
https://doi.org/10.1007/s10664-022-10128-3

Identifying self-admitted technical debt in issue
tracking systems using machine learning

Yikun Li1 ·Mohamed Soliman1 ·Paris Avgeriou1

Accepted: 31 January 2022 /
© The Author(s) 2022

Abstract
Technical debt is a metaphor indicating sub-optimal solutions implemented for short-term
benefits by sacrificing the long-term maintainability and evolvability of software. A special
type of technical debt is explicitly admitted by software engineers (e.g. using a TODO com-
ment); this is called Self-Admitted Technical Debt or SATD. Most work on automatically
identifying SATD focuses on source code comments. In addition to source code comments,
issue tracking systems have shown to be another rich source of SATD, but there are no
approaches specifically for automatically identifying SATD in issues. In this paper, we first
create a training dataset by collecting and manually analyzing 4,200 issues (that break down
to 23,180 sections of issues) from seven open-source projects (i.e., Camel, Chromium, Ger-
rit, Hadoop, HBase, Impala, and Thrift) using two popular issue tracking systems (i.e.,
Jira and Google Monorail). We then propose and optimize an approach for automatically
identifying SATD in issue tracking systems using machine learning. Our findings indicate
that: 1) our approach outperforms baseline approaches by a wide margin with regard to
the F1-score; 2) transferring knowledge from suitable datasets can improve the predictive
performance of our approach; 3) extracted SATD keywords are intuitive and potentially
indicating types and indicators of SATD; 4) projects using different issue tracking systems
have less common SATD keywords compared to projects using the same issue tracking
system; 5) a small amount of training data is needed to achieve good accuracy.

Communicated by: Foutse Khomh, Gemma Catolino and Pasquale Salza

This article belongs to the Topical Collection: Machine Learning Techniques for Software Quality
Evaluation (MaLTeSQuE)

� Yikun Li
yikun.li@rug.nl

Mohamed Soliman
m.a.m.soliman@rug.nl

Paris Avgeriou
p.avgeriou@rug.nl

1 Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence,
University of Groningen, Groningen, The Netherlands

Published online: 10 July 2022

Empirical Software Engineering (2022) 27: 131

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10128-3&domain=pdf
http://orcid.org/0000-0002-1566-725X
mailto: yikun.li@rug.nl
mailto: m.a.m.soliman@rug.nl
mailto: p.avgeriou@rug.nl

Keywords Self-admitted technical debt · Technical debt identification ·
Issue tracking system · Deep learning · Transfer learning

1 Introduction

Technical debt (TD) is a metaphor reflecting the implementation or adoption of sub-optimal
solutions to achieve short-term benefits while sacrificing the long-term maintainability and
evolvability of software (Avgeriou et al. 2016).

TD is incurred either deliberately (e.g. to meet a deadline) or inadvertently (e.g. due
to lack of domain knowledge) and tends to accumulate over time. If left unmanaged, the
accumulation of TD can lead to critical issues in software maintainability and evolvability.
To manage TD appropriately, a number of activities have been proposed, among which,
identification is the first step (Li et al. 2015).

Most TD identification approaches in literature use static source code analysis (Alves
et al. 2016). While this works well for identifying coding rule violations, it also has limita-
tions. Most importantly, the scope of TD identification is limited to code-level issues such
as code smells (Tufano et al. 2017). It does not consider other types of TD (e.g. bad archi-
tecture decisions or requirements debt (Ernst, 2012)), which are, in general, harder to detect
from the source code directly.

Potdar and Shihab (2014) proposed a new approach to detect TD, focusing on the so-
called Self-Admitted Technical Debt (SATD): technical debt that is explicitly admitted by
software engineers in source code comments. The identification of SATD facilitates cap-
turing TD items, which are harder to detect using source code analysis. For instance, when
developers choose to partially implement a requirement in order to deliver the software
faster, they are likely to note that down in source code comments, e.g. by using a TODO
comment (Potdar and Shihab 2014). Another example is the use of a technology (e.g. an
architecture framework), not because it is the optimal solution, but because there is a busi-
ness relation with the technology provider. Such examples of TD cannot be identified by
analyzing source code.

Studies on identifying SATD, focus mostly on source code comments (Sierra et al. 2019).
Recently, issue tracking systems have shown to be another rich source for SATD, which
acts as complementary to source code comments, i.e. it allows identifying SATD that is not
admitted in source code comments (Li et al. 2020; Bellomo et al. 2016). In addition, issue
tracking systems have the advantage of involving useful discussions between software engi-
neers across the development activities (e.g. within requirements engineering, architecture
design, and testing) (Merten et al. 2015; Li et al. 2020). Therefore, there is high potential
of finding comprehensive SATD content within issues; in contrast, source code comments
hardly ever contain such discussions. However, on the one hand, it is very time-consuming
to manually identify SATD in issue tracking systems (Li et al. 2020). On the other hand, we
lack approaches that automatically identify SATD in issue tracking systems.

In this paper, we aim at proposing and evaluating an approach for automatically identify-
ing SATD in issue tracking systems. An issue usually consists of an issue summary, an issue
description, and a number of comments from different developers. We call each part of an
issue (i.e. summary, description or comment) as issue section. We first collect 4,200 issues
(that correspond to 23,180 issue sections) from seven large open-source projects from two
ecosystems: Apache and Google. We then manually analyze the issue sections in order to
identify SATD based on our previously defined classification framework (Li et al. 2020);
this results in creating the biggest SATD dataset for issue tracking systems. Finally, based on

131 Page 2 of 37 Empir Software Eng (2022) 27: 131

this dataset for training, we experiment with several traditional and modern machine learn-
ing techniques to automatically identify SATD in issues within two popular issue tracking
systems (i.e. Jira and Google Monorail). To optimize the machine learning outcome, we also
explore different word embeddings, machine learning configurations (e.g. hyperparameter
tuning), as well as transfer learning.

The main contributions of this paper are the following:

1. Contributing a rich dataset of self-admitted technical debt in issue tracking sys-
tems. We collect 4,200 issues (that contain 3,277 SATD issue sections out of 23,180
issue sections) from seven open-source projects using two issue tracking systems.
The dataset includes annotations regarding the type and indicator of each SATD issue
section. We make our dataset publicly available1 to encourage future research in this
area.

2. Comparing different machine learning techniques and optimizing the best
approach to identify SATD in issue tracking systems. We compare the F1-score of
different machine learning approaches identifying SATD in issues and find out that Text
CNN (Kim 2014) outperforms others. We then further investigate imbalanced data han-
dling strategies, word embedding techniques, and hyperparameter tuning, and optimize
the CNN-based approach to accurately identify SATD issue sections in issue tracking
systems. Moreover, we conduct extensive experiments to evaluate the effectiveness of
transferring knowledge gained from other datasets.

3. Extracting the most informative SATD keywords and comparing keywords from
different projects and sources. We summarize and present a list of the most informa-
tive SATD keywords and we find that these keywords are intuitive and can potentially
indicate types and indicators of SATD. Besides, we show that projects using differ-
ent issue tracking systems have less common keywords compared to projects using
the same issue tracking system. Moreover, we find source code comments and issue
tracking systems have some common SATD keywords.

4. Evaluating generalizability of our CNN-based approach. We conduct experiments
to evaluate the generalizability of our approach across projects and issue tracking
systems.

5. Exploring the amount of data necessary for training the model. We find that only a
small amount of training data is needed to achieve good accuracy.

The remainder of the paper is organized as follows. We begin by discussing some related
work in Section 2. We then elaborate on the case study design in Section 3. Subsequently,
we present and discuss the results in Sections 4 and 5 respectively. In Section 6, threats to
validity are discussed. Finally, we present our conclusions in Section 7.

2 RelatedWork

In this paper, we work on an approach to identify SATD in issue tracking systems. There-
fore, we divide the related work into two parts: work related to SATD in general and work
related to SATD in issue tracking systems.

1https://github.com/yikun-li/satd-issue-tracker-data

Page 3 of 37 131Empir Software Eng (2022) 27: 131

https://github.com/yikun-li/satd-issue-tracker-data

2.1 Self-Admitted Technical Debt

Potdar and Shihab (2014) investigated source code comments that indicate technical debt
items and named this phenomenon self-admitted technical debt. They manually analyzed
101,762 source code comments from four open-source projects (i.e., Eclipse, Chromium,
Apache HTTP Server, and ArgoUML) to identify SATD comments. They found that SATD
comments are widely spread in projects: 2.4% to 31.0% of files contain SATD comments.
Moreover, they identified and summarized 62 keyword phrases that indicate SATD, such as
ugly, temporary solution, and this doesn’t look right. In a follow-up study, Maldonado and
Shihab (2015) identified SATD by reading through 33,093 comments from five open-source
project and manually classifying them into different types. They found that source code
comments indicate five types of SATD: design, defect, documentation, requirement, and test
debt. Besides, they observed that the majority of SATD is design debt as 42% to 84% of all
identified SATD comments indicate design debt. After that, de Freitas Farias et al. (2016)
investigated the effectiveness of Contextualized Vocabulary Model for identifying SATD in
code comments.

Following up from Maldonado and Shihab (2015), to accurately and automatically iden-
tify SATD in source code comments, Maldonado et al. (2017) analyzed 29,473 source code
comments from ten open-source projects and trained a maximum entropy classifier on the
analyzed data. The results showed that design and requirement debt can be identified with
the average F1-score of 0.620 and 0.402 respectively. Additionally, they found that training
on a small subset of comments can achieve 80% and 90% of the best classification accuracy.

Subsequently, there was work on improving the accuracy of SATD identification in
source code comments. Liu et al. (2018) proposed an approach based on text-mining to
accurately and automatically detect SATD in source code comments by utilizing feature
selection and combing sub-classifiers. The average F1-score achieved by their approach
was improved from 0.576 to 0.737, compared to the work by Maldonado et al. (2017). Most
recently, Ren et al. (2019) proposed a Convolutional Neural Network based approach for
SATD identification in source code comments and showed that their approach outperformed
previous methods.

Apart from SATD identification, there has been work related to measurement and repay-
ment of SATD. Wehaibi et al. (2016) investigated the relation between SATD and software
quality by analyzing five open-source projects, namely Chromium, Hadoop, Spark, Cas-
sandra, and Tomcat. The findings indicated that SATD changes (modifications on files
containing SATD comments) incur fewer defects compared to non-SATD changes, while
SATD changes are more complex and difficult to perform than non-SATD changes. Kamei
et al. (2016) found that about 42% to 44% of SATD sections incur positive technical debt
interest. Zampetti et al. (2018) studied how SATD is resolved in five open-source projects,
namely Camel, Gerrit, Hadoop, Log4j, and Tomcat. They found that between 20% and 50%
of SATD comments are removed by accident (without addressing the SATD), while most of
the repayment activities require complex source code changes.

2.2 SATD in Issue Tracking Systems

SATD in issue tracking systems is relatively unexplored: there are only four studies on the
identification and repayment of SATD in issue trackers. Bellomo et al. (2016) explored the
existence of SATD in four issue tracking systems from two government projects and two
open-source projects. They analyzed 1,264 issues and annotated 109 issues as SATD issues.
The results showed that technical debt is indeed declared and discussed in issue tracking

131 Page 4 of 37 Empir Software Eng (2022) 27: 131

systems. Subsequently, Dai and Kruchten (2017) identified 331 SATD issues from 8,149
issues by reading through the issue summaries and descriptions. They then trained a Naive
Bayes classifier to automatically classify issues as SATD issues or non-SATD issues and
extracted unigram keywords that indicate technical debt. The third study by Li et al. (2020)
is our own previous work, where we investigated the identification and repayment of SATD
in issues from two open-source projects. We annotated issues on the sentence level, instead
of treating a whole issue as SATD or not, in order to have better accuracy. We then presented
types of SATD, the points of time when SATD was identified and reported, and how SATD
was eventually resolved. Lastly, Xavier et al. (2020) studied a sample of 286 SATD issues
and found 29% of SATD in issues can be tracked to source code comments.

