Empirical Software Engineering (2022) 27: 103
https://doi.org/10.1007/510664-022-10145-2

®

Check for
updates

Practitioners’ best practices to Adopt, Use or Abandon
Model-based Testing with Graphical models
for Software-intensive Systems

Emil Alégroth! - Kristian Karl' - Helena Rosshagen’ - Tomas Helmfridsson -
Nils Olsson'

Accepted: 2 March 2022/ Published online: 30 May 2022
© The Author(s) 2022

Abstract

Model-based testing (MBT) has been extensively researched for software-intensive sys-
tems but, despite the academic interest, adoption of the technique in industry has been
sparse. This phenomenon has been observed by our industrial partners for MBT with graph-
ical models. They perceive one cause to be a lack of evidence-based MBT guidelines
that, in addition to technical guidelines, also take non-technical aspects into account. This
hypothesis is supported by a lack of such guidelines in the literature.

Objective: The objective of this study is to elicit, and synthesize, MBT experts’ best prac-
tices for MBT with graphical models. The results aim to give guidance to practitioners and
aspire to give researchers new insights to inspire future research.

Method: An interview survey is conducted using deep, semi-structured, interviews with an
international sample of 17 MBT experts, in different roles, from software industry. Interview
results are synthesised through semantic equivalence analysis and verified by MBT experts
from industrial practice.

Results: 13 synthesised conclusions are drawn from which 23 best-practice guidelines are
derived for the adoption, use and abandonment of the technique. In addition, observations
and expert insights are discussed that help explain the lack of wide-spread adoption of MBT
with graphical models in industrial practice.

Conclusions: Several technical aspects of MBT are covered by the results as well as con-
clusions that cover process- and organizational factors. These factors relate to the mindset,
knowledge, organization, mandate and resources that enable the technique to be used effec-
tively within an organization. The guidelines presented in this work complement existing
knowledge and, as a primary objective, provide guidance for industrial practitioners to better
succeed with MBT with graphical models.

Communicated by: Hadi Hemmati

P< Emil Alégroth
emil.alegroth@bth.se

Extended author information available on the last page of the article.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10145-2&domain=pdf
mailto: emil.alegroth@bth.se

103 Page 2 of 42 Empir Software Eng (2022) 27: 103

Keywords Model-based testing - Test automation - Software Engineering -
Industrial study - Expert knowledge

1 Introduction

Model-based testing (MBT) based on graphical models is a testing technique where mod-
els are driven by MBT test code to generate and, if used for automated testing, run test
cases (Utting et al. 2012). Graphical models are in this context models of edges and ver-
texes that define test behavior whilst MBT test code is specialized code used to run the
models. Furthermore, a test case is defined as a sequence of actions that aim to verify
how well a system under test (SUT) conforms to its requirements. The technique is often
defined as a black-box technique and has several inherent benefits which stem from mod-
els defining tests on a higher logical and/or semantic level of abstraction than, for instance,
test code. This abstraction reduces technical and cognitive complexity of the tests—tests
are easier to overview and understand (Khan et al. 2019). These models vary in type
and appearance depending on domain, context or purpose, i.e. they can be textual (e.g.
Gherkin (North 2010)), formal (e.g. mathematical) (Broy et al. 2005) or graphical models
(e.g. graphs) (Utting et al. 2012; Kramer and Legeard 2016).

This study delimits its scope to automated testing with graphical models—henceforth
when discussing MBT, if not stated otherwise, it primarily refers to MBT with graphical
models—where system states and state-transitions are visualized using graphical objects
(i.e. vertexes), lines and/or arrows (i.e. edges). These models, for example defined in
UML (Lima and Faria 2015), are drawn in modelling tools, e.g. YeD (Aho et al. 2011),
or within the MBT tools themselves, e.g. Graphwalker (Zafar et al. 2021). The study’s
delimitation stems from our industrial partners’ needs to get better understanding of MBT.
Additionally, we decided to limit the scope of the study since investigating all types of MBT
was considered too resource intensive for the study.

In practice, after a model has been developed, it is exported or developed into an exe-
cutable format, i.e. MBT test code components. These components consists of code that
implement the behavior of the modelled graphical, commonly referred to as model drivers.
When developed manually, such components may be programming language specific, but
for certain test drivers/tools (e.g. RT-Tester (Peleska 2013) or Testar (Rueda et al. 2015))
the components may be considered programming language agnostic. The MBT test driver
(i.e. code in this discussion) can be written to interact with the SUT on different levels of
abstraction, e.g. unit, application programming interface (API) or graphical user interface
(GUI) level. The connection between code and graphical, i.e. vertexes or edges, in the model
enables reuse of test code by copying graphical objects in the model or by connecting two
objects with a new or existing state transition. Additionally, this setup provides the tech-
nique with inherent architectural design support for the tests, which helps improve the tests’
maintainability and reusability.

MBT has been researched for over 40 years, resulting in a myriad of solutions, as shown
in multiple systematic literature reviews and mapping studies as well as taxonomies on
the topic (Igbal et al. 2018; Gurbuz and Tekinerdogan 2018; Nguyen et al. 2017; Jin and
Lano 2021; Utting et al. 2012). A recent tertiary study has also been conducted that clas-
sifies these secondary studies (Villalobos-Arias et al. 2019). The tertiary study concludes
that MBT, including but not limited to graphical models, is primarily studied from a tech-
nical perspective—studies focus on modelling with UML or state-transition models for unit

@ Springer

Empir Software Eng (2022) 27: 103 Page3of42 103

or integration tests. Additionally, the study concludes that there are missing areas within
empirical MBT research. This includes more studies into MBT tools (Zafar et al. 2021), to
increase its impact and adoption in industrial practice (Schneider 2021). One stated reason
for the limited adoption is a lack of industrial success stories and empirical studies (Vasquez
et al. 2019; Martinez 2019; Villalobos-Arias et al. 2019). Another reason is the limited
focus on evidence-based studies that also consider non-technical MBT aspects—practical
and organizational guidelines for how to adopt, use and abandon the technique.

In this study we aim to help bridge this gap in knowledge through an international deep-
interview study with 17 experts in MBT with graphical models. The goal of the study is to
elicit and synthesize best practice guidelines from the experts’ experiences from adoption,
use and abandonment of the technique in industry. Primarily, we seek experiences from suc-
cessful projects rather than lessons learned from failed projects. To achieve the objective,
our study, classified as exploratory but primarily descriptive, is not delimited to techni-
cal best practices but also includes non-technical aspects associated with the process and
organization for successful MBT.

The result of the study is a set of 23 synthesized best practices for MBT with graphical
models. These results are verified by MBT experts who determine them to be generally
applicable within the domain of software-intensive systems. In this study, software-intensive
systems refers to software systems and applications developed for end users (Freeman and
Hart 2004), excluding embedded systems and software built to be used by other systems.
We do not exclude that the results are applicable in other domains but lack support to make
any such claims.

The main contributions of this paper therefore are:

1. Experience reports on the adoption, use and abandonment of MBT in industrial practice
from 17 international experts,

2. A set of 13 generalized conclusions/observations about MBT adoption, use and aban-
donment in industrial practice, and,

3. 23 verified best practices for how to adopt, use and abandon! MBT in industry.

The remainder of this paper is structured as follows: Section 2 will present related work
and an extended motivation for the study. The paper continues in Section 3 with a descrip-
tion of the research methodology. Section 4 presents the results of the study, followed
by Section 5 that will present the derived best practices. In Section 6, the results will be
discussed and, finally, the paper will be concluded in Section 7.

2 Related work and extended motivation for this study

Model-based testing has received a lot of attention from research the last 40 years, as evi-
dent from systematic literature reviews, mappings and tertiary studies on the topic. In a
tertiary study from 2019 by Villalobos-Arias et al. (Villalobos-Arias et al. 2019), the authors
analyzed 22 secondary studies—systematic literature reviews and systematic mappings—to
identify current areas of MBT research. They found five research areas; SUT, test objectives,
model specification, test generation and test execution. The study also found that MBT has
been applied in most domains of software engineering but the studies primarily focus on

! Abandonment considers warning signs that abandonment may be an outcome and practices to replace MBT
after abandonment.

@ Springer

103 Page 4 of 42 Empir Software Eng (2022) 27: 103

unit and integration tests. Hence, while technical aspects associated with MBT are covered,
organizational, human or other softer factors are underrepresented. We identify this as an
important gap in research since these factors are highly relevant for the technique’s adop-
tion, use and longevity in practice. Support for this claim is taken from the tertiary study,
which identified that there are many tools available for MBT but still the application of
the technique is low in practice (Schneider 2021). This can be explained by the many tech-
nical challenges connected to the technique, but also unknown non-technical challenges.
These non-technical challenges—associated with softer factors—thereby warrant further
empirical research to uncover their existence, extent and how they can be addressed.

Looking closer at the secondary studies, for example Igbal et al. (Igbal et al. 2018),
who performed a broad literature review of empirical MBT research in 2018, evaluated the
quality of MBT research. Although finding many papers, and showing that the research
area is mature, their analysis found that only half of the analyzed papers (N=87) contained
the necessary details to properly evaluate their quality. Furthermore, although all papers
were empirical, only 19 papers contained industrial data, such as model specifications, and
only 3 used industrial code. The remaining 68 papers did either not specify the origin of
the used specifications or code, or used academic, open source or artificially constructed
examples. The conclusion drawn from the review is thereby that more industry-focused, or
co-produced, research is required to judge MBT’s industrial applicability. Hence, another
gap in knowledge that this study helps to cover.

Another literature review is presented by Gurbuz and Tekinerdogan (Gurbuz and Tekin-
erdogan 2018) who focused their study on MBT’s use for testing software qualities, in
particular software safety. The review identified 36 industrial examples, but almost half
(N=15) were conducted in either the automotive or railroad domain and none of the studies
included human subjects. Hence, further evidence that most MBT studies focus on technol-
ogy/tools despite the fact that many of the papers state that they aim to study the technique’s
use in practice. As such, many studies fail to provide a complete view of the stated stud-
ied phenomenon since the human perspective, e.g. user experience, test processes and best
practices, are not considered. Further support for the lack of industrial involvement is given
by a literature review by Nguyen et al. (Nguyen et al. 2017). In their review, the authors
found that 41 out of 48 (i.e. 90 percent) of papers on testing security of cyber-physical sys-
tems, are written solely by academic researchers. Whilst this observation does not reflect
how well the studies’ are grounded in industrial data, it provides indicative support to the
lack of co-production in MBT research.

A more recent literature review by Jin and Lano (Jin and Lano 2021), looked at a twenty
year sample of papers (N=443) published between 1999 and 2019 that focused on model
types, intermediate formats between models to tests, and coverage criteria. The outcome
of the study are future research directions, deficiencies and trends. Similarly to previ-
ously mentioned reviews, the study concludes that technological choices are premiered, in
particular modelling schemes.

User-oriented research does however exist. For instance, Utting et al. (Utting et al.
2012) define a user-oriented taxonomy that aims to support decision-making when select-
ing MBT tools. The taxonomy covers different types of MBT aspects, including model
specification, test generation and test execution. The authors’ explicitly state that they
exclude aspects concerning ease of use, performance, interoperability, maintainability and
traceability, but cover the perspectives of subject selection, redundancy, test characteristics,
MBT as a test paradigm, test selection criteria, technology selection and mode of execution

@ Springer

Empir Software Eng (2022) 27: 103 Page 50f42 103

(online/offline). The taxonomy is, as stated, tailored towards MBT users, evaluated by map-
ping existing approaches from research onto the taxonomy. Albeit more encompassing than
many previous studies, their study still has a technological focus, neglecting several human
aspects, e.g. process and organization, which are perceived important for efficient/effective
MBT. The taxonomy has also been extended in 2016 by Felderer et al. (Felderer et al. 2016;
Felderer et al. 2011) who added classification of model-based security testing (MBST). This
work takes environmental and other dimensions into account, but focuses on a product per-
spective and its security, omitting human perspectives such as development best practice,
processes and communication. These taxonomies were later complemented by the tertiary
study by Villalobos-Arias et al. (Villalobos-Arias et al. 2019) and their results on MBT’s
application, which provided a general overview of the area.

Due to the maturity of MBT, much knowledge has also been synthesized in books. For
example, in their book, “The craft of Model-based testing”, Jorgensen (Jorgensen 2017)
presents a comprehensive guide to model-based testing, focusing primarily on how to
construct models, different types of models and tools but also cover aspects such as the
adoption and use of MBT in practice. Here, the evidence-based results of this study provide
confirmatory support.

Despite the vast body of knowledge, many studies on MBT are still referencing a lack of
evidence about MBT from an industrial perspective (Janicki et al. 2012), e.g. lack of indus-
trial experience reports and success stories. In a study from 2021 by Garousi et al. (Garousi
et al. 2021), an empirical and industrial study is presented where multiple MBT tools are
evaluated. Among the contributions of this work are lessons learned and obstacles of adopt-
ing and using MBT in practice. A possible explanation to the lack of industrial studies can
be attributed to a slow adoption, and interest, from industry (Schneider 2021). Reasons for
this slow adoption include the need to adopt new ways-of-working and that MBT tools
are incompatible with other tools, environments and common ways-of-working (Li et al.
2016; Dias Neto et al. 2007). Therefore, other techniques, for instance Behavioral-driven
development (BDD), which builds on similar foundations as MBT but are more similar
to traditional script-based testing, have gotten more traction in practice (Li et al. 2016).
Another perceived root-cause to the limited success of MBT is a lack of knowledge about
the technique in industry. More knowledge transfer is therefore perceived as necessary (Dias
Neto et al. 2007). However, it is important to note that the amount of adoption of the tech-
nique varies between domains. For instance, within safety- and reliability-critical domains
such as avionics (Peleska et al. 2018; Hemmati et al. 2018), automotive (Drave et al. 2018)
and financial technology (Nikiforova et al. 2021; Asaadi et al. 2012), MBT is more com-
mon. One explanation for this phenomenon is that these systems often include high degrees
of low-level message passing with high combinatorial complexity, which MBT effectively
mitigates.

In summary, the body of knowledge on MBT is vast. However, when looking into
the literature, most papers concern technical MBT solutions, whilst empirical studies, and
industrial experience reports, are more limited (Janicki et al. 2012). Studies on best practices
and softer factors associated with the technique are also lacking. In this paper, we address
this gap in knowledge by eliciting insights, experiences and observations from expert users
of the technique that have used MBT in various industrial settings for one or several years.
This provides an academic contribution in terms of showing how MBT operates in industrial
practice, but also best-practices for industrial practitioners that seek to adopt, better use, or
abandon MBT.

