
https://doi.org/10.1007/s10664-021-10108-z

Evolving software system families in space and time
with feature revisions

Gabriela Karoline Michelon1 ·David Obermann2 ·Wesley K. G. Assunção2,3 ·
Lukas Linsbauer4 ·Paul Grünbacher2 · Stefan Fischer5 ·Roberto E. Lopez-Herrejon6 ·
Alexander Egyed2

© The Author(s) 2022

Abstract
Software companies commonly develop and maintain variants of systems, with different
feature combinations for different customers. Thus, they must cope with variability in space.
Software companies further must cope with variability in time, when updating system vari-
ants by revising existing software features. Inevitably, variants evolve orthogonally along
these two dimensions, resulting in challenges for software maintenance. Our work addresses
this challenge with ECSEST (Extraction and Composition for Systems Evolving in Space
and Time), an approach for locating feature revisions and composing variants with different
feature revisions. We evaluated ECSEST using feature revisions and variants from six highly
configurable open source systems. To assess the correctness of our approach, we compared
the artifacts of input variants with the artifacts from the corresponding composed variants
based on the implementation of the extracted features. The extracted traces allowed com-
posing variants with 99-100% precision, as well as with 97-99% average recall. Regarding
the composition of variants with new configurations, our approach can combine differ-
ent feature revisions with 99% precision and recall on average. Additionally, our approach
retrieves hints when composing new configurations, which are useful to find artifacts that
may have to be added or removed for completing a product. The hints help to understand
possible feature interactions or dependencies. The average time to locate feature revisions
ranged from 25 to 250 seconds, whereas the average time for composing a variant was 18
seconds. Therefore, our experiments demonstrate that ECSEST is feasible and effective.

Keywords Feature location · Feature revisions · Variation control system · Repository
mining

Communicated by: Philippe Collet, Sarah Nadi, Christoph Seidl, and Leopoldo Motta Teixeira

This article belongs to the Topical Collection: Software Product Lines and Variability-rich Systems
(SPLC)

� Gabriela Karoline Michelon
gabriela.michelon@jku.at

Extended author information available on the last page of the article.

Empirical Software Engineering (2022) 27: 112

Accepted: 10 December 2021 /Published o nline: 3 0 M ay 2 022

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10108-z&domain=pdf
http://orcid.org/0000-0002-9638-8569
mailto: gabriela.michelon@jku.at


1 Introduction

Software system families can evolve in two dimensions: (i) evolution in space, when new
product variants need to be customized, and (ii) evolution in time, when features of existing
individual product variants need to be modified over time (Strüber et al. 2019). Throughout
the life cycle of software systems, the creation of different product variants is unavoidable
due to the diversity of functional and non-functional customer requirements in different
market segments, usage scenarios, and platforms, leading to evolution in space. In the time
dimension, each product variant continuously evolves, resulting in multiple revisions of the
variant. Evolution in this dimension is the result of customers requiring enhancements, bug
fixes, or scalability issues requiring implementation changes (Melo et al. 2016).

A software product line (SPL) can encompass evolution in space by systematically man-
aging and tailoring many variants of a software system. An SPL consists of a platform with
a set of defined and managed features, each implementing functionality and behavior vis-
ible to the end-user (Pohl et al. 2005). The SPL approach initially requires high upfront
investment compared to traditional single system development, but in the long run pays off
with high numbers of features and product variants (Strüber et al. 2019). SPLs also evolve
over time due to bug fixes, refactoring, or enhancing modifications of features or the code
of existing variants (Hinterreiter et al. 2019; Michelon et al. 2020a).

Features of product variants derived from an SPL can be modified to quickly meet cus-
tomer demands. However, if modifications are not propagated to the SPL platform, they can
hardly be reused in other products. For instance, if a particular change is required for a new
hardware device acquired by a customer, reusing this new version of the feature in other
variants can rapidly become cumbersome. As a result, software companies not only have to
deal with different product variants but also with different revisions of product variants and
even different revisions of features over time. Analogous to sequential versions of software
systems, i.e., revisions (Linsbauer et al. 2021), we adopt the concept of feature revisions
as implementation modifications over time that lead to new feature versions. Despite this
practical need of different feature versions, there is currently no straightforward solution for
the challenging problem of integrating the management and evolution of system families in
space and time (Berger et al. 2019).