In this article, we analyze issues on a more fine-grained level compared to three of the
related studies (Bellomo et al. 2016; Dai and Kruchten 2017; Xavier et al. 2020) as they both
treated a whole issue as a single technical debt statement. In contrast, we look at issue sec-
tions (i.e., individual issue summaries, descriptions, or comments) and potentially annotate
them as SATD issue sections. As compared to the third study (Li et al. 2020), we analyze
about eight times more issues (4,200 issues versus 500 issues) for machine learning training.
Besides, we propose a deep learning approach to accurately identify SATD in issues and
compare the accuracy with other traditional machine learning methods (see RQ1). More-
over, we extract and summarize unigram to five-gram keywords, compared to only unigram
keywords extracted from issue descriptions by Dai and Kruchten (2017) (see RQ2). Further-
more, we investigate the generalization of our approach (see RQ3) and explore the amount
of data needed for training the machine learning model (see RQ4). RQ3 and RQ4 were not
investigated before by other researchers. Finally, this is the first work discussing the differ-
ences between SATD from different sources (i.e., source code comments and issue tracking
systems).

3 Study Design

We follow the guidelines for case study research proposed by Runeson et al. (2012) to design
and conduct the study. The goal of the study, formulated according to the Goal-Question-
Metric (van Solingen et al. 2002) template, is to “analyze issues in issue tracking systems
for the purpose of automatically identifying self-admitted technical debt within issues with
respect to accuracy, explainability, and generalizability from the point of developers in the
context of open-source software”. This goal is refined into four research questions (RQs),
which consider accuracy (RQ1 and RQ4), explainability (RQ2) and generalizability (RQ3).
The RQs and their motivations are explained below.

– (RQ1) How to accurately identify self-admitted technical debt in issue tracking
systems? This research question focuses on the accuracy of SATD automatic identifi-
cation, and is further refined into three sub-questions:

◦ (RQ1.1) Which algorithms have the best accuracy to capture self-admitted
technical debt in issue tracking systems? Since we are aiming at accurately
identifying SATD within issues, we need to compare the accuracy of different
approaches to choose the best one.

◦ (RQ1.2) How to improve accuracy of machine learning model? To optimize
the accuracy of identifying SATD in issue tracking systems, we investigate
word embedding refinement, imbalanced data handling strategies, and hyper-
parameters tuning.

Page 5 of 37 131Empir Software Eng (2022) 27: 131

◦ (RQ1.3) How can transfer learning improve the accuracy of identifying self-
admitted technical debt in issue tracking systems? Transfer learning focuses
on using knowledge gained while solving one task to address a different but
related task. Therefore, we can study the influence of leveraging external
datasets (from source code comments) on our SATD detector using transfer
learning.

– (RQ2) Which keywords are the most informative to identify self-admitted technical debt
in issue tracking systems? By extracting keywords of technical debt statements, we can
understand better how developers declare technical debt in issue tracking systems. The
summarized keywords are also helpful to developers for understanding and identifying
SATD within issues. Overall, understanding these keywords allow us to explain how
the classifier works.

– (RQ3) How generic is the classification approach among projects and issue tracking
systems? Different projects use different issue tracking systems (e.g. Jira and Google
Monorail) and are maintained by different communities (e.g. Apache and Google).
Thus, we need to evaluate how far our results can be applicable to different projects and
issue tracking systems. This research question is concerned with the generalizability of
machine learning approaches.

– (RQ4) How much data is needed for training the machine learning model to accurately
identify self-admitted technical debt in issues? Intuitively, training a machine learning
classifier on a bigger dataset leads to better accuracy. However, manually annotating
SATD in issue tracking systems is a time-consuming task. Therefore, we ask RQ4
to determine the most suitable size for a training dataset, which can achieve the best
classification accuracy with a minimum amount of effort.

3.1 Approach Overview

Figure 1 presents an overview of our approach. The first step is to collect issue sections
from projects that use Jira and Google Monorail. Subsequently, collected issue sections are
filtered to remove impertinent data. Then, issue sections are manually classified regarding
their SATD. Finally, the machine learning models are trained on the manually classified
dataset and executed on the whole dataset. Each of these steps is elaborated in the following
sub-sections; the last step is the most complex, so it is explained in more depth.

3.2 Data Collection

To automatically identify SATD in issues, we will use supervised machine learning clas-
sifiers (Shalev-Shwartz and Ben-David 2014), which depend on training data that are

Issue Section
Classification

Data
Collection

Filtering
Issue Sections

Automated ProcessDatabase Manual Process Flow Direction

Google Monorail
Issue Tracker

JIRA Issue Tracker
Training and

Executing Machine
Learning Models

Fig. 1 The framework of our approach

131 Page 6 of 37 Empir Software Eng (2022) 27: 131

Table 1 Details of chosen projects

Project Project details Classification details

Issue Languages SLOC # Issues # Analyzed # SATD % SATD

tracker sections sections sections

Camel Jira Java 1,525k 14,411 2,792 377 13.5%

Chromium Google C++, C, and JavaScript 22,472k 1,079,511 3,435 264 6.7%

Gerrit Google Java 455k 12,711 2,812 195 6.9%

Hadoop Jira Java 3,409k 16,808 4,515 831 18.4%

HBase Jira Java 912k 24,342 4,936 688 13.9%

Impala Jira C++, Java, and Python 640k 9,733 1,934 355 18.4%

Thrift Jira C++, Java, and C 294k 5,196 2,756 567 20.6%

Average 3,311 468 14.1%

Total 23,180 3,277

manually collected and classified. Thus, we first need to manually collect and analyze issues
from different issue tracking systems.

Two of the most mainstream issue tracking systems are Jira and Google Monorail. Fur-
thermore, projects, such as Camel, Chromium, Gerrit, and Hadoop, in the Apache and
Google ecosystems have been commonly used in other SATD studies (Potdar and Shihab
2014; Wehaibi et al. 2016; Zampetti et al. 2018). Finally, projects in the Apache and Google
ecosystems are of high quality and supported by mature communities (Smith 2018). Thus,
we looked into projects in the Apache and Google ecosystems. Projects from the two ecosys-
tems use two different mainstream issue tracking systems, namely: the Jira issue tracking
system2 and the Google Monorail issue tracking system.3 To select projects pertinent to our
study goal, we set the following criteria:

1. Both the issue tracking system and the source code repository are publicly available.
2. They have at least 200,000 source lines of code (SLOC) and 5,000 issues in the issue

tracking systems. This is to ensure sufficient complexity.

There are over 400 projects in the Apache and Google ecosystems. However, training
machine learning models requires manually analyzing issues to create the training dataset.
Therefore, we randomly selected a sample of seven projects to be used for training and
testing the machine learning models. This number of projects is similar to other SATD
studies, which analyzed from four to ten projects (Potdar and Shihab 2014; Wehaibi et al.
2016; Maldonado et al. 2017). The details of the chosen projects are shown in Table 1. We
analyzed the latest released versions on May 7, 2020. The number of source lines of code
(SLOC) is calculated using the LOC tool.4 It should be noted that although Chromium has
significantly more issues than other projects, we found through manual inspection that the
issues of Chromium are similar to the issues of other projects (and esp. Gerrit) with respect
to the creation and discussion of issues. This is further supported by the fact that the same

2https://www.atlassian.com/software/jira
3https://bugs.chromium.org/
4https://github.com/cgag/loc

Page 7 of 37 131Empir Software Eng (2022) 27: 131

https://www.atlassian.com/software/jira
https://bugs.chromium.org/
https://github.com/cgag/loc

percentage (approx. 7%) of issue sections from Chromium and Gerrit were classified as
SATD sections; thus the issues of Chromium and Gerrit are maintained similarly.

3.3 Filtering Issue Sections

In issue tracking systems, in addition to the comments submitted by software developers,
some comments are automatically generated by bots (e.g., the Jenkins bot generates com-
ments to report the results of the Jenkins build). Therefore, we filtered out comments that
are automatically generated by bots. Specifically, we first obtain the 100 most active users
by ordering the number of comments submitted per user. Then we identify the bots’ user-
names (such as Hadoop QA and Hudson) by checking comments submitted by these 100
most active users. After that, we removed all comments posted by bot users according to the
list of bots’ usernames.

Additionally, software developers sometimes attach source code in issues for various
reasons. Because we focus on the SATD in issues rather than in source code, we removed
source code in issues using a set of regular expressions.5

3.4 Issue Section Classification

Before training machine learning models to automatically identify SATD in issues, we need
to inspect the collected sections within issues and manually classify them. Since software
developers might discuss several types of SATD in the same issue, treating a whole issue as a
single type of technical debt may be inaccurate. For example, software developers discussed
both code debt and test debt in issue HADOOP-6730.6 To accurately identify SATD in issue
tracking systems, similarly to our previous study (Li et al. 2020), we treat issue summaries,
descriptions, and comments as separate sections, and classify each section individually.

Since manual classification is extremely time consuming, we are not able to analyze all
issues. Thus, we calculated the size of the statistically significant sample based on the total
number of issues of each project with a confidence level of 95% and a confidence interval
of 5%. We found that the sizes of statistically significant samples range from 358 to 384.
Therefore, we randomly selected 600 issues from each project for analysis to ensure each
sample size is greater than the statistically significant sample size. We then decomposed
issues into sections (summaries, descriptions, and comments) for manual classification.
Because each issue contains one summary, one description, and several comments, the num-
ber of decomposed sections per issue varies. This step resulted in 23,180 issue sections for
analysis (see Table 1).

We used an open-source text annotation tool (Doccano7) to annotate sections using an
existing classification framework from our previous work (Li et al. 2020). This classifica-
tion framework contains several types and indicators of SATD (see Table 2), and was based
on the original framework by Alves et al. (2014). Based on this classification framework,
if a section matches an indicator (i.e. it indicates a certain type of SATD), we classify the
section as the corresponding type. Classifying SATD into these types allows for a com-
parison between classifying SATD in issue tracking systems versus SATD in source code
comments (see Section 5).

5https://github.com/yikun-li/satd-issue-tracker-data
6https://jira.apache.org/jira/browse/HADOOP-6730
7https://github.com/doccano/doccano

131 Page 8 of 37 Empir Software Eng (2022) 27: 131

https://github.com/yikun-li/satd-issue-tracker-data
https://jira.apache.org/jira/browse/HADOOP-6730
https://github.com/doccano/doccano

Table 2 Types and indicators of self-admitted technical debt

Type Indicator Definition # # %

Architecture
debt

Violation of modularity Because shortcuts were taken,
multiple modules became inter-
dependent, while they should be
independent.

46 87 2.7

Using obsolete technology Architecturally-significant technol-
ogy has become obsolete.

41

Build debt Over- or under-declared
dependencies

Under-declared dependencies:
dependencies in upstream libraries
are not declared and rely on
dependencies in lower level
libraries. Over-declared dependen-
cies: unneeded dependencies are
declared.

25 64 2.0

Poor deployment practice The quality of deployment is low
that compile flags or build targets
are not well organized.

39

Code debt Complex code Code has accidental complex-
ity and requires extra refactoring
action to reduce this complexity.

30 1246 38.0

Dead code Code is no longer used and needs to
be removed.

121

Duplicated code Code that occurs more than once
instead of as a single reusable func-
tion.

40

Low-quality code Code quality is low, for example
because it is unreadable, inconsis-
tent, or violating coding conven-
tions.

856

Multi-thread correctness Thread-safe code is not correct
and may potentially result in syn-
chronization problems or efficiency
problems.

40

Slow algorithm A non-optimal algorithm is utilized
that runs slowly.

159

Defect debt Uncorrected known defects Defects are found by developers but
ignored or deferred to be fixed.

25 25 0.8

Design debt Non-optimal decisions Non-optimal design decisions are
adopted.

935 935 28.5

Documentation
debt

Low-quality documentation The documentation has been
updated reflecting the changes in
the system, but quality of updated
documentation is low.

342 486 14.8

Outdated documentation A function or class is added,
removed, or modified in the system,
but the documentation has not been
updated to reflect the change.

144

Page 9 of 37 131Empir Software Eng (2022) 27: 131

Table 2 (continued)

Type Indicator Definition # # %

Requirement
debt

Requirements
partially implemented

Requirements are implemented, but
some are not fully implemented.