@ Springer

103 Page 6 of 42 Empir Software Eng (2022) 27: 103

3 Methodology

For reference, Figure 1 provides a visual overview of the research procedure, and its eight
steps, conducted in this study. The procedure was orchestrated by the first author, supported
by the co-authors who are all practitioners from industry. As such, the study, classified as
exploratory but primarily descriptive case study, was performed in co-production between
industry and academia. This collaboration was performed within a larger project, where the
objective of the study was defined by the industrial practitioners, verified through literature
analysis, and then jointly investigated.

In the continuation of this section, each step of the procedure will be described, including
sub-activities and other details required to understand how the study was performed. Effort
has been spent to describe the study such that it can be replicated. However, we recognize
that replication of case studies is inherently challenging. For example, sampling practition-
ers with identical experiences to our sample is seldom possible. Our measures to mitigate
such limitations is discussed further in Section 3.7.

3.1 Formulation of research objective

The objective of this study is to gather real-world experiences from practitioners and indus-
trial projects where MBT, with graphical models, has been adopted, used or abandoned, and
transform these experiences into best practices for the technique. This objective was for-
mulated in co-production with the research project’s partners due to a recognized lack of
evidence-based guidelines for MBT, in both literature and practice, which cover technical
aspects but also present non-technical aspects. In this paper, we divide these aspects as:

— Technical aspects - consider MBT development artefacts (e.g. tools, requirements,
models or code) and the use of these artefacts for testing or quality assurance.

— Non-technical aspects - consider processes (e.g. using models for knowledge sharing,
communication to achieve MBT, or when/how to run MBT tests) and organization (e.g.
roles associated with MBT or team constellations).

The choice of an interview study with experts is warranted to acquire empirical experi-
ences from real projects. Additionally, we sought experts with multiple years of experience

gL T

1. Formulate 2. Formulate 3. Draft interview ‘ 3.1. lterate ’

research objective research questions guide interview guide

N—/"

4. Pilot interviews

6. Perform 5. Sample
Interviews interviewees

8. Formulate best
7. Analysis practices and

conclusions

‘ 4.2. Analysis ’

4.1. Systematic

semantic inference Verification

Fig.1 Visualization of the methodology used throughout the study

@ Springer

Empir Software Eng (2022) 27: 103 Page 7 of 42 103

from multiple projects to improve the external validity of the results. Thus, providing the
researchers with both in depth details and general practices, used in multiple projects, from
which to synthesize conclusions. We sought experiences from successful MBT projects,
but since the adoption of any technique or tool in practice is fickle, all experiences were
not exclusively from such projects. The reason is because we were also interested in the
best practices of abandonment of the technique and believe that lessons learnt from failed
projects provide good insights to support success factors. As such, all experiences were of
interest but focus for the study was on best practices that relate to MBT success stories.

We recognize that alternative research methodologies could have been used to study
the research objective, for instance a tool-focused case study or questionnaire survey. The
benefit of a more focused case study would be more in-situ observations of the practices
in operation, as well as detailed accounts of challenges. However, since, given the time
constraints of our funded project, this methodology would only have given us access to one
or a couple of cases. As such, the methodology would not have provided us with the general
insights into best practices we were looking for. A more reasonable alternative would have
been a questionnaire survey. However, finding a suitably large sample of practitioners was
considered a challenge. In addition, a questionnaire would limit the depth of information
required to draw evidence-based conclusions. Thus, we concluded that an interview study
would be the most suitable to meet our objective.

As stated, we delimit the study to MBT with graphical models due to our industrial part-
ners’ knowledge needs—knowledge about graphical MBT was requested due to currently
used tool, e.g. Graphwalker (Zafar et al. 2021). It was also necessary to restrict the study
since MBT is a vast research area, including a wide array of tools and techniques, which
was perceived infeasible to study given the project’s resources and research team’s con-
tact network. The target audience for the paper is thereby practitioners that seek to adopt,
use or avoid abandonment of MBT with graphical models. However, we also hope that the
evidence gathered in the paper can provide insights, and complementary results, to research.

3.2 Formulation of research questions

To better understand the MBT life-cycle—from adoption to use to abandonment—and the
practitioners’ experiences within this life-cycle, the research objective was broken down
into three research questions.

— RQ1: What are common experiences that practitioners have when adopting MBT, with
graphical models, in practice?

This question aims to answer what, if any, experiences that industrial practitioners com-
monly have during the adoption of MBT. These experiences can be of a technical nature,
e.g. connected to tools or frameworks, or concern softer factors, e.g. human- or process-
oriented factors. Due to the evidence-based nature of the study, all types of experiences are
considered, including challenges, solutions, considerations and prerequisites to successfully
adopt the technique.

— RQ2: What are common experiences that practitioners have when using MBT, with
graphical models, in practice?

This question assumes that MBT has been successfully adopted and is being used in a devel-
opment environment. The question aims to answer what common experiences practitioners
have with using MBT in industrial practice, including challenges with using the technique,

@ Springer

103 Page 8 of 42 Empir Software Eng (2022) 27: 103

solutions to said challenges, benefits and drawbacks. As such, aiming to encapsulate MBT
usage from a comprehensive perspective, including technical-, human- and process-oriented
factors. An additional concept of interest is how MBT compares to other testing techniques
or tools.

— RQ3: What are common experiences that practitioners have when abandoning MBT,
with graphical models, in practice?

This question assumes that MBT has been successfully adopted, and possibly used, but
practitioners have experienced challenges with the technique that has lead to the decision
to abandon—remove or replace—the technique. The question aims to answer what expe-
riences practitioners commonly have during abandonment of the technique. This includes
what the warning signs, and causes, for abandonment are, what impact abandonment may
have on the development environment and what tools/techniques that can serve to replace
MBT after abandonment.

3.3 Drafting the interview guide

Development Guided by the research questions, the interview guide was split into three
main parts (one part per research question, i.e. associated with adoption, use or aban-
donment of MBT) that were individually developed, discussed and improved in iterations
through a series of workshops. In the first workshop, the authors used brainstorming to draft
an initial set of interview questions. An important aspect when designing the questions was
how to elicit the interviewees’ experiences and not their perceptions/assumptions. After the
first workshop, the authors worked independently to refine and improve the questions. These
improvements were compiled by the lead author in preparation for a second workshop.

In the second workshop, the interview questions were first analyzed from a macro
perspective—to verify that they were coherent, consistent and answer the research ques-
tions. Second, the language of each question was scrutinized to eliminate ambiguities. After
the workshop, a second iteration of independent work was carried out by the authors, and
results compiled.

In the third workshop, the interview questions were once more scrutinized and refined.
The guide was also expanded to elicit information about the interviewees’ backgrounds.
Example questions include interviewees’ years of professional experience in industry,
with testing, and with model-based testing. Elicitation of such demographic data is con-
sidered best academic practice to to gauge the generalizability of the results (Runeson
and Host 2009). In this study, such information also allowed the researchers to gauge
the interviewees’ experiences from successful and unsuccessful projects. As a baseline it
was considered that working with MBT for more than a year within one company was a
successful project.

The interview guide was written in English but later translated into Swedish—the
authors’ native tongue—since most interviews were expected to be held in Sweden.

Structure of the interview guide The final interview guide contains six parts, of which
three are the interview questions connected to the research questions.

The first part of the guide is a textual description introducing the study and its purpose.
After this description is read to the interviewee, it is explained that all answers are anony-
mous and that the answers will be disseminated in a way not traceable back to them. Next,
the interviewees’ are asked if they agreed to record the interview and told that they have
the option to review the study results before they are published, i.e. get early access to this

@ Springer

Empir Software Eng (2022) 27: 103 Page 9 of 42 103

manuscript for review. A clarifying statement is then given about what MBT means and that
the study concerns MBT with graphical models. Finally, it is clarified to the interviewees
that their empirical experiences are requested rather than their perceptions or theories. The
interviewees are asked to clarify when their answers are not based explicitly on their own
experiences to separate such results from more theoretical results.

The second part of the guide aims to capture demographic information. This information
is required to cluster participants to understand the construct- and external validity of the
results. These validity factors are further elaborated upon in Section 3.5.

The third part of the interview guide consists of questions about the interviewees’ expe-
riences with adoption of MBT in industrial practice. Hence, interview questions aimed at
answering RQ 1. There are six questions—four mandatory and two optional follow-up ques-
tions. The questions concern the needs that MBT fulfills, the environmental changes that are
required to make MBT work, the roles/stakeholders that shall be involved in the adoption
and the challenges with adopting the technique. Together, these questions aim to identify
practices associated with MBT success, but also challenges and pitfalls that practitioners
should avoid. For the reader’s convenience, the complete interview guide can be found in
Appendix A. Note that additional, ad hoc, follow-up questions, not stated in the interview
guide, were asked in-situ. These additional questions were not captured in the guide, only
in the interview results.

The fourth part of the guide consists of four primary questions regarding the use of MBT
in practice, i.e. aimed at answered RQ2. These begin with (1) a question concerning the
roles responsible for using MBT, (2) the contextual needs and circumstances that should
be considered when choosing MBT for testing, (3) the guidelines for successful application
of MBT, and (4) the functional and extrafunctional (non-functional) attributes that can be
tested using MBT. Question (3), question 7 in the guide, regarding guidelines for using MBT
is divided into ten sub-questions. These questions provided the largest contribution to the
study results, and for the readers’ convenience we have classified them below as technical -
T, organizational - O, or process - P oriented. These sub-questions concern:

1. What input shall be used to develop/use MBT tests (T),
2. How shall test functionality be divided between the graphical test model and MBT test
code used to drive the model execution (T),
How much time shall be spent on modelling compared to test code development (P),
How shall development of models/code be divided between different roles (O),
How/when shall model-based tests be maintained (P),
How often shall MBT tests be run (P),
How shall models/code be quality assured (P),
How are models and code effectively reused (T),
9. How are test scenarios efficiently recreated when MBT tests fail (T), and
10. How is output most effectively used from MBT tests (P).

NN bW

Combined, these questions seek to identify practices associated with successful use of
MBT but also challenges, or pitfalls, that practitioners should avoid. In particular, the listed
sub-questions elicit practices that the interviewees’ consider favorable, based on their own
experience. Note that the questions are stated agnostic of tools and type of graphical mod-
els used. The questions also concern process-, organizational- and other environmental
factors—i.e. non technical factors not well-described in previous research.

The fifth part of the interview guide are questions concerning the abandonment of MBT
and reasons for abandonment, i.e. aimed to answer RQ3. There are five questions in total,

@ Springer

103 Page 10 of 42 Empir Software Eng (2022) 27: 103

four mandatory and one optional follow-up question. These questions concern the reasons
and warning signs that MBT should/will be abandoned, what effects abandonment has on
daily work, what tools/techniques that best replace MBT after abandonment and finally
what the interviewees would have done differently to succeed better if they got to re-
introduce MBT in a context where MBT has previously been abandoned. Due to the study’s
objective of capturing best practices, less emphasis was placed on the abandonment of the
technique since such results are inherently associated with failed projects.

The aim of these questions is to capture aspects that can lead to the abandonment of MBT
and possibly ways of preventing them. Also, assuming that the technique is abandoned,
what can be done, if anything, to fill the gap that MBT leaves behind in terms of testing.

In the sixth, and final, part of the interview guide the interviewees are asked if they
have any additional comments that they feel have not been covered by the interview ques-
tions. This question gives the interviewees the chance to complement the interview if they
feel (1) the interview instrument was not complete or (2) if there are unique factors in the
interviewees’ context that required special consideration.

Combined, the six parts of the questionnaire cover the entire life-cycle of MBT adoption,
use and abandonment, eliciting experiences and other observations from the interviewees.
These results are then used as input for further analysis, discussed in Section 3.7.

Statement on validity of the guide The interview guide development was driven by the
lead author who has previously published several interview studies in the area of software
testing. The questionnaire was drafted and refined through academic best practices with
questions based on the authors’ combined empirical and industrial experience (Runeson and
Host 2009; Baskarada 2014). Whilst this domain knowledge helps improve the questions’
construct validity, we cannot exclude biases caused by questions being poorly formulated
or that a more favorable question may have unintentionally been left out. To address these
possible threats we designed a deep questionnaire guide, chose a semi-structured interview
design to enable follow-up questions and gave interviewees the possibility to give additional
information at the end of the interviews.

3.4 Piloting the interview guide

Interview pilots are used to test that the interview protocol (1) will be correctly understood
by the interviewees and (2) if the interviewees’ answers fit the researchers’ expectations.
Two pilot interviews were carried out in sequence during the study, with improvements
of the first pilot carried over and tested in the second pilot. The first interview was held
in Swedish with one of the authors of this paper who had not been involved in the final
refinement stages of the questionnaire. This person is considered an MBT expert and well
knowledgeable of the study’s research objective. As such, able to comment upon the domain
validity of the questions, if they were ambiguous, and their connection to the research objec-
tive. Additionally, the time required to run the interview could be tested. The first pilot only
resulted in minor, mainly linguistic, changes to the interview guide and it was determined
that the interview could be performed in under 60 minutes.

The second pilot was performed with the English interview guide after being updated
according to the feedback of the first pilot. It was conducted with an English-speaking
interviewee, external to the research team, which could therefore give feedback on things
the team may have overlooked. The second pilot confirmed that the interviewee found the
questions easy to understand and answer. Further analysis of the interview results showed

@ Springer

Empir Software Eng (2022) 27: 103 Page 11 0f 42 103

semantic similarity in key areas to the answers of the first interview, implying correctness
of the guide.

Because of the pilots’ success, the decision was taken to proceed with the interviews.
Additionally, since no changes were required to the interview guide that affected the
semantic meaning of the questions, the pilot interviews were included in the final data set.?

3.5 Sampling interviewees

The sample frame for the interviews was intentionally delimited to software engineers with
experience of using MBT, with graphical models, for testing software-intensive systems.
This decision explicitly excludes embedded systems development, e.g. the automotive or
aerospace domain, where MBT is also used (Villalobos-Arias et al. 2019). The motivation
for this delimitation, as stated, were the needs of our industrial partners, resource limitations
but also, based on our experiences and literature review, that evidence-based studies are
limited in the area of software focused products.

However, despite this delimitation, the sample frame is still vast and therefore infeasi-
ble to comprehensively cover in the study due to resource constraints. This constraint is
also one of the rationales for why the study focuses on guidelines for MBT with graphi-
cal models and not MBT in general. Regardless, finding experts in industry, which are also
willing and able to participate, is a time-consuming process. The interviewees for these
interviews were sampled either from the first or second tier of the authors’ personal contact
network—contacts or contacts of contacts—or were practitioners who volunteered through
the Graphwalker tool’s forum. However, to get a suitably large sample of interviewees,
with suitable experiences, we relied on convenience sampling and focused on performing as
many interviews as possible. Hence, we did not screen, nor exclude, interviewees. Instead,
screening was performed on the interview results, judging demographic data as well as
coherency of interviewees’ responses.

