
https://doi.org/10.1007/s10664-022-10117-6

Revisiting the building of past snapshots —
a replication and reproduction study

Michel Maes-Bermejo1 · Micael Gallego1 · Francisco Gortázar1 · Gregorio Robles2 ·
Jesus M. Gonzalez-Barahona2

Accepted: 6 January 2022 /
© The Author(s) 2022

Abstract
Context Building past source code snapshots of a software product is necessary both for
research (analyzing the past state of a program) and industry (increasing trustability by
reproducibility of past versions, finding bugs by bisecting, backporting bug fixes, among
others). A study by Tufano et al. showed in 2016 that many past snapshots cannot be built.

Objective We replicate Tufano et al.’s study in 2020, to verify its results and to study what
has changed during this time in terms of compilability of a project. Also, we extend it by
studying a different set of projects, using additional techniques for building past snapshots,
with the aim of extending the validity of its results.

Method (i) Replication of the original study, obtaining past snapshots from 79 repositories
(with a total of 139,389 commits); and (ii) Reproduction of the original study on a differ-
ent set of 80 large Java projects, extending the heuristics for building snapshots (300,873
commits).

Results We observed degradation of compilability over time, due to vanishing of depen-
dencies and other external artifacts. We validated that the most influential error causing
failures in builds are missing external artifacts, and the less influential is compiling errors.
We observed some facts that could lead to the effect of the build tool on past compilability.

Conclusions We provide details on what aspects have a strong and a shallow influence on
past compilability, giving ideas of how to improve it. We could extend previous research on
the matter, but could not validate some of the previous results. We offer recommendations
on how to make this kind of studies more replicable.

Keywords Compilability · Buildability · Build failures · Software reconstruction ·
Software builds · Software maintenance · Software evolution

Communicated by: Gabriele Bavota

� Gregorio Robles
gregorio.robles@urjc.es

Extended author information available on the last page of the article.

Published online: 17 March 2022

Empirical Software Engineering (2022) 27: 65

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10117-6&domain=pdf
http://orcid.org/0000-0002-1442-6761
mailto: gregorio.robles@urjc.es

1 Introduction

The problems for building the current snapshot from source code has been discussed in
detail in the research literature (see Section 2), but the problems for building past snapshots
have received less attention.

Compilability of past snapshots of the source code of a software product has been shown
to be of interest both for researchers and practitioners (Nikitin et al. 2017; Reproducible
builds 2017). Some examples of its uses are as follows: (1) to search and find bugs devel-
opers often run previous snapshots of the system in order to locate bugs and understand
how they originated (Zimmermann et al. 2006); (2) due to security reasons users usually
trust available binaries of a library, but a backdoor could have been introduced (de Carné de
Carnavalet and Mannan 2014), so rebuilding it from the original source allows to compare
the binaries and verify that it was not modified; (3) to backport bug fixes it is necessary to
build an old version to apply a patch to that specific version of the software (Tian 2017));
and (4) to reproduce the past state of a system, for research purposes, it is useful to obtain
a functional executable to verify the correct performance of the system (Manacero 2011),
or to use the project history to predict future bugs (Zimmermann et al. 2008)).

To our knowledge, the most complete study on the compilability of all past snapshots is
presented in Tufano et al. (2017) (from now on “the original paper” or “the original study”).
It analyzes all past snapshots for 100 Java projects of one organization (the Apache Software
Foundation, ASF), determining how many of them could be built, and the main causes of
failure in building. Its main conclusions were: only 38% of snapshots could be successfully
built, almost all projects contained snapshots that could not be built (96%), and the main
cause of failure when building a snapshot was dependency resolution. We decided to revisit
and extend this paper, with two main aims:

(1) To validate the results of the original study, by trying to build in 2020 the same snap-
shots it considered in 2014, answering the original two research questions (although slightly
rephrased):

RQ1a “How many snapshots from the change history are compilable?”
RQ1b “Which types of errors prevent snapshots from being built?”

We reproduced the conditions and methodology of the original study as much as possible,
studying compilability of the same snapshots with the Maven tool, as they did. In addition,
we also wanted to learn if compilability had degraded. We suspected that it could be the
case because one of the main reasons for failed builds in the original study was availability
of dependencies, which is known to degrade over time (Bavota et al. 2015). So we added
the following research question:

RQ1c “Has compilability degraded since the original study?”

While answering the previous RQs, we stumbled upon some problems that lead us to an
additional one:

RQ1d “Are the data in the reproduction package of the original study enough for a
replication?”

(2) To explore the generalizability of the results, by conducting another study with the same
methodology but on a set of Java projects with a more diverse background:

RQ2a “How many snapshots from the change history are compilable?”

65 Page 2 of 26 Empir Software Eng (2022) 27: 65

RQ2b “Which types of errors prevent snapshots from being built?”
RQ2c “Are there differences in compilability depending on the building tool?”

With the first two questions, we check the extensibility of the results of the original
paper to other Java projects. The last question is aimed to find out if some building tools
perform better in terms of compilability than others, for example because of the amount of
information they require about the construction process and the construction context.

In the rest of this paper, we refer to the study that addresses RQ1[a−d] as replication study,
and reproduction study to the one answering RQ2[a−c]. This terminology is based on Juristo
and Gómez (2010) and Cartwright (1991), which distinguish between replication (perform-
ing the same experiment again) and reproduction (performing the same experiment but
with other input/data). Very recently, this terminology has been reviewed,1 however in this
paper we use the traditional definitions for replication and reproduction studies.

Our replication study analyzes 79 projects from the set of 100 in the original study,
and our reproduction study will be performed on a dataset of 80 FOSS (free, open-source
software) Java projects. In addition, for the reproduction we will extend the build systems
with Ant (very popular in the old days of long-running projects) and Gradle (a newer build
tool) — the original study only considered Maven. In both studies we used our own software
for checking compilability and analyzing the resulting logs (see Section 9).

The rest of the paper is structured as follows: Section 2 discusses previous research.
Section 3 defines the main concepts. Section 4 presents the methodology used in the stud-
ies. The results of applying the methodology are reported in Sections 5 (replication) and 6
(reproduction). Section 7 discusses the results, and explores threats to their validity. Finally,
Section 8 draws conclusions and presents further research.

2 Previous Research

The build process and the errors preventing correct builds, have been an active area of
research during the last years. One of the most influential empirical studies in this area was
authored by Seo et al., who examined 26.6 million builds from Google’s centralized build
systems, analyzing compilation errors in failed builds. As a result, an error taxonomy was
provided based on log patterns (Seo et al. 2014). Sulı́r and Porubän examined the builds
of more than 7,000 Java projects, but only for their last commit (Sulı́r and Porubän 2016).
Other investigations have also focused on errors related to build failures. Rausch et al.
address specifically the reasons why builds fail in the context of CI environments (Rausch
et al. 2017). Travis logs from 14 open-source projects were analyzed, finding that a signif-
icant fraction of errors corresponded to tests that failed because of a failure in a previous
build. The study analyzed the build logs from the point of view of continuous integration
systems (snapshot build and test execution), but it did not include a reproduction of the
builds. Some authors have emphasized the importance of historic compilability to propose
repair tools for failed builds. Using a taxonomy for the root causes of build failures found
in 86 out of the 200 most popular Java projects in GitHub, it was demonstrated that 52
of these failures could be resolved in an automated manner (Hassan et al. 2017). And the
HireBuild tool was able to fix 11 out of 24 reproducible build failures using fix pat-
terns automatically generated from existing build script fixes and recommending fix patterns

1https://www.acm.org/publications/policies/artifact-review-and-badging-current

Page 3 of 26 65Empir Software Eng (2022) 27: 65

https://www.acm.org/publications/policies/artifact-review-and-badging-current

based on build log similarity (Hassan and Wang 2018). None of the previous studies consid-
ered historic compilability, which is the subject of our study. They were in general based on
the analysis of logs: in comparison, our studies perform our own building processes, starting
from scratch with the source code available in the analyzed snapshots.