67 96 2.9

Non-functional requirements
not being fully satisfied

Non-functional requirements (e.g.
availability, capacity, concurrency,
extensibility), as described by sce-
narios, are not fully satisfied.

29

Test debt Expensive tests Tests are expensive, resulting in slowing
down testing activities. Extra refactor-
ing actions are needed to simplify tests.

28 338 10.3

Flaky tests Tests fail or pass intermittently for
the same configuration.

83

Lack of tests A function is added, but no tests are
added to cover the new function.

158

Low coverage Only part of the source code is exe-
cuted during testing.

69

Subsequently, all issue sections were divided into four subsets and assigned randomly for
analysis to four independent researchers, who are different from the authors of this paper.
We selected the four independent researchers using convenience sampling; this resulted
in an average of 5795 issue sections per independent researcher. To prepare the indepen-
dent researchers for this task, we gave them a tutorial about SATD and explained to them
the definitions of the different types and indicators of SATD in the classification frame-
work (shown in Table 2). Moreover, each type of SATD was supported with examples from
multiple projects in issues. This facilitated understanding each type of technical debt.

The next step for each independent researcher was to analyze and manually classify 200
issue sections (according to the classification framework in Fig. 1). These results were com-
pared and discussed with the first author to ensure that the annotations of each independent
researcher align with the definitions of the types of SATD in the classification framework.
This process was repeated three times for each independent researcher to ensure a better
and uniform understanding of the types of SATD.

Finally, all four independent researchers finished classifying the issue sections in his/her
subset; thereafter we measured the level of agreement between the classifications of inde-
pendent researchers and the first author using Cohen’s kappa coefficient (Fleiss et al.
1981), which is commonly used to measure inter-rater reliability. This is useful to deter-
mine the risk of bias on the reliability of the classification. Specifically, we created four
statistically significant samples corresponding to the four independent researchers with
a confidence level of 95% and a confidence interval of 5%. Because each independent
researcher classified on average 5795 issue sections, the size of each statistically significant
sample is calculated to be 360 issue sections. Then the first author analyzed the statistically
significant samples independently and the Cohen’s kappa coefficient between the indepen-
dent researchers and the first author was calculated. If the Cohen’s kappa coefficient was
below 0.7, the independent researcher discussed with the first author about discrepancies
and subsequently reanalyzed all the issue sections in his/her subset. Then the first author

131 Page 10 of 37 Empir Software Eng (2022) 27: 131

analyzed another statistically significant sample and Cohen’s kappa was calculated again.
This process was repeated until the Cohen’s kappa was above 0.7.

3.5 Training and ExecutingMachine LearningModels

3.5.1 Machine Learning Models

In order to accurately identify SATD in issues, we implement several machine learning
approaches and compare their ability in identifying technical debt in issues. We describe the
approaches and why we selected them below:

– Traditional machine learning approaches (SVM, NBM, kNN, LR, RF): Support
Vector Machine (SVM) (Sun et al. 2009), Naive Bayes Multinomial (NBM) (McCallum
et al. 1998), k-Nearest Neighbor (kNN) (Tan 2006), Logistic Regression (LR) (Genkin
et al. 2007), and Random Forest (RF) (Xu et al. 2012) classifiers are widely used in
text classification tasks (Kowsari et al. 2019) due to their good classification accuracy.
Moreover, the results of current studies on SATD identification (Maldonado et al. 2017;
Huang et al. 2018; Flisar and Podgorelec 2019) show that these approaches achieve
good accuracy in classifying SATD in source code comments. Thus, these approaches
have potential to also achieve good accuracy when classifying SATD in issue trackers.
Therefore, we train all of these classifiers using the implementation in Sklearn8 using
Bag-of-Words (BoW) with default settings and compare their accuracy.

– Text Graph Convolutional Network (Text GCN): Text GCN generates a single large
graph from the corpus and classifies text through classifying graph nodes using a graph
neural network (Yao et al. 2019). This approach achieves promising performance in
text classification tasks by outperforming numerous state-of-the-art methods (Yao et al.
2019).

– Text Convolutional Neural Network (Text CNN): Text CNN is a simple one-layer
CNN proposed by Kim (2014), that achieved high accuracy over the state of the art. The
details of this approach are presented in more detail, as they are background knowledge
for understanding some of the results in Section 4. The architecture of the model is
presented in Fig. 2. The input issue section is first tokenized and converted into a matrix
using an n-dimensional word embedding (see Section 3.5.4). For example, in Fig. 2, the
input issue section is ‘document should be updated to reflect this’, which is represented
as a 7 × 5 matrix because the issue section contains 7 words and the dimensionality
of the word embedding is 5. Then the matrix is regarded as an image, and convolution
operation is performed to extract the high level features. Because each row in the issue
section matrix represents a word and the depth of the filter must be the same as the
depth (width) of the input matrix, only the height of the filter can be adjusted, which is
denoted by region size. It is important to note that multiple filters with different region
sizes are applied to the issue section matrix to extract multiple features. In Fig. 2, the
model adopts three filter region sizes (i.e., 1, 2, and 3) and three filters per region size.
Applying the three filter region sizes 1, 2, and 3 on the input issue section produces
nine feature maps with the sizes of 7, 6, and 5. For example, with a filter region size
of 1, the convolution operation needs to be applied on every row (i.e. every word) of
the input issue section, and thus producing a feature map with size of 7. After that, to

8https://scikit-learn.org

Page 11 of 37 131Empir Software Eng (2022) 27: 131

https://scikit-learn.org

document
should

be
updated

to

this

SATD section
Non-SATD section

Matrix representation of sen-
tence with 7 words and a

5-dimensional word embedding.

Convolutional layer with
region sizes of (1, 2, 3).

size.

Max-pooling layer. Concatenation
layer.

Output layer.

Fig. 2 Architecture of the CNN model

make use of the information from each feature map, 1-max-pooling (which computes
the maximum value of each feature map) is applied to extract a scalar from each feature.
Then the output features are concatenated and flattened to form the penultimate layer.
Finally, the output layer calculates the probability of the section to be a SATD section
using the softmax activation function. This approach has been proven to be accurate for
identifying SATD in source code comments (Ren et al. 2019); thus it also has potential
for accurately identifying SATD in issues.

In this study, we mainly use Python Keras9 and Sklearn libraries10 to implement machine
learning approaches. The machine learning models are trained on the NVIDIA Tesla V100
GPU.

3.5.2 Baseline Approaches

To compare the accuracy between the different classification approaches, we implement
two baseline approaches.

– Baseline 1 (Random): This is a simple baseline approach, which assumes that the
SATD detection is random. This random approach classifies sections as SATD sections
randomly based on the probability of a section being a SATD section. For example,
if 3,277 out of 23,180 sections are SATD sections in the training set, we assume the
probability of a section being a SATD section is 14.1%. Then the random approach
randomly classifies any section in the test set as SATD section corresponding to the
calculated probability (14.1%).

9https://keras.io
10https://scikit-learn.org

131 Page 12 of 37 Empir Software Eng (2022) 27: 131

https://keras.io
https://scikit-learn.org

– Baseline 2 (Keyword): In the work of Potdar and Shihab (2014), they identified and
summarized 62 SATD keywords, such as fixme, ugly, temporary solution, this isn’t
quite right, and this can be a mess. Those keywords were used for automatically iden-
tifying SATD comments (Bavota and Russo 2016). The SATD keyword-based method
classifies a section as a SATD section when the section contains one or more of these
SATD keywords.

3.5.3 Strategies for Handling Imbalanced Data

As we can see in Table 1, about 15% of the sections were classified as SATD sections in our
issue dataset on average, which indicates that our dataset is imbalanced. Imbalanced data
always hinders the accuracy of the classifiers as the minority class tends to be overlooked
(Fernández et al. 2018). In order to improve the accuracy of machine learning models, we
select the following three strategies for handing imbalanced data.

– Easy Data Augmentation (EDA): this technique augments text data through syn-
onym replacement, random insertion, random swap, and random deletion (Wei and Zou
2019). To balance the dataset, we generate and add synthetic SATD sections to the
training data using the EDA technique.

– Oversampling: This method simply replicates the minority class to re-balance the
training data. We replicate the SATD sections to balance the SATD sections and
non-SATD sections before training.

– Weighted loss: This method first calculates weights for all classes according to their
occurrence. High frequency in occurrence leads to low weight value. Then the loss of
each measurable element is scaled by the corresponding weight value in accordance
with the class. Weighted loss penalizes harder the wrongly classified sections from
minority classes (i.e. false negative and false positive errors) during training of machine
learning models to resolve the imbalanced data. This strategy is widely used for training
CNN models on imbalanced datasets (Phan et al. 2017; Ren et al. 2019).

3.5.4 Word Embedding

Word embeddings refer to using a set of techniques mapping words to vectors of real num-
bers, which has been shown to boost the performance of text classification (Joulin et al.
2017; Wieting et al. 2015). We choose word embedding technique for word representa-
tion since it is able to learn word meaning and semantics. In this study, we train CNN
models on top of four different word embeddings. The first word embedding is simply ini-
tialized randomly. The second word embedding is pre-trained by Mikolov et al. (2018) on
Wikipedia and news dataset. The third word embedding is pre-trained by Efstathiou et al.
(2018) on Stack Overflow posts, which is specific to the software engineering domain. The
last word embedding is trained by us on our collected issue data (summaries, descriptions,
and comments) using the fastText technique (Mikolov et al. 2018) with default settings.

3.5.5 Evaluation Metrics

We use four statistics evaluating the accuracy of different approaches: true positive (TP)
represents the number of sections correctly classified as SATD sections; false positive (FP)
represents the number of sections classified as SATD sections when they are not SATD sec-
tions; true negative (TN) represents the number of sections correctly classified as not SATD

Page 13 of 37 131Empir Software Eng (2022) 27: 131

sections; false negative (FN) represents the number of sections classified as not SATD sec-
tions when they are SATD sections. Consequently, we calculate precision (precision =

T P
T P+FP

), recall (recall = T P
T P+FN

), and F1-score (F1 = 2 × precision×recall
precision+recall

).
The higher evaluation metric (i.e., precision, recall, or F1-score) means the better accu-

racy, whereas there is a trade-off between precision and recall. In general, F1-score gives us
an overall accuracy combining precision and recall.

3.5.6 Keyword Extraction

To better understand how developers declare technical debt in issues (to answer RQ2), we
extract SATD keywords using the approach proposed by Ren et al. (2019). This approach is
built upon the CNN approach and is able to extract n-gram keywords using the backtracking
technique. More specifically, after feeding a SATD section to the CNN model, the most
important features are selected according to their weights. Then the corresponding filters
are located via backtracking the selected features. Finally, the n-gram keywords in the fed
SATD section are located based on the filter position information. In this study, we train
the model on all seven projects’ issue sections. Then we summarize unigram to five-gram
SATD keywords based on the extracted keywords.

4 Results

4.1 (RQ1.1) Which Algorithms Have the Best Accuracy to Capture Self-Admitted
Technical Debt in Issue Tracking Systems?

To evaluate the machine learning algorithms, we first combine all the issue sections from
different projects, then shuffle and split the combined dataset into ten equally-sized parti-
tions, while keeping the number of SATD sections approximately equal in all the partitions.
We then select one of the ten subsets for testing and the rest of the nine subsets for training,
and repeat this process for each subset and calculate the average precision, recall, and F1-
score over ten experiments. This is called stratified 10-fold cross-validation. Table 3 shows
the precision, recall, and F1-score of deep learning approaches (Text CNN and Text GCN),
traditional machine learning approaches (SVM, NBM, kNN, LR, and RF), and baseline
approaches (keyword-based and random). The best results are highlighted in bold.

As we can see in Table 3, Text CNN with randomized word embeddings achieves the
highest average F1-score of 0.597. This contrasts earlier evidence (Kim 2014), where Text
CNN with two pre-trained word embeddings (Wiki-news and StackOverflow-post word
embeddings) degraded the model’s predictive accuracy. It is also important to note that, Text
CNN with the word embeddings trained specifically for the software engineering domain
(i.e., the StackOverflow-post word embeddings) is still slightly worse than the random word
embeddings on the average F1-score (0.590 and 0.597 respectively). Among the traditional
machine learning techniques, NBM and LR achieve decent F1-scores of 0.529 and 0.515.