Due to the chosen sampling approach, no random inclusion/exclusion of participants was
possible to control the sample. However, analysis of the interviewees (N=17) shows that it
includes:

1. Engineers with 8 to 30 years of industrial experience (average 19.5 years, standard
deviation 8.4 years),

2. Engineers with 5 to 30 years of testing experience (average 14.7 years, standard
deviation 7,8 years),

3. Engineers with 1 to 16 years of MBT experience (average 6.4 years, standard deviation
6.3 years),

4. Engineers with varying roles, including MBT test developers, testers, team managers,
QA engineers and MBT tool developers. As such, individuals with varying oper-
ational roles, able to provide experiences as developers, QA engineers, champions
and project managers within/for MBT projects, Engineers from Canada, Denmark,
Germany, Sweden, United Kingdom, and the United States,

5. Engineers from ten companies—most with experiences from several companies or
projects—experienced with testing and developing leisure applications (e.g. music
streaming), banking systems, insurance systems, finance systems, testing tools, MBT
tools, front-ends for large-scale systems, communication/telecom systems, governmen-
tal systems as well as consultancy within quality assurance,

2Special care was taken when analyzing the first pilot interview to avoid bias.

@ Springer

103 Page 12 of 42 Empir Software Eng (2022) 27: 103

6. Most of the interviewees had experiences from longer consecutively running projects,
i.e. projects longer than 1 year. As such, their experience enabled elicitation of best
practices from successful MBT projects,

7. Nine of the interviewees were previously known by one or more of the authors, the
remaining eight were previously unknown to all of the authors.

We conclude that this set of interviewees span a representative range of domains, com-
panies and platforms—although not comprehensive—to cover most software intensive
systems. The sample also represents experiences from >>17 projects. Thus, enabling elici-
tation of results with high external validity. In addition, we note that most practitioners had
been part of at least one project with longer running time (>1 year), implying project suc-
cess. For instance, MBT was used for over ten years at a music-streaming software company,
in which several interviewees worked/had worked. Other examples were two 3 year MBT
projects within the governmental and financial technology sectors. We do however stress
that no explicit question, nor criteria for project success, were given to the interviewees.
The conclusion of interviewees’ experiences of successful projects is however strengthened
by the interviewees’, on average, 6.4 years of industrial experience with the technique. We
recognize that this metric is influenced by the number of projects each interviewee has
experiences from. This information was not explicitly elicited, but through analysis of the
interviews we found that most only mentioned experiences from a maximum of two to three
projects. Thus, allowing us to conclude that most projects were longer than the set threshold
for success of 1 year.

Software industries that are not represented are the aforementioned automotive industry
but also the gaming industry where MBT and model based engineering (MBE) is sometimes
used. However, due to the inherent commonalities of modern software development, we
expect the adoption, use and abandonment of MBT to be similar. Additionally, the results are
synthesized, triangulated (Runeson and Host 2009; Baskarada 2014) from several sources,
and presented on a level of abstraction which should increase the probability of the results
being of benefit to non-represented domains.

3.6 Conducting the interviews

The interviews were conducted during 2020, at the peak of the COVID-19 pandemic.
Therefore, all interviews were conducted online, using either the communication platforms
Zoom or Microsoft Teams. The audio of each interview was recorded and detailed notes
were taken, close to real-time transcription, by the interviewer. After the interviews, the
recordings were used to complement the interview notes, adding details as required during
validation of the transcriptions.

All interviews were carried out by the lead author and were planned to be 60 minutes
each, estimately split accordingly:

1. (Part 1) Introduction to study, interview, clarification of concepts and request to record
the interview (5 minutes),

2. (Part 2) Elicit interviewee background information (5 minutes),

3. (Part 3) Elicit the interviewee’s experiences with the adoption of MBT in industrial
practice (15 minutes),

4. (Part 4) Elicit the interviewee’s experience with the use of MBT in industrial practice
(20 minutes),

5. (Part 5) Elicit the interviewee’s experience with the abandonment of MBT in industrial
practice (10 minutes),

@ Springer

Empir Software Eng (2022) 27: 103 Page 13 0f42 103

6. (Part 6) Elicit other concerns the interviewee thought had not been covered in the
interview (5 minutes).

However, since many of the interviewees were eager to share their experiences, most inter-
views ran longer than 60 minutes. The average time for the interviews was clocked to 74
minutes (median 66 minutes) with a standard deviation of 23 minutes. The shortest interview
was 54 minutes and the longest 137 minutes, measured from the audio recordings.

The willingness of the interviewees to share their experiences made it possible to ask
in-depth follow-up questions to explore key concerns. This willingness to contribute also
reflects the interviewees’” knowledge/experience, passion for the technique.

The interviewees’ eagerness was however identified as a threat; interviewees may over-
state the benefits, or understate the drawbacks, of the technique. To mitigate this threat, the
interviewer took a critical stance towards the interviewees’ statements. In particular, asking
interviewees to elaborate when their statements differed from other interviewees or the liter-
ature. Additionally, follow-up questions were asked throughout the interviews to challenge,
or confirm, the coherency of each interviewee’s statements. To further verify the validity of
the interviewees’ statements, the results were scrutinized during the analysis phase (reported
in more detail in Section 3.7) for consistency and coherency.

It was made clear to the interviewees that we sought their real world experiences, and
practices they had applied in actual projects. We also asked the interviewees to clarify if
their statements were theoretical. By this practice we argue that we could elicit practices that
are verified, through empirical use, in practice. As such, due to our strict evidence-based
analysis, the synthesized practices are also considered valid for industrial use. The list of
practices was also verified by the practitioners that took part in the study, discussed further
in Section 3.8.

The results of the interviews were stored in audio file recordings and transcripts in digital
documents (Microsoft Word). These files were structured question by question and were the
primary source of data for the analysis. During the analysis, the audio recordings were only
used when exact quotes from the interviewees were required.

3.7 Analysis

To achieve the study goal of identifying general best practice guidelines for the adoption,
use and abandonment of MBT, an evidence-based analysis approach was employed.

The analysis procedure was divided into three steps, as visualized in Figure 2, taking
the interview transcripts as input. In the first step, the interview transcripts were reviewed
interview-by-interview and question-by-question to extract summaries of each answer. The
summaries were collected in an Excel sheet, as shown in Step 1 of the figure, with the
interview questions in the first column and the summaries per interviewee in succeeding
columns. When summarizing the answers, care was taken to retain the semantics of each
interviewee’s answer and include as much information as possible. This practice was con-
ducted by the leading author but reviewed and verified for suitability by the other authors.
Note that information exclusion was kept to a minimum at this stage, i.e., all answers were
summarized. This is because this step of the analysis served to transform the interview data
to make it easier to overview. As such, it did not serve to sample results for the synthesis or
to draw conclusions. Instead, this step was performed to enable further analysis with lesser
need to use the raw interview transcripts. This practice also made it easier to identify parts
of answers to one question that were connected to other interview questions. When such
answers were found, they were also connected to the correct questionnaire questions. This

@ Springer

103 Page 14 of 42 Empir Software Eng (2022) 27: 103

Transcript PA Step 1: Summarize interviewee answers

Question/
Interviewee PA PB PC

QA Summary of interviewee | Summary of interviewee PB's | Summary of interviewee PC's
PA’s answer to question QA | answer to question QA answer to question QA

QB Summary of interviewee | Summary of interviewee PB’s | Summary of interviewee PC's
PA’s answer to question QB | answer to question QB answer to question QB

I * Colors indicate traceability from transcripts to summaries

Step 2: Synthesize concepts Step 3: Draw conclusions

Question

Question

QA Concept 1 extracted from Concept 2 extracted from Concept 3 extracted from Main conclusion(s) | Conclusion 1 based on

interviewee answers to QA | interviewee answers to QA interviewee answers to QA QA most supported concepts
| PA, PB, PC, PD, PE, PF, PH, N Secondary
PI, PJ, PK, PL, PM, PN I N conclusion(s)

/| Main conclusion(s) | Conclusion 2 based on
QB most supported concepts

Secondary
conclusion(s)

Supported by

Concept 1 extracted from | Concept 2 extracted from
interviewee answers to QB | interviewee answers to QB

QB

Supported by | PE, PF, PH, Pl, PK, PL, PM

= galers indicglegmotnEfpporting statsments * Colors indicate amount of supporting statements

I:‘ Supported by majority (>12) D Supported by minority (>6) D Supported by few (<6)

Fig. 2 Visualization of the three step procedure used to analyze the interview answers and quantify them
based on supporting statements from the interviewees. Note: Color coding in the top part of the figure
indicates traceability to interview transcripts. Colors in the lower part indicates amount of interviewee
support

was done by copying the part of the answer related to another question to the row of the
Excel sheet related to the correct question.

In the second step of the analysis, the summaries were analyzed row by row in the Excel
sheet to synthesize the concepts of interest—mentioned by several interviewees—based on
the semantics of each statement. The identified concepts were written down incrementally
together with a label representing each interviewee, Px, which gave a supporting statement
to the concept (See Step 2 in Figure 2), denoted by Py €Pyx;, where Py, are all intervie-
wees. In a few cases, when the hypothetical person P’y provided complementary information
to the original contributor Py, the concept was augmented by appending additional detail.
However, at this stage, care was taken to ensure that no information was added to the con-
cept that would contradict previous supporting statements. Instead, the plan was to add a
new concept with contradicting statements if such was found. Additionally, when adding
supporting interviewees to concepts, care was taken to ensure that the supporting statement
was actually supporting the original concept. In cases where there was doubt, the original
transcripts were reviewed to clarify the intent of the interviewees’ statements. However, in
none of the doubtful cases did review of the original transcripts/audio recordings change the
outcome. This outcome also provides support that the summaries developed in Step 1 of the
analysis were of suitable quality and detail.

Once all the concepts had been synthesized, the table of data was reviewed and sup-
porting interviewees, for each concept, counted. The counting served to identify which
concepts were the most supported. To quantify support, the following, rough, guideline was
considered:

— 1-6 (0-35%) interviewees - Concept experienced by a few of the interviewees,
— 7-12 (36-70%) interviewees - Concept experienced by a significant proportion of the
interviewees,

@ Springer

Empir Software Eng (2022) 27: 103 Page 150f42 103

- 13-17 (71-100%) interviewees - Concept experienced by a majority of the interviewees,

In the third step, the synthesized concepts were analyzed row by row to draw conclu-
sions associated with each interview question. This was done by looking at the concepts
with the most support from the interviewees and writing statements containing the identified
concepts. Concepts only supported by a few interviewees were then merged to form sec-
ondary conclusions. The justification for adding the secondary conclusions is that answers
to interview questions still relate to the same question. Hence, many of the answers, albeit
not semantically similar enough to be combined, could still be verified by other results.
Alternatively, they could be verified using literature or through logical inference.

In Figure 2, under Step 3, the appearance of the resulting table of conclusions, with main
and secondary conclusions, is shown. In this table, the conclusions were also color coded.
In the example, the main conclusion for Question A (QA) is perceived to have more support
than the main conclusion of of Question B (QB), whilst the secondary conclusions of both
have less support and are therefore darker.

At this step of the analysis, to verify the correctness of the results (as shown in Figure 2),
and to remove any selection bias, the authors were each given four unique interview tran-
scripts to review. The instructions for the review was to go through each interview, write
down observations of interest and then do a synthesis of the observations. Hence, a light-
weight version of the more systematic analysis approach presented in Figure 2. These
independent reviews were then sent to the first author who compared the individual reviews
to the complete analysis. The validity of this verification approach is justified by the authors’
large domain knowledge and expertise in MBT. Although the latter presents some potential
for selection bias, this is not considered an issue since the first author has considerably less
domain experience than the other authors.

The result of the conducted comparison was that the larger analysis (visualized in
Figure 2) had captured all observations the other authors had listed.

3.8 Formulation and verification of best practices

The analysis resulted in 13 high-level conclusions that were transformed into 23 best-
practices for MBT. The transformation was done by the research team by scrutinizing the
conclusions and breaking them up into tangible components. Each component was then
discussed and reformulated into a practice, or suggestion, relying on the team’s expert
knowledge of MBT and software engineering in industry. Explicit practices mentioned in
the interviews, as well as academic references, were also used as support or inspiration. To
retain traceability between the practices and the conclusions, the practices are presented in
Tables 2, 3 and 4, and connected to the conclusions. Each practice is also discussed under
sections titled as the conclusions (See Section 4). The rationale for this choice was that it
provides a suitable narrative for the reader, which also complements the summaries pre-
sented in the aforementioned tables. To strengthen the discussion further, example quotes
from the interviewees have also been added.

The number of practices, 23—i.e. more than one suggested practice per interviewee—is
perceived to the outcome of the interview questions, which elicit practices of the adoption,
use and abandonment of MBT. These questions, in combination with the deep interview
design, enabled us to identify and triangulate a rich set of results. The outcome is in any
case evidence-driven and the formulated conclusions and practices are thereby completely
based on the interviewees statements. This choice has been made to maximize the industrial
validity of the results.

@ Springer

103 Page 16 of 42 Empir Software Eng (2022) 27: 103

However, since the practices were defined based on expert judgement by the research
team, care was taken to externally verify the results. For the verification, the lists of conclu-
sions and best practices were sent to the interviewees for feedback. Out of 17 interviewees,
five had minor feedback on the conclusions and best-practices but all interviewees agreed
with the results themselves. Worth noting is that all interviewees agreed with the results
despite of the interviewees’ varying answers to the interview questions. This observation
implies that the synthesized results are on a suitable level of abstraction to capture all the
interviewees’ experiences. An alternative explanation is that the interviewees chose not to
voice their objections against the results, or disagreed with them but not enough to reject
them. However, given the interviewees eagerness to contribute to the study, we expect this
to be unlikely.

As a secondary form of verification, the results of the study have been disseminated in the
authors’ companies. Feedback from these instances have been positive, further providing us
with confidence of the results’ validity.

4 Results

Through analysis of the interview results, 13 conclusions are drawn from which 23 best
practices are derived for the adoption, use and abandonment of MBT in practice. These prac-
tices are directly synthesized, throught triangulation, of the interviewees’ statements using
the analysis procedure presented in Section 3.7. This section will present the conclusions,
split according to the research questions, i.e. results referring to the adoption (RQ1), usage
(RQ2) and abandonment (RQ3) of MBT in practice. A summary of the conclusions is pre-
sented in Table 1. The table also presents if a conclusion has been classified as technically-,
process- or organizationally-oriented.

4.1 RQ1: Adoption of MBT

Levels of abstraction MBT requires engineers to define the level of abstraction to model
the tests, normally corresponding to the testing needs of the SUT. This level, for instance
system level, governs the look and feel and the amount of information detail required in
the test models. As a side effect, this level also places requirements on the MBT test code.
For example, if the models are on high level of abstraction, each node will naturally be
associated with more code.