A related area to compilability is build reproducibility: “the ability to generate byte-
to-byte identical binaries from the source code of a project version, no matter who builds
the binary, when or in which machine” (Reproducible builds in Debian 2018). Repro-
ducible builds create a verifiable path from human readable source code to the binary
code used by computers, and are gaining relevance (Cito et al. 2017; Maudoux and Mens
2018; de Carné de Carnavalet and Mannan 2014; Perry et al. 2014). Software compila-
tions, such as Debian and other Linux-based distributions, have a strong interest in the build
reproducibility (Reproducible builds 2017; Reproducible builds in Debian 2018). Obtain-
ing reproducible builds in Debian has been addressed in Glukhova (2017) and Ren et al.
(2018), which present tools to ensure reproducibility, and a framework for detecting and
fixing packages with problems. However, they focus on the latest version, not dealing with
past reproducibility.

The reproducibility of builds is also interesting from a security point of view. Some
works focus on bringing security into the software development life cycle, considering build
reproducibility as one of the main issues to be taken into account. Proposals have been pre-
sented to use reproducible builds in the context of security-critical open-source software (de
Carné de Carnavalet and Mannan 2014), decentralized software-update frameworks includ-
ing build verifiers (Nikitin et al. 2017), systems to ensure binary transparency (Hassan et al.
2017), or enhancing trust in software through reproducible builds (Skrimstad 2018). Even
when our work is relevant to obtain reproducible builds of past versions of the software, we
have not dealt with the details needed to ensure it.

Compilability of past versions of a program has been used instrumentally in research or
industrial activities. This is the case for bug location (Śliwerski et al. 2005; Asaduzzaman
et al. 2012; Murgia et al. 2010; Zimmermann et al. 2006; Zimmermann et al. 2008). When
locating bugs, techniques like git bisect may be used to traverse the project history of
commits back to the past, to find the change that introduced a bug (Spinellis 2012; Meneely
et al. 2013). In these cases, the utility of the technique is limited to tools performing static
analysis, except when automatic compilability of past snapshots can be ensured — then, the
debugged system can be also analyzed dynamically. Some authors have proposed metrics
to evaluate the stability of project builds over time (Raemaekers et al. 2012). Others have
addressed the problem in an indirect way, for example when trying to run mutant tests in
previous versions of several software projects (Just et al. 2014) provided by Defects4J (Just
et al. 2014). However, none of those studies systematically addresses the analysis of the
compilability of past versions of real systems.

Finally, we already mentioned Tufano et al.’s work as the direct precedent of the studies
we present in this manuscript (Tufano et al. 2017). Thus, its methodology and results will
be discussed in detail later in this paper.

3 Definitions

We derive the terminology used in this paper from Sulı́r and Porubän (2016). According to it,
the build process of projects programmed with compilable languages consists of following
steps: (1) read the project build (configuration) file, (2) download third party components

65 Page 4 of 26 Empir Software Eng (2022) 27: 65

defined in the build file, (3) execute the compiler to generate binary files from source code,
and (4) package the program in a suitable format for deployment.

A specific project version is compilable2 if these steps can be executed to generate a
valid binary, with a success build status. Based on this background, we define:

– Snapshot: a version of the source code of a project, represented by a commit of its git
repository. It will be identified by the unique hash of the commit.

– Snapshot with build configuration: a snapshot with configuration files for a build
system.

– Successful build: a snapshot that was compilable (we could build it)
– Failed build: a snapshot that could not be built.
– Error for a build: a failing build (and its cause).

4 Methodology

For both our replication and reproduction studies we use a similar workflow, sketched in
Fig. 1. We work with git repositories, which means that we can clone the whole repository
locally, and that each code snapshot corresponds to a commit in the git history of the repos-
itory. We locate repositories to analyze, clone them, and try to find out all the commits of
interest. If we cannot clone a repository, or we do not find all the commits of interest in it,
we discard it. Then, for each remaining repository, we get its commits of interest, and for
each of these commits we investigate if it uses a building system. If so, we try to build it.

There are some differences between the two studies, mainly on how we find repositories,
which ones are our commits of interest in them, how we find those commits, and which
build systems we consider (see details below). Table 1 shows some quantification (projects
and commits) for the original study, with all its projects (Original Pristine), for the reduced
version of it, with the 79 repositories in which we could find all the commits (Original
Reduced), and for our replication (considering Maven builds only) and reproduction studies.
The distribution of commits per project for the replication and reproduction studies is given
as well.

4.1 Replication Study

For the replication study we followed the methodology of the original study as much as pos-
sible. Its authors considered 100 git repositories corresponding to Java FOSS projects from
the ASF, all of them using a Maven-based build infrastructure. They retrieved in Septem-
ber 2014 all commits in their master branches, claiming to have analyzed a total of 219,395
commits. Then, they attempted to build all of them locally using Maven. The original paper
comes with an accompanying reproduction package listing in detail which commits they
considered for each repository. When reviewing that list, we found that the total number of
commits referenced is 174,505. This is the reason why this is the number we include in the
tables for the original study (see details in Section 5).

2Although Sulı́r and Porubän use the term buildable, for consistency we have used the term compilable
instead, as in the study by Tufano et al., which we would like to replicate and reproduce.

Page 5 of 26 65Empir Software Eng (2022) 27: 65

Fig. 1 Basic workflow for both studies

Table 1 Studies (main quantities)

Studies Original Original Replic. Reprod.

Pristine Reduced

Repositories 100 79 79 80

Commits 174,505 139,389 139,389 300,873

Commits (build conf.) 132,484 101,811 101,811 281,487

Commits (build success) 31,696 22,737 14,664 98,488

Commits/project min 25% 50% mean 75% max std

Replication 25 234 726 1,764 1,898 14,818 2,694

Reproduction 1,132 1,974 2,980 3,760 4,847 10,000 2,404

65 Page 6 of 26 Empir Software Eng (2022) 27: 65

4.1.1 Subject Recovery

Our first step was to retrieve the git repositories to analyze. We wanted to clone all the
repositories, to be able of checking out each specific commit, and analyze its compilability.
We were interested in doing a replication as close as possible, so we decided to use only
the repositories for which we could find all the commits of the original study. This way, we
ensured that results would be comparable, and not influenced by a potentially biased sample
of missing commits.

We started by using the list of git repositories from the original study to clone and check
all of them. We noticed that some were not available or did not have all the commits con-
sidered in the original study. From a total of 100 repositories in the list, 6 were no longer
available. Before discarding them, we tried to find them both in the ASF git repositories,
and in the GitHub repositories that the foundation maintains as replicas of the original ASF-
hosted ones. In addition, of those that we could clone, 19 did not have all of the commits
considered in the original study (8 had none of them, 11 had only some of them). This
resulted in a total of 75 repositories with the complete set of commits considered in the
original study. We followed this procedure during February 2020.

To improve the number of repositories with all commits from the original study, we
turned on to Software Heritage (SH), an initiative to collect, preserve and share all public
source code in a universal software archive (Di Cosmo and Zacchiroli 2017; Di Cosmo
2018). SH tries to archive all commits, even if they are later removed from the original
repositories. Therefore, it was an option for finding the missing commits. Although its API
is still evolving, during March 2020 we could use it to retrieve some of the repositories with
missing commits, or which we could not find.3

We found all the 25 remaining repositories in SH, but as we retrieved them using their
API, 5 of them were empty or corrupt, and of the other 20, only 4 contained all the commits
of the original study.

Therefore, the dataset that we used for our replication study consisted of 79 reposito-
ries out of the 100 in the original study, amounting for 139,389 commits from the total of
174,505 commits (79,9%). Even when this is only a fraction of the commits, we consider
that the sample is large enough to conduct the rest of the study, as follows.

4.1.2 Building

Once we cloned all git repositories, we proceeded to replicate the experiment. For that,
we checked out, one by one, all source code snapshots, each one corresponding to one
commit, and tried to build them. In the original study they used some Java program to run
the Maven tool, via its Java API, to build the code. However, we could not find the code
in their reproduction package. Because of this, but also because we wanted to produce a
tooling-independent replication, we developed a Python script that uses Maven through its
command-line interface. The design of the script allowed to include other build systems, to
be used in the reproduction study.

