatically change the probabilities associated with
particular test cases being generated.

Summary of experimental findings We present a large experimental evaluation applying
CSMITHEDGE to two recent versions of the GCC and LLVM compilers, both of which have
been extremely well tested by several compiler fuzzing tools for many years.

To answer the part a) of our research question, we measured the rate of generated pro-
grams that could be used for differential testing. On a standard machine, CSMITHEDGE

generated around 105.09 programs per hour using the flow in Fig. 1a.1 With the optimised
lazy flow of Fig. 1b, CSMITHEDGE generated 215.21 programs per hour (in this case, any
terminating program that is either UB-free or triggers the same behaviours across compilers
is counted). By comparison, regular CSMITH achieved 345.75 programs per hour: the degra-
dation in performance for CSMITHEDGE comes from the overhead of running UB detection
tools and the fact that a portion of programs turn out to contain UB. Overall, checking
whether programs terminate is the dominating factor regardless of whether CSMITH or
CSMITHEDGE is used, and in the case of CSMITHEDGE, when a program does turn out to
trigger UB this is often quickly detected by a UB detection tool.

Therefore, the answer to part a) of our research question—whether relaxing restrictions
on generated programs can yield a source of programs for differential testing programs—is
yes, but with a 1.61 × runtime overhead with the tool’s default configuration (i.e. using the
lazy approach of Fig. 1b with a 50 s timeout).

We have found CSMITHEDGE to be effective in finding bugs, providing a positive answer
to part b) of our research question. We found and reported 7 previously-unknown miscompi-
lation bugs (5 in GCC, 1 in LLVM, and 1 in MSVC, the Microsoft Visual Studio Compiler),
of which 5 have already been fixed in response to our reports. We also discovered 2 GCC
hang bugs that turned out to have been independently discovered and fixed shortly before
we considered reporting them, and several bugs in the older versions of the GCC and LLVM
compilers. We also tested these compilers thoroughly with regular CSMITH and did not find
any miscompilations, crashes or hangs, which provides evidence both that these compilers
have become somewhat immune to the kinds of bugs that regular CSMITH can expose, and
that the strategies employed by CSMITHEDGE are effective in extending the bug-finding

1This includes the time taken to check whether each program terminates within a 50 s time limit. The evalu-
ation was done on a single virtual machine running Ubuntu 18.04 LTS x86 64 with two virtual CPU cores (2
Sockets, 1 Core) and 8 GB RAM.

129 Page 4 of 35 Empir Software Eng (2022) 27: 129

power of CSMITH. We also measured the coverage of the GCC and LLVM code bases
achieved during fuzzing campaigns using regular CSMITH and CSMITHEDGE, finding that
CSMITHEDGE achieves a modest improvement in coverage for both compilers, providing
further evidence that being less conservative about undefined behaviour can lead to more
thorough testing.

Paper structure After discussing necessary background (Section 2), we describe the design
and implementation of CSMITHEDGE, which involves two distinct parts—relaxing genera-
tion-time restrictions, and eliminating redundant safety checks post-generation (Section 3).
We present our large experimental campaign, providing details of a selection of the bugs that
we found in GCC, LLVM and MSVC, as well as discussing coverage results (Section 4).
After discussing threats to validity (Section 5) and related work (Section 6) we conclude
with a discussion of future directions (Section 7).

2 Background

We provide background on the CSMITH program generator, which CSMITHEDGE extends,
focusing on how CSMITH ensures that generated programs are UB-free (Section 2.1), and on
the tools that CSMITHEDGE employs to detect the UB that might be introduced by relaxing
generation-time restrictions (Section 2.2). We also briefly discuss the C-REDUCE tool that
we use for test case reduction (Section 2.3).

2.1 CSMITH and UB Avoidance

To illustrate why differential testing requires a source of UB-free programs, consider the
following C example:

Someone not well-acquainted with UB in C might expect the function to print Overflow!
when invoked with a value of x whose square cannot be represented by a 32-bit integer, since
integer arithmetic has wraparound semantics on all mainstream computer architectures.

When foo is invoked with x=1,000,000, we find that the message Overflow! gets
printed if the program has been compiled without optimisations using e.g. GCC 7.5.0 or
LLVM 11 (targeting an x86 processor). However, no message is printed if optimisation level
-O2 or higher is used with these compilers. This is because the input x=1,000,000 triggers
signed arithmetic overflow, which is UB. The optimising compiler can assume that no UB
is triggered, and so may reason that the square of x cannot be negative and optimise away
the entire conditional statement. (In fact, recent versions of GCC perform this optimisation
even at -O0). This demonstrates that cross-checking a program across multiple compilers
is meaningless if the program exhibits UB.

We now provide some details on how CSMITH (Csmith Homepage 2021; Yang et al.
2011) generates deterministic C programs that are free from UB. CSMITH generates a pro-
gram in a top-down fashion based on the C language grammar. Global variables can have
a wide variety of types, including randomly-generated structure and union types, as well
as nested pointers. A program contains a series of randomly-generated functions, whose

Page 5 of 35 129Empir Software Eng (2022) 27: 129

arguments and return type may be based on the structures and unions the tool has generated.
Functions have a set of local variables of various types, and their bodies manipulate both
local and global variables. The statements involved are often complex, involving pointers
with multiple levels of indirection, nested structures and multi-dimensional arrays.

A CSMITH program takes no input, and on termination prints a single value obtained by
hashing the final values of the program’s global variables. Each CSMITH–generated pro-
gram thus has a single path; this is an important property that we take advantage of in our
approach for identifying redundant arithmetic checks (Section 3.2).

CSMITH achieves UB-freedom via a combination of generation-time restrictions and
runtime checks.

Generation-time restrictions CSMITH forces all variables to be initialised before use:
scalars are initialised to random values and pointers to the addresses of suitable in-scope
variables. Arrays are initialised via for loops right after their declaration or when declared
via curly braces. When generating goto statements, CSMITH forbids a goto from jump-
ing over initialisation code by limiting the possible locations of labels, and by discarding
bad goto statements via a static analysis on the source and destination locations.

To ensure that programs do not index arrays out of bounds, CSMITH keeps track of the
sizes of arrays. Array accesses via randomly-generated constant indices that respect the
bounds of an array can thus be generated anywhere the array is in scope. For non-constant
accesses, CSMITH generates for loops whose index variables iterate from a lower bound to
an upper bound using a fixed stride. In such loops it exploits the combination of knowledge
about the sizes of arrays and ranges of index variables to generate non-constant but in-
bounds array accesses based on suitable loop index variables.

By forcing all pointers to be initialised to the addresses of existing program variables,
and because it does not generate pointer arithmetic, CSMITH avoids the possibility of null or
invalid pointers being dereferenced. The problem of the addresses of local variables escap-
ing into global variables is avoided via a whole-program pointer analysis. When CSMITH

detects that it has generated code that will lead to escaping pointers, it backtracks and gen-
erates a different code fragment instead. CSMITH contains options that allow it to generate
programs that include null and dangling pointers with low probability—these options were
introduced to allow CSMITH to be used for testing static analysers (Cuoq et al. 2012) and
would usually be disabled during compiler testing; however, we make use of these options
in our approach.

CSMITH applies effect analysis to avoid generating code with read/write and write/write
conflicts between two sequence points. This analysis avoids the generation of an expression
such as a[i++] = i, which would trigger UB if executed because it writes to i via sub-
expression i++ and reads from i via the sub-expression i on the right-hand side of =,
with no sequence point determining an order for the accesses to i on either side of the
= operator. Each variable, including unions and arrays but without distinguishing between
different members or offsets, is placed by CSMITH either on a READ list or on a WRITE
list to ensure an object cannot be modified more than once between two sequence points.
CSMITH decides before generating code which variables are on the READ or WRITE list.
This avoids read/write and write/write conflicts between sequence points, including those
related to unspecified order of evaluation of function arguments.

By studying the CSMITH source code we also noticed that the tool explicitly prevents the
address of a formal parameter of a function f being passed as an actual parameter to a func-
tion invoked by f . The reason for this restriction is not documented, but we do not believe
it is explicitly related to UB. We found that removing the restriction has a negative impact

129 Page 6 of 35 Empir Software Eng (2022) 27: 129

on the time associated with static analysis, significantly increasing the overall time taken by
CSMITH to generate programs, so it seems likely that the restriction is in place for perfor-
mance reasons. As discussed in Section 3, we relax this restriction with low probability, in
order to generate more diverse programs without making generation too slow.

Runtime checks Freedom from arithmetic-related UB is achieved through runtime arith-
metic checks encoded via safe math wrappers. Instead of directly issuing an integer
arithmetic expression a ◦ b (for some operator ◦), CSMITH invokes a safe math wrapper for
the operation. The wrapper returns a ◦ b if there would be no associated UB, and otherwise
returns some safe value (in practice, the value a). More formally, a safe math wrapper for
an operation a ◦ b has the form:

unsafe(a, b, ◦) ? a : a ◦ b

where unsafe(a, b, ◦) is an unsafe check that returns true if and only if the operation a ◦ b

would trigger UB.
CSMITH offers safe math wrappers in the form of functions, e.g. (for unsigned integer

division):

and macros, e.g. (again for unsigned integer division, and simplified for readability):

The user of CSMITH can decide which to use by including an appropriate header file.
The function and macro forms of these wrappers are intended to be semantically equiv-
alent. However, they may change the kinds of optimisations that the compiler under test
performs. For example, the presence of many simple functions will frequently exercise the
compiler’s function inliner, but the compiler may decide not to inline all such function calls,
which may inhibit optimisation opportunities that inlining would enable and will be pos-
sible when macros are used. Our understanding from talking to the CSMITH developers is
that functions (the default) are preferred because they are simpler to maintain. This is evi-
dent from the relative simplicity of the function version above; the macro version requires
a great deal of care to be taken related to casting. During our evaluation we found and fixed
some discrepancies between the function and macro wrappers (GitHub 2020a; 2020b).

2.2 UB Detection

Our CSMITHEDGE tool relaxes the analyses that CSMITH uses to ensure UB-freedom, and
thus risks generating programs that exhibit UB. These must be detected, as they cannot be
used for miscompilation testing. The following program analysers are employed for this
purpose; their role in our solution is summarised in Table 1, which we discuss in Section 3.1.

AddressSanitizer (ASAN) (Serebryany et al. 2012) is a dynamic analysis tool that uses
a shadow memory approach to detect invalid memory accesses, such as buffer overflows
(heap, stack, and globals), and use-after-free, use-after-scope and use-after-return accesses.
It has a typical overhead of 2× (Address Sanitizer 2012).

Page 7 of 35 129Empir Software Eng (2022) 27: 129

Table 1 The CSMITH generation-time restrictions that CSMITHEDGE relaxes, together with the analysis tools
that are used to detect the UB that might therefore arise, and the lower and upper bounds on the probabilities
with which these relaxations are applied, both for crash testing and miscompilation testing

Bounds [Rl, Ru] for:

Relaxation UB detected by (in the order used) Crash Miscomp.

Null dereferences UBSAN [0, 1] [0, 1]
Dangling pointer dereferences ASAN, FRAMA-C [0, 1] [0, 1]
Variable initialisation MSAN, FRAMA-C [0, 1] [0, 0.35]
Locations associated with “goto” ASAN, MSAN, FRAMA-C [0, 1] [0, 1]
Array bounds ASAN, MSAN, UBSAN, FRAMA-C [0, 1] [0, 0.25]
Passing the addresses of parameters N/A [0, 1] [0, 0.5]
Read/write and write/write conflicts Always rejected for miscomp. testing [0, 1] [0, 0]

MemorySanitizer (MSAN) (Stepanov and Serebryany 2015) is also a dynamic analysis
tool based on shadow memory which can detect uninitialised memory accesses. It has a
typical overhead of 3× (Memory Sanitizer 2015).