However, as stated by the interviewees, individuals’ aptitude for abstraction/concretization
of information varies—some people find it difficult to go from one level of abstraction to
another—thereby affecting the individual’s natural ability to create MBT tests on the correct
level of abstraction. An example from a telecom company was expressed as: “So many times
people said: I know what I am doing, Modelling is a waste of time, let me code. One of the
significant challenges is to find people that have the aptitude and inclination to abstract
problems.”. Although this challenge is logical, in the same way that different people have
varying aptitude for music or art, it is a commonly overlooked phenomenon and often not
considered when appointing responsibilities.

Additionally, the results show that individuals with different organizational roles tend
to model behavior in different ways. For example, while developers often model tests on a
more technical level of abstraction (e.g. including more technical details), domain experts
generally prefer to instead model on a user level of abstraction. As stated by an interviewee,
“...the modeler should still have a testing background. The test code engineers don’t have to

@ Springer

Empir Software Eng (2022) 27: 103

Page 17 of 42 103

Table 1 Summary of the evidence-based conclusions drawn during the study about the adoption, usage and
abandonment of model-based testing in industrial practice

Phase

Conclusion

#

Description

T/P/O

Adoption

Usage

Abandonment

Level of abstraction

Mindset

Guidelines

Test purpose

Re-execution

“Good” models

Verifying MBT tests

Maintenance

Test logic

Return on invest-
ment

Functional vs Non-
functional tests

Causes of aban-
donment

12

The level of model abstraction must be con-
sidered from early adoption and individuals
with aptitude, or training, in model abstrac-
tion, and with domain knwoledge, be put in
charge of the modelling.

To optimize effectiveness and efficiency of
model-based testing, an organizational mind-
set should be adopted that fosters close col-
laboration between individuals with domain-
and technical knowledge.

Guidelines for model and test code manage-
ment shall be established, preferrably based
on existing guidelines for source code man-
agement.

Model-based testing is best suited for longer
and non-trivial test scenarios, e.g. with mul-
tiple alternative scenarios, where fuzzing can
also be utilized.

MBT tools should support repeatable execu-
tion of generated tests, either directly from
the model or via test execution logs.

Models should, preferably, model system
behavior, be concise and simple, fit-for-
purpose (i.e. suitable for the level of test and
its purpose) and readable by all stakeholders.
They should also be based on requirements,
and although scenario-based requirements
are preferred, this is not a strict requirement.

Model and test code verification shall be per-
formed with the same rigor as source code.
Reviews is a recommended approach but
also static code analysis and mutation testing
can be applied.

Proactive maintenance, at requirements’
change, is recommended but reactive, rapid
and frequent, maintenance due to test fail-
ures, similar to other automated testing, shall
be the norm.

The logic that governs the test scenarios
shall be modelled, whilst explicit test logic
(e.g. Assertions) shall be defined in the MBT
test code.

Model-based tests shall be run often, recom-
mended two to three times per day with a
minimum recommendation of nightly runs.

Model-based testing is best utilized for func-
tional testing, but can be utilized for non-
functional tests such as performance tests.

Knowledge of the model-based testing solu-
tion must be shared within the organisation.

(0]

@ Springer

103 Page 18 of 42 Empir Software Eng (2022) 27: 103

Table 1 (continued)

Phase Conclusion # Description T/P/O

Warning signs 13 Warnings signs, indicative of the struggles P
with model-based testing, include evaluation
or other testing techniques and sudden rise
in maintenance costs.

T - technical, P - process and O - organization

have a testing background but it’s beneficial because they would know what they’re doing.
The modellers however need to have a strong foundation about decisions, coverage, etc., to
create good models.”. This observation also correlates with individuals’ perception of the
amount of effort that shall be spent on, and importance of, formulating test models versus
writing test code. While domain experts tend to favor placing test functionality in the model
rather than MBT test code, people with a technical persuasion tend to think the opposite.

Regardless, the interviewees’ generally highlight modelling to require more effort than
code. Therefore—although collaboration among stakeholders is important to the success of
MBT—domain experts are generally the most suitable to create models. In contrast, devel-
opers are generally more suitable to perform the technical implementation of test code. This
conclusion is logical since it makes the most use of individuals’ expertise where it is most
applicable.

Mindset MBT efficiency and effectiveness is reliant on an organisation’s ability to use
models to communicate and collaborate among stakeholders; “Also [MBT has] a benefit
of combining domain experts and technical people. If we are talking about the process of
building a MBT framework then everyone should be able to contribute it.”, which was later
followed up with “The more people that use the model the better, you shouldn’t have knowl-
edge silos.”. This way-of-working requires a different mindset from traditional automated
testing where tests, to a great extent, can be written and performed in isolation by testers or
developers. As state by one of the interviewees, “However; for someone that doesn’t have
this [MBT] mindset, there are barriers to get into how to work with MBT. ...it’s not a 180
switch... But some people might not realize they are thinking about models. In particular,
this mindset shall foster communication between individuals with domain- and technical
knowledge; “To visualize the tests just makes it easier to bring it to life.”, “[MBT] Covered
all testing needs, sanity/regression and exploratory tests. Very easy to visualize the scenar-
ios for both testers and managers. We can visualize scenarios for domain experts.”, and
“Especially if you have stakeholders that are interested in what is tested but not the tech-
nical aspects, then it is suitable to show a model that is simple to understand”. MBT can
be performed in isolation but then loses many of its core benefits (e.g. early defect identi-
fication/prevention) provided by cross-organizational modelling. Isolated modelling is also
more prone to erroneous test generation since important domain information may be lacking
in the models.

Guidelines Test code, similar to source code, shall be well structured, documented and
managed with the same rigor as source code to not degrade over time. Although MBT
provides inherent architectural support, the test code may still, for some components, be
intricate and therefore needs to follow suitable coding best practices. For instance, the inter-
viewees expressed the need for both guidelines and coding conventions; “One thing we did

@ Springer

Empir Software Eng (2022) 27: 103 Page 19 0f 42 103

at [a large operating system’s manufacturer] two-thirds into it [the project] was to write
design guidelines for the top and bottom [model] layers.” and “But also, it comes down
naming conventions. What I've seen outside MBT is that people rewrite stuff because they
couldn’t find stuff.”. Furthermore, for MBT benefits of reuse to work, prerequisites and
post-conditions of state transitions need to be well defined. Failure to achieve these were by
the interviewees stated as detrimental to the cost of reuse of existing components.

Aligning MBT guidelines with existing guidelines, environments and ways-of-working
is also expressed by the interviewees to be a success factor. Similarly, as discussed,
all changes to the ways-of-working, associated with the change in mindset, shall be
documented as guidelines. The interviewees have experienced different degrees of doc-
umentation but as a bare minimum, contact surfaces, i.e. key stakeholders that act as
communication interfaces between groups, shall be communicated to everyone working
with MBT.

Test purpose MBT, unlike many other testing techniques, can be used for more than one
test purpose. As an automated technique, MBT is commonly used for regression testing.
However, as expressed by the interviewees, MBT is also a suitable tool for random/fuzz
testing. This was for example expressed by interviewees as, “[MBT] It fulfills the regression
testing purpose as well but it’s more searching tests... ... There are examples where such tests
find good bugs.” and “Often used it [MBT] in GUI testing circumstances, to test flows. Ran
random variants, random walk-throughs through the GUI when you don’t want the exact
same flow. Others have used the same approach, a little, for APIs...”. A conclusion drawn
from the results is that MBT is most suited in environments that require, or have a need
for, such scenario-based or random tests. Interviewees expressed that MBT was favorable
when; “If I have a system where many parameters are set and there are many combinations,
then MBT is good.”, “...if you have MBT in your tool-box, and it’s something you use, then
it’s for scenario-based tests, then it is suitable.” In addition, the interviewees stated that in
projects where pure regression testing has been used, the costs of MBT may outweigh its
benefits, with potential negative impact on the approach return on investment.

Similarly, because of the scenario-based nature of MBT, testing on higher level of
abstractions are considered more favorable, i.e. user scenario-based tests, then lower level
tests. Lower level tests were stated to have a tendency to not include enough combinato-
rial complexity for MBT to provide a significant benefit over other automated techniques;
“I would use MBT on the highest test level, E2E or exploratory testing. On lower levels |
would not use MBT as a first alternative”. Alternatively, the functionality is state-less; “If
it’s state-less, e.g. [testing] the HTTP protocol, then MBT isn’t necessarily good. On the
other hand, if the system builds on HTTP, which pulls states, and you have a scenario with
switches, then MBT can have value.”.

Re-execution The most common way of capturing the outcome of MBT tests is through
automatically generated log-files. In addition to capturing test results, these files capture test
scenarios so they can be re-executed. The captured scenarios allow the tests to be used for
regression testing, to verify that treatments of faults have had effect or to replicate failures
to find their root cause.

However, the interviewees stress that not all MBT tools support automated re-execution
of random model traversal of test sequences. As such, much of the re-execution is reported
to be manual in practice and therefore costly since randomly created test sequences can be
long (include many steps); “This [re-execution] is a challenge but you have to think about it
when you code, to write out the steps of the test execution... ... Troubleshooting was manual.”,

@ Springer

103 Page 20 of 42 Empir Software Eng (2022) 27: 103

“Also manual replication in several cases since it can be difficult to pause the model and
debug at the same time.” and “The best is to have a lot of good logs. Use detective work and
manual work, if possible, to recreate errors.”. Automated re-execution is therefore preferred
and the interviewees state that they, themselves, have added such functionality to existing
tools. This was achieved either by producing executable log-files or by creating tools that
can parse, interpret, and execute, such files.

Adding such functionality is thereby possible, but requires significant investment by the
adopting organisation. As a result, the interviewees claim that automated re-execution of
generated test scenarios is considered a challenge for MBT.

Summary for RQ1 From the results we note that the conclusions capture a wide range of
areas associated with the adoption of the technique. First, the level of abstraction of models
also relate to the individual developer’s aptitude for abstraction. Second, the MBT mind-
set is discussed, which relates to the organization’s ways-of-working and thinking about
the technique. Third, guidelines are important which is a process perspective of how to
align and document ways-of-working. Fourth, the test purpose is considered, which is a
broader concept applicable both to the individual developer and the organisation. Finally,
re-execution of random model traversal is a technical challenge. Combined these results
highlight that adoption of MBT requires much more than just technical solutions and that
varying experiences, with each of these factors, influence the success of MBT adoption
within an organisation.

4.2 RQ2:Usage of MBT

“Good” models MBT tests shall be modelled based on the SUT’s requirements. Addition-
ally, although some interviewees propose to model tests, most interviewees instead propose
to model the SUT’s behavior. While these two types of modelling schemes may seem equiv-
alent, there are some important distinctions. Models of tests are generally more focused on
explicit scenarios and focused on stimulating faults, or document previously found faults.
Models of behavior instead aim to capture the intended behavior of the SUT as specified
by the requirements. Hence, a more general description of the SUT compared to explicit
test scenarios. Exampels expressed by the interviewees include, “7To use models [to model
SUT behavior] has been good to find problems and ambiguities in requirements.” and “The
model doesn’t show how the system shall work but rather examples of how the system can
be used.”.

To achieve this, the interviewees stress the need to model on a suitable level of abstrac-
tion. They also stated that it is important to keep the test sequences as short and simple as
possible to make the models easy to overview and scale.

Some characteristics of a “good” model, stated by the interviewees, are: (1) fit-for-
purpose (i.e. defined on a suitable level of abstraction and align with the test’s purpose), (2)
easily readable by all stakeholders, and (3) communicate system behavior and valid inputs
for testing, but more characteristics can considered. However, how to satisfy these criteria
in practice depends on the context and the domain. For instance, fulfilling (1) when testing a
system’s Application Programming Interface (API) may require more detailed models than
testing the same system’s Graphical User Interface (GUI).

Inputs used for MBT test development do not have any special prerequisites (e.g. specific
types of software requirements, SUT architectural or interface specifications) compared to
other automated testing techniques. However, scenario-based requirements (e.g. use cases

@ Springer

Empir Software Eng (2022) 27: 103 Page 21 0of 42 103

or requirements written with Gherkin (North 2010) syntax) were mentioned by the intervie-
wees as beneficial since they generally describe system states and state transitions. Hence,
information that is well suited for modelling. Models can, as stated, be developed on other
requirements, but may require more assumptions to be made by the developer. Faulty
assumptions can lead to higher cost, but also frustration between the stakeholders.

Verifying MBT tests MBT tests shall, according to the interviewees, be verified in the same
way as source code or other automated test code. A particularly beneficial approach is to
have stakeholders periodically review both the models and the test code derived from, or
used to run, the models. As expressed by some the interviewees, “Reviews, this [MBT test
code] doesn’t differ from other programming.”, “Especially reviews, peer review, during
development. Depending on the organization, you can also include reviews from stakehold-
ers outside the team, e.g. a requirements engineer.” and “Models and [MBT test] code can
always be reviewed. However, it shall be reviewed by the right people, both requirements
engineers and testers; is it a good test?”. This enables both domain and technical experts to
identify faults early in the development process, which is beneficial to the quality of both
the SUT and tests. This is connected to the previous conclusions about “good” models and
helps mitigate faults caused by assumptions.

Automated verification approaches can also be considered, including static code analy-
sis (Habib and Pradel 2018) and mutation testing (Offutt et al. 1996); “[In regards to quality
assurance of MBT models and MBT test code] I would say a combination of reviews and
static code analysis”, “For [MBT test] code you can do the same as with any other code,
e.g. use SonarQube (Static code analysis tool)” and “If you really want to test your tests you
could involve a bit of mutation testing. We have a model that we’ve built and inject a known
Sfault and we know it’s there and run through our model and kill the mutant”. Static code
analysis served to remove code smells in the test code or code architecture, whilst muta-
tion testing was utilized to expand the models with additional test sequences or test data.
However, as also expressed by the interviewees, both of these practices are uncommon, nor
stated as a general recommendation due to their cost. Instead, the aforementioned reviews
were considered as the best approach.

Maintenance The interviewees’ experience is that MBT tests require frequent mainte-
nance, which can be applied in a reactive fashion, after tests fails, or proactive, after
requirements change. Both practices, as for other test techniques, serve to mitigate further
degradation of the test suite. As expressed by interviewees, “A proactive solution [to main-
tenance] is better. As a developer that has written the tests, I should have them with me
[working] in my backpack all the time.”, “If you include the models as requirements the
management becomes easier and then you work more proactively than if you fix it later.”
and “Proactive maintenance is always better! A risk otherwise is that you miss to add
something.”.