3In later conversations with representatives of Software Heritage, we learned that the part of the API for
retrieving full repositories had been removed because it failed in some cases, which could explain our
problems in retrieving some of the repositories.

Page 7 of 26 65Empir Software Eng (2022) 27: 65

For each commit of interest in each repository, the script runs the following procedure
(see also Fig. 2):

1. Check out the intended commit, obtaining the snapshot of the source code to be built.
2. Find the configuration for Maven (usually a pom.xml file). If it is found, the build

command for Maven is executed (mvn clean compile -X) in a Docker container spawned
for this specific analysis.

3. Collect the success code and the log produced by the execution in a log file (the verbose
option of the command is used to obtain the most detailed log). If a configuration for
Maven was not found, it is also noted in the log file.

A further analysis of the log file allowed us to identify if the snapshot had configuration
files for Maven, if the build was successful or not, and if not, the likely reason for the failure.

It is important to ensure the build environment is fully clean from results of previous
builds, such as dependency modules or intermediate files that could influence the current
one. To enforce this cleanup, besides the build command cleaning up local folders, the
execution is encapsulated in a Docker container containing Maven and Java 8.

When checking for the presence of a Maven configuration file, we found an important
replication issue: in all projects but three, those files were in exactly the same commits than
the original study. But in those three, we found many more commits with Maven config-
uration (in the order of 6,000). We carefully inspected the checkout for a large sample of
those commits, and our heuristics seem to work well. Unfortunately, this has some impact
on the results of the replication, especially since a fraction of them are actually compilable.
For having a more usable comparison with the results of the original study, we decided to
analyze those commits separately (see details in Section 5), so that the results on how com-
pilability “ages” are not influenced because of them. That is the reason why the number of
“Commits (build conf.)” in Table 1 is exactly the same (101,811) in both the original study
(reduced) and our study (for the 79 considered repositories).

Fig. 2 Process for checking compilability status of commits in a repository. “Build commit source” includes
checking out the commit, checking for Maven configuration files, and if found, running Maven to try to build
the code

65 Page 8 of 26 Empir Software Eng (2022) 27: 65

When searching for build files (pom.xml), we discovered that we were able to detect
4.72% more commits with build files than the authors of the original study. Detecting
the presence of these build files is a relatively simple task, as they are easy to iden-
tify if they exist. Nonetheless, to check if this inconsistency was due to an error in our
scripts, we randomly selected a dozen commits where we found build files but the orig-
inal study did not, and performed a manual inspection. We found that our approach is
the correct one. So, probably the discrepancy is caused by some bug in the scripts of
the original paper — as these scripts are not publicly available, we cannot confirm this
possibility.

To explore the compilability of all of the snapshots, we used two Ubuntu 18.04 machines,
one of them with 16 cores and 8 GB of RAM and the other one with 8 cores and 16 GB
of RAM. The software we built was capable of balancing the load between both servers
to minimize execution time, building several snapshots in parallel. Once the repositories
to analyze were ready, the building of all snapshots took about four weeks of wall time to
run.

4.1.3 Obtaining Results

The results of the study are obtained from analyzing the log file. From it, we can know
if a Maven configuration was found for a commit, or if the build was successful. For the
analysis on the causes of build failures, we analyze the exception produced by Maven from
the log for the failed builds. The exceptions that can be produced during the construction of
the Maven project are well defined and limited.4 For the reporting, we use the classification
and mapping of exceptions in the original study, which defined four categories of errors:
Resolution (related resolution of artifacts, such as downloading of dependencies), Parsing
(such as malformed build configuration), Compilation (during the compilation phase) and
Other. Note that the first three correspond to the first three steps in the building process
described in Sulı́r and Porubän (2016), presented in Section 2.

For comparing our results with the original study, we also classified every commit
according to how it behaved when building it in both studies: (1) stable build, the snapshot
was built in both studies; (2) new error, the snapshot was built in the original study, but
not in ours; (3) same error, the build failed in both studies for the same reason; (4) differ-
ent error, the build failed in both studies but for a different reason; and, (5) new build, the
build failed in the original study but not in ours.

We tried to reproduce the methods of the original study as much as possible, using the
same classification to enable a comparison as is mandatory in a replication study. However,
we did not do it manually but automated the procedure. We took therefore advantage of
the description of the Java exceptions used in their classification by the original authors in
their reproduction package.5 As each exception is mapped to exactly a single category, our
tool took this mapping and applied it automatically, avoiding the necessity for a manual
classification. We think this highlights one of the main reasons for replication studies: to be
able to detect and fix limitations in previous works. Our tool and data sources are publicly
available in our reproduction package.

4https://cwiki.apache.org/confluence/display/MAVEN/Errors+and+Solutions
5http://www.cs.wm.edu/semeru/data/breaking-changes/

Page 9 of 26 65Empir Software Eng (2022) 27: 65

https://cwiki.apache.org/confluence/display/MAVEN/Errors+and+Solutions
http://www.cs.wm.edu/semeru/data/breaking-changes/

4.2 Reproduction Study

4.2.1 Subject Selection and Recovery

For our reproduction study, we generated a new dataset of repositories to analyze. Inspired
by Sulı́r and Porubän (2016), we obtained a long list of repositories via the GitHub API,
meeting the following criteria:

– Java as the programming language. We wanted to check Java building technologies,
staying in the same domain of the original study.

– At least 500 stars and 300 forks. We wanted some indicator of relevance.
– At least five years of development. We wanted to have a long enough commit history,

so that the analysis was more complete.
– Active in January 2020 (at least one commit). We wanted projects with recent activity,

to include current practices.
– Use a build system. We wanted to check compilability, so we checked that they were

using Maven, Gradle or Ant (the three most popular build systems for Java) in the last
commit.

– Between 1,000 and 10,000 commits. We wanted to avoid projects too small, which
would have few snapshots to analyze, but also very large ones, which would consume
too many resources for the analysis.

– No Android projects. Because of a practical limitation: building projects for Android is
in general more complex, and requires specific procedures.

From the long list meeting all these conditions, we randomly selected repositories for our
reproduction study and proceeded to their analysis. For each repository, we considered all
commits in the master branch as the commits of interest for the study. A total of 80 projects
have been selected for this reproduction study. The total number of commits was 300,873.
When comparing the resulting list with the list of projects from the original analysis, in
addition to variety (since the previous analysis was focused only in ASF projects), the main
difference is that we focused in non-small projects with certain relevance.

4.2.2 Building

The process we followed to explore the buildability of snapshots for the repositories in our
list was very similar to the one described above for the replication study. The differences
were as follows:

– After checking out a commit, three systems are considered when searching for build
configuration (see “Build File” in Table 2). In the replication study only Maven was
considered.

– When building the snapshot with more than one build system, we tried the build sys-
tems in order: first Maven or Gradle, and if it failed, then Ant. We did not find snapshots
with both Maven and Gradle. Having Ant and one of Maven or Gradle is usually due
to the project transitioning from the former to the latter, thus still having the old Ant
configuration and a new configuration for Maven or Gradle. Our order for testing sys-
tems considers that if the Maven or Gradle configuration worked, the project had likely
already transitioned to them — if it did not, the project was still with Ant.

– For each build configuration, we executed the build command defined by the build
configuration (see “Command” in Table 2).

65 Page 10 of 26 Empir Software Eng (2022) 27: 65

Table 2 Build systems
considered in the reproduction
study

Build Command Build

System File

Maven mvn clean compile -X pom.xml

Gradle ./gradlew build -x test build.gradle

Ant ant compile build.xml

For this reproduction study, the Docker container we used included Java 8, Ant and
Maven, while Gradle was run standalone (since it works self-contained). The building of
all snapshots took about two weeks of wall time, in the same environment we used for the
replication study.

4.2.3 Obtaining Results

As we did for the replication study, the results of the reproduction study are obtained by
analyzing the logs of the attempts to build each considered commit from our list of repos-
itories. The analysis is the same that we described already, with the difference that in the
reproduction study we considered not only if the snapshot could be built or not, but also
which build system was used. We also had to extend the mapping of exceptions in error logs
to one of the four categories of errors in the original study (Dependency, Parsing, Compil-
ing or Other). The new error mapping will be shown in the following sections,as well as
being available in the reproduction package.