Nowadays, software engineers use distinct approaches and tools to deal with these
dimensions of evolution. An example is the combination of an SPL with a version control
system (VCS) providing capabilities to track changes (Collins-Sussman et al. 2002). How-
ever, developers need to combine additional mechanisms and tools when evolving system
families in space and time. Variability mechanisms are often specific for realizing vari-
ability in certain types of artifacts, e.g., AspectJ for Java or preprocessor annotations for
text files (Linsbauer et al. 2021). A well-known example is the Linux kernel, which com-
bines several variability management techniques (Clements and Northrop 2002) to provide
an integrated software platform keeping variability information consistent across different
types of artifacts (Berger et al. 2019). Linux relies on a variant-aware build system (Berger
et al. 2010), an interactive configurator tool (Sincero et al. 2007), and a variability model
representation (Berger et al. 2013). In addition to its build rules encoded in Makefiles, the
Linux kernel is implemented with preprocessor directives to customize its features and to
control the compilation of entire source files or fragments (Passos et al. 2015). Still, the
system is hosted in a VCS to keep track of changes over time1.

1https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux

112   Page 2 of 54 Empir Software Eng (2022) 27: 112

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git


Most existing mechanisms for variability management have a strong impact on soft-
ware development, as they require adding annotations to the source code, or assume certain
programming paradigms (such as feature-oriented or aspect-oriented programming). These
variability mechanisms require manual placement of variation points and their concrete real-
ization is usually specific for a certain type of artifact (e.g., AspectJ for Java) (Linsbauer
et al. 2021). The vast majority of industrial SPLs are realized with preprocessor directives
(Apel et al. 2013; Medeiros et al. 2015). However, they do not support revision manage-
ment, which is usually handled by VCSs to preserve the evolution history (Berger et al.
2020). Although preprocessor directives can be used in combination with VCSs, they have
received strong criticism regarding the separation of concerns, error proneness, and code
obfuscation (Medeiros et al. 2015). Furthermore, preprocessor directives are limited to man-
aging system variability of textual files. System families, however, rarely consist of only a
single type of artifact (Linsbauer et al. 2017). Furthermore, while VCSs support evolution
in time at the file or directory level, they do not provide adequate support for evolution in
space as shown recently (Berger et al. 2019; Krüger et al. 2019; Linsbauer et al. 2017; Lins-
bauer et al. 2021). Thus, the current combination of tools in practice, unfortunately, does not
allow to comprehensively and uniformly handle variants and revisions (Hinterreiter et al.
2019; Linsbauer et al. 2021; Michelon et al. 2021a).

Variation control systems (VarCSs) have been proposed to address these challenges,
as discussed in a recent survey (Linsbauer et al. 2021). A VarCS supports system devel-
opment based on features, reducing the complexity of changing variants and easing the
maintenance and evolution of revisions by alleviating developers from manually editing
variation points and integrating the changes (Linsbauer et al. 2021). For instance, the VarCS
ECCO2 supports the evolution of arbitrary types of artifacts (Michelon et al. 2020d) based
on plug-in architecture (Linsbauer et al. 2021). However, developers are still concerned
to replace popular and mature mechanisms, such as the combination of SPLs and VCS,
with VarCSs providing proprietary repositories and unfamiliar operations. That is why
annotation-based preprocessors combined with VCS are still the most popular variability
mechanism (Linsbauer et al. 2021).

Based on the limitations and needs for properly dealing with the evolution of systems in
space and time at the level of features, this paper extends previous work (Michelon et al.
2020d) on feature revision location implemented in ECCO to recover information of the sys-
tem evolution over time at the feature level. We present and evaluate ECSEST (Extraction
and Composition for Systems Evolving in Space and Time), an approach for aiding sys-
tem evolution in space and time by locating feature revisions and composing variants with
different combinations of features and their revisions. ECSEST thus not only supports the
analysis of software systems evolving in space and time by locating feature revisions, but
also allows the composition of new products by using the located feature revisions.