Proactive maintenance is generally recommended but experienced by the interviewees
to be used more seldom in practice due to its additional overhead costs and requirements
for traceability matrixes between requirements and models; “The ideal is that you want to
be proactive but very few companies seem to be there. If a company’s culture is such that
you have a high amount of communication and people can work together, then you can be
proactive.”. Instead, the more common approach is that MBT tests are evaluated through
execution, after which failing test sequences, and/or test codes, are reactively maintained.
While the reactive approach is generally considered good enough, a danger lies in main-
tenance cost piling up and lead to degradation of the tests over time. As expressed by one

@ Springer

103 Page 22 of 42 Empir Software Eng (2022) 27: 103

interviewee, “If you have test runs that start to indicate failure, you have to analyze and fix
the source code or the [MBT] test code. It’s a problem area that test code doesn’t receive
enough love and get left alone to start to rot and becomes troublesome to fix.”. The inter-
viewees stated that they experienced this phenomenon of cost pile-up less in projects that
practice proactive maintenance.

Test logic For this study, an assumption is made that MBT test sequences are split between
the MBT model and the MBT test code. The interviews provide inconclusive results regard-
ing how much test logic that shall be placed in the MBT models versus the test code. Hence,
while some interviewees stated that the majority of the test functionality, upwards of 90 per-
cent, shall be placed in the test model, others said the complete opposite. This result can be
attributed to, as previously stated, the roles of the interviewees.

However, the general consensus among the interviewees is that logic that governs the
scenario execution shall be defined in the model, whilst explicit test logic (e.g. functionality
from supporting libraries and assertions) shall be defined in the test code. As stated by a few
interviewees, “If possible, all [logic] shall be in the [MBT test] code, that’s the ground rule.
The model is not meant for coders. Logic in models can, for example, be how often paths are
taken. The type of logic a non-technical person can find logical. Logic in the models govern
test flows.”, “I am leaning towards having more logic in the code than in the models to keep
the models simple. Control flows in the model, technical logic in the [MBT test] code.”, and
“An extended state machine has a lot of possibilities and challenges. You should let models
govern the [est] flows. For instance, the graph decides that you shall log-in as an admin,
but the [MBT test] code decides what privileges you log in with.”.

Return on Investment (ROI) MBT tests shall according to the interviewees be executed
as frequently as possible, preferably as part of a continuous integration (CI) environment.
However, due to the costs associated with the random model traversal and test execution,
which in extension is a challenge for CI pipeline integration, only 2-3 times a day is consid-
ered a realistic expectation. As expressed by interviewees, “Not every commit, every night.
You want the tests to be more exploratory, let them run for a few hours during the night
instead of too quickly. The slowness [slow execution] is important.”, “As often as possible,
at every change if there is time, otherwise at least once a day. Important to get measure-
ments on if the tests are stable.” and “The norm is to run them when you commit something...
...You run just the API tests at that time and run the GUI tests at night.”. The minimum rec-
ommendation, based on the interviewees’ experiences, is to run the models at least nightly;
“As often you can. Every night as a minimum but preferably more often.”. Less than nightly
executions do not to provide frequent enough feedback to justify the development costs, nor
provide quick enough feedback to keep maintenance efforts to a minimum.

Functional vs non-functional tests The interviewees had little experience with non-
functional (quality requirements) testing with MBT, except for performance testing. For
example, two interviewees said, “Robustness tests, memory leaks that only occur over time.
Then [to find these] you want realistic loads [on the SUT], which you get with MBT.” and “I
personally use it to identify response times and memory leaks.”. Another example statement
was, “I have used it for functional testing and during performance tests. The model-based
tests ran as functional tests, but load, from load tests, set the server under pressure at the
same time as the model-based tests were run to check that the functionality worked when
there is max load on the servers.”. The interviewees did however explain how MBT could,

@ Springer

Empir Software Eng (2022) 27: 103 Page 23 0of 42 103

theoretically, be used for other types of non-functional requirements, for instance security.
However, since these practices are theoretical, they are not discussed in further detail.

Summary for RQ2 From the results we once more note a variety of impact areas of each of
the conclusions. First, “good” models refer to the individual’s knowledge of how to model
the SUT and if tests are modelled or the SUT’s intended behavior. Second, how to verify the
correctness of MBT tests both concerns organizational practices, i.e. through reviews, or a
technical aspects, e.g. through automated tests. Third, how to maintain the tests is a process
and management consideration, considering when and how to maintain the tests. Fourth,
how to divide test logic between models and test code is a team-level concern that also
requires collaboration between stakeholders. Fifth, return on investment is an organizational
question, where failure to achieve return on investment can be a cause of the technique’s
abandonment. Finally, using MBT for testing SUT quality characteristics—non-functional
requirements—is possible, but a underutilized area of the technique in industrial practice
and thus a technical concern. Combined, these results once more showcase the plethora of
different factors that go into the successful usage of the technique in practice.

4.3 RQ3: Abandonment of MBT

Causes of abandonment The most common cause of MBT abandonment was expressed
by the interviewees as caused by champions, or people with knowledge about the technique
and its implementation, leaving the organization. Thus, resulting in the knowledge of how
to use the MBT tests being lost. As expressed by one interviewee, “It is often because
the people with competence disappear. The people that are left are not knowledgable in it
[MBT], neither understand or burn for it. Then it dies out. You have to have a champion
for it”. Training, documentation and knowledge sharing about the tests and technique are
therefore important activities that require support from the entire organisation. As expressed
by interviewees, “You abandon MBT because you don’t understand what you introduced and
did it poorly. You think you can solve it with another solution [tool or approach]. Nothing
changes due to the abandonment. The solution to the problem is rather to understand the
problem. Competence and politics. [MBT] is abandoned due to non-technical reasons.”, “A
reason I have experienced is that you try to invent, introduce, new testing tools. New ways
of doing things come from the side all the time. You then feel that the developers are not
comfortable. To mitigate this you have to be able to show the benefits of MBT och what
value you can get from it.” and “The reason in the both projects [from which the interviewee
had experience of abandonment] was too much maintenance. It was difficult to keep up with
development.”. This observation relates to the required change in mindset, where MBT is
more of an organisational responsibility than just the responsibility of testers.

Warning signs If individuals or teams within the organisation start to evaluate other
tools/approaches that fulfill a similar purpose to MBT, or if the costs associated with the
MBT tests suddenly go up, or if model size gets to big, are, according to the interviewees,
indicators that MBT is experiencing issues that could result in abandonment of the tech-
nique. Some statements were, “Instead of fixing what is there [Technique/tool], you bring in
something new and shiny and after a while you realize it doesn’t work either.”, “A warning
sign is that the maintenance cost sneak off, especially in agile environments.” As another
example, one interview stated, “Competence is important, if you are not competent you wont
understand that the graphs can be too big. If a graph is too big, then we can’t understand
how it will work. We can’t scale the graph too much either. One of the benefits of a model

@ Springer

103 Page 24 of 42 Empir Software Eng (2022) 27: 103

is that it is graphical and easy to understand. If you have one hundred boxes [vertexes]
and a thousand arrows [edges] you won’t understand it or even care about it.”. Measur-
ing usage and controlling for such changes is therefore important for the longevity of the
technique. These results show that there are multiple reasons and causes for abandonment
of MBT. However, as stated by one of the interviewees in regards to the effects of aban-
donment, “...as soon as you abandon something, it never becomes as bad as the doomsday
prophets say. Everything works equally well anyways. There is huge amounts of survival
instinct [within organizations].”.

Summary for RQ3 Unlike the answers to the other research questions, less concrete results
were identified, but two key aspects were still identified. First, a primary cause of abandon-
ment is loss of knowledge, which is an organizational challenge that supports the need for
adopting an organizational mindset for using the technique. As expressed by the intervie-
wees, “Be aware of champions leaving the organization if you havn’t reached the critical
point for a large scale adoption.”. Second, a couple of warning signs were identified which
both relate to management of the MBT tests over time, e.g. mitigation of architectural or
test degradation, and the cost of such management. For instance explained by one intervie-
wee as, “People get an eye opener for MBT from another part of the organization and see
that the tests go red 30 percent of the time without changes. Can you make the tests more
robust, in another/better way? You lift questions regarding test strategies and start to look
over tools and their stability. Partly this resulted in the realization that some tests should
not be done with MBT, but in other way. Cost-effectiveness/prioritization comes in [from a
managerial perspective].”. Combined, we note that root causes are on an organizational or
team level, where loss of resources or knowledge influences the technique’s longevity.

4.4 Summary of observed benefits and challenges

MBT benefits The primary benefit of MBT models is test visualization, which improves
communication between stakeholders and enables inconsistencies and defects to be cap-
tured earlier during development. MBT thereby fosters sharing of information, quality
thinking and proactive defect identification, instead of reactive testing. Additionally, the
technique is inclusive of new stakeholders since the models can convey test scenarios in an
understandable way to non-technical stakeholders.

Another benefit of MBT is that it provides inherent architectural design—tests are spec-
ified top-down with a modular design as actions and events—fostering design-thinking
and reuse. However, the interviewees stress that MBT test code must still be designed and
well structured to be maintainable and reusable over time. Thus, stressing the need for
development guidelines.

Yet another benefit of MBT is that tools have the capability to run models randomly. This
enables MBT tests to emulate exploratory testing and thereby find new defects that were
previously unknown. However, random model exploration for test generation/execution is
associated with longer execution time than regression testing, and thereby higher cost.

MBT challenges The following benefits and challenges were presented by several of the
interviewees.

The main challenge with MBT is connected to the change in mindset that is required for
MBT to be used effectively and efficiently in an organization. This requirement requires the
entire organization to learn the technique and adapt their ways-of-working to incorporate

@ Springer

Empir Software Eng (2022) 27: 103 Page 250f42 103

MBT model creation, usage and maintenance. For older, more mature, organizations the
adoption can be difficult since existing ways of working have inertia that prohibit change.

An associated challenge regards the definition of what a MBT test actually is, e.g. is a
model a test or is a scenario a test? These questions may seem trivial, but in an industrial
context MBT tests are compared to existing or traditional approaches through metrics or Key
Performance Indicators (KPIs) reported up to management. A scenario that was presented in
one of the interviews was that a MBT manager reported that one model had been completed
and was running, which got backlash from higher management because it was compared to
hundreds of tests reported by another team using another approach. While it may be obvious
that comparing two different approaches should be avoided, it still happens. This presents
additional challenges for adoption and use of the technique and requires comparable met-
rics to measure test performance, e.g. through metrics like coverage—a metric that most
organisations use for testing. However, while code coverage could be measured, a question
remains how higher level coverage metrics, e.g. feature coverage, should be measured.

Another challenge is that less impactful, smaller, software faults are more difficult/costly
to manage with MBT than scripted, happy path, tests. The reason is because MBT tests are
large and have some inherent complexity that provides good support for more complex sce-
narios. As such, MBT inherently supports functionality that is dichotomous to testing short,
linear, happy path, sequences. This does not imply that MBT cannot test these sequences,
only that other techniques may be better suited for it. Note that this statement does not
contradict the previous statement that test sequences should be kept as short and simple as
possible. Instead this observation infers that MBT sequences must not be too short accord-
ing to the interviewees’ experiences. However, shorter scenarios may still serve a purpose
since MBT can utilize them to create longer test sequences.

MBT test stability is also a challenge, where stability in this case refers to the tests’ ability
to execute until completion. To achieve this in a good way, good engineering is required—
models on suitable levels of abstraction and well structured MBT test code—but also stable
development and testing environments. This challenge is not unique to MBT, but well-worth
mentioning since the costs, expertise and organization of resources to combat this challenge
are often not considered when adopting a new technique in practice.

5 Best practices

In this section we present the best practices that were derived from the results of the study.
The correctness of these practices were verified, through review, by industrial practitioners
and interviewees that participated in the study. The participants thereby confirm that these
are practices they have used or that they believe would be beneficial in practice. For the
reader’s convenience, summaries of the 23 best practices can be found in Tables 2, 3 and 4.

5.1 Adoption

Adoption, in this context, concerns the time-period from when MBT is identified as a candi-
date technique to fulfil the company’s needs until the time it is integrated in daily use at the
company. The identified practices concern organizational-, cultural- and process-oriented
aspects but also more tangible concerns for MBT use in day-to-day work. These practices
thereby represent a checklist of items to consider as decision support prior and during adop-
tion of MBT. The individual best-practices are summarized in Table 2 and described in the
following sections.

@ Springer

103 Page 26 of 42 Empir Software Eng (2022) 27: 103

Table 2 Summary of best practices for adoption of model-based testing derived from the conclusions and
observations reported in Section 4

Phase Connected to conclusion # Description

Adoption Levels of abstraction 1 Evaluate employees based on their apti-
tude for abstraction before appointing them
as MBT testers, set guidelines that clearly
define suitable levels of abstraction and train
personnel in using said guidelines.

2 Appoint domain experts to model system
behavior and have all stakeholders review
the models.

Mindset 3 Consider what changes that are required to

the organizational culture for MBT to be
efficient and effective.

4 Consider what organizational changes that
are required to make it easy for domain
experts and technical personnel to collabo-
rate with MBT.

5 Ensure that the entire organization under-
stands, and are knowledgable, about MBT,
its benefits and drawbacks.

Guidelines 6 Develop MBT guidelines for how to cre-
ate models, write/maintain test code, ver-
sion control MBT artefacts and the test
environment.

Test purpose 7 Evaluate the testing needs of the organization
and ensure that MBT fulfils these needs.

8 Ensure that there is need for random test-
ing and/or combinatorial, scenario-based,
tests on a higher level of system abstrac-
tion that makes MBT a suitable candidate for
adoption.

Re-execution 9 Evaluate the suggested MBT tool’s capabil-
ities to automatically re-run generated test
sequences. Alternatively, add such capabili-
ties by constructing tools that can run MBT
test logs or ensure that the MBT frame-
work outputs executable log files. As a
final option, ensure that outputted log files
support easy, manual, re-execution of test
scenarios.

Levels of abstraction MBT models visualize the tests, making them understandable by
all stakeholders. However, a prerequisite for unified understanding is that the models are
developed on a suitable level of abstraction. This prerequisite requires the modeller to
concretize/abstract information to the set level of abstraction, a skill which people do not
inherently have. If possible, it is therefore of value to evaluate the aptitude for abstraction in
the personnel working with MBT, for instance through a work test. Complementary guide-
lines, examples, training and management shall also be provided to ensure that models are
created on (1) a suitable level of abstraction for the purpose of the test and (2) consistently
kept on the right level. For 1, the suitability of a certain level of abstraction depends on
the type of system and the type of test that is needed, for instance API tests require more

@ Springer

Empir Software Eng (2022) 27: 103 Page 27 of 42 103

detailed models than GUI tests. For 2, reviews and/or monitoring of the produced models
are required. Especially in a context where models of models are used, where each sub-
sequent model provides more details into a specific aspect of the SUT. Such design still
requires each layer to be defined on a consistent and suitable level of abstraction. Consis-
tency is important for the readability, understandability and tracability to both requirements
and test code.