Observing Table 3, we also observe that most of the approaches achieve decent pre-
cisions. While SVM and RF achieve the two highest average precisions of 0.861 and
0.730, their average recalls are relatively poor (0.295 and 0.291 respectively). Moreover, we
notice that the keyword-based method achieves an average precision of 0.515; this means
that the SATD sections in source code comments and issue tracking systems share some
similarities and the keywords from source code comments (see Potdar and Shihab (2014)
indicating SATD, such as fixme, ugly, and temporary solution) are useful for detecting

131 Page 14 of 37 Empir Software Eng (2022) 27: 131

Table 3 Comparison of precision, recall, and F1-score between machine learning and baseline approaches

Type Classifier Precision Recall F1-score F1-score F1-score

Imp. Over Imp. Over

Random Keyword

Deep learning Text CNN (rand) 0.685 0.530 0.597 4.3× 13.6×
Text CNN (wiki) 0.677 0.463 0.549 3.9× 12.5×
Text CNN (SO) 0.651 0.541 0.590 4.2× 13.4×
Text GCN 0.474 0.056 0.081 0.6× 1.8×

Traditional SVM 0.861 0.179 0.295 2.1× 6.7×
machine learning NBM 0.520 0.539 0.529 3.8× 12.0×

kNN 0.582 0.029 0.055 0.4× 1.2×
LR 0.643 0.430 0.515 3.7× 11.7×
RF 0.730 0.182 0.291 2.1× 6.6×

Baseline Random 0.140 0.139 0.139

Keyword 0.515 0.023 0.044

SATD sections in issues. However, the recall of the keyword-based method is the lowest
(0.023) among all methods, which might result from the low coverage of these source code
comments keywords.

4.2 (RQ1.2) How to Improve Accuracy of Machine LearningModel?

After establishing that the Text CNN approach achieves the highest F1-score among all
approaches, we can further investigate its improvement. In the following sub-sections,
we investigate handling imbalanced data, refining word embeddings and tuning CNN
hyperparameters.

4.2.1 Handling Imbalanced Data

As we can see in Table 1, on average only 14.1% sections were classified as SATD sec-
tions in our issue dataset, which indicates that our dataset is imbalanced. Since the Text
CNN approach is not designed for imbalanced data classification tasks, firstly we look into
methods for handling imbalanced data. We train the Text CNN model with different word
embeddings using the aforementioned imbalanced data handling techniques discussed in
Section 3.5.3.

Table 4 presents the precision, recall, and F1-score improvement of Text CNN approach
with different imbalanced data handling techniques. We can see that EDA always has
a negative effect on training and degrades the F1-score by 7.9% on average. The other
two imbalanced data handling techniques (i.e., oversampling and weighted loss) achieve
a similar improvement on three different word embeddings, while the average F1-score

Page 15 of 37 131Empir Software Eng (2022) 27: 131

Table 4 Comparison of average precision, recall, and F1-score between different imbalanced data handling
strategies

Method Word Precision Recall F1-score F1-score

embedding (average) (average) (average) Imp.

Default Random 0.685 0.530 0.597 –

Wiki-news 0.677 0.463 0.549 –

StackOverflow-post 0.651 0.541 0.590 –

Average 0.671 0.511 0.578 –

EDA Random 0.606 0.470 0.529 −11.3%

Wiki-news 0.556 0.406 0.469 −14.5%

StackOverflow-post 0.604 0.595 0.599 1.5%

Average 0.588 0.490 0.532 −7.9%

Oversampling Random 0.573 0.717 0.636 6.5%

Wiki-news 0.591 0.592 0.591 7.6%

StackOverflow-post 0.610 0.618 0.612 3.7%

Average 0.591 0.642 0.613 6.0%

Weighted loss Random 0.555 0.735 0.632 5.8%

Wiki-news 0.583 0.617 0.599 9.1%

StackOverflow-post 0.591 0.640 0.613 3.8%

Average 0.576 0.664 0.614 6.2%

improvement is 6.0% and 6.2% respectively. Since oversampling replicates the sections in
minority classes, the training dataset using oversampling is significantly larger than the
one using weighted loss. Thus, we notice that the time spent on training using oversam-
pling is 30.8% longer than using weighted loss. Therefore, we choose weighted loss as the
imbalanced data handling technique.

4.2.2 RefiningWord Embeddings

In Table 4, we notice that the average F1-score is not improved using pre-trained word
embeddings (i.e., Wiki-news and StackOverflow-post) compared to using Random word
embedding. Thus, we train the word embeddings on our issue dataset using fastText tech-
nique (Mikolov et al. 2018) with the dimension size of word embeddings setting to 100, 200

Table 5 Comparison of average precision, recall, and F1-score between different word vector settings using
weighted loss

Word embedding Dimensionality Precision (average) Recall (average) F1-score (average)

Random 300 0.555 0.735 0.632

Wiki-news 300 0.583 0.617 0.599

StackOverflow-post 200 0.591 0.640 0.613

Issue-tracker-data 100 0.647 0.686 0.664

200 0.662 0.680 0.670

300 0.648 0.703 0.673

131 Page 16 of 37 Empir Software Eng (2022) 27: 131

and 300. Because fastText is able to learn subword information during word representation
training (Bojanowski et al. 2017), we use it to train word embeddings. As can be seen in
Table 5, we observe that the word embeddings trained on our dataset with different dimen-
sion sizes all outperform the Random word embeddings and pre-trained word embeddings
(i.e., Wiki-news and StackOverflow-post) significantly. Besides, while increasing the size
of dimensions, the F1-score slightly grows. Therefore, we use the word embeddings trained
on our dataset and choose 300 as the dimension size.

4.2.3 Tuning CNN Hyperparameters

We follow the guidelines provided by Zhang and Wallace (2017) to tune the hyperparame-
ters of the CNN model. We first conduct a line-search over the single filter region size (i.e.,
setting the region size to (1), (3), (5), and (7)) to find the single filter region size with the
best accuracy. The results are reported in Table 6. As we can see, in this study, the single
region size (3) outperforms other single region sizes.

Second, we further explore the effect of multiple region sizes using regions sizes near
this single best size (3) according to the suggestion from the guidelines; this is because
combing multiple filters using region sizes near the best size always results in better accu-
racy compared to only using single best region size (Zhang and Wallace 2017). Because we
cannot enumerate all combinations of region sizes, we consider the combinations of region
sizes of (1,2), (1,2,3), (2,3,4), (3,4,5), (1,2,3,4), (1,3,5,7), (2,4,6,8), (1,2,3,4,5), (1,2,3,5,7),
(1,3,4,5,7), (1,3,5,7,9), (1,2,3,4,5,6), and (1,2,3,4,5,6,7). From the results in Table 6, we
can see that among all combinations, (1,2,3) achieves the highest F1-score, followed by
(1,2,3,4,5) and (1,2,3,5,7) by small margins (0.682, 0.680 and 0.680 respectively). Thus, we
choose (1,2,3) as the region size.

Table 6 Comparison of average precision, recall, and F1-score between different filter region size settings
using issue-tracker-data word embeddings and weighted loss

Type Region size Precision (average) Recall (average) F1-score (average)

Single (1) 0.552 0.782 0.646

(3) 0.638 0.707 0.670

(5) 0.631 0.686 0.657

(7) 0.642 0.665 0.652

Multiple (1,2) 0.643 0.715 0.676

(1,2,3) 0.657 0.711 0.682

(2,3,4) 0.655 0.706 0.677

(3,4,5) 0.648 0.703 0.673

(1,2,3,4) 0.663 0.703 0.679

(1,3,5,7) 0.675 0.677 0.675

(2,4,6,8) 0.674 0.665 0.669

(1,2,3,4,5) 0.678 0.685 0.680

(1,2,3,5,7) 0.681 0.682 0.680

(1,3,4,5,7) 0.667 0.686 0.676

(1,3,5,7,9) 0.668 0.681 0.673

(1,2,3,4,5,6) 0.669 0.691 0.678

(1,2,3,4,5,6,7) 0.669 0.680 0.673

Page 17 of 37 131Empir Software Eng (2022) 27: 131

Table 7 Comparison of average precision, recall, and F1-score between different filter region size settings
using issue-tracker-data word embeddings and weighted loss and setting multiple region size to (1, 2, 3)

Number of feature maps Precision (average) Recall (average) F1-score (average)

50 0.640 0.713 0.674

100 0.657 0.711 0.682

200 0.685 0.689 0.686

400 0.675 0.699 0.685

600 0.677 0.671 0.683

Third, we investigate the effect of the number of feature maps for filter region size. We
keep other settings constant and only change the number of feature maps relative to the
default number of features 100. We set the number of features to 50, 100, 200, 400, and 600
under the aforementioned guidelines (Zhang and Wallace 2017). The result is demonstrated
in Table 7. As we can see, while increasing the number of feature maps, the average F1-score
is slightly improved until 200, so we set 200 as the number of feature maps.

4.2.4 Final Results After Machine Learning Optimization

To conclude our optimization, after handling imbalanced data, refining word embeddings,
and tuning hyperparameters, we compare the precision, recall, and F1-score of our cus-
tomized CNN approach against the Text CNN with default settings. The results indicate
that our customized approach improves the recall and F1-score over the Text CNN with
the default settings by 30.0% and 14.9% respectively. More specifically, on average it does
not improve precision (0.685); the recall of our approach (0.689) increases by 30.0% com-
pared to the original approach (0.530). Overall, our customized CNN approach improves
the F1-score by 14.9% from 0.597 to 0.686 on average.

After handling imbalanced data, refining word embeddings, and tuning hyperparam-
eters, our customized CNN approach improves the F1-score over the Text CNN with
default settings by 14.9% from 0.597 to 0.686.

4.3 (RQ1.3) How Can Transfer Learning Improve the Accuracy of Identifying
Self-Admitted Technical Debt in Issue Tracking Systems?

To leverage the knowledge in existing SATD datasets, we follow the transfer learning guide-
lines on text classification provided by Semwal et al. (2018). Specifically, Semwal et al.
conducted a series of experiments and presented the cases and settings that could lead to a
positive transfer (i.e. the transfer results in improved accuracy).

In this study, we explore how the accuracy of the CNN model for SATD identification
can be further improved through transfer learning. As can be seen in Fig. 2, The CNN model
consists of an embedding layer, a convolutional layer, a max-pooling layer, a concatenation
layer, and an output layer. The embedding layer is responsible for converting words to n-
dimensional vectors, which is pre-trained on various datasets in this work. The convolutional
(C) layer plays a critical role in learning various kinds of features. The weights of its kernels
are trainable and transferable. The max-pooling layer is a regular layer that down-samples

131 Page 18 of 37 Empir Software Eng (2022) 27: 131

the input representation. The concatenation layer is used for concatenating the inputs along
a specified dimension. The output (O) layer is in charge of producing the final result. The
weight and biases in the output layer are trainable and transferable. Because there are no
trainable parameters (i.e. the parameters are fixed during training) in the embedding layer,
max-pooling layer, and concatenation layer, we explore the transfer learning settings for the
convolutional layer (C) and output layer (O).

To transfer the knowledge from the source domain to aid the target domain, we initialize
the parameters of the target model to be trained with the parameters trained on the transfer
learning source dataset. To avoid confusion, we use the same nomenclature as the work by
Semwal et al. (2018). There are three settings for parameters during transfer learning:

– : Parameters are not transferred, but are randomly initialized and allowed to fine-tune.
– : Parameters are transferred and allowed to fine-tune during training.
– : Parameters are transferred and frozen, i.e., they can not learn during training.

According to the transfer learning guideline (Semwal et al. 2018), we use the fine-tuning
() setting for the convolutional (C) layer, and either transferred parameters for fine-tuning
() or random initialization for fine-tuning () setting for the output (O) layer, which
results in two combinations of settings (i.e., and).