As a novelty to support the composition of new products, ECSEST introduces a strategy
to provide hints about feature interactions and possibly missing or surplus feature revisions
for a configuration. This eases system development and the composition of new products
based on new combinations of features and their revisions. Hence, ECSEST can aid the
evolution of software families at both levels of domain engineering and application engi-
neering (Apel et al. 2013). For example, it supports the domain implementation and product
derivation by reusing and combining artifacts that correspond to feature revisions.

2https://github.com/jku-isse/ecco

Page 3 of 54    112Empir Software Eng (2022) 27: 112

https://github.com/jku-isse/ecco/tree/develop


Specifically, in this paper we extend our previous work (Michelon et al. 2020d) as
follows:

– Composition of product variants based on feature revisions: We present an approach
for composing variants and provide further details of the feature revision location. We
include an illustrative example to show how our approach supports system evolution in
space and time and how it is implemented in ECCO2. Additionally, we further extended
our approach with hints showing possible conflicts and interactions between feature
revisions when composing new configurations.

– Support for C language artifacts: We developed a new adapter, i.e., a new ECCO
plug-in, using a fine-grained tree structure to perform feature revision location, while
our previous work (Michelon et al. 2020d) was using a text plug-in. Our new plug-in
improves the analysis of artifact equivalence when computing traces by analyzing dif-
ferences in the abstract syntax tree (AST) of feature revisions. Thus, it also enables the
evaluation of the evolution of C source code. Although our approach is independent of
artifact type, the new plug-in makes our approach easily adoptable in practice, given
the high number of SPLs implemented in C.

– Evaluation with additional systems and more feature revisions: We extended our empir-
ical evaluation by applying our approach to more systems from different domains. We
now locate feature revisions and compose new configurations with the located feature
revisions from six systems. Our analysis includes more points in time, leading to more
feature revisions and more product variants. We thus mined more Git commits of more
C preprocessor-based systems and included more system variants in our replication
package3.

– Enhanced analysis: To evaluate the approach of this extended work, we now com-
pute the runtime performance of composing variants with feature revisions besides
precision, recall, and extraction time. Further, we computed new metrics for the
hints retrieved when composing new products. These metrics indicate conflicts and
interactions when composing product variants with different combinations of feature
revisions. We computed further metrics allowing an in-depth analysis of feature evolu-
tion at the implementation level. These metrics count the different AST nodes used by
our plug-in to store the artifacts of feature revisions.

The remainder of this paper is structured as follows. Section 2 presents background infor-
mation. Section 3 discusses the motivation for our research and the problems we aim to
address. Section 4 explains our ECSEST approach. Section 5 presents the research ques-
tions of our evaluation, as well as the methodology, subject systems, the metrics used in
our experiments, and relevant implementation aspects. Section 6 summarizes and discusses
the results. Section 7 discusses threats to validity and Section 8 presents related research.
Finally, Section 9 concludes the paper and outlines future work.

2 Background

Variability in space and time is the consequence of collectively developing and maintaining
families of software systems (Schwȧgerl 2018). Software systems need to evolve due to
developer mistakes and unpredictable future requirements. Variability in space means that

3http://doi.org/10.5281/zenodo.4555199

112   Page 4 of 54 Empir Software Eng (2022) 27: 112

http://doi.org/10.5281/zenodo.4555199


different co-existing functional assets of a software system exist at a specific point in time.
Variability in time means that different revisions of a functionality, i.e., an asset or a set of
assets, exist at different points in time (Pohl et al. 2005). This section discusses existing
concepts, approaches, techniques, and tools to deal with evolution in space and/or time.

Software Product Lines SPLs provide systematic reuse of assets through the development
of a common core and a set of features satisfying customer needs of a particular market seg-
ment (Clements and Northrop 2002). The main advantages of systematic reuse in SPLs are
the reduction of development costs and the time-to-market, and an increase in software qual-
ity (McGovern et al. 2003; Pohl et al. 2005). However, adopting an SPL strategy requires
expensive up-front investment (Martinez 2016) for defining the SPL scope and product port-
folio offered by a software company (Pohl and Metzger 2018). Further, it is necessary to
define which set of features and which set of domain artifacts can be reused for product
composition.