5 Replication Study: Results

5.1 Data for Replication

The original paper comes with a reproduction package, which we have found tremendously
useful. It includes the complete list of commit hashes for all the analyzed repositories, and
counts per repository of the main results. This allowed us to compute counts for our reduced
set of 79 repositories. This way, we could do a fair comparison between the replication and
the original results.

After computing our results for the 79 repositories in the original study, we found a dis-
crepancy in the total number of commits. According to the original paper, 219,395 commits
were analyzed. But computing from the list of commit hashes, we counted 174,505. To be
consistent with other data in our paper, which was extracted from that reproduction pack-
age, we used the second number in our tables. This fact does not impact the results, since
we focus on the analysis of the reduced set of 79 repositories.

The scripts used for the original study are not available in its reproduction package. This
is not a problem in itself, since we created our own software. But we could not determine
the reason for some discrepancies, e.g., on the number of snapshots with build configuration
(see details below). Maybe the heuristics coded into the original software took into account
something that we missed, or maybe it didn’t detect that configuration information in some
cases.

Detailed logs of the execution are also not available in the reproduction package of the
original study, making it difficult to explain some differences found in the compilability of

Page 11 of 26 65Empir Software Eng (2022) 27: 65

a large number of commits in three repositories (see details below): we do not know if there
was some error in the execution of the original study, or if we are missing something in our
own.

5.2 Compilability

To answer RQ1a and RQ1c in detail, we follow the same process as the original study, clas-
sifying repositories in three categories according to their number of commits: short history
(number of commits in the first quartile, Q1), medium history (Q2 and Q3) and long history
(Q4). Repositories classified as short (20) have less than 203 commits, medium (39 repos-
itories) have between 203 and 1,148 commits, and long repositories (20) have more than
1,148 commits. Then, we analyze the compilability of those snapshots for which we found
configuration for Maven, assuming the rest could not be built because developers were not
using automatic tools for building.

Tables 3 and 4 shows the results for compilability in the original study, and of our repli-
cation study. For the original study we computed, thanks to the details in its reproduction
package, results for the reduced list of 79 repositories that we have analyzed. However, the
results for the pristine study (with all its 100 repositories) are very similar to those of the
reduced one. For example, the average compilability of the reduced study is 37.19, while
for the pristine study it is 38.13, according to the original paper. For completeness, we run
Wilcoxon’s test on the compilability results of all projects of the previous and our replication
studies, obtaining a p-value of 1.9077e-6. This confirms statistical significant differences
between both cases.

We found significant differences in three repositories when checking for the existence
of Maven configuration files (for all the others, results are exactly the same). In those three
repositories we found 6,583 extra commits with a Maven configuration. When trying to

65 Page 12 of 26 Empir Software Eng (2022) 27: 65

Table 3 Compilable snapshots — Distribution (top: Reduced Original Study, bottom: Replication Study)

Projects Fraction built (in %)

Min 1st Qu. Median Mean 3rd Qu. Max SD

Short history 0.00 23.67 48.64 49.85 82.73 97.01 35.08

Medium history 0.00 4.99 36.24 38.43 68.42 100.00 34.03

Long history 0.00 0.00 16.48 22.14 25.67 100.00 29.33

All 0.00 2.91 28.64 37.19 66.00 100.00 34.25

Projects Fraction built (in %)

Min 1st Qu. Median Mean 3rd Qu. Max SD

Short history 0.00 0.55 31.49 40.62 82.72 99.01 39.97

Medium history 0.00 0.00 1.70 20.99 38.24 95.23 29.52

Long history 0.00 0.00 9.44 17.56 19.17 100.00 28.31

All 0.00 0.00 8.74 25.1 41.64 100.00 33.07

build them, we could build 442 extra snapshots, which would increase the number of com-
pilable snapshots to 15,106 (from a total of 108,394), or 13.93% compilability, slightly less
than 14,40 as shown in Table 4.

We also checked all snapshots for configuration files of Ant and Gradle (we only found
for Ant), finding 2,586 additional snapshots that could be built, leading to a total of 17,692
commits built. However, these results are not comparable with the original study, since they
did not consider Ant.

Table 5 summarizes the results of all replications, with the different cases. It should be
noted that Table 3 extends the information of the results reported in the “Replication” row of
Table 5, as it is the most comparable scenario between the original and the replication study.

Table 4 Compilable snapshots — Totals (top: Reduced Original Study, bottom: Replication Study)

Projects Total commits

With Build Fraction

build conf. success built

Short history 2,311 1,129 48.85%

Medium history 26,903 9,602 35.69%

Long history 72,597 12,006 16.54%

All 101,811 22,737 22.33%

Short history 2,311 876 37.91%

Medium history 26,903 6,049 22.48%

Long history 72,597 7,739 10.66%

All 101,811 14,664 14.40%

Page 13 of 26 65Empir Software Eng (2022) 27: 65

Table 5 Original and replication studies (Summary of results). Replicationa: use same build configs,
Replicationb: use all detected Maven config files, Replicationc: use all detected Maven and Ant config files

Repos All Commits Commits Built Built

Commits w/ build conf built total mean of

projects

Pristine Original 100 174,505 132,484 31,696 23.92% 37.74%

Reduced Original 79 139,389 101,811 22,737 22.33% 37.19%

Replicationa 79 139,389 101,811 14,664 14.40% 25.09%

Replicationb 79 139,389 108,394 15,106 13.93% 25.42%

Replicationc 79 139,389 117,124 17,692 15.10% 24.85%

5.3 Failure Analysis

To answer RQ1b, and provide some insight on the reasons for the answer to RQ1c, we
analyzed build failures following the categorization of the original study. Table 6 reports the
classification results for the previous study and for our replication, in both cases for the 79
repositories of the reduced study.

Table 7 shows the changes we observed when building snapshots with respect to the
original study, according to the classification provided in Section 4. We could build 14,480
(63.68%) of the successful builds in the original study (stable builds). We could also build
some snapshots that could not be built in the original study. In general, these correspond to
external artifacts that were not available when they run their experiments, but were available
when we run ours. These new build snapshots amount to 184 (0.13%).

For 67,298 of the snapshots that failed to build, we reported the same exception as in the
previous experiment (same error). Therefore, adding these to stable build, 81.778 (80.66%
of the snapshots with build configuration) behaved exactly as in the original study. On the
other hand, for 13.30% of the snapshots that failed for us, we found a different error than in
the original study (different error), while 9.48% of the snapshots that failed for us did not
fail in the original study (new error).

Both in different error and in new error, one of the main causes for failed builds is
Resolution, and specifically, the resolution of external artifacts needed for the build. We can
affirm that one of the main reasons for the degradation in compilability with time is the
impossibility of recovering more and more of the dependencies of these projects as time
passes. On the other hand, Compilation errors only appear in same error, since they only
depend on using the same compiler (so if they failed in the replication, they should have

Table 6 Causes of failed builds
Original study Replication study

Categories # % # %

Resolution 47,832 60.49 55,299 63.45

Parsing 9,595 12.13 10,350 11.88

Compilation 2,807 3.55 2,544 2.92

Other 18,839 23.83 18,954 21.75

All errors 79,073 100.00 87,147 100.00

65 Page 14 of 26 Empir Software Eng (2022) 27: 65

Table 7 Changes in builds (original to replication)

Errors Builds

Categories Same Different New Stable New

% # % # % #

Resolution 42,826 49.14 7,605 5.39 4,868 5.59

Parsing 9,485 10.88 694 0.79 171 0.20

Compilation 2,544 2.91 0 0.00 0 0.00

Other 12,443 14.27 3,293 7.10 3,218 3.69

All 67,298 77.22 11,592 13.30 8,257 9.48 14,480 184

failed in the original study). Comparing the number of Compilation errors in the replication
and in the original study, it decreased from 2,807 to 2,544. Some inspection raised the cause:
new exceptions mask previous building errors.

We studied in some detail the Resolution category. One of the most recurrent cause was
experiencing timeouts when accessing some external artifact, usually a dependency (5.12%
of total errors). This type of error appears only as different error or new error. Given that no
long network failures were observed during the execution of our study, this is due to access
to artifacts that are no longer available, which is consistent with the previous comment on
dependencies.