UndefinedBehaviorSanitizer (UBSAN) (Undefined Behavior Sanitizer 2017) is a
dynamic analysis tool that can detect a variety of undefined behaviour, such as use of a
misaligned or null pointer, out-of-bounds array indexing (if the bound can be statically
determined), signed integer and floating-point types overflow, code that performs pointer
arithmetic that overflows, and integer division by zero. We have found it to cause a typical
slowdown of 2-3×.

FRAMA-C (Cuoq et al. 2012) is a static source-code analyser for C programs with sev-
eral available algorithms (plugins). In particular, the tool has an Evolved Value Analysis
(Eva) plugin, which applies abstract interpretation techniques to compute variation domains
for variables to analyse program variable values (Frama-C EVA plugin 2007). Eva reports
possible undefined behaviour, such as the use of uninitialised addresses, dangling pointer
dereferences, out-of-bounds index accesses, and signed integer overflow. The fact that a
CSMITH program has a single path means that this analysis is as precise as a dynamic anal-
ysis: FRAMA-C effectively acts as an interpreter that performs rigorous semantic checks.
We have found it to cause a typical slowdown of 28×.

FRAMA-C has a relatively high overhead, and yet the overhead of CSMITHEDGE overall
is much lower. This is related to the way we perform the UB detection: using the tools with
the lower overhead first, before applying heavier tools, and terminating as soon as UB is
detected in the generated program.

All of the analysis tools that we use have the potential to report either false positives
or false negatives in principle. However, in practice we have found that they are mainly
precise when applied to programs generated by CSMITHEDGE; we discuss some exceptions
in Section 3.

2.3 Test Case Reduction

ACSMITH- or CSMITHEDGE-generated program is typically large and complex. As a result,
a generated program that triggers a miscompilation bug is not directly useful for report-
ing the bug; a test case reducer is needed to shrink the program down to a much smaller
version that still triggers the bug. In our experiments, we use the C-REDUCE tool for this

129 Page 8 of 35 Empir Software Eng (2022) 27: 129

purpose (Regehr et al. 2012). C-REDUCE takes a C program and the path to an “interesting-
ness test” script. The user of C-REDUCE must write this script to encode the property with
respect to which they want their program to be reduced: the script should return 0 if and
only if a given program is deemed “interesting”.

For reducing a miscompilation bug observed via a mismatch between compilers A and B,
we use an interestingness test that (a) compiles and executes the program using each of the
analysis tools described in Section 2.2, returning “not interesting” if any of them flags up a
UB, then (b) compares the results obtained by running the program after compilation using
compilers A and B, returning “interesting” if and only if the results differ. It is important to
check for UB-freedom at every stage of the reduction process: even if the original program
was UB-free, C-REDUCE may apply transformations that introduce UB. In Section 3.3 we
discuss a lazy approach to detecting UB that we also use to optimise the interestingness test
during reduction.

For compiler crash bugs the interestingness test is simpler. Suppose we wish to reduce a
bug where the compiler crashes with a particular error message or stack trace. We first write
a regular expression characterising the output associated with the crash. The interestingness
test is then set up so that “interesting” is returned if and only if the compiler under test
crashes, and the compiler output matches the regular expression. Test case reduction is
not effective in reducing programs that cause a compiler to hang since test case reduction
involves invoking the compiler a large number of times, and detecting a hang requires using
a large timeout.

3 Design and Implementation

The operation of CSMITHEDGE is summarised by the diagram of Fig. 1a. First, an adapted
version of CSMITH is invoked to generate a program; CSMITH is adapted so that some of
the generation-time restrictions discussed in Section 2.1 are relaxed. This means that the
generated program may be less restricted than a program that CSMITH typically generates,
but also that it might trigger UB.

To detect possible UB, a validation stage invokes the analysis tools described
in Section 2.2. The tools that are used depends on the specific analyses that CSMITHEDGE

chose to relax. If a program is found to contain UB then it cannot be used for differential
testing to detect miscompilations, though it can still be used to test compilers for crash and
hang bugs. Programs that do not terminate within a given time bound (50 s by default) are
also rejected during validation.

A program validated as UB-free and terminating will still contain a large number of
safe math checks—the conservative checks that CSMITH inserts to ensure freedom from
arithmetic UB (see Section 2.1). A novel dynamic analysis is used to determine which of
these checks are needed and which are redundant; the redundant checks are removed to
make the program even less constrained and thus more diverse than the kinds of program
regular CSMITH can generate. The resulting program is then used for differential testing
with the aim of detecting miscompilations.

As noted in Section 2.2, the analysis tools used during validation can in principle exhibit
false positives and false negatives. False positives would lead to the rejection of programs
produced by CSMITHEDGE that are actually valid; this might reduce the effectiveness of
CSMITHEDGE by lowering the rate at which it can generate usable programs. False nega-
tives could lead to programs that do exhibit UB being erroneously used for miscompilation

Page 9 of 35 129Empir Software Eng (2022) 27: 129

testing, leading to compiler bug reports that turn out to be false alarms. In practice we have
not found the precision of these analysers to be a major issue: our results (Section 4) show
that CSMITHEDGE generates programs that pass validation at a high enough rate that it
is useful for finding compiler bugs. By using a combination of analysis tools we encoun-
tered false alarm compiler bug reports extremely rarely: during our large experimental
campaign we manually examined many instances of potential miscompilations flagged by
CSMITHEDGE and only encountered one example of a program that actually triggered UB
(this had been missed by FRAMA-C because, for performance reasons, we invoke FRAMA-C
with a bound on the number of iterations of a loop that it will analyse).

We now discuss details related to relaxing generation-time constraints (Section 3.1) and
detecting and removing redundant arithmetic checks (Section 3.2), and explain some further
implementation details including an optimised version of the flow depicted in Fig. 1a that
leads to higher performance (Section 3.3).

3.1 Relaxing Generation-Time Restrictions

CSMITH’s generation-time restrictions are a key component of its guarantee that generated
programs are UB-free (see Section 2.1), but they limit the form of the programs that are
generated. These analyses and restrictions are all conservative: they may prevent the gener-
ation of code that would actually be UB-free. For example, much of the code that CSMITH

generates will turn out to be dynamically unreachable—previous work on equivalence mod-
ulo inputs testing reported that on average 29% of lines in a CSMITH-generated program
turn out to be unexecuted at runtime (Le et al. 2014). However, CSMITH does not know at
generation-time whether the code it is generating will be reachable, thus it conservatively
avoids generating code that would trigger UB if it were to be executed. Note that gener-
ating diverse non-idiomatic dead code is useful. This is because the compiler usually does
not know at compile time whether the code will be dead or not. While compiling the dead
code, some compiler optimisations may operate at the boundary of reachable and dead code
and—if implemented incorrectly—may change the results computed by reachable code.

CSMITHEDGE probabilistically relaxes these restrictions in order to generate more
diverse programs, using the UB-detection tools of Section 2.2 to identify any resulting
programs that exhibit UB so that such programs are not used for miscompilation testing.

Table 1 summarises the generation-time restrictions that CSMITHEDGE relaxes, and the
analysis tools that are used to detect the corresponding UB that might result. The table also
indicates the probabilities with which relaxations are applied, which we explain further in
Section 3.4. We try to use the faster analysis tools first so that if they detect UB the slower
ones are skipped. The order we use is ASAN, MSAN, UBSAN, FRAMA-C (though a partic-
ular analysis tool is only invoked if a relaxation that demands the use of that tool has been
applied). This order means employing the expensive FRAMA-C tool last. We acknowledge
that this order might not be optimal, since the optimal order is not just a function of analysis
tool speed, but also of how likely each analyser is to identify UB in generated programs in
practice. We revisit this matter during our evaluation in Section 4.2.

In deciding which UB avoidance methods to relax, we were guided by (a) whether there
is already a flag in CSMITH that enables the relaxation, or, if there is no such flag, (b) how
tractable it was to implement the relaxation in the (complex) CSMITH code base without
adversely affecting the rest of the tool. In some cases we found that introducing a relaxation
would break invariants within the CSMITH and lead to assertion failures; we persevered with
relaxations where it proved relatively easy to work around such problems. For example,
weakening the effect analysis to allow read/write and write/write conflicts can lead to the

129 Page 10 of 35 Empir Software Eng (2022) 27: 129

failure of assertions that check that there are no such conflicts (an invariant that regular
CSMITH maintains). We weakened the conditions of such assertions to ensure that they
would not fail for conflicts introduced as a result of our relaxations.

Following the approach of swarm testing (Groce et al. 2012), each time CSMITHEDGE

is invoked it chooses at random whether to enable each relaxation, so that only a subset
of all possible relaxations is enabled during generation of a single test. For an enabled
relaxation, the probability with which it will be applied is also chosen at random to be within
a particular interval that we have customised for each relaxation.

We now discuss each relaxation in turn.

Null pointer dereferences We allow the generation of reads and writes from a pointer that
might turn out to be null. We use CSMITH’s option for testing static analysers (Cuoq et al.
2012) which allows null pointer dereferencing with a given input probability. Allowing
dereferencing null pointers in code can lead to UB; however, it shall not trigger a UB in
dead code (this is because dead code can never be executed and therefore cannot lead to any
behaviour, including undefined one). We detect null pointer dereferences in reachable code
via UBSAN, which outputs a runtime error whenever a program tries to dereference or write
to a null pointer address.

Dangling pointer dereferences We allow dereferencing of pointers that may no longer
refer to allocated memory with a given input probability. We use some of CSMITH’s options
to test static analysers (Cuoq et al. 2012) that allow dereferencing dangling pointers simi-
larly to the null pointers option above but disable the option that generates a return statement
with a dead pointer. Initially, we tried generating code with this option but received many
return statements with dangling pointer dereferences; we could have lowered the probabil-
ity, but this would have had a general effect on the dangling pointer dereferences instances
in a program, making them unlikely to appear. As with null pointer dereferences, code that
would dereference dangling pointers only leads to UB if it is actually executed. We detect
dangling pointer dereferences in reachable statements via ASAN and FRAMA-C (this is part
of their broader capability to detect use-after-free problems in general); we use FRAMA-C
to detect local variables that escape the scope of their function, which may lead to access of
a local object out of its scope.

Variable initialisation We leave global and local variables uninitialised2 (including arrays
and unions), with a given input probability. We relax the original constraints in CSMITH

that force initialisation of each variable: CSMITHEDGE removes the assignment associated
with a variable’s declaration according to the input probability. This does not always lead to
UB—e.g. a statement that initialises the variable before it is used might be generated, or the
variable might appear in dead code. When UB does arise, we detect the lack of initialisation
in reachable code via MSAN and FRAMA-C.

Locations associatedwith goto A goto statement can, with some input probability, jump
to any label in the current context (all function’s blocks) and the label’s location is not
restricted in the current context by CSMITHEDGE. As a result, backward and forward jumps

2In C, global variables are initialised to zero if no explicit initialiser is given. However, removing explicit
initialisers is still a potentially interesting deviation from what CSMITH does, since CSMITH always explicitly
initialises every global.