A product, therefore, is composed of a set of artifacts that realize the set of features
constituting a valid software system (Estublier 2000). A new product variant is needed when
no existing variant implements the requested features, or when some of the features were
modified to update existing variants. Thus, the composed product variant will contain the
same features, but not the same implementation as before (Ghabach et al. 2018). In this
context, feature location techniques can ease evolution and maintenance tasks (Bennett and
Rajlich 2000).

Feature Location Features are the building blocks of SPLs and are defined as a user-visible
functionality of the system (Apel et al. 2013). Feature location aims at finding the artifacts
responsible for implementing specific system functionalities. Additionally, feature location
is used during the incremental change process to determine where a change should be done
in the code and to find the affected code. Thus, feature location techniques have been used
for maintenance and evolution tasks, as well as for analyzing the impact of changes (Dit
et al. 2013). Feature location has received significant attention in the research community
and many (semi-)automated techniques have been proposed (Assunção and Vergilio 2014;
Cruz et al. 2019; Rubin and Chechik 2013), which can be classified into four categories:
(i) dynamic feature location techniques examine the system during runtime and retrieve
feature information through execution traces of constructed scenarios, where the feature to
be located is exercised (Cruz et al. 2019); (ii) static feature location techniques rely on the
source code structure to find feature code (Dit et al. 2013); (iii) textual feature location
techniques use textual analysis to find feature code, such as information retrieval and natural
language processing analysis (Cruz et al. 2019); and (iv) hybrid feature location techniques
combine several strategies (Dit et al. 2013; Michelon et al. 2021b, d). Our approach adopts
static analysis to compare the artifacts and feature revisions of existing system variants (see
Section 4).

Version and Variation Control VCSs have been used to manage system evolution in time.
A version control system, a.k.a revision control system, tracks incremental versions (or
revisions) of files and directories over time (Collins-Sussman et al. 2002). VCSs allow the
implementation of systems in a collaborative way, i.e., a system can be developed in paral-
lel by multiple developers who can later explore the change history. Parallel development
of software features is commonly handled in VCSs either with branching mechanisms or
optimistic methods, such as copy-modify-merge, workspaces, and transactions (MacKay
1995). However, as explained, developers not only have to maintain and evolve revisions

Page 5 of 54    112Empir Software Eng (2022) 27: 112



of a software system but also need to maintain different products of an SPL (Conradi and
Westfechtel 1998). Therefore, the evolution of software systems can be characterized with a
two-dimensional view with variants incrementing along one axis and revisions incrementing
through time along the other axis (MacKay 1995).

Cloning variants via branching or forking mechanisms of VCSs offers only limited sup-
port for system families because variations are not managed at a fine-granular level based on
features or a similar concept (Linsbauer et al. 2021). As a consequence, multiple products
need to be maintained, which leads to high maintenance efforts (Schwȧgerl 2018). Even
branching models (MacKay 1995) for feature development require developers to manually
edit variation points and to manually integrate changes. Further, as the feature is developed
in isolation, it is no longer available once merged into the system branch. Hence, branching
mechanisms do not offer adequate support for understanding and maintaining the evolution
in space and time of system variants.

VCSs and SPLs are thus widely used in combination to support variability and evolu-
tion (Berger et al. 2019). Annotation-based SPLs combined with VCSs allow customizing
different products with preprocessor directives. However, with this variability mechanism
features can be delimited only in text files, and an SPL rarely consists of only a single type
of artifact (Linsbauer et al. 2021). Furthermore, VCSs enable the versioning of the whole
platform and can recover and keep track of changes of lines and files but not at the level
of features (Berger et al. 2019). Therefore, maintenance and evolution tasks require manual
analysis of tangled features in multiple files and blocks of code. This is a cumbersome and
complex task since preprocessor directives are error-prone and hamper code comprehension
(Medeiros et al. 2015; Michelon et al. 2021a).

Some VarCSs offer support for feature development of software systems over time by
transactionally editing and automatically integrating the features back into the variant-rich
system (Linsbauer et al. 2021). In a survey, Linsbauer et al. (2021) identified six VarCSs that
can offer visible operations, such as externalization, modification, and internalization in a
transactional way. Three VarCSs support revisions of the whole system, while only ECCO
supports feature revisions (Michelon et al. 2020d). It also provides support for different
programming language and artifact types and can thus version any kind of artifact. Thus,
ECCO has capabilities to aid the maintenance and evolution of a software system family at
the level of features with no extra costs. Previous studies (Fischer et al. 2014, 2015, 2019;
Michelon et al. 2019, 2021b, d) already showed satisfactory evaluation results using ECCO
in the context of SPLs and software system evolution.