Modelling enables domain experts, with lacking technical knowledge, to read, write and
understand the tests. Domain experts generally have the best understanding of the SUT’s
intended behavior and are thereby the most suitable to develop the models. However, as
technical design decisions, e.g. choice of third party components, can prohibit implemen-
tation of tests of certain system behaviors, it is important that all stakeholders are involved
early in the adoption process and that models are reviewed by all stakeholders, including
technical experts. Observe that all stakeholders does not imply all roles, but rather roles
affected by decisions taken during the adoption and use of MBT. For instance, SUT archi-
tects can review model abstraction but should still, although not be responsible for, review
MBT test code, which is better reviewed by developers or testers. In a best case, as men-
tioned by the interviewees, MBT is driven by the entire team, which in an agile context
is cross-functional. Thus, ensuring that people with all necessary competences are aware
of what, and how, MBT is used to test the SUT. These reviews serve to verify correct-
ness and feasibility of the models but also serve as knowledge carriers to communicate
technical requirements for the tests. Similar to traditional software development, technical
requirements should specify what to develop, not how.

In summary, during adoption, it is crucial to involve all stakeholders in the adoption
process to ensure that models are developed in a correct way and on a suitable level of
abstraction. Roles mentioned by the interviewees include requirements engineers, test devel-
opers, testers, and quality assurance managers. However, the interviewees also mention that
MBT is a team-based activity and that the team needs to be responsible. Key questions to
ask at this stage are:

1. Are the models understandable by all stakeholders? Do they convey necessary informa-
tion?

2. Is asingle level model suitable or should a model of models architecture be employed?

Will the models be extendable and maintainable over time?

4. Do the models promote sufficient separation of concerns between test scenario logic
and testing logic?

bl

Mindset To get the most out of MBT, the technique requires domain experts to collab-
orate closely with technical experts and other stakeholders. This way of working helps
find defects and inconsistencies in the software specification early and promotes a quality-
focused mindset throughout the organization. Transitioning an organization to this mindset
can however be a challenge and takes time. To simplify the transition, information about,
and rationales for, changes must be communicated throughout the organization.

In plan-driven organizations, or organizations with centralized requirements engineer-
ing, development, and testing teams, larger organizational changes may be required. Such
changes include appointment of new roles that operate as interfaces between existing teams
or new roles within cross-functional teams. In agile, commonly decentralized, organisa-
tions, similar changes may be required but should follow already established communication
channels. Regardless, these changes are associated with considerable cost and should
therefore be evaluated prior to adoption.

@ Springer

103 Page 28 of 42 Empir Software Eng (2022) 27: 103

Additionally, collaboration between domain experts and technical personnel needs to
be established. This may require the introduction of a common nomenclature to discuss
MBT and to train the organization in how to use the technique, how it is implemented, and
what its benefits and drawbacks are. This transformation is perceived necessary to estab-
lish the organizational mindset but also helps retain knowledge about the technique and its
implementation in the organization over time.

However, a consequence of this guideline is that MBT success is reliant on adopting
a MBT mindset, which may require significant organizational change on many levels of
abstraction. For instance, but not limited to, addition of new, or changes to existing, roles,
changes to communication among stakeholders (also vertically in the organization), new test
development practices and management of the model artefacts. Hence, both the organisation
(e.g. new or changed roles) as well as the process (e.g. ways-of-working and collaboration)
may be affected. Such changes are perceived more difficult in larger organizations. This
phenomenon can be expressed as organizational inertia, meaning that drastic changes take
longer time to take effect. The adopting organisation shall be aware of this inertia and be
prepared that the transformation may take time.

Guidelines Similar to software development, it is important to define guidelines for MBT
and train stakeholders to follow these guidelines. Furthermore, to ensure that the guidelines
are followed, they should periodically, and systematically, be conformance tested within the
organization.

These guidelines should include best programming practices, such as coding stan-
dards, naming conventions, version control, frequent maintenance practices and more.
Additionally, key stakeholders and contact surfaces shall be documented to speed up
communication.

The guidelines’ purpose is to maximize the effectiveness, efficiency and longevity of the
MBT models and the MBT test code. This can be achieved with guidelines that promote
consistency, coherency, readability, modularization, maintainability, extendability and testa-
bility of both the models and the code. As input for MBT guidelines, it is recommended to
use the company’s existing guidelines for source code development. If existing guidelines
are not available, general best practice guidelines shall be used.

Test purpose MBT can fill various test purposes, including both regression and random
exploratory testing. As such, MBT is a multi-purpose tool but this purpose is only achieved
by the technique’s additional prerequisites and artefacts, e.g. models, which are associ-
ated with overhead costs. It is therefore important, from a cost and usability perspective,
to prior to adoption consider what the testing needs of the organization are and for what
purpose(s) MBT shall be used. In particular, the need for random, combinatorial, scenario-
based tests should be evaluated and what additional value(s) these capabilities provide given
the additional overhead costs of the technique. In particular, the combinatorial complexity
of required test sequences shall be considered to estimate what value MBT can provide in
terms of random/fuzz testing. If these mentioned MBT capabilities are not needed in an
organisation, alternative test automation approaches—e.g. scripted testing or BDD, which
are associated with less overhead—may be more suitable.

Re-execution A primary strength of MBT is its ability to traverse the test model in random

order, utilizing defined test sequences to emulate longer testing sessions and, if imple-
mented, utilize random input data. This enables identification of erroneous corner cases and

@ Springer

Empir Software Eng (2022) 27: 103 Page 29 of 42 103

provides a good basis for non-functional testing, e.g. performance testing to expose memory
leaks.

However, an observed drawback with longer test scenarios concerns how to replicate
them when they find a failure, i.e. automated replication is not always supported by the tools
and manual replication can be time consuming. To mitigate this challenge, it is important to
evaluate if the proposed MBT tool has the ability to rerun random traversal of test scenarios
or if such functionality can easily be added. Hence, prior to decision making of what tool to
use, the following questions should be considered:

1. Does the suggested MBT tool support automated re-execution of random traversal of
test sequences?

2. If no, can the tool export automatically executable logs or can the tool be extended with
functionality to support automated re-execution?

3. Ifno, does the tool provide support for easy manual re-execution?

5.1.1 Usage

Usage of MBT, in this context, concerns the time-period after the technique has been eval-
uated, found suitable to fulfill the company’s needs, and integrated it into daily work. The
proposed practices encompass design, management and verification of MBT tests for daily
use. These practices, summarized in Table 3, are described in the following section.

“Good” models: The inputs used to design MBT models vary between companies, con-
texts and domains—requirements such as use cases, natural language requirements or other
forms of requirements are used. However, since MBT tests are scenario-driven, it is rec-
ommended that scenario-based requirements, e.g. use cases, are used or otherwise adopted.
Such requirements can more easily describe system states and state transitions, making
modelling easier.

During MBT adoption, it is important that the model(s)’ level of abstraction and fit for
purpose is considered and decided upon. However, during usage, the models’, and tests’,
level of abstraction shall be fine-tuned and continuously improved to foster understandabil-
ity, readability and maintainability. The models shall be seen as knowledge carriers between
domain experts and technical experts of the SUT’s intended behavior. As such, the mod-
elled behavior must frequently be evaluated and aligned with the SUT’s functionality and
the requirements to ensure correctness of the tests. Note that this maintenance may not be
required to remove deviations between the model and requirements but rather to optimize
test flows, e.g. to improve coverage or to speed up test execution. Some key characteristics
of a good model thereby include:

— Understandability - Easy to cognitively understand,

— Readability - Easy to read/interpret by all stakeholders,

— Fit-for-purpose - Defined on a suitable level of abstraction and properly defines system
behavior,

— Maintainability - Easy to maintain and re-align with requirements,

— Extendability - Easy to extend with new test functionality,

— (Low) Complexity - Streamlined without clutter or unnecessary information/data/scenarios.

— Scaleability - The models shall be easy to extend, partition, etc. to pertain its usefulness
as the system grows.

Verifying MBT tests It is recommended that quality assurance of MBT models and test code
are conducted with the same practices as source code. Examples of automated approaches

@ Springer

103 Page 30 of 42 Empir Software Eng (2022) 27: 103

Table 3 Summary of best practices for usage of model-based testing, derived from the conclusions and
observations reported in Section 4

Phase Connected to conclusion # Description

Usage “Good” models 10 Adopt, if required, scenario-based require-
ments to better support modelling.

11 Ensure that models are developed fit-for-
purpose and that they are readable by all
MBT stakeholders.

Verifying MBT tests 12 Adopt model and test code reviews as stan-
dard practice for verification of the MBT
tests” correctness, design and quality.

Maintenance 13 Create traceability matrixes that connect
MBT tests to requirements and proactively
maintain tests when requirements change.

14 Update tests, models and code frequently to
avoid quaity degradation, especially when
tests fail.

15 Run tests frequently to verify conformance

between requirements, source code and tests.

Test logic 16 Separate areas of concern for the tests to
ensure that only necessary test logic is placed
in the model. Otherwise such logic shall be
placed in the test code to improve understand-
ability of the tests.

Return on Investment 17 Integrate MBT tests into the continuous inte-
gration pipeline/environment and automati-
cally run the tests frequently (two to three
times every day is suggested, but at least
every night)

18 Establish clear practices when the MBT tests
are used for regression testing and when they
are used for random/exploratory testing.

Functional vs Non- 19 Consider how MBT can support testing of non-

functional tests functional requirements (quality attributes) of
the system under test, for instance perfor-
mance tests.

(e.g. static code analysis and mutation testing) were observed in the study, but, due to
their exotic nature and cost, they are not stated as a general recommendation. Test automa-
tion, e.g. unit or integration testing of third party components, contained in the test code
architecture is however generally recommended.

Reviews is otherwise the premiered practice for quality assurance of MBT tests. The
approach is common practice for source code development and has been shown to effec-
tively finds faults and vulnerabilities in software engineering artefacts (Munaiah et al. 2017).
Reviews can aid to ensure correctness, design and quality of both MBT models and MBT
test code. These reviews should, if possible, be done with independence, i.e. by another
individual than the creator(s). Similar to model development, model review is best served
by domain experts, while review of test code is best served by technical experts. Specific
questions to consider during review include, but are not limited to:

1. Is the model/test code easy to understand?

@ Springer

Empir Software Eng (2022) 27: 103 Page 31 0f42 103

Is the model designed on a suitable level of abstraction?

Is the models’ size/complexity suitable for the test purpose?

Is the test code easy to read, is it annotated, does it adhere to coding conventions, etc.?
Is the model/test code extendable/maintainable/reusable/etc.?

Is the model supportive of both random exploratory testing and regression testing?

SANNAE I e

Maintenance The majority of automated tests in industrial practice are used for regression
testing. These tests aim to evaluate that a system, after change, still complies with require-
ments that were not changed. Similar to automated tests in general, MBT tests require
continuous and frequent maintenance. This maintenance can be either proactive or reactive.
Reactive maintenance, i.e. maintenance triggered by failing tests, is more common in prac-
tice but proactive maintenance, i.e. maintenance triggered by changes to the requirements,
is proposed as a more effective, albeit less efficient, approach. As such, although proactive
maintenance is recommended, reactive maintenance is considered good enough given that
it is performed frequently.

To support proactive maintenance, a traceability matrix shall be used to establish trace-
ability between the requirements, the MBT model and the test code. This matrix shall be
frequently maintained and used when requirements, or code, change, to investigate if the
model or test code needs to be changed as well.

Maintenance shall also always be carried out when tests fail to mitigate further quality
degradation. The rationale for this practice is that repairing a single error in the model, or
code, requires less effort than several. Hence, the longer between maintenance sessions, the
larger the chance of faults masking each other, requiring further root cause analysis and thus
greater effort to correct. Consequently, tests must be run frequently, especially if reactive
maintenance is used.

Test logic MBT test logic is separated between the test model and the MBT test code.
Although the test code usually reflects the logic of the test model, in most tools MBT test
code is a complement to the model, acting as the model’s driver. Thus, for the sake of the
following discussion, we consider the two as two separate, but connected, entities.

A strong recommendation is to ensure that the two entities have different areas of con-
cern. Whilst test logic that governs the test flows shall only be placed in the test model, all
other logic, e.g. usage of libraries, special methods or assertions, shall be placed in the test
code. This separation of concern ensures that all information required to understand the test
sequences and/or system behavior is available in the model. Thus, making the model stand-
alone readable, understandable, by non-technical stakeholders. In contrast, all other logic
required to perform/drive the tests shall be placed in the MBT test code.

In the interviews it was argued by a few practitioners that all logic (including test specific
logic) can be placed in the model. A counter argument, stated by other interviewees, is that
such models quickly get cluttered. A cluttered model does not provide the same overview as
a simple model, supporting the argument for a clear separation of concerns between model
and test code. No guideline for the ratio between how functionality shall be divided between
model and test code was identified in the interviews. As such, the ratio of separation, and
allocated resources to develop each part, shall be determined by contextual factors.

Return on Investment Return on investment (ROI) concerns the value provided, given
the costs, of adopting and using MBT compared to other testing techniques. To achieve
positive ROI, it is suggested that MBT tests are run frequently—preferably two to three
times every day but at least once, e.g. nightly. The rationale for this suggestion is to get

@ Springer

103 Page 32 of 42 Empir Software Eng (2022) 27: 103

frequent feedback about the MBT tests’, and the SUT’s, quality. This is also proposed by
guideline 14 in Table 3.

Note that this recommendation does not imply nightly random traversal of the model(s),
but at least regression tests. The assumption made in this recommendation is that regres-
sion tests operate under stricter coverage criteria, e.g. cover each test sequence only once.
Thus reducing overall execution time. For instance, vertex coverage is more time consum-
ing than edge coverage and deciding a coverage threshold less than 100 percent coverage,
per definition results in faster execution.

Random exploration shall still be run as frequently as possible, but this frequency is
instead measured in days or even weeks depending on context. A recommendation is still
to schedule the random testing and make sure that the organisation is aware of when/how
these tests are run.

Functional vs Non-functional tests MBT is mostly used for functional testing in practice.
However, non-functional testing, in particular performance testing, can be achieved with the
technique as well.

The interviewees had little experience with using MBT for non-functional tests, so
detailed discussion is out of scope for this paper. However, from a higher level of abstrac-
tion, it is perceived that the following questions shall be considered when evaluating MBT’s
use for non-functional tests:

1. What non-functional testing needs does the company have?

2. How can MBT cover the company’s non-functional testing needs?

3. What are the resource (e.g. time) constraints for the development, usage and mainte-
nance of non-functional tests?

4. Who shall be responsible for the tests?

How, and how frequently, shall the tests be run to give feedback of suitable granularity?

6. Can the tests provide autonomous feedback or shall they be used together with other
automated or manual practices?

e

5.2 Abandonment

Abandonment, in this context, concerns when MBT tests have be used for a period of
time but started to encounter challenges that point towards its abandonment. This implies
removing, or replacing, the technique due to cost or quality concerns. The proposed
practices cover both causes for abandonment and warning signs that abandonment could
be a possible/suitable outcome. These practices are summarized in Table 4 and further
described below.