Page 11 of 35 129Empir Software Eng (2022) 27: 129

can then skip over the initialisation of variables, which triggers UB if one of those unini-
tialised variables is read. For example, a CSMITHEDGE-generated program can now contain
this block:

In this example, the execution of the program jumps over the initialisation of b and uses
it without initialising it. Similarly, a backwards jump can circumvent variable initialisation
code. However, not all goto jumps generated by CSMITHEDGE lead to this scenario, as
it is possible that the code after the label never uses the uninitialised variable or it can be
assigned with a new value later on; in these cases, no UB is triggered. Like the relaxation of
variable initialisation, we detect the lack of initialisation in reachable code after a goto jump
via MSAN and FRAMA-C and null pointer dereferences with ASAN (in case we skipped an
array or a pointer initialisation).

Array bounds CSMITHEDGE allows generation of slightly more complex array index
expressions compared to CSMITH: in addition to integer constants, an array index expression
can be a binary operator with a mixture of variables and constants as operands. With some
input probability, we generate a constant or a binary operator expression without checking if
it is within the array’s bounds. Hence, CSMITHEDGE generates more interesting expressions
for array accesses than CSMITH; for example, CSMITHEDGE can generate this program:

Some of the index expressions, such as 3 ∗ 5 in the program above, can trigger an
array out-of-bounds access; any such expression in reachable code triggers UB. We use
all four tools to detect UB related to out-of-bounds array accesses: while FRAMA-C can
detect all such issues in principle, the sanitisers can each detect a subset of issues and incur
significantly lower overhead than FRAMA-C, thus it makes sense to try them first.

Passing the addresses of parameters As discussed in Section 2.1, CSMITH does not allow
the address of a parameter to the enclosing function to be passed as an argument to a func-
tion call and this appears to be for performance reasons rather than due to UB-avoidance.
To increase diversity of generated programs, we allow a parameter to take an argument’s
address by ignoring this restriction with a very low probability when constructing an expres-
sion for a function call parameter. By using a low probability we were able to avoid

129 Page 12 of 35 Empir Software Eng (2022) 27: 129

performance concerns. The “N/A” entry in the second column of Table 1 indicates that no
analysis was required in relation to this change, as we did not observe generated-code where
the relaxation leads to additional UB.

Read/write and write/write conflicts We weaken the effect analysis in CSMITH so that
read/write and write/write conflicts are allowed with some low probability. We found that
this change would frequently introduce undefined or unspecified behaviour, e.g. due to the
order in which function call arguments are evaluated becoming important (an unspecified
behaviour in C), or due to unsequenced races akin to the illustrative example presented
in Section 2.1. Furthermore, none of the UB-detectors used in this work are capable of
detecting such issues.3 We thus opted to keep this relaxation as an option for CSMITHEDGE,
but to regard a generated program as automatically invalid if it uses the option, so that the
program can only be used for crash/hang testing; this is indicated by the “Always rejected”
entry in the second column of Table 1, and the probability range [0, 0] associated with
miscompilation testing.

3.2 Relaxing Arithmetic Checks

Recall from Section 2.1 that CSMITH uses safe math wrappers to eliminate potential UB
arising from arithmetic operations. The price for this is that arithmetic operators that are
potentially UB-prone never appear in a CSMITH-generated program in a raw form. They
are always enclosed in a safe wrapper, as the third argument to a conditional (ternary) oper-
ator of the form “e1 ? e2 : e3”. As the conditional operator may introduce control flow
(due to short-circuit evaluation), the rather prescriptive program format arising from this
blanket use of conditionals may bias the optimisations that a compiler applies to CSMITH-
generated programs, possibly reducing the extent to which CSMITH can find bugs in other
optimisations.

An arithmetic check in a CSMITH-generated program is redundant if the program is still
free from UB after removing the check. We use a simple yet effective dynamic analysis to
successfully identify redundant arithmetic checks in a generated program that has passed
validation. Our analysis temporarily instruments every arithmetic check so that it will emit
a warning if it turned out to be truly necessary. To achieve this, the ith occurrence of a safe
math wrapper of the form unsafe(a, b, ◦) ? a : a ◦ b is replaced with:

unsafe(a, b, ◦) ? WARN(i), a : a ◦ b.

If executed, WARN(i) prints a message indicating that the ith safe math wrapper was gen-
uinely required—i.e. UB would have been triggered had it not been present. The semantics
of the C comma operator means that in the case where WARN(i) is executed, the entire
ternary expression evaluates to a, just as it would if WARN(i) were not present.

Because a CSMITH program takes no input and thus exhibits a single execution path,
running the transformed program once immediately reveals the subset of arithmetic checks
that are actually needed. We then prune all but these checks from the original program. This
yields a program that is still free from UB, because all the necessary safe math wrappers
are in place, but that may have significantly fewer safe math wrappers overall, because
all the redundant ones are gone, meaning that its use of arithmetic is correspondingly less
constrained.

3We believe that the CompCert compiler (Leroy 2009) may have support for detecting sensitivity to argument
evaluation order, but we have not yet integrated CompCert with CSMITHEDGE.

Page 13 of 35 129Empir Software Eng (2022) 27: 129

As an example, consider the following contrived program, which is similar in spirit to
(though much smaller than) a program that CSMITH might generate, where safe lshift,
safe add, safe div and safe mul are safe math wrappers for the signed integer
operators <<, +, / and *, respectively:

Our approach identifies the wrappers at locations (i) and (ii) to be redundant. The wrap-
per at (iii) is identified to be necessary (because the divisor k passes through 0). The inner
wrapper at location (iv) is confirmed to be redundant, because s and t are small enough
that their product does not overflow, but multiplying this product again by s would lead to
overflow so that the outer wrapper at (iv) is flagged as necessary.

Specifically, execution of this program with our modification lists two locations with
UB: the safe div call in the loop (for the iteration when k is 0) and the outer safe mul
call after the loop (when attempting to compute 81920 ∗ 81920; s and t’s value on exiting
the loop are 81920 and 1, and hence 81920 is the result of the inner multiplication in (iv)).
These two safe math wrappers are thus kept, and all others are removed (e.g. location (ii)
becomes s = s + k;).

3.3 An Optimisation: Lazy UB Checks

We first implemented CSMITHEDGE to follow the flow of Fig. 1a, which we believe remains
the best way to explain conceptually how the tool works. We found that the overhead of
validating each and every generated program was high.

However, when searching for miscompilations, a generated program that does not lead to
a result mismatch between the compilers under test is uninteresting, regardless of whether
it is UB-free. This observation leads to the following optimisation, which we call lazy UB
checks. After generating a program in a relaxed fashion, we compile the program with one
of the compilers under test and run it using a timeout. If the program exceeds the timeout
then we discard it as possibly non-terminating and move on, just as we would do if test-
ing using regular CSMITH. If the program terminates, we invoke the remaining compilers
under test and look for result mismatches. If no mismatches are observed then we also dis-
card the program. Only if a mismatch between the compilers under test is observed do we
actually invoke validation to determine whether the program is UB-free. This optimisation
is summarised in Fig. 1b.

This optimisation avoids the overhead associated with running the analysis tools used
during validation unless it appears to be genuinely worthwhile to run them. Even though
UB often does lead to a deviation in results between compilers, there is also a good chance

129 Page 14 of 35 Empir Software Eng (2022) 27: 129

that the compilers under test might exhibit the same behaviour for certain UB, or that some
instances of UB might not lead to effects that propagate to the output of the program.

The optimisation has diminishing returns as the number of compilers simultaneously
under test increases, since with a large number of compilers the time taken compiling and
running the generated program multiple times may exceed the time spent during validation.
However, when performing differential testing of a pair of compilers (the most common
case in practice), we have found the optimisation to be effective, as we show via experiments
in Section 4.2.

3.4 Implementation Details

We have implemented our approach in a prototype tool called CSMITHEDGE, as a set of
bash scripts and additional C/C++ code on top of CSMITH (GitHub 2011a), and available
at (GitHub 2021b).

The changes we applied on top of CSMITH were: adding a set of parameters to control
the probabilities of relaxing each of the methods in Section 3.1; a mechanism for randomly
relaxing the constraints themselves during the code generation; and code for processing
and storing the information needed to relax these methods (e.g. to avoid backtracking if a
statement we relaxed can lead to UB according to CSMITH analysis).

Functions vs. Macros Recall from Section 2.1 that safe math wrappers are available as
either functions or macros. Normally a user of CSMITH would specify that one or other of
these wrapper forms should be used universally. In CSMITHEDGE we add a third option,
whereby both function and macro wrappers are available. In this mode, each wrapper is
randomly instantiated either in its function or macro form. When generating a program, the
tool chooses with equal probability whether to use functions universally, macros universally,
or a random mixture of functions and macros.

Randomisation during Test Case Generation in CSMITHEDGE CSMITHEDGE consumes a
configuration file with one line per relaxation.

For a relaxation R in Table 1, the file either says:

– R is disabled, or
– R is enabled with probability range [Rl, Ru]

When CSMITHEDGE is invoked, for each enabled relaxation R, the tool chooses with
50% probability whether it is enabled for the current run. If the relaxation is chosen to
be enabled, CSMITHEDGE chooses a specific probability, Rs , randomly from the range
[Rl, Ru]. Having chosenRs , every time there is an opportunity to apply the relaxation during
the current test case generation, CSMITHEDGE does so with probability Rs .

For crash testing, all relaxations are enabled, and the bounds Rl and Ru, are always 0
and 1, respectively, as shown in Table 1.

Formiscompilation testing, read/write relaxations are disabled, all other relaxations are
enabled, and the boundsRl andRu are shown in Table 1. The bounds were obtained by man-
ual experimentation, to find a good balance between adventurous programs and undefined
behaviour.

On each run, CSMITHEDGE also chooses randomly whether to use functions, macros or
a mixture of both for safe math wrappers.

Page 15 of 35 129Empir Software Eng (2022) 27: 129

We refer to the combination of the seed with which CSMITH’s internal random num-
ber generation should be initialised, the manner in which safe math wrappers should be
implemented, and the specific set of relaxation probabilities, Rs , as CSMITHEDGE’s seed.
An example of a CSMITHEDGE seed is:

1621474906,2,0.8,0,0,0,0.3,0,0.
This generates a program using 1621474906 as the seed for CSMITH’s random number

generator, uses a mix of functions and macros for safe math wrappers,4 allowing null pointer
dereferences with a probability of 80% and array out of bound access with a probability of
30%, and disabling all other relaxations.

Our approach of trying a variety of configurations via different CSMITHEDGE seeds is
an example of swarm testing (Groce et al. 2012).

4 Evaluation

We evaluate CSMITHEDGE based on its ability to find compiler bugs which standard
CSMITH does not find (Section 4.1), the throughput of fuzzing and rate at which relaxations
are applied (Section 4.2), and its ability to increase code coverage of the compiler under test
(Section 4.3).

We evaluated CSMITHEDGE using a number of virtual machines running Ubuntu 18.04
LTS x86 64, each with two virtual CPU cores (2 Sockets, 1 Core) and 8 GB RAM. Each vir-
tualisation host had two Intel Xeon CPU E5-2690 v3 CPUs (2.6GHz, 12 cores / 24 threads
per CPU).

We imposed a timeout of 150 s for generating a program with the relaxed generator, 300
s for compiling the program, 50 s for a native execution of the program (remember that
CSMITH-generated programs are not guaranteed to terminate in general), 600 s for each of
the sanitisers, and 300 s for FRAMA-C.

We tested the most recent versions of the popular GCC and LLVM compilers at the time
we conducted our experiments: GCC 10 and 11 and LLVM 10 and 11.