3 Motivation

In an SPL the evolution in time is more complex than evolving single variants. For instance,
developers need to consider all variants at the same time when using preprocessor direc-
tives (Melo et al. 2016). Although annotation-based SPLs can be versioned in VCSs, the
evolution in time is tracked for the whole platform at coarse granularity (Berger et al. 2019;
Linsbauer et al. 2021; Michelon et al. 2021a, c). Even if systematic reuse is realized by
annotation-based SPLs in VCSs, manual analysis and propagation of changes of feature
revisions in different releases of a system are highly challenging. An example can be seen
in SQLite4, a C-language library implementing the most widely used database engine in the

4https://www.sqlite.org/index.html

112   Page 6 of 54 Empir Software Eng (2022) 27: 112

https://www.sqlite.org/index.html


world. The feature SQLITE TEST was modified for the release branch-3.95. The same set
of changes, i.e., the feature revision SQLITE TEST committed in the release branch-3.9,
had to be propagated to three newer releases: branch-3.18, branch-3.19, and branch-3.22.
This example confirms that features have different implementations, with different behav-
iors at different points in time, which is of interest for developers combining different
revisions of a feature in existing configurations.

We illustrate the challenges of evolving the source code of a real system implemented
with preprocessor directives in Git VCS. For that, we consider LibSSH6, a C multiplat-
form library implementing the SSHv2 protocol on the client and server-side. We used our
mining tool (Michelon et al. 2021a, c) to retrieve LibSSH’s feature revisions from all 5022
commits, covering 48 releases and around 16 years of development. The analysis shows
significant system evolution in both space and time. Over the system life cycle, 511 fea-
tures were introduced, 302 were changed at least once, representing a total of 6242 feature
revisions, also including the changes of the system core as feature revisions. Dealing with
all releases of a system and considering the huge configuration space with feature revisions
leads to complex maintenance tasks. Usually, multiple features change in a single commit,
and commit messages not always reflect the changes performed (Herzig et al. 2016). Find-
ing which parts of the source code of specific annotated features are causing problems and
should be changed requires deep developer’s knowledge, in particular if other developers do
not comprehend earlier design decisions (Kru̇ger et al. 2021; Nassif and Robillard 2017),
mainly when many developers are involved in open-source projects.

Regarding feature evolution, we present an analysis of the features with the highest num-
ber of revisions in the LibSSH system. The feature WITH SERVER changed in 21 releases,
resulting in a total number of 241 feature revisions. In this case, 21 system releases contain
this feature, i.e., each possible configuration including this feature could have 241 differ-
ent implementations, if we consider all commits of its development. However, even if a
developer has to analyze a smaller number of feature revisions, the code has to be manually
analyzed and retrieved. We analyzed some of the commits changing WITH SERVER: usu-
ally multiple files and lines of source code changed in a single commit and also between
releases of the system, thus resulting in different implementations of the feature at dif-
ferent points in time. Some of the changes represent bug fixes, e.g., commits 3b8c4dc77

and 9546b20d8, some represent new system functionality, e.g., commits b9b7174d9 and
9b2eefe610, implemented by this feature, some represent deletions of functionality of this
feature, e.g., commits 55846a4c11 and 636432e412. Furthermore, we analyzed how many
files and lines were part of the feature implementation in the first and last releases of the
system. The feature was first added in two source code files and comprised 119 lines, while
it covered 30 source code files and 4734 lines in the last release.