Causes of abandonment One of the most prevalent causes of abandonment of MBT is loss
of knowledge and/or competence. In particular, when champions of the technique are lost,
the technique is often abandoned soon after. This observation is not unique to MBT but
rather a general concern for the adoption of any new technique, tool or practice in industry.
Regardless, to safeguard the investment of adoption MBT, it is important to ensure that
driving members of the organization are given enough resources and mandate to continue
to use the technique.

Additionally, training, to spread the knowledge of how the technique is used and imple-
mented is required to mitigate loss of knowledge. It is also good practice to document
the MBT tests to mitigate the risk of knowledge degradation over time. This practice also

@ Springer

Empir Software Eng (2022) 27: 103 Page 33 0f42 103

Table 4 Summary of best practices for abandonment of model-based testing derived from the conclusions
and observations reported in Section 4

Phase Connected to conclusion # Description

Abandonment Causes of abandonment 20 Ensure that the teams or individuals that
are championing the MBT tests are given
enough resources and mandate to manage
the tests to avoid burning them out or other-
wise loosing their competences.

21 Ensure that the MBT tests, tools and prac-
tices are well documented and that the per-
sonnel is trained in the technique to mitigate
the risk of knowledge degradation or loss.

Warning signs 22 Be observant of projects that aim to adopt
new/other test techniques or tools or make
sure that these new approaches are fit-for-
purpose as successors to MBT.

23 Continuously measure the costs for main-
tenance of MBT models and test code and
place additional resources on improvement
efforts if costs suddenly increase.

helps with unavoidable turnover of personnel. However, since each of these activities are
associated with overhead costs, they need to be budgeted in a suitable manner.

Warning signs One warning sign that MBT is failing is that teams working with MBT start
to evaluate other test approaches. Although this may be indicative of the teams exploring
complementary approaches to MBT, it can also indicate that they are searching for a replace-
ment. Regardless, if observed, the situation should be investigated to identify the root cause.
The result of the investigation shall be a decision point where resources are either spent
resolving the issues to salvage MBT or to facilitate expedient adoption of a replacement
for MBT.

Another warning sign that can be measured quantitatively is the maintenance costs of
models and test code. If this cost drastically rises, this is indicative of issues with the quality
of the MBT implementation. For instance, the test code architecture may have not been
sufficiently designed in the early stages of development, causing technical debt, which is
in later stages causing excessive maintenance efforts to be required. Alternatively, the test
models may have been designed on an unsuitable level of abstraction. Yet another cause
can be that the models have simply grown to large for the modelling team to keep up with
changing requirements. Most of these challenges can be mitigated by additional resources,
but to be sustainable long-term, the MBT practices need to be scaled appropriately as the
SUT scales.

6 Discussion
The take home message of this work is that MBT has both unique and, to other techniques,

common preconditions and conditions that affect the value and benefits of the technique’s
use for quality assurance in industrial practice. The guidelines proposed in this work provide

@ Springer

103 Page 34 of 42 Empir Software Eng (2022) 27: 103

guidance to highlight these conditions and give suggestions for practices or artefacts to
include in the MBT testing process.

In terms of benefits, firstly, the technique promotes a collaborative way-of-working that
is associated with early fault detection. Second, the technique is multi-purpose, meaning
that it can be used for both random exploratory testing and regression testing. Third, the test
models provide inherent test architecture, high flexibility and reuse. Fourth, the technique
can be adapted to work on most levels of system abstraction given the right test drivers.

However, the technique also has challenges, such as the need to change organizational
mindset to foster more communication and collaboration. This challenge is significant
due to the costs associated with the transition in mindset but also because this change is
connected to the primary benefit of the technique.

Second, graphical modelling is different from most common coding practices and there-
fore alien and more difficult for some stakeholders to adopt. In a worst case, this can cause
friction in the workplace.

Third, random test exploration is associated with longer test execution times. This
challenge raises a question regarding the technique’s suitability in a modern, continuous
integration, environment where rapid feedback is essential for agile development, i.e. do the
time constraints of modern development environments accommodate MBT? An additional
challenge with random exploration is replication—effective and efficient re-execution of
randomly generated test scenarios that identify faults. Not all MBT tools/frameworks sup-
port automated re-execution, leaving it to developers to either add or create this functionality
themselves or manually replicate the test scenarios. Hence, costly solutions that may be seen
as deal-breakers for many organisations interested in the technique.

Comparing these benefits and drawbacks against each other, the benefits of higher qual-
ity and automation look to come out on top. Still, when surveying the adoption of the
technique in industry, we note sparse usage compared to the interest the technique has
received from academia. The interviews gave some insights to explain this phenomenon.
First, the drawbacks of cost, organisational change and mindset, are significant challenges
that are showstoppers in many organisations. Furthermore, knowledge about MBT is lack-
ing in industry and there are many misconceptions about the technique, its usage and value.
Instead, the technique is often viewed as exotica, excluded in favor of techniques with
similar testing purpose, discussed later in the paper. Hence, although MBT is well known
in testing research, according to the interviewees, this research knowledge has not been
properly disseminated into industry.

Another challenge that limits industrial adoption is a need to “sell” the approach to the
organization. Hence, practitioners need to lobby for the technique to get resources to eval-
uate and/or adopt it. In particular, connected to the aforementioned change in mindset,
“getting everyone on board” with the technique was presented by several interviewees as
a challenge. Whilst this challenge is not strictly a research problem, it is connected to the
spread of knowledge of the technique in industry, such as guidelines for MBT best practice.

The interviewees also brought up several competing techniques that can substitute MBT
with graphical models, e.g. exploratory testing, scripted testing and more. However, the
most prevalent, and surprising was Behavioral driven development (BDD) (Irshad et al.
2021) with scripts written in Gherkin (North 2010) syntax. BDD is also considered a model-
driven approach, but, instead of graphical models, it relies on textual models to describe
feature requirements. The textual approach makes BDD more common to the developers’
normal ways-of-working and this commonality is explained as one factor that influences its
industrial success over MBT with graphical models.

@ Springer

Empir Software Eng (2022) 27: 103 Page 350f42 103

Furthermore, although MBT has unique characteristics, it has many commonalities to
other test automation approaches. These commonalities relate not only to the technique’s
capabilities, but also its hindrances and challenges. From a capability perspective, MBT is,
despite its additional artefacts and steps, equally suited for test automation as other tech-
niques, e.g. scripted testing. Similarly, aspects like “getting people on board”, required
knowledge and training, high maintenance costs and warning signs for abandonment, can
all be observed for other techniques. For instance, sudden rise in maintenance costs is con-
sidered a warning signal for MBT heading towards abandonment. Similar results have been
reported for other test automation techniques in literature—At Spotify, Visual GUI Testing
was abandoned due to increased maintenance costs (Alégroth and Feldt 2017).

6.1 Implications

The implications of this work are divided into contributions to research and contributions to
industry.

For research The study provides empirical evidence from experts around the world on
the benefits, drawbacks and challenges with MBT. Some of the challenges, for instance
test re-execution, are technical challenges were research could contribute with solutions.
For instance, ways of capturing random test execution in a better way, methods to achieve
test scenario minimization, and perhaps novel analysis methods. For other challenges, like
changing organizational mindset, research could contribute with effective and efficient mod-
els and guidelines how to adopt and use MBT. This paper makes an attempt at formulating
such guidelines, but further empirical evaluation and refinement is required. Future work
will be discussed further in Section 6.3.

Another important outcome of this work is that MBT has not been communicated well
enough to industrial practice. This was pointed out in the interviews, i.e. that many practi-
tioners don’t even know that MBT exists, even less how to use it. Here, academia, given the
vast body of research on the technique, could step up to help industry more clearly see the
value of the approach and thereby achieve better penetration in practice. For instance, more
experience reports and success stories from different domains could be of great benefit.
Other efforts include more industrial research in co-production, higher presence at industrial
conferences and more practitioner-oriented publications.

For industry The proposed guidelines provide decision support and guidance for compa-
nies seeking to adopt MBT but also for retrospective analysis on past adoption attempts. For
adoption, the guidelines provide insights into important aspects that should be evaluated and
decided upon to prepare the organization for long-term use of the technique. For companies
that have previously abandoned the technique, the guidelines can give insights into why the
technique failed, and if MBT was reintroduced, how to do so differently.

Finally, for companies already using the technique, the guidelines present aspects to
continue to improve upon in terms of usage, but also warning signs to consider to prevent
the technique from being abandoned. Whilst many of the guidelines should be obvious to
practitioners that have worked with MBT, others, for instance that not everyone has an
aptitude for model abstraction, may give valuable insights into issues that their organization
are struggling with. Hence, whilst this work includes results on technical aspects connected
to MBT, e.g. to consider how to partition test logic between models and code, it provides
also a contribution in presenting other aspects relevant for successful MBT adoption and
use. These aspects include both organizational aspects, e.g. the need for more collaboration,

@ Springer

103 Page 36 of 42 Empir Software Eng (2022) 27: 103

but also process aspects, e.g. when/how to run the tests as part of continuous integration.
Note that the guidelines try to avoid stating “how” to achieve improvement, rather, they
focus on “what” aspects to consider.

6.2 Threats to validity

There is, as with most empirical research, some threats to consider in regards to the results of
this study. This section aims to bring attention to these threats and discuss their implications.
For this discussion, the four concepts of internal validity, external validity, construct validity
and reliability, inspired by the guidelines set by Runeson et al. (Runeson and Host 2009)
have been considered.

Sample (external and construct validity) The interview sample for the study is small
(N=17) when compared to the sample-frame of potential, but unknown, number of MBT
users. The sample makes up for this by consisting of experts with many years of experi-
ence with the technique from multiple companies, contexts and domains. The sample is also
drafted from different parts of the world, implying that contextual factors, like geographic
norms, can be excluded. The sample’s expressed experiences with the technique in practice
are also mostly similar, supporting the validity of the synthesized results. However, although
heterogeneous, there is a risk that guidelines may have been missed. We therefore do not
claim these guidelines to be comprehensive and urge more research in this area, including
research into non-technical factors associated with the technique.

Delimitation of the results (external validity) Although the results are perceived general-
izable to software intensive systems, due to the sample’s heterogeneous experiences, there
is a lack of results from some known MBT domains such as the automotive domain. This is
perceived to delimit the results’ generalizability. However, since MBT is primarily under-
represented in the software intensive software development market, which is the focus of
the study, this delimitation is found acceptable. It is possible that the guidelines can be
applied in contexts not represented by interviewees’ statements, but contextual differences
cannot be excluded. For instance, embedded systems have technical dependencies on physi-
cal components, adding new requirements and stakeholders to the MBT environment, which
may prohibit the described ways-of-working from being used. MBT’s use case must also
be considered. As an example, in the automotive domain, MBT is used to model signal
behavior in, for instance, electronic control units (ECUs). Hence, modelling on a lower
system level of abstraction than discussed in this paper. This may invalidate some of the
guidelines discussed in this work. For example, when modelling low-level technical behav-
ior, is it still suitable for this modelling to be conducted by domain experts rather than
technical experts?

Research procedure (internal validity) The procedure of drafting, piloting, conducting,
analyzing and verifying the interviews’ results were inspired by academic best prac-
tices (Runeson and Host 2009; Azevedo et al. 2017; Baskarada 2014). These steps were
performed by the research team, with varying experiences and knowledge of research, MBT
and domain knowledge. Despite the heterogeneous skill set, it cannot be ruled out that the
research team were flavoured by the study objective, leading to biases. However, since the
results were verified by external experts, such biases are considered minor, if present.

The results are also evidence-based, i.e. derived from multiple sources (interviewees),
and triangulated (Runeson and Host 2009; Baskarada 2014). Additionally, the results

@ Springer

Empir Software Eng (2022) 27: 103 Page 37 of 42 103

answer the research questions but, as stated previously, these answers are delimited to
development of software intensive systems and MBT with graphical models.

Replicability (reliability) This case study can not be replicated exactly because the
responses from interviewees may vary. We’ve therefore provided detailed descriptions of
the research procedure and the decisions taken to reach the results and discussed the possi-
ble limitations of these. Interview questions have also been presented as well as the step by
step analysis procedure. Hence, we expect the reader to be able to follow the design, judge
its, and the conclusions, validity. Please note that although other guidelines could result
from another sample of interviewees, we expect there to be significant overlap to our result.
We base this claim on the characteristics of our sample and their suitability for the study.

6.3 Future work

Several avenues of future work can be seen as a result of this work. First and foremost, there
is a lack of experience reports about MBT in practice. Such reports are required to spread
best practices and success stories to motivate, inspire and educate industrial practitioners
about MBT. Further work is also required to spread awareness of the technique in non-
academic forums, such as industrial testing conferences.

However, there is also an alternative aspect to consider; it is possible that MBT is not
a suitable tool in most software-intensive domains when compared to other available test
techniques. This hypothesis leads to an interesting question that should be explored com-
prehensively through empirical research; what are the benefits of MBT with graphical
models compared to other techniques such as BDD? The answer to this question could
help explain why, for instance, BDD has seen increased popularity in industry compared to
MBT. One hypothesis is that the lack of MBT adoption is related to MBT’s prerequisites,
e.g. organizational mindset changes, but this conclusion should be explored further.

However, assuming that MBT has a place in industry, it is evident that ways-of-working
with the approach and best practices are still required. This paper makes an initial attempt
at presenting non-technical guidelines but it is not perceived to be comprehensive. For
instance, it is unlikely that the results touch upon all organizational and human factors asso-
ciated with MBT’s use in practice. In addition, few results were acquired regarding the
technique’s use for testing non-functional requirements. Hence, more industrial studies are
required to elicit well-tested and used practices such as those presented in this work. The
goal of such research should be to build a more comprehensive model of the use case,
challenges and ways-of-working with the technique to stimulate further industrial adoption.

7 Conclusions

Model-based testing (MBT) has been extensively researched for several decades, result-
ing in technical advancements as well as practices and ways-of-working. However, despite
the extensive body of knowledge, MBT is an underrepresented technique in practice. One
reason has been identified as the lack of knowledge about the technique due to lack of
empirical studies, e.g. success stories, and evidence-based guidelines that capture a broader
perspective than the technical aspects of the technique.

For this paper we performed 17 in-depth interviews with MBT experts from around the
world to elicit the experts’ knowledge, best practices and experiences with MBT. The inter-
view resulted in 13 high-level conclusions that were transformed into 23 best practices for

@ Springer

103 Page 38 of 42 Empir Software Eng (2022) 27: 103

the adoption, use and abandonment of MBT in practice. The results cover both technical and
non-technical factors and thereby provide a novel contribution in terms of evidence-based,
broader encompassing, guidelines for MBT.

A synthesis of the perceived more influential conclusions of this work are summarized
below:

1. MBT requires models to be designed on a suitable level of abstraction but many
individuals lack an aptitude for abstraction.