4.1 Compiler Bugs

Throughout our development of CSMITHEDGE, over a period of six months, we regularly
ran CSMITH and CSMITHEDGE to find bugs in latest stable versions of GCC and LLVM.We
also conducted a small evaluation on aWindows platform to test the Microsoft Visual Studio
Compiler (MSVC). Discrepancies between Windows and Linux meant that it was difficult
to run our approach natively on Windows, but we copied a set of UB-free programs pre-
generated by CSMITH and CSMITHEDGE to a Windows machine and used them to conduct
a 24-hour testing run.

To find compiler crashes and hangs on Linux, we compiled each concrete program with
GCC and LLVM using each of the standard -O0, -O1, -O2, -O3, and -Os optimisation
levels. We flag a program as potentially triggering a hang bug if it is compiled successfully
in general, but leads to a timeout for a particular compiler and optimisation level (with our

4The second component of a seed is either 0, 1 or 2 indicating whether functions, macros or a mixture should
be used.

129 Page 16 of 35 Empir Software Eng (2022) 27: 129

300 s time limit); we confirm the hang before considering reporting the bug by checking that
compilation does not terminate even after several hours. To find miscompilations on Linux,
we compiled each concrete program with GCC and LLVM using each of the standard -O0
and -O2 levels with the differential testing approach sketched in Fig. 1b.

We tested MSVC using a randomly-chosen subset of UB-free programs arising from
our Linux testing campaign. For both crashes and miscompilations we used the /Od (no
optimisations) and /O2 (maximise speed) optimisation settings. We used a Windows build
of LLVM as a reference compiler for miscompilation testing.

We found and reported seven compiler bugs in GCC 10, GCC 11, LLVM 10, and MSVC
19.28.29915, which caused the generation of wrong code: three compiler bugs with P2 nor-
mal importance in GCC 10 (Bugzilla 2020a; 2020b) and in GCC 11 (Bugzilla 2020c) in
the tree-optimisation component, a bug with P3 normal importance in GCC 11 in the tree-
optimisation component (Bugzilla 2020e), a bug with P2 normal importance in GCC 11
in the middle-end component (Bugzilla 2020d), a bug in LLVM 10 in the scalar optimisa-
tions component (Bugzilla 2020f), and a bug in MSVC 19.28.29915 in an optimisation of
out-of-order execution of instructions (Visual Studio Developer Community 2021). We also
found two compiler hang bugs in GCC 10, which were independently fixed in the mainline
before we got a chance to report them. Finally, we found evidence of several older miscom-
pilation bugs affecting various versions of GCC from 7 through 10 and various versions
of LLVM from 6 through 11. The details of all the bugs we found and investigated using
CSMITHEDGE are available at GitHub (2021a). We did not find any bugs with CSMITH in
any of the compilers during our evaluation.5

Table 2 gives an overview of the new bugs found, showing the compiler component
affected, the kind of bug (miscompilation or hang), the relaxations that were applied when
the bug was found, and the status of our bug report. For all the bugs we found that involved
the safe math relaxation, safe math wrappers needed to be implemented as macros for
the bug to trigger. However, for bugs that did not require this relaxation, the choice of
implementing safe math wrappers as functions or macros had no impact.

During our testing campaign we prioritised investing manual effort into reducing and
investigating bugs in the latest versions of GCC and LLVM. However, we conducted long-
running background experiments using slightly older versions of these compilers, and the
data from these experiments identified a number of execution result mismatches that did
not trigger using the most recent compiler versions. It is possible that these mismatches are
due to UB: although we have found the sanitizer tools used in our experiments to be ade-
quate for our purposes, as discussed in Section 2.2, they are not perfect. However, under the
assumption that these mismatches do correspond to historic miscompilation bugs, we per-
formed some analysis to estimate the number of distinct historic miscompilations. Inspired
by the “correcting commits” metric of Chen et al. (2016), we obtained results for each pro-
gram triggering a mismatch for a range of compiler versions, starting with LLVM-6 and
GCC-7. We assume that two test programs trigger the same miscompilation in a compiler
if they trigger the mismatch for exactly the same versions of the compiler, and at identical
optimization levels.

5We reproduced several test cases that were CSMITH-generated programs with a reachable, side-effect-free
infinite loop. These programs either exceeded the time limit or terminated with a segmentation fault. We
investigated one example that led to a segmentation fault in detail, and confirmed that this was due to the UB
associated with the infinite loop and not due to a compiler bug.

Page 17 of 35 129Empir Software Eng (2022) 27: 129

Ta
bl
e
2

C
om

pi
le
r
bu
gs

in
G
C
C
,L

LV
M

an
d
M
SV

C
fo
un
d
on
ly

by
C
S
M
IT

H
E
D
G
E
(a
nd

no
tb

y
C
S
M
IT

H
),
w
ith

a
no
te
on

th
e
re
la
xa
tio

n
ne
ce
ss
ar
y
to

tr
ig
ge
r
th
e
bu
gs

#B
ug

C
om

pi
le
r
co
m
po
ne
nt

A
ff
ec
te
d
co
m
pi
le
rs

K
in
d

R
el
ax
at
io
ns

St
at
us

1
T
re
e
O
pt
im

is
at
io
n

G
C
C
10
.0
.1
,9

.2
.1
,8

.3
.0

M
is
co
m
pi
la
tio

n
A
ri
th

ch
ec
ks

as
m
ac
ro
s

Fi
xe
d

2
T
re
e
O
pt
im

is
at
io
n

G
C
C
10
.0
.1
,9

.2
.1
,8

.4
.0
,7

.5
.0

M
is
co
m
pi
la
tio

n
A
ri
th

ch
ec
ks

as
m
ac
ro
s

Fi
xe
d

3
T
re
e
O
pt
im

is
at
io
n

G
C
C
11
.0
.0
,1

0.
2.
0,

9.
3.
0,

8.
4.
0,

7.
5.
0,

6.
4.
0,

4.
8

M
is
co
m
pi
la
tio

n
A
ri
th

ch
ec
ks

as
m
ac
ro
s

Fi
xe
d

4
M
id
dl
e-
en
d

G
C
C
11
.0
.0
,1

0.
2.
0

M
is
co
m
pi
la
tio

n
A
ri
th

ch
ec
ks

as
m
ac
ro
s

Fi
xe
d

5
T
re
e
O
pt
im

is
at
io
n

G
C
C
11
.0
.0

M
is
co
m
pi
la
tio

n
A
ri
th

ch
ec
ks

as
m
ac
ro
s

Fi
xe
d

6
Sc
al
ar

O
pt
im

is
at
io
ns

L
LV

M
6.
0,

10
.0
.0
,1

1.
0.
0,

12
.0
.0
,1

3.
0.
0

M
is
co
m
pi
la
tio

n
A
ri
th

ch
ec
ks

as
m
ac
ro
s

Fi
xe
d

7
-

G
C
C
10
.1
.0

C
om

pi
le
r
H
an
g

N
ul
ld

er
ef
.,
va
ri
ab
le
in
it.
,g

ot
o,

an
d

ar
ra
y
bo
un
ds

In
de
pe
nd
en
tly

fi
xe
d

8
-

G
C
C
10
.1
.0

C
om

pi
le
r
H
an
g

D
an
gl
in
g
pt
r.
de
re
f.
,
va
ri
ab
le

in
it.
,

R
/W

an
d
W
/W

co
nf
lic
ts
,a
nd

ar
ra
y

bo
un
ds

In
de
pe
nd
en
tly

fi
xe
d

9
C
od
e
m
ot
io
n
op
tim

is
at
io
n

M
SV

C
19
.2
8.
29
91
5

M
is
co
m
pi
la
tio

n
N
ul
ld

er
ef
.,
ar
ra
y
bo
un
ds

C
on
fi
rm

ed

129 Page 18 of 35 Empir Software Eng (2022) 27: 129

Using this approach, we identified:

– One program that led to a mismatch for LLVM versions 6–11 at all optimization levels
higher than -O0

– One program that led to a mismatch for GCC versions 7–9 at all optimisation levels
higher than -O0

– Six programs that led to a mismatch for GCC versions 7–9 at all optimisation levels
including -O0

– One program that led to a mismatch for LLVM versions 6–10 at all optimization levels
higher than -O0, except that the mismatch does not trigger with -O1 for LLVM version
10 (but does still trigger at the other optimization levels)

We estimate that these programs characterise four separate historic miscompilation bugs,
but manual investigation would be required to confirm this.

It is important to emphasise is that none of the bugs we discovered in recent compiler ver-
sions, nor the historic bugs for which we have tentative evidence of discovery, were found by
regular CSMITH. In fact, our work has been motivated by the fact that compiler fuzzing tech-
niques like CSMITH—while having found hundreds of compiler bugs in the past—have now
largely saturated (Regehr 2019; Babokin 2019), and more diverse programs, less idiomatic
in their form, are needed. Our bug finding results show that it is possible to increase diver-
sity and find additional bugs without having to resort to building a brand new fuzzing tool,
with the associated manual effort that would be involved.

We now discuss three of the new bugs that we found using CSMITHEDGE.

GCC bug: Missed short-circuiting during folding (Bugzilla 2020c) In a short-circuiting
operation, if the first operand is sufficient to determine the overall result, then the second
operand should not be evaluated, in case it commits side effects or exhibits UB. GCC had a
bug that violated this rule, as shown in the following code snippet which represents the core
of the generated program:

This code should print y = 0, but prints y = 1 with the buggy GCC versions, which
generates code that incorrectly executes the y = 1L assignment.

This bug was promptly fixed by the developers with a patch in gcc/fold-const.c
for GCC 11. The bug was only found by CSMITHEDGE when implementing arithmetic
checks as macros and relaxing arithmetic checks.

LLVM bug: incorrectly lifting a modulo computation outside an if statement (Bugzilla
2020f) The compiler created a constant expression that was not safe to speculatively
evaluate and incorrectly lifted the computation outside its block. This can lead to a mis-
compilation as shown by the following example, which contains the core of the generated
program that exposes the bug:

Page 19 of 35 129Empir Software Eng (2022) 27: 129

The buggy LLVM version at -O2 generates code that is incorrect: on execution it
throws a “floating point exception” instead of printing “x = 1”. This happens because the
unreachable statement containing a modulo by 0 is incorrectly lifted and executed.

This bug, which was fixed by the developers, seems related to the IRBuilder files in
LLVM 10. Again, this bug was only found by CSMITHEDGE when implementing arithmetic
checks as macros and relaxing arithmetic checks.

MSVC bug: incorrectly moving an unreachable invalid array access into reachable
code (Visual Studio Developer Community 2021) In the following program, the com-
piler incorrectly lifted an out-of-bounds array access to location A[13218][231] before the
if-statement. This led to a miscompilation of the following code with /O2 optimisation level
in MSVC version 19.28.29915 for x64 architecture on a Windows machine.

129 Page 20 of 35 Empir Software Eng (2022) 27: 129

The MSVC buggy version at /O2 generates code that terminates abnormally with exit
code -1073741819 instead of printing “breaking”, “done” and returning 0 since the
if(a) condition is always true. We performed a manual investigation of this miscom-
pilation, comparing assembly code generated at /O2 between the buggy and non-buggy
compilers. We found that the access to array A in the last line of the for loop is erroneously
computed before checking whether a is true (that is, before the conditional jump of if(a)).

We reported this code to Visual Studio Developer Community, and it was confirmed by
a software engineer from the “Machine-Independent Codegen” Team.

This bug was only found using CSMITHEDGE, and not regular CSMITH, because it relies
on the generation of code that risks accessing arrays out of bounds, which CSMITH does not
generate.