Now, suppose a software company has a product with a configuration containing a couple
of features and needs to use another specific revision of the feature WITH SERVER. If the

5https://www.sqlite.org/src/info/7b4583f932ff0933
6Analysis based on all commits of all releases of LibSSH: https://gitlab.com/libssh
7https://gitlab.com/libssh/commit/3b8c4dc
8https://gitlab.com/libssh/commit/9546b20
9https://gitlab.com/libssh/commit/b9b7174
10https://gitlab.com/libssh/commit/9b2eefe
11https://gitlab.com/libssh/commit/55846a4
12https://gitlab.com/libssh/commit/636432e

Page 7 of 54    112Empir Software Eng (2022) 27: 112

https://www.sqlite.org/src/info/7b4583f932ff0933
https://gitlab.com/libssh/libssh-mirror
https://gitlab.com/libssh/libssh-mirror/-/commit/3b8c4dc750352288febb282c9f52f2cd20a760d5
https://gitlab.com/libssh/libssh-mirror/-/commit/9546b20dec8ebe1896fb5a5c6ed6b7d5f9dc8b0c
https://gitlab.com/libssh/libssh-mirror/-/commit/b9b7174d858faa070e66db9b7710c384756f90fc
https://gitlab.com/libssh/libssh-mirror/-/commit/9b2eefe62c03b85ec5ec2e19a894e3e9b1640be2
https://gitlab.com/libssh/libssh-mirror/-/commit/55846a4c7b09af2d105c7f7dfd0a43aab2f6e5a5
https://gitlab.com/libssh/libssh-mirror/-/commit/636432e47593f145675e40e21bb8c8b6eb6ce8be


SPL is implemented in a VCS, a developer may have to rely on documentation describing
the kinds of changes performed in different commits of the feature WITH SERVER, which
is usually not available. Thus, the developer would have to manually select the feature code,
then, copy and paste it to specific configuration releases. To retrieve another feature, for
instance the feature HAVE SSH1 at a specific point in time from commit 5f7c84f913, the
developer would need to analyze 29 files, 1339 additions, and 188 deletions. Thus, this
manual task is very time-consuming, even more so if multiple features are committed at a
single point in time, which is common in practice: for instance, the revisions of the feature
HAVE SSH1 in the first 50 commits happened together with revisions of 13 other features
impacting 73 source code files. Therefore, in this context, ECSEST aids maintenance and
evolution tasks in annotation-based SPLs in VCSs by retrieving information of the system
evolution in space and time at the feature granularity (Michelon et al. 2021c).

4 ECSEST Approach

We now present details of ECSEST (Extraction and Composition for Systems Evolving in
Space and Time), our approach supporting software systems evolving in space and time.
Figure 1 presents an overview of ECSEST. We first outline the feature revision location
for extraction in Section 4.2 (Step 1 in Fig. 1), i.e., to map feature revisions to artifacts
from existing software system variants. Locating feature revisions is an incremental process,
which receives as input a product implementation and a configuration characterizing its fea-
tures at a specific point in time. This step creates new traces and refines existing ones in
the ECCO repository for every new input variant. We explain our approach for variant com-
position in Section 4.3 (Step 2 in Fig. 1), which requires as input a configuration provided
by the user and the output traces stored in the ECCO repository created when locating fea-
ture revisions. The variant composition results in the product implementation and a file with
hints to help the product completion. In the following, we give details of the data structures
and processes of the feature revision location and variant composition.

4.1 Data Structures

Variants (Input) A variant v ∈ V is a pair (F,A), where F is a set of feature revisions and
A is a set of implementation artifacts.

Features andRevisions Every feature f exists in multiple revisions r , denoted as fr , where
f and r are arbitrary unique identifiers for the feature and the revision, respectively. Two
variants v1 and v2 with the same feature f have the same revision r of feature f , i.e., feature
revision fr , if the feature is implemented in the exact same way in both variants.

Implementation Artifacts A variant’s implementation consists of a set of artifacts that are
organized in a hierarchical tree structure, which we refer to as artifact tree. An artifact can
represent a folder, a file, or any other element of a system’s implementation. For example, in
case of C source code, an artifact could represent a file, a field, a function, a block or a line
of code inside a function, a header, or a define statement. We assume that any two artifacts
a1, a2 can be compared for equivalence (a1 ≡ a2) as follows: two artifacts a1, a2 ∈ A are

13https://gitlab.com/libssh/commit/5f7c84f

112   Page 8 of 54 Empir Software Eng (2022) 27: 112

https://gitlab.com/libssh/libssh-mirror/-/commit/5f7c84f900b81e3bbff55378f8170ddf150daf9c


Feature 
Revision
Location

Output 
Traces

Variant
Composition

1

2

Output
Traces
Output
Traces
Output
Traces

Ground truth
Variants

Ground truth
Variants

Input
Variants

(Configuration,
Implementation)