6 Reproduction Study: Results

6.1 Compilability

To answer RQ2a, we repeated the same analysis of the replication study, but now for the 80
projects of our reproduction study. Of them, 20 projects were classified as having a short
history (Q1, less than 1,974 commits), 40 as medium history (Q2 and Q3), and 20 as long
(Q4, more than 4,847 commits). Compilability results are shown in Table 8.

For all categories, and for all the projects together, median and mean are close, mean-
ing the distribution is not very skewed: to some extent we were successful in avoiding
bias when selecting projects to analyze. The standard deviation shows a large spread in
the values (compatible with the values observed for the different quartiles). The fraction
of snapshots that could not be built in all categories is higher than (or very close to) 50%,
which shows that automatic compilability of past snapshots can certainly not be given for

Page 15 of 26 65Empir Software Eng (2022) 27: 65

Table 8 Reproduction study — Compilability results

Projects Fraction built (in %) Total commits

Min 1st Qu. Median Mean 3rd Qu. Max SD With Build Fraction

build conf. success built

Short history 0.00 37.43 55.42 58.21 82.27 99.38 28.12 28,312 15,948 56.32

Medium history 0.00 10.56 34.94 40.35 68.60 100.00 33.34 114,716 44,688 38.96%

Long history 0.00 4.27 12.80 27.76 48.04 93.52 31.76 138,459 37,852 27.33%

All 0.00 10.56 36.25 41.66 70.62 100.00 33.18 281,487 98,488 34.98%

granted. Projects with a short history have in general less compilability, and compilability
increases as we move to projects with a medium and large history.

It should be noted that in the original study, we found a great diversity in the size of the
projects according to their number of commits (from projects with 25 commits to 14k). The
problem with smaller projects (<203 commits) is that in many cases they have not had a
natural development (the initial commit imports code from another source, as can be seen for
example in following commit).6 This means that part of the project’s development history
is lost, which is a limitation of the original study. In the selection criteria for the repository
mining we have taken this limitation into account, setting a lower limit of 1000 commits.
Because of this difference between experiments, the separation between small, medium
and large projects is different and the groups cannot be compared between experiments.
Nonetheless, for the sake of completeness, we offer a comparison using the same quartiles
to classify the projects into the three categories in a table that can be found in the replication
package.

6.2 Failure Analysis

To answer RQ2b, we analyzed build failures, as shown in Table 10. Most of the errors are
of type Resolution, due to missing dependencies and other external artifacts. Parsing and
Compilation errors are almost negligible.

The fact that most errors are due to missing external objects is a good indicator of further
decline of compilability in the future: as time passes, more and more artifacts will disap-
pear, which will lead to more and more commits not building. The low numbers for Parsing
and Compilation errors are interesting: they could be indicating that the use of automatic
tools to check the compilability of snapshots (and therefore, the consistency of build-
ing configuration, and the correctness of compilation) before merging the corresponding
commits.

6https://github.com/apache/maven-app-engine/commit/b77ad9e82d7cc94627d0a000214aeb6c4b8f7738

65 Page 16 of 26 Empir Software Eng (2022) 27: 65

https://github.com/apache/maven-app-engine/commit/b77ad9e82d7cc94627d0a000214aeb6c4b8f7738

Table 9 Reproduction study —
Compilability by build system Build Compilability

System #Commits #Build Fraction

success built

Maven 191,063 80,310 42.03%

Ant 25,735 4,441 17.26%

Gradle 64,095 13,737 21.43%

All 280,893 98,488 35.06%

6.3 Building System

To answer RQ2c, we performed an analysis by build system. When we were detecting build
configuration files, we observed some projects starting to build with Ant, then switching to
Maven or Gradle, and some others using Maven and Gradle for their entire history. From
the total number of commits with build configuration, 68.02% are for Maven, 22.82% for
Gradle, and 9.16% for Ant. The results of the analysis by build system are shown in Table 9.

The first interesting result is that compilability for snapshots with Maven is much higher
(42.03%) than for Ant or Gradle (17-22%). With respect to specific kinds of errors, Maven
is dominated by Resolution, as Gradle and Ant is dominated by Other. However, the sample
of snapshots with Ant and Gradle is relatively small, which means our results for them are
less reliable (Table 10).

The detailed classification of errors for all building systems can be found in the Table 11
(The table is limited to the 20 most frequent errors. The full table can be found in the
reproduction package). From this classification, it is worth mentioning:

– From the 15,732 other errors for Ant, 8,615 are failures because they do not have the
“compile” task defined (which is a standard in the development of projects with Ant),

Table 10 Reproduction study — Errors by build system

Build Resolution Err. Parsing Err. Compilation Err. Other Err.

System # % # % # % # %

Maven 75,806 68.45% 1,967 1.78% 0 0.00% 32,980 29.78%

Ant 4,485 21.06% 0 0.00% 1,077 5.06% 15,732 73.88%

Gradle 22,260 44.20% 0 0.00% 2,373 4.71% 25,725 51.08%

All 102,551 56.22% 1,967 1.08% 3,450 1.89% 74,437 40.81%

Page 17 of 26 65Empir Software Eng (2022) 27: 65

Table 11 Classification of errors for all build systems

Build System Error Action Count %

Maven ArtifactResolutionException Resolution 74,950 41.09

Maven MojoFailureException Other 12,426 6.81

Maven MojoExecutionException Other 11,562 6.34

Ant Target “compile” does not exist Other 8,615 4.72

Gradle IOException: Server returned ... Resolution 8,057 4.42

Gradle Could not resolve Resolution 7,057 3.87

Gradle Could not resolve all dependencies Resolution 6,899 3.78

Maven ConnectException Other 5,524 3.03

Gradle Task “test” not found Other 5,215 2.86

Gradle Execution failed for task Other 4,726 2.59

Gradle Cannot run program Other 4,540 2.49

Ant UnknownHostException Resolution 3,918 2.15

Gradle Other Gradle error Other 3,849 2.11

Ant Unable to find property file Other 3,693 2.02

Gradle Permission denied Other 2,295 1.26

Gradle Compilation failed Compilation 2,288 1.25

Maven PluginDescriptorParsingException Parsing 1,591 0.87

Gradle Could not find Other 1,405 0.77

Ant Other Ant error Other 1,181 0.65

Gradle git-lfs is required to build Other 1,083 0.59

Ant Compile failed Compilation 1,077 0.59

and about 4,610 because a specific binary or config file is expected in the path, instead
of being included as a dependency.

– From the 25,725 other errors for Gradle, 5,215 of them fail because of a test that cannot
be automatically ignored. A common error (4,726) is that some of the tasks, defined
as scripts in the configuration file by the developer, fail to build the project. Other less
common errors are the absence of a secret key (which is not usually stored in a public
repository), an error in the generation of documentation or the lack of permissions for
certain system folders. These errors, although a priori generic, are usually concentrated
in a single project and are not significant.

Although all of these snapshots could not be built automatically, they could be built with
minimal human intervention, or with a slightly improved set-up of the build configuration
for the projects affected. Given the relatively small sample of snapshots for these two sys-
tems (Ant and Gradle, compared to Maven), considering these snapshots as errors or not
would change dramatically the figures for the other errors category for both of them. In the
reporting of results, we have decided to consider those cases as errors, which is a cause for
the lower compilability reported for Ant and Gradle.

65 Page 18 of 26 Empir Software Eng (2022) 27: 65

7 Discussion

When performing our studies, we wanted to learn about the validity of the results presented
in Tufano et al. (2017), by checking how they had changed after about six years, and about
their generality, by doing a similar analysis on a different set of projects. As a side result,
we also expected to learn about conditions for the replication of this kind of studies, based
on its very detailed reproduction package. We discuss our findings in the next subsections.

7.1 Reproduction Package

The data in the reproduction package was not enough for a complete replication, although
it helped substantially. The lists of repositories analyzed, commit hashes, and results per
project were certainly the most useful data for us. With the list of repositories we could
search for them in the ASF git repositories, in GitHub, and in Software Heritage. The list of
hashes was fundamental for checking if those commits were still recoverable from any of
these sites and the list of results per project was fundamental to compare with the original
results once we decided to analyze only a part of the repositories in their analysis.