4.2 Throughput and Relaxation Rate

As discussed in Section 3.4, the most natural way to apply CSMITHEDGE is as described in
Fig. 1a. However, this results in a significant decrease in performance since the expensive
UB detectors (sanitizers and FRAMA-C) are invoked on every program. Instead, by execut-
ing the UB detectors only when (i) we know the program terminates (similar to CSMITH),
and (ii) a mismatch between compilers is detected during differential testing, our lazy UB
checks mode can significantly improve performance when searching for compiler bugs (i.e.
the flow of Fig. 1b). We performed our bug-finding campaign using the lazy approach and
a 50 s timeout (the CSMITHEDGE default). We now present a comparison of the default
settings against CSMITH and the conceptual approach of CSMITHEDGE for a selection of
timeouts.

Throughput of Program Generation during Differential Testing. To quantify the per-
formance difference between the standard and lazy UB checks modes, as well as how
they compare with CSMITH, we ran an evaluation on a single virtual machine, measuring
the throughput of CSMITH, and of CSMITHEDGE with and without lazy UB checks, run-
ning each configuration for 24 hours. We measured the throughput of tests comparing the
behaviours of LLVM 10 and GCC 10 with -O2. We ran the tools in miscompilation mode
for this experiment and hence relaxing read-write and write-write conflicts was disabled.
We repeated the whole set of experiments presented in this section 10 times to obtain more
accurate results. Accordingly, the results in the tables below are an average of these repeated
experiments.

We now explain the conditions under which we deemed each tool configuration to have
generated a usable test program during our experiments.

– CSMITH: Because CSMITH generates UB-free programs by construction, we regarded
a generated program as usable if it did not time out on execution after compilation with
LLVM.6

– CSMITHEDGE without lazy UB checks: We regarded a generated program as usable if
it did not crash or time out during the dynamic analysis (Section 3.2) or UB detection
stages, and was reported to be UB-free by the UB-detection stage.

– CSMITHEDGE with lazy UB checks: We regarded a generated program as usable if
(1) it did not crash or time out during the dynamic analysis (Section 3.2) stage, (2) it

6We chose LLVM over GCC because, as discussed below, we sometimes detect timeouts during the UB
detection phase for other tool configurations, and most of the UB detectors are LLVM-based sanitisers.

Page 21 of 35 129Empir Software Eng (2022) 27: 129

Table 3 Programs generated per hour by CSMITH and CSMITHEDGE without and with lazy UB checks

Timeout value #programs Csmith CsmithEdge CsmithEdge-Lazy

10 s Generated 877.54 291.22 543.39
Timed-out 108.34 29.15 51.60
Invalid Crash 0.00 75.10 139.10

Sanitisers 0.00 40.57 19.58
Usable 769.20 146.39 333.10

50 s Generated 394.55 212.28 351.28
Timed-out 48.80 21.30 32.85
Invalid Crash 0.00 55.09 90.40

Sanitisers 0.00 30.80 12.82
Usable 345.75 105.09 215.21

120 s Generated 202.24 154.48 220.19
Timed-out 25.04 15.59 20.51
Invalid Crash 0.00 40.25 56.32

Sanitisers 0.00 21.87 8.05
Usable 177.20 76.78 135.30

did not time out on execution after compilation with LLVM (since we used the LLVM
sanitizers, we chose LLVM for timeout detection for consistency), and (3) either the
program led to identical results after compilation and execution using the two compilers
under test, or a result mismatch was detected but the program was subsequently found
to be UB-free by the UB-detection stage.

Table 3 presents the average throughput of usable programs per hour for CSMITH, and
CSMITHEDGE without and with lazy UB checks, respectively. Recall that in all cases, the
generated program is executed at least once with a timeout to confirm that it terminates. A
large portion of program generation time is due to timeouts in practice, and this will vary
according to the timeout that is used. Using too short a timeout leads to discarding programs
that would eventually terminate and that might be useful for bug finding, while using too
high a timeout reduces the throughput of testing. We show data for three timeout values: 10
s, 50 s (the default value used in our bug-hunting experiments) and 120 s.

The Generated rows in Table 3 show the average rate of programs generated during
a one-hour period. The generated programs are categorised into programs that time out,
invalid programs and usable programs.

A program is in the timed-out category if it exceeded the time limit during the arithmetic
check relaxation, UB detection, or miscompilation testing. During UB detection, we applied
different time-out settings for the sanitizers, taking into account their overhead (see the
beginning of Section 4 for these values).

A program is in the invalid category if it is not suitable for differential testing. Invalid pro-
grams are detected in two different ways: if the program crashes during execution (Invalid
- Crash in the table) and if a sanitizer or FRAMA-C detects an error (Invalid - Sanitizers in
the table). By construction, CSMITH does not generate invalid programs.7

7Actually CSMITH can generate programs with UB arising from side-effect free infinite loops, but this
happens very rarely.

129 Page 22 of 35 Empir Software Eng (2022) 27: 129

A program is in the usable category if it is suitable for differential testing; that is, it is
UB-free and did not time out.

The rate of programs that time out is around 12% for CSMITH, around 10% for
CSMITHEDGE without lazy checks, and around 9% for CSMITHEDGE with lazy checks.
One possible explanation for the lower rate in CSMITHEDGE is that many of the programs
CSMITHEDGE generates are invalid and quickly crash at runtime, e.g. due to a division by
zero. We examined the logs of these experiments and found that majority of the invalid tests
failed before reaching the validation stage (e.g. due to a segmentation fault arising during
relaxation of safe math arithmetic operators): around 64% for CSMITHEDGE without lazy
checks and around 87.5% for CSMITHEDGE with lazy checks.

Looking at the programs marked as invalid, we can observe that a program was relatively
rarely rejected due to UB detected by sanitizers or FRAMA-C. For example, with a 50 s time-
out, we generated on average 212.28 programs per hour with CSMITHEDGE, out of which
85.89 per hour were invalid but only 30.80 per hour were rejected by either the sanitizer or
FRAMA-C. We did not consider any further optimisation on the order of invoking the sani-
tizer and FRAMA-C, as in practice, it has little effect on the performance of CSMITHEDGE

with the lazy checks. However, it might be useful to obtain such order when disabling the
lazy checks in CSMITHEDGE.

For each tool configuration and timeout value, the usable column in Table 3 shows the
average rate of programs suitable for differential testing that could be generated during
a one-hour period. Note that the results for CSMITH and CSMITHEDGE are compiler-
independent: the resulting programs could be subsequently used for differential testing of
other C compilers. The results for CSMITHEDGE-Lazy are tied to the pair of compilers under
test, because it may be that programs on which these compilers agree actually exhibit UB.

Results for the version of CSMITHEDGE without lazy UB checks tell us the rate of UB-
free programs (the usable row of Table 3 under CSMITHEDGE statistics). For example with
a 50 s timeout: 105.09 programs were found to be UB-free (and thus could be used both
for finding compiler crashes/hangs and miscompilations), 85.89 programs had UB detected
by either the sanitisers or FRAMA-C or failed during safe arithmetic operators relaxation
(and thus could only be used to find compiler crashes/hangs), and 21.30 programs hit the
timeout (and hence may also contain UB and have to be discarded if used for finding mis-
compilations). In practice, with the lazy UB checks, CSMITHEDGE invoked these checks
at a much lower rate, hence was able to generate more programs (Table 3, Usable columns
of CSMITHEDGE vs. CSMITHEDGE-Lazy) and confirmed fewer programs as triggering UB
after those found to exhibit a resulting mismatch (Table 3, CSMITHEDGE-Lazy’s invalid
rate).

By comparing the rates at which valid programs are generated for different timeout val-
ues (Table 3), it appears that a 10 s timeout (or shorter) might be a more suitable default
timeout value. However, there is a hard-to-evaluate trade-off between throughput and test
thoroughness. A modest number of highly complex test programs, each containing many
intricate fragments of code, might have higher potential to expose miscompilation bugs
compared with a larger number of more straightforward programs. Using too low a time-
out value risks missing information on potential miscompilations arising from larger, more
intricate programs if they are skipped due to taking too long to terminate.

Table 4 presents the exact split of time spent on test generation, execution, and external
tools to check UB-freedom for CSMITH and CSMITHEDGE without and with lazy checks.
We show data for three timeout values, similarly to Table 3. The Gen., Exec., and UB det.

Page 23 of 35 129Empir Software Eng (2022) 27: 129

Table 4 Average time spent on test generation, test execution, and UB detection by CSMITH and
CSMITHEDGE without and with lazy UB checks

T/O value Csmith CsmithEdge CsmithEdge-Lazy

Gen. Exec. Gen. Exec. UB det. Gen. Exec. UB det.

10 s 2.107 s 1.997 s 3.761 s 0.396 s 8.308 s 3.752 s 0.550 s 2.296 s

50 s 2.148 s 6.976 s 7.513 s 0.401 s 9.291 s 7.428 s 0.586 s 2.211 s

120 s 2.138 s 15.660 s 13.941 s 0.398 s 9.249 s 13.754 s 0.596 s 1.973 s

columns present the average time in seconds spent on test generation, execution and (for
CSMITHEDGE only) validation of a test case, respectively.

Because program generation using CSMITH is purely static, the time associated with
generation is independent from the execution timeout value used. This is not the case for
CSMITHEDGE and CSMITHEDGE-Lazy, because the safe math relaxation involves running
each program as part of generation. This means that generation time increases as larger
timeout values are used.

Notice that for CSMITHEDGE the amount of time spent executing a compiled program
during differential testing is very small and relatively insensitive to the timeout value. This
is because all timeouts are detected earlier: only programs that terminate within the time-
out limit are considered for differential testing. Consequently, fewer programs have been
executed with CSMITHEDGE than with CSMITHEDGE-Lazy (between 40 − 60 % fewer
depending on the timeout value), which led to different average execution times between
CSMITHEDGE and CSMITHEDGE-Lazy.

Comparing the “UB det.” columns for CSMITHEDGE and CSMITHEDGE-Lazy, we
can see that the lazy optimisation results in significantly less time spent performing UB
detection.

The average generation and validation times across different timeout values are rela-
tively high compared with CSMITH, when only a pair of compilers are cross-checked during
differential testing, due to the time spent invoking analysis tools. If a larger number of com-
pilers, or compilers at different optimisation levels, are cross-checked, the proportion of
time spent running UB analysers will be less, since more time will be spent compiling and
executing programs for differential testing. The overhead of CSMITHEDGE could also be
decreased by using lower timeout values for the UB analysis tools, the trade-off being that
more programs would be skipped due to these analysis tools timing out.

Throughput of Generating Programs for Crash Testing. All CSMITHEDGE-generated
programs are valid for crash testing since the compiler has to process programs without
crashing or hanging during compilation regardless of the presence of UB. Therefore, we
were also interested in the rate of raw generation. We measured the rate of generating pro-
grams per hour for CSMITH and CSMITHEDGE on a single virtual machine for 24 hours.
On average, CSMITHEDGE generates 1639 programs per hour (relaxed program generator,
without discarding programs that hit timeout and UB detection), while CSMITH generates
1698 programs per hour (program generator, without discarding programs that hit timeout).
Note that when using CSMITHEDGE for crash testing, we do not compile and run generated
programs, and therefore we do not perform relaxation of arithmetic checks. This also con-
tributes to the high rate of generated programs, because the overhead of running the program
to identify redundant arithmetic checks is removed.