Thus, we conduct experiments with the aforementioned two transfer learning settings on
our issue dataset: a) transferring and allowing both the convolutional layer and output layer
to fine-tune (); b) only transferring and allowing the fine-tuning of the convolu-
tional layer and randomizing the parameters in the output layer for fine-tuning ().
Besides, we compare the results with learning from scratch (). For the source
dataset selection, we choose five datasets as the transfer learning source datasets:

– Source code comment SATD dataset (CO-SATD) (Maldonado et al. 2017): We chose
this dataset, because it contains SATD in source code comments, which is highly similar
to our issue SATD dataset. This dataset contains 62,566 comments, in which 4,071
comments were annotated as SATD comments.

– Amazon review (AMZ2) and Yelp review (YELP2) datasets (Zhang et al. 2015): AMZ2
contains 2,000,000 Amazon product reviews for each polarity. YELP2 includes 289,900
business reviews for each polarity. We selected these two datasets, because their size
is significantly bigger than our dataset and because they are commonly used for text
classification tasks (Semwal et al. 2018).

– Jira issues sentiment (JIRA-SEN) and Stack Overflow posts sentiment (SO-SEN)
datasets (Ortu et al. 2016; Calefato et al. 2018): Both datasets are relatively small
datasets (only containing 926 and 2,728 samples respectively). We chose these two
datasets because they are in the software engineering domain.

To evaluate the efficiency of transfer learning, we still use stratified 10-fold cross-
validation. We first train our model on these transfer learning source datasets individually
and then retrain the models on our issue SATD dataset in Table 8 with the transfer learning
settings (and). The results are illustrated in Table 8. We observe that
applying transfer learning with JIRA-SEN and SO-SEN outperform CO-SATD, AMAZ2,
and YELP2 with respect to F1-score. This indicates that sentiment information in software
engineering domain could be useful for SATD identification. Moreover, only the F1-score
achieved by JIRA-SEN using the setting () outperforms training from scratch set-
ting (), which indicates positive transfers (Perkins et al. 1992). The F1-score is
slightly improved from 0.686 to 0.691 by leveraging the JIRA-SEN dataset. Our findings

Page 19 of 37 131Empir Software Eng (2022) 27: 131

Table 8 Comparison of average precision, recall, and F1-score between different transfer learning settings
(and) and without transfer learning setting ()

Source Dataset Setting Precision Recall F1-score

– 0.686 0.689 0.686

CO-SATD 0.674 0.671 0.672

0.675 0.684 0.679

AMZ2 0.666 0.664 0.665

0.681 0.664 0.672

YELP2 0.670 0.677 0.673

0.689 0.677 0.681

JIRA-SEN 0.676 0.696 0.684

0.689 0.694 0.691

SO-SEN 0.682 0.686 0.683

0.685 0.685 0.685

here show that transfer learning could improve the F1-score of SATD identification in issue
tracking systems, but it highly depends on the source dataset selection.

Furthermore, we investigate the effectiveness of transfer learning when data is insuffi-
cient for training the target model. We report the F1-score achieved by two transfer learning
settings (and) versus learning from scratch () on the train-
ing dataset containing 0 to 900 issue sections in Table 9. From the results, we find that
when training data is extremely scarce (less than 200 issue sections for training), transfer-
ring both the convolutional layer and output layer () performs best by selecting
CO-SATD or JIRA-SEN as the transfer learning source dataset. When there is sightly more
training data (between 300 and 600 sections for training), only transferring the convolution
layer () achieves the highest F1-score by using CO-SATD as the transfer learning
source dataset. When more training data is available (more than 700 sections for training),

Table 9 F1-score of different transfer learning settings with different number of training sections from 0 to
900. (: randomly initialize and allow to fine-tune parameters; : allow to fine-tune transferred parameters)

Source Setting Number of issue sections used for training

dataset 0 100 200 300 400 500 600 700 800 900

– 0.157 0.357 0.386 0.424 0.451 0.474 0.488 0.501 0.507 0.523

CO-SATD 0.260 0.395 0.402 0.412 0.425 0.435 0.442 0.445 0.458 0.461

0.202 0.367 0.393 0.425 0.469 0.478 0.493 0.497 0.518 0.515

AMZ2 0.170 0.289 0.295 0.305 0.334 0.345 0.361 0.364 0.380 0.388

0.145 0.349 0.386 0.400 0.438 0.451 0.461 0.475 0.487 0.497

YELP2 0.051 0.288 0.290 0.300 0.323 0.329 0.352 0.358 0.378 0.389

0.147 0.341 0.371 0.398 0.439 0.462 0.477 0.481 0.506 0.500

JIRA-SEN 0.273 0.337 0.352 0.379 0.411 0.419 0.435 0.449 0.468 0.473

0.169 0.354 0.391 0.410 0.452 0.472 0.486 0.503 0.517 0.531

SO-SEN 0.256 0.296 0.301 0.330 0.356 0.371 0.384 0.393 0.418 0.428

0.089 0.350 0.389 0.410 0.458 0.477 0.484 0.498 0.515 0.517

131 Page 20 of 37 Empir Software Eng (2022) 27: 131

the model without transferred parameters () likely starts to outperforms others by
using CO-SATD or JIRA-SEN as the transfer learning source dataset.

Using Jira issue sentiment dataset (JIRA-SEN) as the source dataset for transfer learn-
ing, improves the F1-score but only slightly (from 0.686 to 0.691) with the setting

. When training data is insufficient, using Jira issue sentiment dataset (JIRA-
SEN) or source code comment SATD dataset (CO-SATD) as the source dataset could
boost the F1-score.

4.4 (RQ2) Which Keywords Are theMost Informative to Identify Self-Admitted
Technical Debt in Issue Tracking Systems?

We first summarize a list of top SATD keywords (unigram to five-gram) according to
the extracted keywords. The results are shown in Table 10. Note that keywords which are
similar to the keywords in source code comments (see Potdar and Shihab 2014) are under-
lined. The first author manually linked the keywords to types and indicators of SATD by
checking the types and indicators of issue sections that contain the keywords based on the
existing classification framework from our previous work (Li et al. 2020) (see Table 2). Sub-
sequently, the other authors checked and confirmed the correlation between keywords with
types and indicators. We can see that our keywords are intuitive and potentially indicate the
types and indicators of the technical debt; the types are shown in Tables 10 and 11 while the
definitions of types and indicators are included in Table 2.

We also summarize the top keywords for each project. Table 12 presents the top 20 key-
words on each project. We note that the keywords are highlighted in bold if the number of
projects where the keywords occur is greater than or equal to 4 (i.e. it appears in over half of
projects). From the table, we observe that nine keywords (e.g., leak, confusing, and unnec-
essary) are shared by different projects frequently. We also find two projects (i.e. Chromium
and HBase), one from each issue tracking system, containing all these nine common key-
words; this indicates that technical debt is admitted similarly in different issue tracking
systems although each project has some unique keywords.

To gain a better understanding of how many keywords are shared by different projects,
we first calculate the average number of extracted keywords from different projects and use
the top 10% (i.e., 2628) of the average number of most important keywords for analysis.
Then we plot a chord diagram (Gu et al. 2014) illustrating the relations (i.e. the number of
common keywords) between pairs of projects.

Figure 3 shows the number of common keywords between different projects. In the
figure, the absolute value (i.e., the number of common keywords) measures the strength of
the relation, and links are more transparent if the relations are weak (i.e., the number of
common keywords is in the 30th percentile). Moreover, the links between projects using
Jira issue tracking system are colored red, and between projects using Google issue track-
ing system are colored yellow. The links between the two issue tracking systems are colored
blue.

We can see that although relations between pairs of projects seem equally strong, accord-
ing to the sum of the number of shared keywords between projects, only Gerrit and
Chromium share less than 1200 keywords with other projects; this indicates that these two

Page 21 of 37 131Empir Software Eng (2022) 27: 131

Table 10 Extracted top n-gram keywords from uni- to five-gram

Unigram keyword Bigram keyword Trigram keyword

flaky (test) too much get rid of

leak (code) not used (code) not thread safe (requirement)

unused (code) more readable (code) clean up code (code)

unnecessary (code) more efficient (code) not done yet (requirement)

typo (code/documentation) dead code (code) avoid extra seek

slow (code) infinite loop (code) reduce duplicate code (code)

redundant (code) too long (documentation) no longer needed

(code/documentation)

confusing not implemented (requirement) not supported yet

(code) (requirement)

nit less verbose (code) documentation doesn’t match

(documentation)

ugly more robust (design) short term solution

simplify speed up (code) spurious error messages (code)

(code)

misleading (documentation) missing documentation it’d be nice

(documentation)

Four-gram Keyword Five-gram Keyword

please add a test (test) wastes a lot of space

would significantly improve there is no unit test (test)

performance (code)

makes it much easier lead to huge memory allocation

(design)

avoid calling it twice (code) test doesn’t add much value (test)

takes a long time (code) some holes in the doc (documentation)

good to have coverage (test) by hard coding instead of (code)

makes it very hard should be updated to reflect

(documentation)

patch doesn’t apply cleanly more tightly coupled than ideal

(code) (design)

it’s not perfectly documented any chance of a test (test)

(documentation)

need to update documentation should improve a bit by

(documentation)

make it less brittle (design) it’d help code readability if (code)

documentation does not solution won’t be really satisfactory

mention (documentation)

Google projects have the weakest connection with others. Besides, Chromium have strong
relations with three projects using Jira. Moreover, we can observe that the relation between
the two Google projects is also weak, while there is no weak relation between projects
using Jira. This entails that there are discernible differences between SATD keywords in

131 Page 22 of 37 Empir Software Eng (2022) 27: 131

Table 11 Correlation between keywords and types/indicators of SATD

Type indicator Keyword Example

Code Complex Code simplify “That can simplify the

redundant logic there.” - [HADOOP-10295]

less verbose

Dead Code unused “I would like to remove this as its

unnecessary no longer needed, and also its

not used code is not complete.” -

dead code [Camel-8174]

no longer needed

Duplicated Code reduce duplicate code

Low-Quality typo “...to make their code more

Code leak readable. I would like to see

confusing something like this in the API...”

more readable - [HBase-1990]

infinite loop

spurious error messages

avoid calling it twice

patch doesn’t apply cleanly

it’d help code readability if

Slow Algorithm slow “Rowlocks should use

more efficient rentHashMap as it is much more

speed up efficient than Collections.

would significantly improve synchronizedMap(HashMap)”

performance - [HBase-798]

takes a long time

Design Non-Optimal more robust “...didn’t tackle those pieces yet.

Decision make it less brittle They also seem more tightly

lead to huge memory allocation coupled than ideal.”

more tightly coupled than ideal - [HBase-12749]

Requirement Requirement not implemented “Not implemented reached in

Partially not done yet virtual void...” -

Implemented not supported yet [Chromium-43196]

Documentation Outdated missing documentation “I am using this opportunity to

Documentation documentation doesn’t match fill in some holes in the doc...” -

some holes in the doc [Impala-991]

it’s not perfectly documented

need to update documentation

documentation does not mention

should be updated to reflect

Page 23 of 37 131Empir Software Eng (2022) 27: 131

Table 11 (continued)

Type indicator Keyword Example

Low-Quality typo ‘Default searches documentation

Documentation confusing misleading about single-change

simplify search match behaviour in UI” -

misleading [Gerrit-8592]

too long

Test Lack of Tests please add a test “It looks good to me except these.

there is no unit test Please add a test case for the

any chance of a test code change...” - [Hadoop-12155]

Low Coverage good to have coverage “this test doesn’t add

test doesn’t add much value much value, does it?” - [Gerrit-6524]

Flaky Tests flaky

projects using Google Monorail (like Gerrit and Chromium) and Jira. The projects using
Jira might have more common ways to declare SATD compared to projects using Google
Monorail. This could be due to two potential reasons: 1) many developers in the Apache
ecosystem work in multiple projects, so they use similar keywords across those projects;
2) the number of developers involved in the Google ecosystem is higher compared to the
Apache ecosystem, so the variety of keywords is also higher.

In Tables 10 and 12, we can also observe that our keywords cover a few of the keywords
from source code comments (see Potdar and Shihab 2014), such as ‘ugly’, ‘inconsistent’,
‘bad’, ‘is wrong’, ‘get rid of’, and ‘clean up code’, which are underlined in the table. In
addition to these common keywords, there are three more common keywords not listed in
the table due to space limitation: ‘hacky’, ‘bail out’, and ‘crap’. Overall, we conclude that
some keywords indicate SATD in both source code comments and issue tracking systems.