Legend: Artifacts

Step Repository

ECCO

ConfigurationVariant
+ Hints

(Presence Condition,
Implementation
Fragments)

(Implementation
+ Hints File)

Fig. 1 The ECSEST approach overview

equivalent (a1 ≡ a2) if a1 and a2 are equal, e.g., textually equal in the case of programming
artifacts (a1 = a2) and their parent artifacts are equivalent, i.e., their position in the artifact
tree is the same. Thus, for programming artifacts, we compare if two nodes contain the
same text-based artifact and if they have the same parent nodes. Here the same rule applies,
parent nodes are equivalent if they are syntactically equal.

Traces (Output) The goal of our approach for feature revision location is to compute a
presence condition C for every artifact a. The output therefore is a set of traces T . A trace
t ∈ T is a pair (C,A) that maps a set of artifacts A to a presence condition C. The traces
can abstract where a feature is implemented, e.g., in which files and lines; as well as abstract
feature interactions, i.e., artifacts that always appear together when specific feature revi-
sions are present in a configuration. Furthermore, traces show which artifacts are common
between feature revisions.

4.2 Feature Revision Location

For extraction of the evolution in space and time, the first step of our approach locates
feature revisions (see Fig. 1). The input of the step is a set of variants V , with each variant
v consisting of a configuration, i.e., a set of feature revisions F , and an implementation,
i.e., a set of artifacts A. This is an incremental step where the existing traces T (output)
stored in a repository are refined for every new input variant. A trace t consists of a presence
condition C for a (set of) artifact(s). The input, as we explain in Fig. 3, for instance, can be
a partial configuration of a variant, containing the set of feature revisions that changed in a
specific commit. The commits of a system in a VCS thus represent points in time of new
revisions of features. As output, our approach retrieves a set of traces T ′, each mapping the
implementation artifact fragments to a presence condition. Every artifact is then mapped

Page 9 of 54    112Empir Software Eng (2022) 27: 112



to a (set of) feature revision(s). This is necessary for composing the variants later on, i.e.,
when joining all artifacts in a product, the configuration must include the feature revisions
containing the artifacts of the required core and functionalities.

ECSEST is independent of the artifact type by using a common structure for data in
the location process. Thus, our approach can locate feature revisions in any artifact type
if provided the input for our internal data structure. The approach can be extended with
plug-ins (adapters) as long as different implementation languages and kinds of artifacts can
be represented in a tree structure. In Fig. 2 we show the tree structure of the new plug-in
implemented for parsing C source code artifacts. The tree structure adopted here is due to the
type of artifacts of our ground truth variants used to evaluate our approach. For example, our
approach already supports plug-ins for Java, text, UML models, PNG images, and LilyPond
music artifacts, as shown in previous work (Michelon et al. 2019, b, d, Grünbacher et al.
2021).

Figure 3 shows the analysis of two dimensions: space and time of existing system vari-
ants for obtaining input variants necessary for the feature revision location process. For
characterizing different points in time, i.e., when features were changed, numbers are added
incrementally to the features’ name. Figure 3 depicts such a situation: at a specific point
in time T1, the software system was developed from scratch. For T1 we know that the fea-
tures of the system were in their first revision and thus assigned the revision number 1. At
the second point in time T2, we see a change of a specific feature (FeatY), which already
existed at T1. Thus, the revision number of the feature was incremented to 2.

In Fig. 3, we can also see that each variant contains a feature called BASE, which rep-
resents the common code of the variants and represents the core of an SPL, i.e., parts of
the system not related to features of the SPL. However, the core of the system is subject
to frequent changes, and thus knowing the versions of the common code is also important
for managing and evolving the system artifacts. Therefore, the core of the system is also
mapped to a feature revision, which can have any name, but is represented here as the feature
BASE. The feature revision location then analyzes in how many variants a feature revision
appears, in how many variants a (set of) artifact(s) appears, and in how many variants a pair
of feature revision(s) and a (set of) artifact(s) appear together. In this way, all artifacts are
mapped to feature revisions.

File

Includes

...

Defines Fields

Root

File...