However, we also missed some data. In our search, we could not find some repositories.
For 25% of them we could not find all commits. Since git repositories may disappear, or
commits in them can be removed, having a copy of the git repositories as they were analyzed
would have allowed us for a complete reproduction. For the number of repositories ana-
lyzed, this is a massive dump, but small enough to be preserved in sites like Zenodo, which
admits very large datasets. Software Heritage is also a very interesting option. At the time of
the original study, they were still starting. But now, they are already archiving probably all
code of interest for this kind of studies, and they are open to archive more if needed. Since
they preserve all changes to the repositories they track, all commits studied will be available
for future research. Unfortunately, these types of problems we have encountered pertain to
any study involving the analysis of a project’s history. Kalliamvakou et al. (2016) identified
many perils that can be encountered when mining software repositories that are important
to consider when conducting MSR-like studies. However, they do not include the perils that
we have encountered, which negatively affect the replication of these studies. Future lists of
perils should include those that affect the integrity of the repository over time:

– The repository may no longer be accessible (it has been deleted or made private).
– Commits have been deleted

We also missed the software used for building the snapshots. Even when the methodology
is clearly explained, we expect some details to be only available by reading the software. The
lack of it prevented us from determining with certainty if the discrepancies in the number

Page 19 of 26 65Empir Software Eng (2022) 27: 65

of builds for some repositories were due to errors in the original software, or in ours. For
the same reason, we missed the logs of the original experiments. With them, we could have
determined with more detail some of the discrepancies we found.

In summary, we recommend to include the following items in the reproduction package
for this kind of studies: references to the repositories, list of commits, complete copy of the
repositories, or references to the analyzed commits in Software Heritage, results at the finer
grain possible (at least at the level of repositories), a copy of the software used (at least
for the building of the commits), and a copy of the logs of executing it. Our reproduction
package (see “Acknowledgments and reproducibility”, at the end of this paper) includes
all of these artifacts, plus the software used for the calculation of the results (as Python
notebooks), with intermediate results. All of this is provided for both the replication and the
reproduction studies.

7.2 Replication Study

We have found less compilability than the original study. Some dependencies cease to be
available with time, and as time passes, more and more of them are missing, impacting on
the compilability of more and more snapshots. This depends on the kind of dependencies:
official packages, in the case of Maven, are usually preserved. However, we have found
many cases of specific links, or interim packages, that are much less reliable. We think this
fact shows the importance of building strong configuration files for the build tools, that are
designed to be resilient to the passing of time. Including references to artifacts that will be
preserved (including, but not limited to, dependencies) as much as possible is an important
part of it. However, other errors due to compilation, parsing, etc., have remained stable, as
it seems reasonable, because we are using basically the same tools for building the source
code.

The length of the history in commits seems to have an impact on the changes from
the original study to our replication. Projects with medium histories went from a median
of about 36% of built commits, to almost 0% (1.7%). We do not know if this is due to
something specific in the sample of projects, or if there is some effect worth researching. It
is also noticeable how the standard deviation of the distribution of built commits per project
remains very stable.

The overall numbers for compilability are rather small. For half the projects analyzed,
less than 10% of the commits can be built, which for practical purposes means most of
the history of the project cannot be built automatically. This leads to an interesting detail:
we have tried to build snapshots automatically, but maybe a manual approach —looking at
the specific errors and trying to fix them– could reach a much better overall compilability.
However this approach, although interesting, is not of much practical use in many of the
common scenarios in industry.

7.3 Reproduction Study

The main reason for the reproduction study was to explore if the results of the original
study were extensible to other, more diverse, Java programs. From the point of view of
compilability, our results show only a partial extensibility. Mean compilability of projects
is relatively similar (41% in our reproduction, 37% in the original study). Maybe the main
conclusion is that a large number of snapshots in both cases are not compilable (clearly
more than half, in both cases), showing the difficulties of past compilability.

65 Page 20 of 26 Empir Software Eng (2022) 27: 65

When considering the kinds of errors leading to failed builds, it is clear in both studies
the importance of Resolution errors: about 60% of all errors in the original study, 56% in
our reproduction. Both studies offer similar results for Compilation errors: about 4% and
2%. We can conclude that the most influential errors, at least in the case of Java, are indeed
Resolution, and that Compilation errors are not significant. Therefore, if a project wants
to work on improving their past compilability, they should very likely work on improving
the preservation of external artifacts, and on using references with guaranteed future avail-
ability. Clear rules could be derived, to ensure better configuration files for building tools,
not degrading compilability as time passes. There is, however, little to do by the compiler
to improve the situation, maybe due to the good work that Java does in ensuring back-
wards compatibility, or to the pre-merge testing that is usually done before producing new
commits. These results are also in line with those discussed in the original paper.

We also studied the impact of different build systems on past compilability, which was
not done in the original analysis. In our sample, we can say that snapshots using Maven show
in general better compilability (about 42%, as opposed to 17% and 21% for Ant and Gradle).
The numbers for Ant could be underestimated in our study, as we explained, but the numbers
for Gradle seem clear, despite the smaller sample of Gradle snapshots. A more extensive
study should be performed to know if this is really a difference between the systems, or just
a particularity of our sample.

7.4 Mitigation Measures

The large number of errors that occur when trying to build commits from the past leads us to
think about what possible measures we can take to reduce their occurrence. In the literature
we find a large amount of Automatic Repair work that could solve some of the problems
we are facing. In this section we will highlight two works that directly address build errors
in previous snapshots, which will help us to make some recommendations to mitigate build
errors.

Vassallo et al. (2020) summarize the reasons why Maven builds fail and suggest possi-
ble solutions. The work includes a survey on how do developers approach different types
of build failures. They consider dependency resolution issues to be the most difficult to
address. Among the most difficult bugs to address are infrastructure bugs (entirely related
to the execution context) and dependency resolution bugs. The former are not a problem in
our case, as most projects that are mined from GitHub tend to be programming libraries.
The latter are the most numerous in our experiments and highlight that the logs usually do
not give much information about the error.

Macho et al. (2018) propose a more specific tool focusing on problems related to Maven
dependencies. Their study on how developers tend to fix dependencies themselves shows
that in most cases it is usually enough to make a version number increase or promote a ver-
sion with the -SNAPSHOT suffix to a stable version. Among the strategies of the tool we
can find: Version Update (based on the usual behavior followed by the developer), Depen-
dency Delete (deleting a problematic dependency that is no longer needed for the project),
and Add Repository (in many cases, the configuration of the repository to which the arti-
facts are to be requested is not registered in the code repository, a possible fix being to add
this artifact repository to pom.xml).

Based on the information from previous work and our experience in analyzing the results
of the experiments we have conducted, we state possible mitigations for the problems that
prevent a snapshot from being built. We want to approach these mitigations from two points
of view: (i) the developer (who must consider that in the future he may need to rebuild a

Page 21 of 26 65Empir Software Eng (2022) 27: 65

particular version of his code, for example to include a patch), and (ii) the researcher (who
performs experiments on the commit history of a project):

– Dependency resolution: These errors represent a significant number for all three build-
ing systems. In some cases the dependencies are not from an artifact repository, but
require manual installation within the project, or we may find authentication errors
as the repositories are private. Developers should ensure that changes uploaded to the
code repository include stable versions of the libraries for subsequent download from
the artifact repositories. In the case of needing an additional resource (e.g., a library
compiled directly to a JAR executable file), this should be versioned along with the
rest of the code so that the code repository is self-contained. So, we have found SNAP-
SHOT errors because a project is multi-module and some modules depend on build
versions from other modules (as it is the case for io.spring.initializr:initializr-generator-
spring:jar:0.8.0.BUILD-SNAPSHOT). Researchers can mitigate some of the errors, for
example, by removing the -SNAPSHOT suffix or replacing the library version with the
version set by the next commit history where the build does work.