We find that extracted keywords are intuitive and potentially indicating types and indi-
cators of SATD. We also observe that although different projects share a great number
of SATD keywords, projects using different issue tracking systems have less common
keywords compared to projects using the same issue tracking system. Source code
comments and issue tracking systems have some common SATD keywords.

4.5 (RQ3) How Generic Is the Classification Approach Among Projects and Issue
Tracking Systems?

In order to investigate the generalisability of our SATD detector over projects, we choose
one project as the test project and the rest of the six projects as training projects using the
configurations in Section 4.3. We then repeat this process for each project and calculate the
average precision, recall, and F1-score over seven experiments. We call this leave-one-out
cross-project validation. The results including F1-score, precision, and recall are presented
in Table 13. We observe that, our approach achieves the average F1-score of 0.652, ranging
between 0.561 to 0.709. In comparison with the average F1-score achieved using stratified

131 Page 24 of 37 Empir Software Eng (2022) 27: 131

Table 12 Extracted top n-gram keywords per project

Camel Chromium Gerrit

leak leak confusing

typo flaky typo

confusing slow flaky

verbose unnecessary unused

deprecated simplify bad

dead redundant slow

slow typo truncated

unnecessary truncated unnecessarily

document this ugly not implemented yet

avoid not implemented leak

todo unused misleading

improve documentation bad documentation is wrong

complicated confusing coverage

remove ugly warnings odd complicated

thread safe the short term performance degradation

reuse clean up code documentation doesn’t

missing too verbose undocumented

rid of expensive ugly

improve exception message if failed isn’t implemented reword documentation

improve performance too much ambiguous

Hadoop HBase Impala Thrift

unnecessary flaky flaky unused

unused unused slow leak

typo nit unnecessary unnecessary

redundant typo coverage typo

nit leak confusing redundant

leak ugly simplify confusing

slow redundant misleading simplify

flaky unnecessary excessive flaky

readability confusing overhead coverage

clean up code too much avoid thread-safe

complicated bad expensive spurious

spurious slow improve error message inconsistent

reuse expensive redundant abstract

bad misleading rework redundancy

ugly avoid thread-safe ugly

not used simplify reduce duplicate code outdated

cover overhead readability missing

rid of dead lock difficult performance regression

expensive readability wasted space extra

thread-safe rid of verbose unstable

Page 25 of 37 131Empir Software Eng (2022) 27: 131

Ca
m

el
ChromiumGerrit

H
adoop

HBas
e

Impala

Thrift

0
30

0
60

0

90
0

12
00

0

300

600
9000300

600

900

0

300

600

900
1200

15
00

0
30

0
60

0
90

0

1200
1500

0
300 600 900

1200
0

300
600

900
1200

1500

Fig. 3 Relations (the number of common keywords) between different projects

10-fold cross-validation (i.e., 0.691) in Section 4.3, the average F1-score decreases by a
small margin (5.6%) from 0.691 to 0.652.

The second half of RQ3 concerns evaluating the generalizability of our CNN model
(see Section 4.3) over issue tracking systems. We first choose one issue tracking system
as the training system and the other one as the testing system. We then use issue sections
from the projects using the training system for training the model and issue sections from
the other projects using the testing system for testing. Then we switch the usage of two
issue tracking systems. We call this leave-one-out cross-issue-tracker validation. Table 14

Table 13 Precision, recall, and
F1-score when using six projects
for training and the rest project
for testing

Project Precision Recall F1-score

Camel 0.719 0.647 0.681

Hadoop 0.618 0.761 0.682

HBase 0.651 0.648 0.649

Impala 0.697 0.721 0.709

Thrift 0.693 0.668 0.679

Chromium 0.659 0.556 0.603

Gerrit 0.481 0.671 0.561

Avg. 0.645 0.667 0.652

131 Page 26 of 37 Empir Software Eng (2022) 27: 131

Table 14 Precision, recall, and F1-score when using projects from the same issue tracking system for training
and a projects in the other issue tracking system for testing

Issue Project Precision Recall F1-score

tracker (target) Result Diff. Result Diff. Result Diff.

Trained on projects using Google issue tracker

Jira Camel 0.553 −23.0% 0.538 −16.8% 0.545 −19.9%

Hadoop 0.526 −14.8% 0.611 −19.7% 0.566 −17.0%

HBase 0.506 −22.2% 0.610 −5.8% 0.553 −14.7%

Impala 0.559 −19.7% 0.619 −14.1% 0.588 −17.0%

Thrift 0.589 −15.0% 0.590 −11.6% 0.590 −13.1%

Avg. 0.546 −18.9% 0.593 −13.6% 0.568 −16.3%

Trained on projects using Jira issue tracker

Google Chromium 0.591 −10.3% 0.537 −3.4% 0.563 −6.6%

Gerrit 0.488 1.4% 0.569 −15.2% 0.526 −6.2%

Avg. 0.539 −4.4% 0.553 −9.3% 0.544 −6.4%

shows the results (i.e., precision, recall, and F1-score). The average precision, recall, and
F1-score of projects are calculated and compared with the results obtained from leave-one-
out cross-project validation (in Table 13). We find that the average F1-score achieved by the
leave-one-out cross-issue-tracker validation is relatively worse compared to the leave-one-
out cross-project validation: we achieve 6.4% and 16.3% decrease for models training on
Jira and Google issue tracking systems respectively.

Our approach achieves the average F1-score of 0.652, ranging between 0.561 to 0.709,
when applying leave-one-out cross-project validation. The average F1-score achieved
by the leave-one-out cross-issue-tracker validation is declined by 6.4% and 16.3%
for models training on Jira and Google issue tracking systems in comparison with
leave-one-out cross-project validation.

4.6 (RQ4) HowMuch Data Is Needed for Training theMachine LearningModel
to Accurately Identify self-admitted technical debt in Issues?

To answer this research question, we train our CNN model on datasets with a variety of
sizes (number of issue sections). More specifically, we first combine all the issue sections
from different projects, then shuffle and split the combined dataset into ten equally-sized
partitions for 10-fold cross-validation. After that, we select one of the ten subsets for testing
and the rest of the nine subsets for training. Because we want to train the model on the
datasets with a variety of sizes, we create an empty training dataset, add 100 issue sections to
the training dataset each time, and train our model on the created training dataset. Since we
have 23,180 issue sections in total, the subset for training contains 23180× 9

10 ≈ 20862 issue
sections. For each fold, we train the model on the dataset whose size increases from 100 to
20,862 at an interval of 100. Thus, we perform 20862

100 + 1 ≈ 209 experiments for each fold.
This process is repeated ten times for each one of the ten folds. In total, 10 × 209 = 2090

Page 27 of 37 131Empir Software Eng (2022) 27: 131

Fig. 4 F1-score achieved by incrementally adding 100 issue sections into the training dataset

experiments are carried out and the average F1-score for different sizes of training dataset
over ten folds is calculated.

The result of the average F1-score achieved while increasing the size of the training
dataset is shown in Fig. 4. We can observe that, while increasing the size of the training
dataset from 100 to 2500 sections, the average F1-score goes up dramatically. After the
2500 sections, the average F1-score improves slowly. When the training dataset contains
20,862 sections, the highest F1-score is achieved. Besides, we find that in order to achieve
80%, 90%, or 95% of the highest average F1-score, 1400, 3400, or 7800 sections are needed
respectively (namely 6.7%, 16.3%, or 37.4% of training data).

The average F1-score grows dramatically while increasing the size of the training
dataset from 100 to 2500 sections. After 2500 sections, the average F1-score improves
slowly. In order to achieve 80%, 90%, or 95% of the highest average F1-score, 1400,
3400, or 7800 sections are needed respectively (namely 6.7%, 16.3%, or 37.4% of
training data).

5 Discussion

5.1 Differences Between Identifying SATD in Source Code Comments and Issue
Tracking Systems

In recent years, a number of studies have investigated training machine learning models
to automatically identify SATD in source code comments (Maldonado et al. 2017; Flisar
and Podgorelec 2019; Ren et al. 2019). In contrast, our study focuses on SATD in issue
tracking systems. It is important to investigate the differences between identifying SATD in
these two sources, because it could help us better understand the nature of SATD and build
machine learning models to more accurately identify it in these and other sources. Thus, in
the following, we compare and discuss the differences between identifying SATD in code
comments and issues. Based on our experience gained during the manual issue analysis, we

131 Page 28 of 37 Empir Software Eng (2022) 27: 131

conjecture two major reasons for the difference among issues and source code comments,
as explained in the following paragraphs.

First, the diversity of issues is much higher than source code comments. In the work
by Steidl et al. (2013), source code comments are categorized into seven types, namely
code, copyright, header, member, inline, section, and task comments. The first type, code
comments, refer to code that is commented out; this certainly does not indicate technical
debt. The types copyright, header, member, inline, and section comments are descriptive
comments, which have a small chance of indicating technical debt. The only type that mostly
concerns SATD is task comments, as these are notes left by developers indicating code that
needs to be implemented, refactored, or fixed.

In contrast, the scope of information stored in issue tracking systems is much broader as
compared to code comments. Merten et al. (2015) categorized issue sections into 12 types,
namely issue description, request, issue management, scheduling, implementation proposal,
implementation status, clarification, technical information, rationale, social interaction,
spam, and others. Apart from issue management, scheduling, social interaction, and spam,
all other 8 types of issue sections could potentially indicate technical debt. Because the
diversity of issue types is much higher than source code comments, it is harder for machine
learning models to accurately capture SATD in issue types than in source code comments.
Furthermore, we present a comparison between the key statistics for the two datasets in
Table 15. We observe that the average length of issue sections is much longer than source
code comments; this indicates that issue sections contain more information than source code
comments in general. Furthermore, while there are three times more source code comments
than issue sections in the two datasets, the vocabulary size of issue sections is a little higher.
These statistics confirm that the diversity of issues is higher than source code comments.

Second, some types of SATD are different in source code comments and issue track-
ing systems. In the following paragraphs, we highlight two specific types of SATD, namely
defect debt and requirement debt, that have key differences in code comments and issues. In
the case of defect debt, only the defects that are left unresolved, can be classified as defect
debt (see Table 2). For source code, task comments denoting that bugs need to be fixed can
be directly classified as defect debt, since they indicate that bugs are reported to be fixed at
a later stage. An example is shown below:

“TODO: may not work on all OSes” - [Defect debt from JMeter code comments]

However, in issue tracking systems, most bugs are reported and resolved immediately.
Thus, in order to capture defect debt, we need to first identify defects and then judge whether
fixing them is postponed or not. Only if fixing the defects is deferred or ignored, they can be
tagged as defect debt. To exemplify this distinction, we show an example of an issue section
that denotes defect debt and one that does not:

“I do not think it is a critical bug. Deferring it to 0.14.” - [Defect debt from Hadoop
issues]

Table 15 Statistics for the source code comment dataset and issue tracking system dataset

Source Avg. Length of Issue # of Sections/ Vocabulary

Sections / Code Comments comments size

Source code comments 10.9 62275 31728

Issue tracking systems 35.4 23180 37202

Page 29 of 37 131Empir Software Eng (2022) 27: 131

“...thank you for reporting the bug and contributing a patch.” - [Non-defect debt
from Hadoop issues]

Similarly, requirement debt also manifests differently in source code comments and
issues. According to the definition of requirement debt (see Table 2), it reflects partially
implemented functional or non-functional requirements. In source code comments, if the
requirement is not completely satisfied, developers might leave a code comment, such as:

“TODO support multiple signers” - [requirement debt from JMeter code comments]

The above comment can be simply annotated as requirement debt, as we know that the
requirement is only partially implemented. However, in issue tracking systems, things are
different. As mentioned above, implementation proposal is a type of issue section, that
expresses new requirements. But such requirements may be partially or fully implemented
in the meantime; that can be inferred through the ensuing discussion in the issue. To identify
requirement debt in issues, it is necessary to differentiate partially implemented require-
ments from requirements that are fully implemented or not at all. The following examples
show an issue section that denotes a requirement debt and one that does not:

“The backend (in master) has everything in place now to support this, but the frontend
still needs to be adapted.” - [Requirement debt from Gerrit issues]

“It would be good to add a script to launch Hive using Ranger authorization.” -
[Non-requirement debt from Impala issues]

Although identifying SATD in issue tracking systems is harder than in source code
comments, it does not require a much larger amount of data to achieve decent accuracy
when training machine learning models. Compared with previous work by Maldonado et al.
(2017) that identifies SATD in source code comments, their incremental training curves are
similar to ours (see Fig. 4). More specifically, the F1-score increases dramatically when
the training dataset is small. After that, it goes up moderately. In order to achieve 90% of
the accuracy of SATD identification, our model needs 16.3% (3400) issue sections on the
issue SATD dataset, while about 23.0% (11800) source code comments are required on the
source code comment SATD dataset. Therefore, relatively small datasets can achieve decent
accuracy on both code comments and issue sections.