129 Page 24 of 35 Empir Software Eng (2022) 27: 129

Rate of Relaxations. The rate at which we applied relaxations was determined by an array
of per-relaxation probabilities, described in Section 3.1. A high probability of applying a
relaxation is likely to result in the majority of generated programs exhibiting UB. On the
other hand, a low probability might lead to no relaxations being applied, in which case the
program CSMITHEDGE generates will be identical to the program that CSMITH would have
generated. CSMITHEDGE generated programs that differed from what CSMITH would have
generated 84% of the time. The rate of programs out of all uniquely generated programs
by CSMITHEDGE that tested to be UB-free is 40%.8 This rate excludes the relaxation of
arithmetic checks, which can still be applied to achieve diversity even when CSMITHEDGE

initially generates a program identical to that which CSMITH would have generated.

4.3 Coverage of Compiler Codebases

We used 135K distinct seeds to generate CSMITHEDGE and CSMITH programs for cover-
age measurements. Measuring coverage requires compiling the compiler codebases without
optimisations and instrumenting them with GCOV, both of which introduce large overheads.

Furthermore, we want to measure the impact of the various CSMITHEDGE components,
so for each seed, we perform multiple runs. In particular, our evaluation compares four dif-
ferent systems: CSMITH, CSMITHEDGE, and two intermediate versions of CSMITHEDGE:

– RELAX-GEN: CSMITHEDGE with only the generation-time relaxations of Section 3.1
enabled.

– RELAX-ARITH: CSMITHEDGE with only the relaxations of arithmetic checks of
Section 3.2 enabled.

As discussed in Section 3.2, the safe math wrappers can be instantiated via func-
tions or macros. For each CSMITHEDGE-generated program, we configured the tool to
choose at random between instantiating all safe math wrappers via functions, all safe math
wrappers via macros, or using a randomised mixture of functions and macros. For consis-
tency, we configured CSMITH and the two variations of CSMITHEDGE (RELAX-GEN and
RELAX-ARITH) to do the same when generating programs for our coverage experiments.
To investigate whether the choice of representation for safe math macros impacted much on
coverage results, we repeated the experiments described in this section twice: once forcing
all tools to use function wrappers exclusively, and again forcing all tools to use macro wrap-
pers exclusively. The results that we obtained were very similar in all cases, so we omitted
the associated graphs.

During the evaluation described in this section (including the investigation above), we
used a fixed set of seeds when generating the 135K programs with each of the four systems
(taking the data relevant to each system); for example, if the seed for CSMITHEDGE was
1621474906,2,0.8,0,0,0,0.3,0,0 (see Section 3.4), then the seed for RELAX-
GEN was the same, and the one for CSMITH was 1621474906.

We measured the line coverage achieved on recent versions of the GCC and LLVM
compilers: GCC-10.2.1 and LLVM-11.0.0, using each of the 135K programs generated by
the four systems.

Figure 2a and b (best viewed in colour) report the cumulative coverage achieved by the
four systems in the GCC and LLVM codebases respectively. We measured coverage every

8Note that for this experiment, the timeout settings had no effect. This is because we were only interested in
the differences between the programs without actually running them.

Page 25 of 35 129Empir Software Eng (2022) 27: 129

0 50000 100000 150000

216000
218000
220000
222000
224000
226000
228000
230000
232000
234000
236000
238000
240000
242000

#programs

Li
ne

C
ov

er
ag

e

Csmith
Relax-Arith
Relax-Gen
CsmithEdge

(a) GCC 10.2.1

0 50000 100000 150000
138000

140000

142000

144000

146000

148000

150000

152000

154000

156000

#programs

Li
ne

C
ov

er
ag

e

Csmith
Relax-Arith
Relax-Gen
CsmithEdge

(b) LLVM 11.0.0

Fig. 2 Line coverage by the four different generation methods. The number of lines covered by a single
CSMITH program is around 150K for GCC and 100K for LLVM

2,500 programs. We used the GCOV-based tool gfauto (GitHub 2018) to aggregate results
from all machines and generate the coverage results in a human-readable format.

Figure 2a shows that the largest line coverage in GCC was achieved by CSMITHE
DGE and the second-largest by RELAX-ARITH. After compilation of 135K programs,
CSMITHEDGE covered around 4.4K, 3.6K and 0.4K more lines than CSMITH, RELAX-GEN,
and RELAX-ARITH, respectively. Figure 2b shows that the largest line coverage in LLVM
was also achieved by CSMITHEDGE, but the difference with CSMITH is less pronounced in
this case, at only 0.5K extra lines.

Even when the difference in overall coverage is small, the systems cover different sets
of lines. To demonstrate this, Fig. 3a and b present two Venn diagrams of the lines covered
after compiling all 135K programs in each set. Each segment of the Venn diagram shows
the number of lines covered by the tools associated with the intersection; e.g. 581 lines of
GCC 10.2.1 were covered by tests generated by CSMITH, RELAX-GEN RELAX-ARITH (but
not CSMITHEDGE) in Fig. 3a.

Figure 3c and d present two Venn diagrams of the lines covered by CSMITHEDGE and
CSMITH. We can see that while CSMITHEDGE covered more lines of code than CSMITH,
each system covers lines that the other does not. This is somewhat expected, as the restric-
tions in CSMITH are likely to exercise different parts of the compiler, and these restrictions
are added by CSMITHEDGE with a smaller probability.

Figure 3e and f present two Venn diagrams of the lines covered by the three versions of
CSMITHEDGE. These show that the generation-time and arithmetic check relaxations are
complementary: in GCC, RELAX-GEN and RELAX-ARITH covers approximately 3K and
6.1K lines that the other version did not; while in LLVM, the numbers are 2.2K and 1.7K.
It is also interesting to notice that RELAX-ARITH and RELAX-GEN cover lines of code
which are not covered by CSMITHEDGE. Of course, CSMITHEDGE is able to eventually
cover all the lines of code covered by its subcomponents. However, given a fixed time
budget, configurations using only certain relaxations can be more effective. This is why we
incorporated swarm testing (Groce et al. 2012) into CSMITHEDGE: during a long testing
campaign, tests will be generated using many diverse configurations (Section 3.4).

Investigation of additionally-covered code for GCC Recall from Fig. 2a that (in contrast
to the results for LLVM in Fig. 2b), CSMITHEDGE provides a modest, but clearly visible,
improvement in coverage over CSMITH with respect to the GCC code base, and that most

129 Page 26 of 35 Empir Software Eng (2022) 27: 129

(a) GCC 10.2.1 (b) LLVM 11.0.0

(c) GCC 10.2.1 (d) LLVM 11.0.0

(e) GCC 10.2.1 (f) LLVM 11.0.0

Fig. 3 Venn diagrams comparing the line coverage achieved by the four systems after each generates 135K
programs

of this improvement appears to come from our method of relaxing arithmetic checks (see
Section 3.2).

We undertook some manual investigation to gain some insights into specific components
of the compiler that are covered by CSMITHEDGE but not by CSMITH. New coverage is
achieved by CSMITHEDGE in more than 120 files and it was not feasible to investigate these
manually. To limit our investigation we identified those files for which at least 50 new lines
of code were covered by CSMITHEDGE compared with CSMITH. There were 12 such files
and we manually inspected the differences between them.

Page 27 of 35 129Empir Software Eng (2022) 27: 129

Two files where CSMITHEDGE achieved very substantial additional coverage are
generic-match.c and gimple-match.c. These files are generated by GCC’s
genmatch program from pattern matching rules written in a domain-specific language,
and they implement optimisations that rewrite expressions. Example rewrites covered by
CSMITHEDGE but not CSMITH include (from generic-match.c):

and (from gimple-match.c):

The vast majority of the new coverage achieved in these files is due to safe math relax-
ations—most of the coverage is achieved by RELAX-ARITH, and only some of it by RELAX-
GEN. This is intuitive: CSMITH’s default approach of guarding every potentially unsafe
operation with a safe math wrapper means that many expression forms will never occur in
generated programs, an issue that our safe math relaxation alleviates somewhat. For sim-
ilar reasons, CSMITHEDGE achieves substantial additional coverage in fold-const.c
and gimple-fold.c compared with CSMITH; these are also parts of GCC that perform
expression simplification.

We found that CSMITHEDGE was able to cover a “loop versioning” transformation not
exercised by CSMITH. According to comments in the GCC source code:

This transformation given a condition and a loop, creates if (condition)
loop copy1 else loop copy2 , where loop copy1 is the loop trans-
formed in one way, and loop copy2 is the loop transformed in another way (or
unchanged). COND EXPR may be a run time test for things that were not resolved by
static analysis (overlapping ranges (anti-aliasing), alignment, etc.).

where COND EXPR, mentioned in the above description, is a parameter to the transforma-
tion. Interestingly this transformation is covered by RELAX-GEN but not by RELAX-ARITH,
indicating that it arises due to the generation-time relaxations that CSMITHEDGE employs.
Code associated with the transformation spans three source files:

• tree-loop-distribution.c contains the analysis for determining whether a
loop versioning transformation can be performed;

• tree-data-ref.c contains logic for determining the pointer aliasing tests that need
to be performed at runtime to decide which version of a loop to run (our understanding
is that this logic contributes to the COND EXPR parameter mentioned above);

• cfgloopmanip.c contains the code for applying the loop versioning transformation,
once it has been deemed to be safe.

129 Page 28 of 35 Empir Software Eng (2022) 27: 129

Another file with substantial new coverage exercised by RELAX-GEN but not RELAX-
ARITH is gimple-ssa-store-merging.c. Our relaxations of generation-time
checks lead to the exercising of additional code paths for determining when it is acceptable
to merge store operations.

We have not determined which of our generation-time relaxations account for the loop
versioning optimisation being triggered, and for the additional coverage related to merging
of store operations. It would be possible to investigate by performing a search for specific
tests that trigger this coverage, checking which relaxations were used in generating those
tests, and identifying the relaxations common to all such tests.

The above discussion accounts for 8 of the 12 source files in which we identified non-
trivial additional coverage. We found it harder to understand the code being exercised in the
remaining files:

• gimple-ssa-strength-reduction.c: It appears that extra code paths are
exercised related to determining when strength reduction (replacing an expensive oper-
ation in a loop with a cheaper one) can be applied, but that the new code paths do not
lead to additional strength reduction being triggered: deeper precondition checks for
strength reduction are performed, but ultimately they still return false

• i386.md: This is a machine description file for the IA-32 and x86-64 architectures.
The new coverage in this large file is sparse and sporadic, and hard to understand.

• insn-recog.c: This is an auto-generated file, in which coverage is again sporadic
and hard to understand.

• internal-fn.c: This file contains various internal GCC helper functions. The new
coverage is related to handling of overflow. Our hypothesis is that, with fewer safe math
wrappers that would explicitly check for overflow, CSMITHEDGE generates programs
for which more compile-time overflow checking is required.

5 Threats to Validity

Internal validity Faults in CSMITHEDGE can lead to (1) detecting what appear to be mis-
compilation bugs with code that actually turns out to trigger UB, and (2) discarding
valid programs. We now comment on some steps we have taken to thoroughly test
CSMITHEDGE to minimise the chances of such bugs undermining our work. We care-
fully tested CSMITHEDGE by examining the rate of non-UB-free detected programs while
considering the number of applied relaxations and different lines between CSMITHEDGE-
generated and Csmith-generated programs.9 For example, we investigated such pairs with
few modifications or with modifications in unreachable code. In addition, we generated
large sets of programs with a single relaxation and checked that the UB detection tool
that was supposed to identify the UB this relaxation can cause was the only tool termi-
nating reporting an error and did so consistently. We also investigated relaxations where
more than half of the generated programs failed the UB validator. Last, we cross-checked
programs with mismatched results with different compilers or optimisations with its compi-
lation warnings to identify undefined and unspecified behaviours, which the UB detection

9Our implementation used randomisation but avoided using the very same mechanism used by CSMITH;
hence the randomisation related to the UB relaxation part did not directly affect the rest of the random
decisions. As a result, a pair of programs with the same seeds produced by CSMITH and CSMITHEDGE were
usually identical except for the parts in the code affected by the relaxation.