– Parsing: The main mitigation measure for this type of errors is usually the encoding.
We have found non-English characters in code comments (usually author names) that
prevent compilation. Developers should make sure that the encoding is present in the
project configuration file, so that it is taken into account when building the project.
Researchers can check if this configuration exists and overwrite it if it is not correct; or
if they cannot find it, they can try to use the most inclusive encoding possible.

– Compilation: These errors are often due to code that has been commented out and
that simply cannot work and needs to be manually inspected, sometimes with some
knowledge of the project’s operation. In previous work, Tufano et al. considered that
there were builds that were broken from conception; compilation bugs often fall into
this category. Therefore, we have not established any mitigation measures for this type
of bugs.

– Other: Errors in this category include all those that do not fit into any of the above
categories. In the case of Gradle and Ant, this is the predominant category. In these build
systems, unlike in Maven, it is the developer who defines through tasks or scripts the
steps to be carried out to build the project. This can make it very difficult to automate
the build if the developer has not used the standard tasks of the build system and has
defined his own tasks (which can be subject to errors). Some of the most recurring errors
encountered are: Target “compile” does not exist (Ant), Task ‘test’ not found (Gradle),
and Execution failed for task X (Gradle). Developers should use standard task names.
It is common that after a while another developer has to build a past version of the code
and tries to build the project using standard tasks. Researchers should consider that at
some points in the project, standard task names may not be used. The documentation
can help in understanding how the project should be built, and if that fails, Continuous
Integration (CI) configuration files can be inspected as they usually contains these build
commands correctly versioned alongside the code.

7.5 Threats to Validity

Our studies are subject to construct validity issues, mostly due to how we define compil-
ability of a snapshot (the snapshot is automatically compilable now, using only the available
source code in the snapshot). The usual compilability is defined not for past commits, but
for the current ones, but we are interested specifically in the case of building commits in

65 Page 22 of 26 Empir Software Eng (2022) 27: 65

the history of the project. In addition, it could be argued that a snapshot could be built with
more advanced techniques (e.g., by extracting the build command from the documentation
or, failing that, from the CI files), or by fixing by hand some of the errors. However, we
were specifically interested in the automatic case, and we think the techniques we used for
building are the usual ones.

Our results are also subject to internal validity issues, mainly because of our interpre-
tation of what an error is, and to the specific heuristics that we use to detect and classify
build failures. Also, to any kind of bug in our execution or analysis software. We make this
information available in the reproduction package, so that these issues can be inspected.

Threats to conclusion validity could come from our interpretation of the results. We think
that our statistical methods and interpretations are the usual ones. Just in any case, we share
the Python notebooks we have used, so that they can be inspected.

Finally, we can also have external validity issues. We think we have at least partially mit-
igated those mentioned in the original paper, by generalizing results replicating the analysis,
and performing the reproduction analysis with a more diverse and different dataset. Still,
we have concerns of how general these results are for Java projects, even when they are
coincident with the original study. Extension to other languages is still a matter of further
research.

8 Conclusions and Future Work

In this paper we have shown a replication and a reproduction study by Tufano et al. (2017)
about the compilability of the history of past commits of a project. In the first one we have
repeated their analysis, with those repositories for which we found all commits, and in the
second one we extended its generality by using the same methodology with a different, more
diverse set of Java projects, and considering also Ant and Gradle in addition to Maven.

The main contributions of this paper are:

– A discussion and guidelines on reproduction packages for studies on the compilability
of past snapshots.

– A dataset and software, usable by other researchers, to study long-term degradation of
compilability.

– A partial validation of the results of the original study. In particular, results about
frequency of errors causing build failures have been validated and extended.

– Evidence on how compilability degrades over time, and how it could be mitigated by
ensuring future availability of dependencies.

– Evidence on the compilability of a different, more diverse set of Java projects, showing
some differences with the original study.

– Evidence on how the building tools affect future compilability.

In summary, we wanted to shed some more light on to which extent past snapshots of
projects are compilable “as such”, because that is the basis to know how much build-repair
techniques are needed if past artifacts of a project need to be reproduced from source code.
Since our study was a replication and a reproduction, a part of our results could be expected,
but still they add more detail and evidence to the original study. In addition, we also found
some differences, generalized evidence by analyzing a more diverse set of projects, and
produced a tool to automate the analysis of any Java repository, which could be used in
further studies by any researcher.

Page 23 of 26 65Empir Software Eng (2022) 27: 65

Still, more research is needed to draw general conclusions on the compilability of past
snapshots, especially for languages other than Java, to get a more precise knowledge about
how compilability degrades over time, and how this degradation could be mitigated.

9 Reproducibility

A reproduction package is available.7 It includes a link to an extra package in Zenodo (due
to size limitations in GitHub), with raw results and a copy of all the git repositories at the
time of the analysis.

Author contribution All authors contributed to the study conception and design. Material preparation, data
collection and analysis were performed by Michel Maes-Bermejo. The first draft of the manuscript was
written by Michel Maes-Bermejo and all authors commented on previous versions of the manuscript. All
authors read and approved the final manuscript.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Declarations This research has not involved human participants and/or animals.

Competing interests This work has been supported by the Regional Government of Madrid (CM) under
project EDGEDATA-CM (P2018/TCS-4499) cofunded by FSE & FEDER and by the Spanish Gov-
ernment under project BugBirth (RTI2018-101963-B-I00) cofunded by the Ministry of Economy and
Competitiveness, FEDER & AEI.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Asaduzzaman M, Bullock MC, Roy CK, Schneider KA (2012) Bug introducing changes: A case study with
Android. In: Proceedings of the 9th IEEE working conference on mining software repositories, MSR
’12. IEEE Press, Piscataway, pp 116–119. http://dl.acm.org/citation.cfm?id=2664446.2664463

Bavota G, Canfora G, Di Penta M, Oliveto R, Panichella S (2015) How the apache community upgrades
dependencies: an evolutionary study. Empir Softw Eng 20(5):1275–1317

Cartwright N (1991) Replicability, reproducibility, and robustness: comments on Harry Collins. Hist Polit
Econ 23(1):143–155

Cito J, Schermann G, Wittern JE, Leitner P, Zumberi S, Gall HC (2017) An empirical analysis of the Docker
container ecosystem on github. In: 2017 IEEE/ACM 14Th international conference on mining software
repositories (MSR). IEEE, pp 323–333

de Carné de Carnavalet X, Mannan M (2014) Challenges and implications of verifiable builds for security-
critical open-source software. In: Proceedings of the 30th annual computer security applications
conference, ACSAC ’14. ACM, USA, pp 16–25. https://doi.org/10.1145/2664243.2664288

7https://github.com/BuildabilityResearcher/BuildabilityStudy

65 Page 24 of 26 Empir Software Eng (2022) 27: 65

http://creativecommons.org/licenses/by/4.0/
http://dl.acm.org/citation.cfm?id=2664446.2664463
https://doi.org/10.1145/2664243.2664288
https://github.com/BuildabilityResearcher/BuildabilityStudy

Di Cosmo R (2018) Software Heritage: why and how we collect, preserve and share all the software source
code. In: 2018 IEEE/ACM 40Th international conference on software engineering: Software engineering
in society (ICSE-SEIS). IEEE, pp 2–2

Di Cosmo R, Zacchiroli S (2017) Software Heritage: Why and how to preserve software source code
Glukhova M (2017) Tools for Ensuring Reproducible Builds for Open-Source Software. Master’s

thesis, Lappeenranta University of Technology. http://lutpub.lut.fi/bitstream/handle/10024/135304/
MariaGlukhova ToolsForEnsuringReproducibleBuildsForOpenSourceSoftware.pdf?sequence=2

Hassan F, Mostafa S, Lam ES, Wang X (2017) Automatic building of Java projects in software repositories: A
study on feasibility and challenges. In: 2017 ACM/IEEE International symposium on empirical software
engineering and measurement (ESEM). IEEE, pp 38–47

Hassan F, Wang X (2018) Hirebuild: An automatic approach to history-driven repair of build scripts. In: 2018
IEEE/ACM 40Th international conference on software engineering (ICSE), pp 1078–1089

Juristo N, Gómez O. S. (2010) Replication of software engineering experiments. In: Empirical software
engineering and verification. Springer, pp 60–88