5.2 Similarity Between SATD Keywords Extracted from Source Code Comments
and Issue Tracking Systems

In Tables 10 and 12, some keywords are underlined to highlight common SATD keywords in
both issues and code comments. We observe that there are some common SATD keywords
shared between source code comments and issues, such as ‘ugly’, ‘bad’, and ‘get rid of’.
In order to get a deeper understanding of the differences between SATD keywords from
the two sources, we extract the top 10% (i.e., 272) unigram to trigram SATD keywords
(across all projects) from source code comments and issue tracking systems. Subsequently,
we compare the top 272 extracted SATD keywords from the two sources.

The top unique and common keywords are presented in Table 16, while the heatmap in
Fig. 5 illustrates the number of common keywords between the two sources. In Fig. 5, the
symbol attached before the project names (i.e., C or I) refers to the data source (i.e., code
comments or issues). We observe that there are fewer keywords shared between issues and
code comments compared to keywords shared between issues or between code comments.

131 Page 30 of 37 Empir Software Eng (2022) 27: 131

Table 16 Top 10 n-gram SATD keywords from issue tracking systems and source code comments

Unique keyword Common keyword Unique keyword

(issue tracking systems) (source code comments)

performance why todo

clean improve fixme

typo leak hack

remove probably should

flaky perhaps workaround

unused better defer argument checking

slow instead xxx

refactor wrong bug

warnings missing not needed

confusing deprecated implement

More specifically, we find on average that 73.4 keywords are shared between projects in
issues, 48.4 keywords are shared between projects in code comments, and only 16.8 key-
words are shared between projects across the two sources. The finding indicates that there
is a certain similarity between SATD in issues and code comments, but the similarity is
limited.

5.3 Implications for Researchers and Practitioners

Based on the findings, we suggest the following directions for researchers:

– Our work provides a deep learning approach to automatically identify SATD from issue
tracking systems. The proposed approach can enable researchers to automatically iden-
tify SATD within issues and conduct studies on the measurement, prioritization, as well
as repayment of SATD in issue tracking systems on a large scale.

Fig. 5 Number of common keywords between different projects

Page 31 of 37 131Empir Software Eng (2022) 27: 131

– To enable further research in this area, we make our issue SATD dataset publicly avail-
able.11 The dataset contains 23,180 issue sections, in which 3,277 issue sections are
classified as SATD issue sections.

– We found that relatively small datasets can achieve decent accuracy in identifying
SATD on both source code comments and issues. We thus recommend that researchers
explore SATD in other sources (i.e., pull requests and commit messages) and con-
tribute a moderate-sized dataset for automatic SATD identification in the corresponding
sources.

– Our findings suggest that there is a certain similarity between SATD in issues and in source
code comments, but the similarity is limited. We encourage researchers to study the
differences between SATD in these and other sources, e.g. in pull requests or commit
messages. This could advance the understanding of SATD in the different sources.

– Although our study experimented with the generalizability of our approach across
projects and across issue tracking systems, the scope of our study is still limited. Thus,
we recommend that researchers investigate the applicability of our approach to other
projects (esp. industrial projects) and other issue tracking systems. If possible, we
advise them to make their datasets publicly available to be used for training new SATD
detectors.

– Because of the high diversity of issues and the different forms of SATD in issues, SATD
identification within issues is harder than in source code comments. However, further
research can potentially improve the F1-score obtained in our study (e.g., through using
other machine learning techniques or trying richer datasets in the software engineering
domain for transfer learning).

We also propose a number of implications for software practitioners:

– Our SATD identification approach can help software developers and especially project
managers to evaluate the quality of their project. For instance, project managers can use
this tool to track SATD in issue tracking systems along evolution. If the accumulated
SATD reaches a threshold, then more effort may need to be spent in paying it back.

– We recommend that tool developers use our SATD identifier in their toolsets and
dashboards and experiment with them in practice.

– We encourage practitioners to study carefully the SATD keywords listed in our results.
This will help them to understand in practice the nature of SATD, how to better
formulate it themselves and how to recognize SATD stated from others.

– Our findings can help practitioners better understand the differences between SATD
in different sources, e.g., defect debt is identified differently in source code comments
compared to issue tracking systems. This can also help practitioners better identify
SATD in different sources.

6 Threats to Validity

6.1 Threats to Construct Validity

Construct validity reflects the correctness of operational measures for the studied sub-
jects. We observed that only a small amount of issue sections are classified as SATD issue

11https://github.com/yikun-li/satd-issue-tracker-data

131 Page 32 of 37 Empir Software Eng (2022) 27: 131

https://github.com/yikun-li/satd-issue-tracker-data

sections. To accurately measure the accuracy of machine learning models on SATD identi-
fication, we chose precision, recall, and F1-score as evaluation metrics. These metrics have
been used in previous similar studies (Maldonado et al. 2017; Huang et al. 2018), and are
well-established for this type of work.

6.2 Threats to External Validity

Threats to external validity concern the generalizability of our findings. Because we trained
machine learning models on our issue SATD dataset, the data selected and analyzed might
influence the generalizability of our findings. In order to partially mitigate this threat, we
randomly selected seven open-source projects using two different issue tracking systems,
being maintained by mature communities, and containing sufficient issue data. Besides,
to ensure the collected issues are sufficiently representative of issues in each project, we
calculated the size of the statistically significant sample based on the number of issues in
each project. We then randomly selected issues according to the size of the statistically
significant sample. In Section 4.6, we showed that the size of our dataset is sufficient for
training machine learning models to identify SATD from issue tracking systems. When
evaluating the predictive performance of machine learning models, we use stratified 10-fold
cross-validation to mitigate the bias caused by random sampling. Moreover, in Section 4.5
we evaluated the generalizability of our approach across projects and across issue tracking
systems.

However, because of the nature of open-source projects, developers tend to communicate
online through tools, such as issue tracking systems and mailing lists; this facilitates new
contributors to understand the details of issues and contribute to projects. In contrast, indus-
trial projects have most developers working at the same premises; so, they tend to efficiently
communicate the details of issues offline. This limits the generalizability of our results to
such projects. In conclusion, our findings may be generalized to other open-source projects
of similar size and complexity and of similar ecosystems.

6.3 Threats to Reliability

Reliability considers the bias that researchers may induce in data collection and analy-
sis. Moreover, we manually classified issue sections as different types of SATD or not. To
reduce this bias, the issue data was first analyzed manually by four independent researchers.
Then the first author analyzed issue samples and calculated Cohen’s kappa coefficient
between his output and that of the independent researchers. If the agreement was good (i.e.,
Cohen’s kappa coefficient is above 0.7), the classification is considered complete. If not, the
first author discussed the classification differences between them to reach a consensus. Sub-
sequently, they improved the classification, and Cohen’s kappa coefficient was calculated
again to ensure the level of agreement was good.

Furthermore, our results depend on the data analysis methods we use. In terms of
machine learning approaches, we have chosen some of the most commonly approaches
used by researchers and practitioners. Besides, we follow established guidelines for tuning
hyper-parameters (Zhang and Wallace 2017) and exploring transfer learning (Semwal et al.
2018). Finally, and most importantly, we make our issue SATD dataset publicly available12

in the replication package.

12https://github.com/yikun-li/satd-issue-tracker-data

Page 33 of 37 131Empir Software Eng (2022) 27: 131

https://github.com/yikun-li/satd-issue-tracker-data

7 Conclusion

In this work, we investigated SATD identification with respect to accuracy, explainability,
and generalizability in issue tracking systems. We contributed a dataset including 23,180
issue sections classified as SATD sections or non-SATD sections from seven open-source
projects using two issue tracking systems. Moreover, we compared different machine learn-
ing algorithms and propose a CNN-based approach to identify SATD in issues with an
F1-score of 0.686. Furthermore, we explored the effectiveness of transfer learning using
other datasets to improve the F1-score of SATD identification from 0.686 to 0.691. In
addition, we identified a list of n-gram top SATD keywords, which are intuitive and can
potentially indicate types and indicators of SATD. Besides, we observed that projects
using different issue tracking systems have less common SATD keywords compared to
projects using the same issue tracking system. We also evaluated the generalizability of our
approach. The results show our approach achieves the average F1-score of 0.652, ranging
between 0.561 to 0.709, using leave-one-out cross-project validation; when applying leave-
one-out cross-issue-tracker validation, the average F1-score is dropped by 6.4% and 16.3%
for models training on Jira and Google issue trackers compared to using leave-one-out cross-
project validation. Finally, we investigated the amount of data needed for our approach. We
showed that only a small amount of training data is needed to achieve good accuracy.

In the future, we tend to explore the differences between SATD in different sources. We
also aim to use the ensemble learning technique to improve the predictive performance of
machine learning models by combining different classifiers. Moreover, we plan to further
analyze our dataset to identify different types (or indicators) of SATD in issue tracking
systems.

Acknowledgments This work was supported by ITEA3 and RVO under grant agreement No. 17038
VISDOM (https://visdomproject.github.io/website).

Author Contributions –Yikun Li Conceptualization, Data curation, Formal Analysis, Investigation,
Methodology, Software, Validation, Visualization, Writing—original draft

–Mohamed Soliman Conceptualization, Methodology, Project administration, Supervision, Writing—
review & editing

–Paris Avgeriou Conceptualization, Funding acquisition, Methodology, Project administration, Supervi-
sion, Writing—review & editing

Funding This study was funded by ITEA3 and RVO under grant agreement No. 17038 VISDOM (https://
visdom-project.github.io/website).