Page 29 of 35 129Empir Software Eng (2022) 27: 129

tools used in this work cannot detect (e.g. reading a field in a union that was not the last one
to be written to). Employing such careful testing throughout the project allowed us to fix a
number of bugs in CSMITHEDGE during its development, increasing our confidence in the
final results we have gathered.

We remark on the steps we have taken to ensure a fair evaluation between CSMITH

and CSMITHEDGE. During the evaluation of CSMITHEDGE, we used virtual machines
with the same specifications and compiler builds to evaluate the four systems. To account
for differences in the priority with which different VMs are given access to underlying
resources of the compute cluster, we randomly shuffled execution tasks between VMs. Thus
our overall results for CSMITH vs. CSMITHEDGE should not be biased by resource allo-
cation issues. Furthermore, when measuring coverage, we used the same parameters for
test case generation with CSMITH and CSMITHEDGE (except for the additional relaxation
options CSMITHEDGE takes, as discussed in Sections 3.4 and 4.3); for all experiments,
we applied the swarm testing technique when choosing relaxation options for each run of
CSMITHEDGE. We regularly ran CSMITH and CSMITHEDGE to find bugs with few opti-
misation levels; we did not find any bugs during the evaluation in the tested compilers.
The reported bugs on Table 2 were confirmed, not marked as duplicated and mostly fixed
promptly. We measured the program generation and differential testing rate over a relatively
long period of 24 hours and repeated the differential testing rate experiments 10 times to
ensure we measured the actual CSMITHEDGE’s performance. We adopt part of the guide-
lines in Klees et al. (2018) when possible and relevant. Since the motivation of this work is
the immunity compilers gained with time to existing fuzzers, we did not evaluate our tool
against old buggy compilers (which did not yet reach that point).

Construct validity We depend on UB detection tools (sanitisers and static analysers) to
decide whether programs are free from UB. This solution uses well-tested existing tools
but can have false results: false-positive results can impair the ability to generate diverse
code, and false-negative results may lead to a practically unusable approach. In the evalua-
tion, we suggested two experiments to evaluate the effect of false results on (1) the rate of
generating valid programs for differential testing (false-negative results) and (2) generating
diverse test cases (false-positive results). The evaluation in Section 4.2 suggested a 1.61×
overhead, and Section 4.3 presented a significant additional coverage (thousands of lines)
with CSMITHEDGE comparing to CSMITH. We evaluate the additional line coverage with
135K programs; however, when observing the line coverage in Fig. 2a, we think it is worth
considering repeating the analysis for GCC with a larger population because the graph does
not show the saturation effect.

External validity and transferability In this work, we investigated the idea of adapting
existing fuzzers to be less restrictive with respect to UB, and tested our hypotheses for
C compilers by extending the CSMITH tool. Due to limited human resources, we did not
exercise other fuzzers and programming languages. Our concrete results are thus restricted
to this setting. We argue that C is a suitable choice of language because it is widely used in
the development of critical code, and because the language features many sources of UB.We
chose CSMITH because it generates C programs, is open source with an active community,
and because it has been used extensively to test mainstream compilers to the extent that such
compilers are largely immune to the tool. This provided a good setting in which to assess
whether additional bugs could be found via our technique. With additional engineering, the
approach presented in this work could be applied to other C/C++ test program generators, as

129 Page 30 of 35 Empir Software Eng (2022) 27: 129

well as to program mutators (e.g. to eliminate “bad” mutations every n pulses). Transferring
our ideas to other programming languages that feature UB would require suitable sanitisers
and static analysers capable of detecting the relevant UB.

Conclusion validity The bug reports in this article were all bugs that regular CSMITH did
not find, in both recent and slightly older compiler versions. To understand how these reports
relate to our changes, we examined the additional coverage that CSMITHEDGE has gained
compared to CSMITH. According to Fig. 2a and b, with 135K test cases, it was an addition
of 3.2% and 1.56% to the line coverage in GCC and LLVM, respectively. The results make it
clear that large parts of these compiler code bases remain uncovered despite our extensions.
For example, parts of the code bases that deal with C++ (or other language), or with back
ends for different processor architectures, will not be covered by our approach, so bugs in
such components are out of scope. Because we do not know the extent to which bugs remain
in GCC and LLVM we cannot assess the criticality of the new bugs found by our approach
compared with additional not-yet-discovered bugs.

During our six-month bug-finding campaign, we did not find any bugs in recent release
versions of GCC and LLVM (including those reported in Table 2, and the slightly older
compiler versions on which we performed additional testing) using CSMITH. This suggests
that these compilers are now largely immunite to CSMITH.

6 RelatedWork

A preliminary sketch of some of the ideas in this paper, including a prototype of
CSMITHEDGE, appeared in a new idea paper (Even-Mendoza et al. 2020).

Compiler fuzzing has a rich history, starting with techniques focusing on languages such
as COBOL (Sauder 1962), PL/I (Hanford 1970), and FORTRAN (Burgess and Saidi 1996).
More recently the C programming languages has received a lot of attention (Yang et al.
2011; Le et al. 2014; Le et al. 2015; Sun et al. 2016; Nagai et al. 2014; Nakamura and
Ishiura 2016; Livinskii et al. 2020), with many bugs reported in popular compilers such as
GCC and Clang/LLVM. See (Chen et al. 2020) for a recent survey of the field.

These fuzzers fall into two main categories: those that generate programs from
scratch (Yang et al. 2011; Nagai et al. 2014; Livinskii et al. 2020), which are typically used
to cross-check multiple compilers, and those that apply transformations to generate equiva-
lent programs (Le et al. 2014; Le et al. 2015; Sun et al. 2016; Nakamura and Ishiura 2016;
Donaldson et al. 2017; Donaldson et al. 2021), allowing the behaviour of a single compiler
to be cross-checked against multiple equivalent programs (a form of metamorphic test-
ing (Segura et al. 2016; Chen et al. 1998)). Fuzzers in the first category ensure UB-freedom
during program generation. We have already discussed at length the kind of restrictions
CSMITH imposes to ensure UB-freedom, and other fuzzers from this category similarly take
measures to enforce UB-freedom: for instance, the YARPGEN (Livinskii et al. 2020) tool
accurately detects and avoids undefined behaviour by tracking variable types, alignments
and value ranges during program generation. Fuzzers from the second category rely on a
starting set of UB-free programs (which are often obtained by using fuzzers from the first
category) and a set of transformations that preserve UB-freedom. For instance, EMI (Le
et al. 2014) creates new programs by randomly deleting program statements that are not
executed by a certain input (and then compares the original program with the reduced one
on that particular input).

Page 31 of 35 129Empir Software Eng (2022) 27: 129

As discussed in the Section 2, CSMITHEDGE uses two existing options from CSMITH

that relax certain UB-free constraints, namely those for ensuring absence of null and dan-
gling pointer dereferences. However, these options were introduced to enable testing of
static analysers (Cuoq et al. 2012; GitHub 2011b), and cannot be reliably used to find
miscompilations without the extra measures described in this paper.

The problem of improving diversity during randomised testing has also been approached
by adapting the manner in which a test case generator is configured, rather than funda-
mentally changing the way the generator works. The swarm testing technique (Groce et al.
2012) and HiCOND (Chen et al. 2019) have improved the performance of compiler testing
by aiming to produce diverse fuzzing tool test configurations. Although we use the swarm
testing technique to choose relaxation options for each invocation of CSMITHEDGE, the
main contribution of this work lies in the way we deal with UB. We increase the approach’s
expressiveness by postponing the decision to discard code that might exhibit UB to the post-
generation phase and applying dynamic techniques. This enlarges the vocabulary of our test
case generation tool, making it possible to generate programs that were previously out of
scope. In contrast, swarm testing and HiCOND aim to improve the way generation config-
urations are chosen, but are still stuck with the expressiveness of the original technique.

Marcozzi et al. (2019) study how compiler bugs found by fuzzers such as CSMITH com-
pare with compiler bugs reported manually and find that they appear to have a similar
impact, which motivates further work on compiler fuzzing.

7 Conclusions and FutureWork

We have presented the design and implementation of CSMITHEDGE, and presented a
large experimental campaign which shows that, by relaxing the constraints on undefined
behaviour imposed by CSMITH, CSMITHEDGE can find previously unknown miscompila-
tion bugs in GCC and LLVM that regular CSMITH does not detect. Our coverage results
also demonstrate the extra thoroughness afforded by testing using CSMITHEDGE.

Practical avenues for taking CSMITHEDGE forward include investigating sanitiser sup-
port for detecting undefined and unspecified behaviour arising from read-write and write-
write conflicts, and applying the tool to additional C compilers (e.g. commercial compilers
from Intel and Microsoft, extending the limited amount of testing of the Microsoft Visual
Studio Compiler reported here). With appropriate sanitiser support for the OPENCL pro-
gramming model it would also be possible to apply the techniques in CSMITHEDGE to the
CLSMITH compiler fuzzing tool (Lidbury et al. 2015)—an extension of CSMITH that tar-
gets OPENCL. It would also be interesting to apply similar ideas to other compiler fuzzing
tools, such as YARPGEN (Livinskii et al. 2020), to see whether relaxing their enforcement
of UB-freedom can enable discovery of more bugs. Finally, the additional relaxations we
have implemented in CSMITHEDGE might prove complementary to the existing flags for
allowing null and invalid pointers, in the context of testing static analysis tools.

Acknowledgements We would like to thank John Regehr for answering our questions about Csmith, Paul
Thomson for his guidance in using gfauto for coverage analysis, and Michaël Marcozzi for sharing data,
assisting with gcov and proofreading the text. We are also grateful to the anonymous reviewers for their
very detailed feedback which helped us to improve the paper substantially.

Funding This project has received funding from the UK Engineering and Physical Sciences Research Coun-
cil through grants EP/R011605/1 and EP/R006865/1, and from the European Research Council under the
European Union’s Horizon 2020 research and innovation program (grant agreement 819141).

129 Page 32 of 35 Empir Software Eng (2022) 27: 129

Code Availability The code for this work can be found at GitHub (2021b) tag EMSE2021.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Address Sanitizer (2012) https://clang.llvm.org/docs/AddressSanitizer.html
Babokin D (2019) Comment on running one million Yarpgen programs https://twitter.com/DmitryBabokin/

status/1134907976085516290 [Online; accessed 24-February-2022]
Barr ET, Harman M, McMinn P, Shahbaz M, Yoo S (2015) The oracle problem in software testing: A survey.

IEEE Transactions on Software Engineering (TSE) 41(5)
Bugzilla GCC (2020a) Bug 93744 https://gcc.gnu.org/bugzilla/show bug.cgi?id=93744 [Online; accessed

24-February-2022]
Bugzilla GCC (2020b) Bug 94809 https://gcc.gnu.org/bugzilla/show bug.cgi?id=94809 [Online; accessed

24-February-2022]
Bugzilla GCC (2020c) Bug 96369 https://gcc.gnu.org/bugzilla/show bug.cgi?id=96369 [Online; accessed

24-February-2022]
Bugzilla GCC (2020d) Bug 96549 https://gcc.gnu.org/bugzilla/show bug.cgi?id=96549 [Online; accessed

24-February-2022]
Bugzilla GCC (2020e) Bug 96760 https://gcc.gnu.org/bugzilla/show bug.cgi?id=96760 [Online; accessed

24-February-2022]
Bugzilla LLVM (2020f) Bug 47578 https://bugs.llvm.org/show bug.cgi?id=47578 [Online; accessed 24-

February-2022]
Burgess C, Saidi M (1996) The automatic generation of test cases for optimizing Fortran compilers.