2. MBT requires a change in organizational mindset with more collaboration among stake-
holders to be successful. However, once established, this collaboration is also MBT’s
main benefit that allows the technique to support early fault detection, even without test
execution.

3. MBT is a multi-purpose tool, supporting both regression and exploratory testing, but
if multiple purposes are not required by an organization, then other techniques may be
more suitable.

4. MBT is subject to many of the same challenges as other test techniques when it comes
to “getting everyone on-board”, warning signals that it is not working, and prerequisites
for operation (resource and knowledge requirements).

5. MBT inputs and test design can vary but a general recommendation is to use scenario-
based requirements as inputs and put all logic that governs the test sequences in the test
model, whilst all other logic is placed in test code.

6. MBT test modelling and execution is not considered a challenge since it is well sup-
ported by existing MBT tools. However, re-execution of random traversal of models is
considered a challenge.

Along with these results, we conclude that further research on the areas of adop-
tion, usage and abandonment of the technique are required and outline four key areas
for such research, i.e. more industrial experience reports, comprehensive analysis of the
benefits/drawbacks of MBT compared to other automation techniques, further work into
non-technical guidelines and more research into how to utilize MBT for testing non-
functional aspects of a SUT. We hope this study will inspire both industrial practitioners
and academics to continue to pursue knowledge about MBT and spread awareness of its
capabilities in industrial practice.

Appendix A: Interview Guide

In the following, the interview guide used during the study is presented. The interview
questions are

Before interview

— Explanation of study’s purpose: The purpose of the study is to develop guidelines for
how MBT should be used in practice.

— Statement of anonymity: All answers will be anonymized and no answer will be
traceable back to you.

— Approval to record: Do you agree to this interview being recorded? The recordings
will be held confidential and will not be shared outside the research team. No informa-
tion you provide will be given to any of your colleagues or managers before point (2)
has been fulfilled.

@ Springer

Empir Software Eng (2022) 27: 103 Page 39 0f42 103

— Statement of possibility to review: You will be given the possibility to review all
materials before they are published/presented to the public.

— Clarification of study scope: MBT stands for Model-based testing and is in this inter-
view defined as automated tests that are produced through graphical models developed
in a modeling tool that are connected to executable, automated, tests consisting of code.

— Requested data: We primarily seek empirical experiences and knowledge from actual
use of MBT in industrial practice. Please clarify if your response is based on your own
perception or if your answer is theoretical.

Background

1. How many years of industrial experience do you have in the software development
industry?

2. How many years of industrial experience do you have of software testing (manual or
automated)?

e

How many years of industrial experience do you have of MBT?
4. As an MBT user, what was/is your role (developer, tester, manager, etc)?

Adoption

1. Which testing needs are covered by MBT that made the approach attractive for the
projects you have participated in?

(a) (follow-up) Did you seek to replace or complement existing tests with MBT?

2. Which changes to the work environment are required to make MBT work in daily work?
3. Which roles should take part in the adoption of MBT and what are their tasks?
4. Which are the challenges with adopting MBT into daily work?

(a) (Follow-up) Was there support throughout the organization for MBT as a tech-
nique/concept?

Use

1. Which roles shall be responsible for the development, quality assurance and manage-
ment of model-based tests and what are the tasks of these roles?

2. Which aspects do you consider when choosing MBT as the most suitable technique to
create a test case? (Given that you have MBT in your tool box).

3. Which guidelines shall be used to succeed with model-based testing? (Each of the
following sub-questions shall be asked).

(a) How shall input for model-based tests look like and how shall it be used?

(b) How shall test-functionality be split between model and code?

(c) How much time shall be spent on creating a model compared to time spent on
making code?

(d) How shall the development of models and code be split between different roles?

(e) How shall model-based tests be maintained to ensure their longevity?

(f) How often shall model-based tests be executed to give return on investment?

(g) How shall models/code be quality assured?

(h) How do you collaborate and reuse code/models in an effective/efficient way?

(i) How do you recreate test flows for troubleshooting when MBT reports a fault?

() How do you use the outcome from MBT tests in the best way (reports, results)?

@ Springer

103 Page 40 of 42 Empir Software Eng (2022) 27: 103

4. What type of functional- and quality- (non-functional) tests shall MBT be used for?

Abandonment

1. Which causes lead to MBT abandonment and what are the warning signs that indicate
this outcome?

(a) Note for follow-up questions: Consider loss of competence, failure to introduce
MBT in CI, contextual problems.

2. Which effects does abandonment of MBT have on daily work?
3. Which techniques/tools are most suitable to replace MBT after abandonment?
4. Which changes would you do to better succeed with the re-introduction of MBT?

Other

1. Do you have any additional comments about MBT that you think we have not covered
in the interview?

Acknowledgments This work was supported by the KKS foundation through the M.E.T.A. research project
(ref. 20180102) at Blekinge Institute of Technology.

Funding Open access funding provided by Blekinge Institute of Technology.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aho P, Menz N, Rity T, Schieferdecker I (2011) Automated java gui modeling for model-based testing pur-
poses. In: 2011 Eighth International Conference on Information Technology: New Generations. IEEE,
pp 268-273

Alégroth E, Feldt R (2017) On the long-term use of visual gui testing in industrial practice: a case study.
Empir Softw Eng 22(6):2937-2971

Asaadi H, Khosravi R, Mousavi M, Noroozi N (2012) Towards model-based testing of electronic funds
transfer systems. In: Towards Model-Based Testing of Electronic Funds Transfer Systems, vol 7141

Azevedo V, Carvalho M, Fernandes-Costa F, Mesquita S, Soares J, Teixeira F, Maia A (2017) Interview
transcription: conceptual issues, practical guidelines, and challenges. Revista de Enfermagem Referéncia
4(14):159-167

Baskarada S (2014) Qualitative case study guidelines. Baskarada, S.(2014). Qualitative case studies
guidelines. The Qualitative Report 19(40):1-25

Broy M, Jonsson B, Katoen J-P, Leucker M, Pretschner A (2005) Model-based testing of reactive systems.
In: Volume 3472 of Springer LNCS. Springer

Dias Neto AC, Subramanyan R, Vieira M, Travassos GH (2007) A survey on model-based testing approaches:
a systematic review. In: Proceedings of the 1st ACM international workshop on Empirical assessment
of software engineering languages and technologies: held in conjunction with the 22nd IEEE/ACM
International Conference on Automated Software Engineering (ASE) 2007, pp 31-36

@ Springer

http://creativecommons.org/licenses/by/4.0/

Empir Software Eng (2022) 27: 103 Page 41 0f 42 103

Drave I, Hillemacher S, Greifenberg T, Rumpe B, Wortmann A, Markthaler M, Kriebel S (2018) Model-
based testing of software-based system functions. In: 2018 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE, pp 146-153

Felderer M, Agreiter B, Zech P, Breu R (2011) A classification for model-based security testing. Advances
in System Testing and Validation Lifecycle (VALID 2011), pp 109-114

Felderer M, Zech P, Breu R, Biichler M, Pretschner A (2016) Model-based security testing: a taxonomy and
systematic classification. Software Testing, Verification and Reliability 26(2):119-148

Freeman P, Hart D (2004) A science of design for software-intensive systems. Commun ACM 47(8):19-21

Garousi V, Keles AB, Balaman Y, Giiler ZO, Arcuri A (2021) Model-based testing in practice: An experience
report from the web applications domain. arXiv:2104.02152

Gurbuz HG, Tekinerdogan B (2018) Model-based testing for software safety: a systematic mapping study.
Softw Qual J 26(4):1327-1372

Habib A, Pradel M (2018) How many of all bugs do we find? a study of static bug detectors. In: 2018 33rd
IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, pp 317-328

Hemmati H, Arefin SS, Loewen HW (2018) Evaluating specification-level mc/dc criterion in model-based
testing of safety critical systems. In: 2018 IEEE/ACM 40th International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP). IEEE, pp 256-265

Igbal MZ, Sherin S et al (2018) Empirical studies omit reporting necessary details: A systematic literature
review of reporting quality in model based testing. Computer Standards & Interfaces 55:156-170

Irshad M, Britto R, Petersen K (2021) Adapting behavior driven development (bdd) for large-scale software
systems. J Syst Softw 177:110944

Janicki M, Katara M, Péddkkonen T (2012) Obstacles and opportunities in deploying model-based gui testing
of mobile software: a survey. Software Testing, Verification and Reliability 22(5):313-341

Jin K, Lano K (2021) Generation of test cases from uml diagrams-a systematic literature review. In:
14th Innovations in Software Engineering Conference (formerly known as India Software Engineering
Conference), pp 1-10

Jorgensen PC (2017) The craft of model-based testing. CRC Press

Khan MA, Jadoon A, Haq KMS, Mumtaz S, Rodrigues J (2019) An overview of resilient and automatic
model-based testing approaches for automotive industry. In: 2019 IEEE International Conference on
Communications Workshops (ICC Workshops). IEEE, pp 1-6

Kramer A, Legeard B (2016) Model-based testing essentials-guide to the istqb certified model-based tester:
foundation level. John Wiley & Sons, New York

LiN, Escalona A, Kamal T (2016) Skyfire: Model-based testing with cucumber. In: 2016 IEEE International
Conference on Software Testing, Verification and Validation (ICST). IEEE, pp 393—-400

Lima B, Faria JP (2015) An approach for automated scenario-based testing of distributed and heterogeneous
systems. In: 2015 10th International Joint Conference on Software Technologies (ICSOFT), vol 1. IEEE,
pp 1-10

Martinez A (2019) Evaluating model-based testing in an industrial project: An experience report. Information
Technology and Systems: Proceedings of ICITS 2019 918:294

Munaiah N, Meyers BS, Alm CO, Meneely A, Murukannaiah PK, Prud’hommeaux E, Wolff J, Yu Y (2017)
Natural language insights from code reviews that missed a vulnerability. In: International Symposium
on Engineering Secure Software and Systems. Springer, pp 70-86

Nguyen PH, Ali S, Yue T (2017) Model-based security engineering for cyber-physical systems: A systematic
mapping study. Inf Softw Technol 83:116-135

Nikiforova A, Bicevskis J, Bicevska Z, Oditis I (2021) Data quality model-based testing of information sys-
tems: Two-level testing of the insurance system. In: Information Technology for Management: Towards
Business Excellence: 15th Conference, ISM 2020, and FedCSIS-IST 2020 Track, Held as Part of
FedCSIS, Sofia, Bulgaria, September 6-9, 2020, Extended and Revised Selected Papers 15. Springer
International Publishing, pp 25-44

North D (2010) Introducing behaviour-driven development. 2006

Offutt AJ, Pan J, Tewary K, Zhang T (1996) An experimental evaluation of data flow and mutation testing.
Software: Practice and Experience 26(2):165-176

Peleska J (2013) Industrial-strength model-based testing-state of the art and current challenges. arXiv:1303.
1006

Peleska J, Brauer J, Huang W-1 (2018) Model-based testing for avionic systems proven benefits and fur-
ther challenges. In: International Symposium on Leveraging Applications of Formal Methods. Springer,
pp 82-103

Rueda U, Vos TEJ, Almenar F, Martinez MO, Esparcia-Alcazar Al (2015) Testar: from academic prototype
towards an industry-ready tool for automated testing at the user interface level. Actas de las XX Jornadas
de Ingenieria del Software y Bases de Datos (JISBD 2015), pp 236-245

@ Springer

http://arxiv.org/abs/2104.02152
http://arxiv.org/abs/1303.1006
http://arxiv.org/abs/1303.1006

103 Page 42 of 42 Empir Software Eng (2022) 27: 103

Runeson P, Host M (2009) Guidelines for conducting and reporting case study research in software
engineering. Empirical software engineering 14(2):131-164

Schneider S (2021) Using model-based testing for creating behaviour-driven tests. Ph.D. Thesis, Wien

Utting M, Pretschner A, Legeard B (2012) A taxonomy of model-based testing approaches. Software testing,
verification and reliability 22(5):297-312

Viasquez RO, Quesada-Lépez C, Martinez A (2019) Evaluating model-based testing in an industrial project:
an experience report. In: International Conference on Information Technology & Systems. Springer,
pp 294-303

Villalobos-Arias L, Quesada-Lépez C, Martinez A, Jenkins M (2019) Model-based testing areas, tools and
challenges: A tertiary study. CLEI Electronic Journal 22(1):3-1

Zafar MN, Afzal W, Enoiu E, Stratis A, Arrieta A, Sagardui G (2021) Model-based testing in practice:
An industrial case study using graphwalker. In: 14th Innovations in Software Engineering Conference
(formerly known as India Software Engineering Conference), pp 1-11

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Emil Alégroth’ - Kristian Karl' - Helena Rosshagen’ - Tomas Helmfridsson -
Nils Olsson'

Kristian Karl
krikar@spotify.com

Helena Rosshagen
helena.rosshagen @addq.se

Tomas Helmfridsson
tomas.helmfridsson @addq.se

Nils Olsson
nils.olsson@arcticblue.se

SERL Sweden Blekinge Institute of Technology Karlskrona, Sweden

@ Springer

mailto: krikar@spotify.com
mailto: helena.rosshagen@addq.se
mailto: tomas.helmfridsson@addq.se
mailto: nils.olsson@arcticblue.se

	Practitioners' best practices to Adopt, Use or Abandon Model-based Testing with Graphical models for Software-intensive Systems
	Abstract
	Introduction
	Related work and extended motivation for this study
	Methodology
	Formulation of research objective
	Formulation of research questions
	Drafting the interview guide
	Development
	Structure of the interview guide
	Statement on validity of the guide

	Piloting the interview guide
	Sampling interviewees
	Conducting the interviews
	Analysis
	Formulation and verification of best practices

	Results
	RQ1: Adoption of MBT
	Levels of abstraction
	Mindset
	Guidelines
	Test purpose
	Re-execution
	Summary for RQ1

	RQ2: Usage of MBT
	``Good'' models
	Verifying MBT tests
	Maintenance
	Test logic
	Return on Investment (ROI)
	Functional vs non-functional tests
	Summary for RQ2

	RQ3: Abandonment of MBT
	Causes of abandonment
	Warning signs
	Summary for RQ3

	Summary of observed benefits and challenges
	MBT benefits
	MBT challenges

	Best practices
	Adoption
	Levels of abstraction
	Mindset
	Guidelines
	Test purpose
	Re-execution

	Usage
	Verifying MBT tests
	Maintenance
	Test logic
	Return on Investment
	Functional vs Non-functional tests

	Abandonment
	Causes of abandonment
	Warning signs

	Discussion
	Implications
	For research
	For industry

	Threats to validity
	Sample (external and construct validity)
	Delimitation of the results (external validity)
	Research procedure (internal validity)
	Replicability (reliability)

	Future work

	Conclusions
	Appendix A A: Interview Guide
	Before interview
	Background
	Adoption
	Use
	Abandonment
	Other

	References
	Affiliations