Availability of Data and Material The dataset generated during the current study is available in the the
repository, which is available at the link.13

Code Availability Regular expression rules for data cleaning is provided as part of the replication package.
It is available at the link.14

Declarations

Ethics approval and consent to participate Not applicable

13https://drive.google.com/drive/folders/1tVWa KVlNdPgNhAmz2JNP-cYc8RImmSH?usp=sharing
14https://drive.google.com/drive/folders/1tVWa KVlNdPgNhAmz2JNP-cYc8RImmSH?usp=sharing

131 Page 34 of 37 Empir Software Eng (2022) 27: 131

https://visdomproject.github.io/website
https://visdom-project.github.io/website
https://visdom-project.github.io/website
https://drive.google.com/drive/folders/1tVWa_KVlNdPgNhAmz2JNP-cYc8RImmSH?usp=sharing
https://drive.google.com/drive/folders/1tVWa_KVlNdPgNhAmz2JNP-cYc8RImmSH?usp=sharing

Consent for Publication Not applicable

Conflicts of interest The authors have no conflicts of interest to declare that are relevant to the content of
this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alves NS, Ribeiro LF, Caires V, Mendes TS, Spı́nola RO (2014) Towards an ontology of terms on technical
debt. In: 2014 Sixth international workshop on managing technical debt. IEEE, pp 1–7

Alves NS, Mendes TS, de Mendonça MG, RO Spı́nola, Shull F, Seaman C (2016) Identification and
management of technical debt: a systematic mapping study. Inf Softw Technol 70:100–121

Avgeriou P, Kruchten P, Ozkaya I, Seaman C (2016) Managing technical debt in software engineering
(Dagstuhl Seminar 16162). Dagstuhl Rep 6(4):110–138. https://doi.org/10.4230/DagRep.6.4.110

Bavota G, Russo B (2016) A large-scale empirical study on self-admitted technical debt. In: Proceedings of
the 13th international conference on mining software repositories, pp 315–326

Bellomo S, Nord RL, Ozkaya I, Popeck M (2016) Got technical debt? Surfacing elusive technical debt in
issue trackers. In: 2016 IEEE/ACM 13th working conference on mining software repositories (MSR).
IEEE, pp 327–338

Bojanowski P, Grave E, Joulin A, Mikolov T (2017) Enriching word vectors with subword information.
Trans Assoc Comput Linguist 5:135–146

Calefato F, Lanubile F, Maiorano F, Novielli N (2018) Sentiment polarity detection for software develop-
ment. Empir Softw Eng 23(3):1352–1382

Dai K, Kruchten P (2017) Detecting technical debt through issue trackers. In: QuASoq@ APSEC, pp 59–65
de Freitas Farias MA, Santos JA, Kalinowski M, Mendonça M, Spı́nola RO (2016) Investigating the iden-

tification of technical debt through code comment analysis. In: International conference on enterprise
information systems. Springer, pp 284–309

Efstathiou V, Chatzilenas C, Spinellis D (2018) Word embeddings for the software engineering domain. In:
Proceedings of the 15th international conference on mining software repositories, pp 38–41

Ernst NA (2012) On the role of requirements in understanding and managing technical debt. In: 2012 Third
international workshop on managing technical debt (MTD). IEEE, pp 61–64

Fernández A, Garcı́a S, Galar M, Prati RC, Krawczyk B, Herrera F (2018) Learning from imbalanced data
sets. Springer, Berlin

Fleiss JL, Levin B, Paik MC et al (1981) The measurement of interrater agreement. Statistical Methods for
Rates and Proportions 2(212–236):22–23

Flisar J, Podgorelec V (2019) Identification of self-admitted technical debt using enhanced feature selection
based on word embedding. IEEE Access 7:106475–106494

Genkin A, Lewis DD, Madigan D (2007) Large-scale bayesian logistic regression for text categorization.
Technometrics 49(3):291–304

Gu Z, Gu L, Eils R, Schlesner M, Brors B (2014) Circlize implements and enhances circular visualization in
r. Bioinformatics 30(19):2811–2812

Huang Q, Shihab E, Xia X, Lo D, Li S (2018) Identifying self-admitted technical debt in open source projects
using text mining. Empir Softw Eng 23(1):418–451

Joulin A, Grave É, Bojanowski P, Mikolov T (2017) Bag of tricks for efficient text classification. In: Pro-
ceedings of the 15th conference of the European chapter of the association for computational linguistics:
volume 2. Short Papers, pp 427–431

Kamei Y, Maldonado EDS, Shihab E, Ubayashi N (2016) Using analytics to quantify interest of self-admitted
technical debt. In: QuASoq/TDA@ APSEC, pp 68–71

Page 35 of 37 131Empir Software Eng (2022) 27: 131

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4230/DagRep.6.4.110

Kim Y (2014) Convolutional neural networks for sentence classification. In: Proceedings of the 2014
Conference on empirical methods in natural language processing (EMNLP), pp 1746–1751

Kowsari K, Jafari Meimandi K, Heidarysafa M, Mendu S, Barnes L, Brown D (2019) Text classification
algorithms: a survey. Information 10(4):150

Li Z, Avgeriou P, Liang P (2015) A systematic mapping study on technical debt and its management. J Syst
Softw 101:193–220

Li Y, Soliman M, Avgeriou P (2020) Identification and remediation of self-admitted technical debt in
issue trackers. In: 2020 46th Euromicro conference on software engineering and advanced applications
(SEAA), pp 495–503. https://doi.org/10.1109/SEAA51224.2020.00083

Liu Z, Huang Q, Xia X, Shihab E, Lo D, Li S (2018) Satd detector: a text-mining-based self-admitted tech-
nical debt detection tool. In: Proceedings of the 40th international conference on software engineering:
companion proceedings, pp 9–12

Maldonado EDS, Shihab E (2015) Detecting and quantifying different types of self-admitted techni-
cal debt. In: 2015 IEEE 7th international workshop on managing technical debt (MTD), pp 9–15.
https://doi.org/10.1109/MTD.2015.7332619

Maldonado EDS, Shihab E, Tsantalis N (2017) Using natural language processing to automatically detect
self-admitted technical debt. IEEE Trans Softw Eng 43(11):1044–1062. https://doi.org/10.1109/TSE.
2017.2654244

McCallum A, Nigam K et al (1998) A comparison of event models for naive bayes text classification. In:
AAAI-98 workshop on learning for text categorization. Citeseer, vol 752, pp 41–48

Merten T, Mager B, Hübner P, Quirchmayr T, Paech B, Bürsner S (2015) Requirements communication in
issue tracking systems in four open-source projects. In: REFSQ workshops, pp 114–125

Mikolov T, Grave E, Bojanowski P, Puhrsch C, Joulin A (2018) Advances in pre-training distributed word
representations. In: Proceedings of the international conference on language resources and evaluation
(LREC 2018)

Ortu M, Murgia A, Destefanis G, Tourani P, Tonelli R, Marchesi M, Adams B (2016) The emotional
side of software developers in jira. In: 2016 IEEE/ACM 13th working conference on mining software
repositories (MSR). IEEE, pp 480–483

Perkins DN, Salomon G et al (1992) Transfer of learning. International Encyclopedia of Education 2:6452–
6457

Phan H, Krawczyk-Becker M, Gerkmann T, Mertins A (2017) Dnn and cnn with weighted and multi-task
loss functions for audio event detection. arXiv:170803211

Potdar A, Shihab E (2014) An exploratory study on self-admitted technical debt. In: 2014 IEEE international
conference on software maintenance and evolution. IEEE, pp 91–100

Ren X, Xing Z, Xia X, Lo D, Wang X, Grundy J (2019) Neural network-based detection of self-admitted
technical debt: from performance to explainability. ACM Trans Software Eng Methodol (TOSEM)
28(3):1–45

Runeson P, Host M, Rainer A, Regnell B (2012) Case study research in software engineering: guidelines and
examples. Wiley, New York

Semwal T, Yenigalla P, Mathur G, Nair SB (2018) A practitioners’ guide to transfer learning for text classifi-
cation using convolutional neural networks. In: Proceedings of the 2018 SIAM international conference
on data mining. SIAM, pp 513–521

Shalev-Shwartz S, Ben-David S (2014) Understanding machine learning: from theory to algorithms.
Cambridge University Press, Cambridge

Sierra G, Shihab E, Kamei Y (2019) A survey of self-admitted technical debt. J Syst Softw
152:70–82. https://doi.org/10.1016/j.jss.2019.02.056. http://www.sciencedirect.com/science/article/pii/
S0164121219300457

Smith T (2018) The most important players in the open source ecosystem. https://dzone.com/articles/
the-most-important-players-in-the-open-source-ecos

Steidl D, Hummel B, Juergens E (2013) Quality analysis of source code comments. In: 2013 21St
international conference on program comprehension (icpc). IEEE, pp 83–92

Sun A, Lim EP, Liu Y (2009) On strategies for imbalanced text classification using svm: a comparative
study. Decis Support Syst 48(1):191–201

Tan S (2006) An effective refinement strategy for knn text classifier. Expert Syst Appl 30(2):290–298
Tufano M, Palomba F, Bavota G, Oliveto R, Di Penta M, De Lucia A, Poshyvanyk D (2017) When and why

your code starts to smell bad (and whether the smells go away). IEEE Trans Softw Eng 43(11):1063–
1088

van Solingen R, Basili V, Caldiera G, Rombach HD (2002) Goal Question Metric (GQM) approach. In:
Encyclopedia of software engineering. Wiley, Hoboken, pp 528–532

131 Page 36 of 37 Empir Software Eng (2022) 27: 131

https://doi.org/10.1109/SEAA51224.2020.00083
https://doi.org/10.1109/MTD.2015.7332619
https://doi.org/10.1109/TSE.2017.2654244
https://doi.org/10.1109/TSE.2017.2654244
http://arxiv.org/abs/170803211
https://doi.org/10.1016/j.jss.2019.02.056
http://www.sciencedirect.com/science/article/pii/S01641212193 00457
http://www.sciencedirect.com/science/article/pii/S01641212193 00457
https://dzone.com/articles/the-most-important-players-in-the-open-source-ecos
https://dzone.com/articles/the-most-important-players-in-the-open-source-ecos

Wehaibi S, Shihab E, Guerrouj L (2016) Examining the impact of self-admitted technical debt on software
quality. In: 2016 IEEE 23rd international conference on software analysis, evolution, and reengineering
(SANER), vol 1. IEEE, pp 179–188

Wei J, Zou K (2019) Eda: easy data augmentation techniques for boosting performance on text classification
tasks. In: Proceedings of the 2019 conference on empirical methods in natural language processing
and the 9th international joint conference on natural language processing (EMNLP-IJCNLP), pp 6383–
6389

Wieting J, Bansal M, Gimpel K, Livescu K (2015) Towards universal paraphrastic sentence embeddings.
arXiv:151108198

Xavier L, Ferreira F, Brito R, Valente MT (2020) Beyond the code: mining self-admitted technical debt in
issue tracker systems. arXiv:200309418

Xu B, Guo X, Ye Y, Cheng J (2012) An improved random forest classifier for text categorization. JCP
7(12):2913–2920

Yao L, Mao C, Luo Y (2019) Graph convolutional networks for text classification. In: Proceedings of the
AAAI conference on artificial intelligence, vol 33, pp 7370–7377

Zampetti F, Serebrenik A, Di Penta M (2018) Was self-admitted technical debt removal a real removal? An
in-depth perspective. In: 2018 IEEE/ACM 15th international conference on mining software repositories
(MSR). IEEE, pp 526–536

Zhang Y, Wallace BC (2017) A sensitivity analysis of (and practitioners’ guide to) convolutional neural net-
works for sentence classification. In: Proceedings of the eighth international joint conference on natural
language processing (volume 1: long papers), pp 253–263

Zhang X, Zhao J, LeCun Y (2015) Character-level convolutional networks for text classification. In:
Advances in neural information processing systems, pp 649–657

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Page 37 of 37 131Empir Software Eng (2022) 27: 131

http://arxiv.org/abs/151108198
http://arxiv.org/abs/200309418

	Identifying self-admitted technical debt in issue tracking systems using machine learning
	Abstract
	Introduction
	Related Work
	Self-Admitted Technical Debt
	SATD in Issue Tracking Systems

	Study Design
	Approach Overview
	Data Collection
	Filtering Issue Sections
	Issue Section Classification
	Training and Executing Machine Learning Models
	Machine Learning Models
	Baseline Approaches
	Strategies for Handling Imbalanced Data
	Word Embedding
	Evaluation Metrics
	Keyword Extraction

	Results
	(RQ1.1) Which Algorithms Have the Best Accuracy to Capture Self-Admitted Technical Debt in Issue Tracking Systems?
	(RQ1.2) How to Improve Accuracy of Machine Learning Model?
	Handling Imbalanced Data
	Refining Word Embeddings
	Tuning CNN Hyperparameters
	Final Results After Machine Learning Optimization

	(RQ1.3) How Can Transfer Learning Improve the Accuracy of Identifying Self-Admitted Technical Debt in Issue Tracking Systems?
	(RQ2) Which Keywords Are the Most Informative to Identify Self-Admitted Technical Debt in Issue Tracking Systems?
	(RQ3) How Generic Is the Classification Approach Among Projects and Issue Tracking Systems?
	(RQ4) How Much Data Is Needed for Training the Machine Learning Model to Accurately Identify self-admitted technical debt in Issues?

	Discussion
	Differences Between Identifying SATD in Source Code Comments and Issue Tracking Systems
	Similarity Between SATD Keywords Extracted from Source Code Comments and Issue Tracking Systems
	Implications for Researchers and Practitioners

	Threats to Validity
	Threats to Construct Validity
	Threats to External Validity
	Threats to Reliability

	Conclusion
	References