Just R, Jalali D, Ernst MD (2014) Defects4j: a database of existing faults to enable controlled testing studies
for java programs. In: Proceedings of the 2014 international symposium on software testing and analysis,
ISSTA 2014. ACM, USA, pp 437–440. https://doi.org/10.1145/2610384.2628055

Just R, Jalali D, Inozemtseva L, Ernst MD, Holmes R, Fraser G (2014) Are mutants a valid sub-
stitute for real faults in software testing? In: Proceedings of the 22Nd ACM SIGSOFT interna-
tional symposium on foundations of software engineering, FSE 2014. ACM, USA, pp 654–665.
https://doi.org/10.1145/2635868.2635929

Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D (2016) An in-depth study of the
promises and perils of mining github. Empir Softw Eng 21(5):2035–2071

Macho C, McIntosh S, Pinzger M (2018) Automatically repairing dependency-related build breakage. In:
2018 IEEE 25Th international conference on software analysis, evolution and reengineering (SANER).
IEEE, pp 106–117

Manacero A (2011) Using binary code to build execution graph models for performance evaluation of parallel
programs graph models

Maudoux G, Mens K (2018) Correct, efficient, and tailored: The future of build systems. IEEE Softw
35(2):32–37

Meneely A, Srinivasan H, Musa A, Tejeda AR, Mokary M, Spates B (2013) When a patch goes bad: Explor-
ing the properties of vulnerability-contributing commits. In: 2013 ACM/IEEE International symposium
on empirical software engineering and measurement. IEEE, pp 65–74

Murgia A, Concas G, Marchesi M, Tonelli R (2010) A machine learning approach for text categorization
of fixing-issue commits on CVS. In: Proceedings of the 2010 ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement, ESEM ’10. ACM, New York, pp 6:1–6:10.
https://doi.org/10.1145/1852786.1852794

Nikitin K, Kokoris-Kogias E, Jovanovic P, Gailly N, Gasser L, Khoffi I, Cappos J (2017) Ford, B.:
{CHAINIAC}: Proactive software-update transparency via collectively signed skipchains and verified
builds. In: 26Th {USENIX} security symposium ({USENIX} security 17), pp 1271–1287

Perry M, Schoen S, Steiner H (2014) Reproducible builds. moving beyond single points of failure for software
distribution. In: Chaos communication congress

Raemaekers S, van Deursen A, Visser J (2012) Measuring software library stability through historical version
analysis. In: 2012 28Th IEEE international conference on software maintenance (ICSM), pp 378–387.
https://doi.org/10.1109/ICSM.2012.6405296

Rausch T, Hummer W, Leitner P, Schulte S (2017) An empirical analysis of build failures in the
continuous integration workflows of Java-based open-source software. In: Proceedings of the 14th Inter-
national Conference on Mining Software Repositories, MSR ’17. IEEE Press, Piscataway, pp 345–355.
https://doi.org/10.1109/MSR.2017.54

Ren Z, Jiang H, Xuan J, Yang Z (2018) Automated localization for unreproducible builds. In: Proceed-
ings of the 40th International Conference on Software Engineering, ICSE ’18. ACM, USA, pp 71–81.
https://doi.org/10.1145/3180155.3180224

Reproducible builds (2017) https://reproducible-builds.org/ (Accessed May 20, 2021)
Reproducible builds in Debian (2018) https://wiki.debian.org/ReproducibleBuilds (Accessed May 20, 2021)
Seo H, Sadowski C, Elbaum S, Aftandilian E, Bowdidge R (2014) Programmers’ build errors: A case study

(at Google). In: Proceedings of the 36th International Conference on Software Engineering, ICSE 2014.
ACM, USA, pp 724–734. https://doi.org/10.1145/2568225.2568255

Skrimstad Y (2018) Improving Trust in Software through Diverse Double-Compiling and Reproducible
Builds. Master’s thesis, University of Oslo. http://urn.nb.no/URN:NBN:no-68006

Page 25 of 26 65Empir Software Eng (2022) 27: 65

http://lutpub.lut.fi/bitstream/handle/10024/135304/MariaGlukhova_ToolsForEnsuringReproducibleBuildsForOpenSourceSoftware.pdf?sequence=2
http://lutpub.lut.fi/bitstream/handle/10024/135304/MariaGlukhova_ToolsForEnsuringReproducibleBuildsForOpenSourceSoftware.pdf?sequence=2
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/1852786.1852794
https://doi.org/10.1109/ICSM.2012.6405296
https://doi.org/10.1109/MSR.2017.54
https://doi.org/10.1145/3180155.3180224
https://reproducible-builds.org/
https://wiki.debian.org/ReproducibleBuilds
https://doi.org/10.1145/2568225.2568255
http://urn.nb.no/URN:NBN:no-68006

Śliwerski J., Zimmermann T, Zeller A (2005) When do changes induce fixes? In: Proceedings of the
2005 International Workshop on Mining Software Repositories, MSR ’05. ACM, USA, pp 1–5.
https://doi.org/10.1145/1082983.1083147

Spinellis D (2012) Git. IEEE software 29(3):100–101
Sulı́r M, Porubän J (2016) A quantitative study of java software buildability. In: Proceedings of the 7th

international workshop on evaluation and usability of programming languages and tools, PLATEAU
2016. ACM, USA, pp 17–25. https://doi.org/10.1145/3001878.3001882

Tian Y (2017) Mining software repositories for automatic software bug management from bug triaging to
patch backporting. Ph.D. thesis, Singapore Management University

Tufano M, Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A, Poshyvanyk D (2017) There and back
again: Can you compile that snapshot? J Softw Evolution Process 29(4):e1838

Vassallo C, Proksch S, Zemp T, Gall HC (2020) Every build you break: Developer-oriented assistance for
build failure resolution. Empir Softw Eng 25(3):2218–2257

Zimmermann T, Kim S, Zeller A, Whitehead EJ Jr (2006) Mining version archives for co-changed lines.
In: Proceedings of the 2006 International Workshop on Mining Software Repositories, MSR ’06. ACM,
USA, pp 72–75. https://doi.org/10.1145/1137983.1138001

Zimmermann T, Nagappan N, Zeller A (2008) Predicting Bugs from History. Springer, Berlin, pp 69–88.
https://doi.org/10.1007/978-3-540-76440-3 4

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Michel Maes-Bermejo1 · Micael Gallego1 · Francisco Gortázar1 · Gregorio Robles2 ·
Jesus M. Gonzalez-Barahona2

Michel Maes-Bermejo
michel.maes@urjc.es

Micael Gallego
micael.gallego@urjc.es

Francisco Gortázar
francisco.gortazar@urjc.es

Jesus M. Gonzalez-Barahona
jesus.gonzalez.barahona@urjc.es

1 Department of Computer Science, Universidad Rey Juan Carlos, Móstoles, Spain
2 Department of Signal Theory and Communications and Telematics Systems and Computing,

Universidad Rey Juan Carlos, Fuenlabrada, Madrid, Spain

65 Page 26 of 26 Empir Software Eng (2022) 27: 65

https://doi.org/10.1145/1082983.1083147
https://doi.org/10.1145/3001878.3001882
https://doi.org/10.1145/1137983.1138001
https://doi.org/10.1007/978-3-540-76440-3_4
http://orcid.org/0000-0002-1442-6761
mailto: michel.maes@urjc.es
mailto: micael.gallego@urjc.es
mailto: francisco.gortazar@urjc.es
mailto: jesus.gonzalez.barahona@urjc.es

	Revisiting the building of past snapshots — a replication and reproduction study
	Abstract
	Introduction
	(1)
	(2)

	Previous Research
	Definitions
	Methodology
	Replication Study
	Subject Recovery
	Building
	Obtaining Results

	Reproduction Study
	Subject Selection and Recovery
	Building
	Obtaining Results

	Replication Study: Results
	Data for Replication
	Compilability
	Failure Analysis

	Reproduction Study: Results
	Compilability
	Failure Analysis
	Building System

	Discussion
	Reproduction Package
	Replication Study
	Reproduction Study
	Mitigation Measures
	Threats to Validity

	Conclusions and Future Work
	Reproducibility
	References
	Affiliations