Information and Software Technology (IST) 38:111–119
Chen J, Hu W, Hao D, Xiong Y, Zhang H, Zhang L, Xie B (2016) An empirical comparison of compiler

testing techniques. In: Proc. of the 38th international conference on software engineering (ICSE’16)
Chen J, Patra J, Pradel M, Xiong Y, Zhang H, Hao D, Zhang L (2020) A survey of compiler testing. ACM

Computing Surveys 53(1):4:1–4:36
Chen J, Wang G, Hao D, Xiong Y, Zhang H, Zhang L (2019) History-guided configuration diversification

for compiler test-program generation. In: Proc. of the 34th IEEE international conference on automated
software engineering (ASE’19), pp 305–316

Chen T, Cheung S, Yiu S (1998) Metamorphic testing: A new approach for generating next test cases. Tech.
Rep. HKUST-CS98-01 Hong Kong University of Science and Technology

Csmith Homepage (2021) https://srg.doc.ic.ac.uk/projects/CsmithEdge/ [Online; accessed 24-February-
2022]

Cuoq P, Kirchner F, Kosmatov N, Prevosto V, Signoles J, Yakobowski B (2012) Frama-C: A software
analysis perspective. In: Proc. of the 10th international conference on software engineering and formal
methods (SEFM’12)

Cuoq P, Monate B, Pacalet A, Prevosto V, Regehr J, Yakobowski B, Yang X (2012) Testing static analyz-
ers with randomly generated programs. In: Proc. of the 4th international conference on NASA formal
methods (NFM’12)

Donaldson AF, Evrard H, Lascu A, Thomson P (2017) Automated testing of graphics shader compilers. In:
Proc. of the ACM on programming languages (OOPSLA’17)

Donaldson AF, Thomson P, Teliman V, Milizia S, Maselco AP, Karpinski A (2021) Test-case reduction and
deduplication almost for free with transformation-based compiler testing. In: Proc. of the conference on
programing language design and implementation (PLDI’21)

CsmithEdge - Homepage (2022) https://srg.doc.ic.ac.uk/projects/CsmithEdge/ (Date Accessed February 24)
Even-Mendoza K, Cadar C, Donaldson A (2020) Closer to the edge: Testing compilers more thoroughly by

being less conservative about undefined behaviour. In: Proc. of the 35th IEEE international conference
on automated software engineering, new ideas and emerging results (ASE NIER’20)

Page 33 of 35 129Empir Software Eng (2022) 27: 129

http://creativecommons.org/licenses/by/4.0/
https://clang.llvm.org/docs/AddressSanitizer.html
https://twitter.com/DmitryBabokin/status/1134907976085516290
https://twitter.com/DmitryBabokin/status/1134907976085516290
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93744
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94809
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96369
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96549
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96760
https://bugs.llvm.org/show_bug.cgi?id=47578
https://srg.doc.ic.ac.uk/projects/CsmithEdge/
https://srg.doc.ic.ac.uk/projects/CsmithEdge/

Frama-C EVA plugin (2007) https://frama-c.com/fc-plugins/eva.html
GitHub Y (2018) Git repository of Yarpgen https://github.com/intel/yarpgen [Online; accessed 24-February-

2022]
GitHub (2020a) Csmith pull request 86 https://github.com/csmith-project/csmith/pull/86 [Online; accessed

24-February-2022]
GitHub (2020b) Csmith pull request 88 https://github.com/csmith-project/csmith/pull/88 [Online; accessed

24-February-2022]
GitHub (2021a) CSMITHEDGE bugs details. https://github.com/karineek/CsmithEdge/tree/master/results/

bugs [Online; accessed 24-February-2022]
GitHub (2021b) CSMITHEDGE repository. https://github.com/karineek/CsmithEdge.git [Online; accessed

24-February-2022]
GitHub (2011a) Git repository of Csmith https://github.com/csmith-project/csmith.git [Online; accessed 24-

February-2022]
GitHub (2011b) Git repository of Csmith, commit 7e33250, Csmith’s options for testing static analyz-

ers. https://github.com/csmith-project/csmith/commit/7e3325060b56cc5813b8701087b5206fb394c047,
[Online; accessed 24-February-2022]

GitHub (2018) Git repository of gfauto https://github.com/google/graphicsfuzz.git [Online; accessed 24-
February-2022]

Groce A, Holzmann GJ, Joshi R (2007) Randomized differential testing as a prelude to formal verification. In:
Proc. of the 29th international conference on software engineering (ICSE’07). IEEE Computer Society,
pp 621–631

Groce A, Zhang C, Eide E, Chen Y, Regehr J (2012) Swarm testing. In: Proc. of the international symposium
on software testing and analysis (ISSTA’12), pp 78–88

Hanford K (1970) Automatic generation of test cases. IBM Syst J 9:242–257
International Organization for Standardization (2018) ISO/IEC 9899:2018: Programming Languages—C
Klees G, Ruef A, Cooper B, Wei S, Hicks M (2018) Evaluating fuzz testing. In: Proc. of the 24th ACM

conference on computer and communications security (CCS’18), p 2123–2138
Le V, Afshari M, Su Z (2014) Compiler validation via equivalence modulo inputs. In: Proc. of the conference

on programing language design and implementation (PLDI’14)
Le V, Sun C, Su Z (2015) Finding deep compiler bugs via guided stochastic program mutation. In: Proc.

of the 30th annual conference on object-oriented programming systems, languages and applications
(OOPSLA’15)

Leroy X (2009) Formal verification of a realistic compiler. Communications of the Association for
Computing Machinery (CACM) 52(7):107–115

Lidbury C, Lascu A, Chong N, Donaldson AF (2015) Many-core compiler fuzzing. In: Proc. of the
conference on programing language design and implementation (PLDI’15)

Livinskii V, Babokin D, Regehr J (2020) Random testing for C and C++ compilers with YARPGen. In: Proc.
of the ACM on programming languages (OOPSLA’20), vol 4, pp 196:1–196:25

Marcozzi M, Tang Q, Donaldson A, Cadar C (2019) Compiler fuzzing: How much does it matter? In: Proc.
of the ACM on programming languages (OOPSLA’19)

McKeeman WM (1998) Differential testing for software. Digit Tech J 10:100–107
Memory Sanitizer (2015) https://clang.llvm.org/docs/MemorySanitizer.html
Nagai E, Hashimoto A, Ishiura N (2014) Reinforcing random testing of arithmetic optimization of C compil-

ers by scaling up size and number of expressions. IPSJ Transactions on System LSI Design Methodology
7:91–100

Nakamura K, Ishiura N (2016) Random testing of C compilers based on test program generation by
equivalence transformation. In: 2016 IEEE Asia pacific conference on circuits and systems (APCCAS)

Regehr J (2019) Comment on running one million Csmith programs https://twitter.com/johnregehr/status/
1134866965028196352 [Online; accessed 24-February-2022]

Regehr J, Chen Y, Cuoq P, Eide E, Ellison C, Yang X (2012) Test-case reduction for C compiler bugs. In:
Proc. of the conference on programing language design and implementation (PLDI’12)

Sauder RL (1962) A general test data generator for COBOL. In: Proc. of the 1962 spring joint computer
conference (AIEE-IRE’62 spring)

Segura S, Fraser G, Sanchez A, Ruiz-cortés A (2016) A survey on metamorphic testing
Serebryany K, Bruening D, Potapenko A, Vyukov D (2012) Addresssanitizer: A fast address sanity checker.

In: Proc. of the 2012 USENIX annual technical conference (USENIX ATC’12)
Stepanov E, Serebryany K (2015) Memorysanitizer: fast detector of uninitialized memory use in C++. In:

Proc. of the international symposium on code generation and optimization (CGO’15)
Sun C, Le V, Su Z (2016) Finding compiler bugs via live code mutation. In: Proc. of the 31st annual

conference on object-oriented programming systems, languages and applications (OOPSLA’16)
Undefined Behavior Sanitizer (2017) https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

129 Page 34 of 35 Empir Software Eng (2022) 27: 129

https://frama-c.com/fc-plugins/eva.html
https://github.com/intel/yarpgen
https://github.com/csmith-project/csmith/pull/86
https://github.com/csmith-project/csmith/pull/88
https://github.com/karineek/CsmithEdge/tree/master/results/bugs
https://github.com/karineek/CsmithEdge/tree/master/results/bugs
https://github.com/karineek/CsmithEdge.git
https://github.com/csmith-project/csmith.git
https://github.com/csmith-project/csmith/commit/7e3325060b56cc5813b8701087b5206fb394c047
https://github.com/google/graphicsfuzz.git
https://clang.llvm.org/docs/MemorySanitizer.html
https://twitter.com/johnregehr/status/1134866965028196352
https://twitter.com/johnregehr/status/1134866965028196352
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

Visual Studio Developer Community (2021) Bug 1485361: Msvc miscompiles program with unreachable
out of bounds access at /o2 https://developercommunity.visualstudio.com/t/msvc-miscompiles-program-
with-unreachable-out-of-b/1485361 [Online; accessed 24-February-2022]

Wang X, Zeldovich N, Kaashoek F, Solar-Lezama A (2013) Towards optimization-safe systems: Analyzing
the impact of undefined behavior. In: Proc. of the 24th ACM symposium on operating systems principles
(SOSP’13)

Yang X, Chen Y, Eide E, Regehr J (2011) Finding and understanding bugs in C compilers. In: Proc. of the
conference on programing language design and implementation (PLDI’11)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Page 35 of 35 129Empir Software Eng (2022) 27: 129

https://developercommunity.visualstudio.com/t/msvc-miscompiles-program-with-unreachable-out-of-b/1485361
https://developercommunity.visualstudio.com/t/msvc-miscompiles-program-with-unreachable-out-of-b/1485361

	CsmithEdge: more effective compiler testing by handling undefined behaviour less conservatively
	Abstract
	Introduction
	Our contribution
	Summary of experimental findings
	Paper structure

	Background
	Csmith and UB Avoidance
	Generation-time restrictions
	Runtime checks

	UB Detection
	Test Case Reduction

	Design and Implementation
	Relaxing Generation-Time Restrictions
	Null pointer dereferences
	Dangling pointer dereferences
	Variable initialisation
	Locations associated with goto
	Array bounds
	Passing the addresses of parameters
	Read/write and write/write conflicts

	Relaxing Arithmetic Checks
	An Optimisation: Lazy UB Checks
	Implementation Details
	Functions vs. Macros
	Randomisation during Test Case Generation in CsmithEdge

	Evaluation
	Compiler Bugs
	GCC bug: Missed short-circuiting during folding compBug3
	LLVM bug: incorrectly lifting a modulo computation outside an if statement compBug6
	MSVC bug: incorrectly moving an unreachable invalid array access into reachable code compBug7

	Throughput and Relaxation Rate
	Throughput of Program Generation during Differential Testing.
	Throughput of Generating Programs for Crash Testing.
	Rate of Relaxations.

	Coverage of Compiler Codebases
	Investigation of additionally-covered code for GCC

	Threats to Validity
	Internal validity
	Construct validity
	External validity and transferability
	Conclusion validity

	Related Work
	Conclusions and Future Work
	References