Functions

Block IfBlock ForBlock SwitchBlock

CaseBlock

DoBlockWhileBlock ProblemBlockLine

... ... ... ... ...

...

...

Fig. 2 Tree structure of the new ECCO plug-in for parsing C source code

112   Page 10 of 54 Empir Software Eng (2022) 27: 112



Variant

Time

Variants

T1

T2

...

Tn

VariantVariantInput
Variants

BASE.1
FeatA.1
FeatB.1
FeatC.1

BASE.1
FeatA.1
FeatC.1

BASE.1
FeatY.1

BASE.n
FeatA.n
FeatB.n
FeatC.2

(Configuration,
Implementation)

Input
Variants

Input
Variants

BASE.1
FeatY.2

Fig. 3 Input variants of our approach for the two dimensions of variability analysis

4.2.1 Trace Computation

Based on the aforementioned data structures, we now explain how the traces and presence
conditions are computed based on the running example shown in Table 1. This example was
extracted from a code snippet from file connect.c of the commit c65f56ae14 (Listing 1). List-
ing 2 shows the code of a variant v1 containing features BASE and HAVE POLL (Lines 1,
2, 4, 8, 9, 11, 12 and 23 from Listing 1) at point T1. Listing 3 shows the code of a variant v2
containing BASE and absence of the features HAVE SELECT and HAVE POLL (Lines 1, 2,
6, 8, 9, 20, 21 and 23 from Listing 1) at point T1. Listing 4 shows the code of a variant v3
containing the features BASE and HAVE SELECT (Lines 1, 2, 6, 8, 9, 14-18 and 23 from
Listing 1 at point T1). Listing 5 shows the code of a variant v4 containing BASE at point T1
and HAVE SELECT at point T2, where the Line 15 from Listing 1 changed.

Presence Conditions We compute the presence condition C for every artifact a in the form
of a disjunctive normal form (DNF) formula, whose literals are features, i.e., a set of feature
revisions as we will show. A DNF formula is a disjunction of clauses, where a clause is a
conjunction of literals. We treat presence conditions as a set of such clauses. Every clause
can be considered a feature interaction, i.e., a static interaction of the features contained in
the clause. This aligns with previous research in feature algebra (Liu et al. 2006), feature
location (Linsbauer et al. 2013), and the analysis of variable systems (Fischer et al. 2016;
Angerer et al. 2019). We denote the set of all conjunctive clauses that can be formed given
a set of feature revisions v.F of variant v as clauses(v.F).

Whether a clause c is part of a presence condition C for an artifact a depends on five
intuitive rules that have already been proven to work properly for feature location (Michelon
et al. 2019). Given two variants v1 and v2 of a system:

1. Common artifacts in v1 and v2 likely trace to common features.

14https://gitlab.com/libssh/commit/c65f56a

Page 11 of 54    112Empir Software Eng (2022) 27: 112

https://gitlab.com/libssh/libssh-mirror/-/commit/c65f56aefa50a2e2a78a0e45564526ecc921d74f
https://gitlab.com/libssh/libssh-mirror/-/commit/c65f56aefa50a2e2a78a0e45564526ecc921d74f


Table 1 Input: Set of variants V = {v1, v2, v3, v4} and their respective feature revisions vi.F

Variant vi Feature revisions vi .F Artifacts vi .A

v1 {HAVE POLL1,BASE1} Listing 2

v2 {BASE1} Listing 3

v3 {HAVE SELECT1,BASE1} Listing 4

v4 {HAVE SELECT2,BASE1} Listing 5

Listing 1 Code snippet from file connect.c from LibSSH in commit c65f56ae

Listing 2 Variant v1: BASE and HAVE POLL at point T1

112   Page 12 of 54 Empir Software Eng (2022) 27: 112



Listing 3 Variant v2: BASE at point T1

Listing 4 Variant v3: BASE and HAVE SELECT at point T1

Listing 5 Variant v4: BASE at point T1 and HAVE SELECT at point T2

Page 13 of 54    112Empir Software Eng (2022) 27: 112



2. Artifacts in v1 and not v2 likely trace to features that are in v1 and not v2, and vice versa.
3. Artifacts in v1 and not v2 cannot trace to features that are in v2 and not v1, and vice

versa.
4. Artifacts in v1 and not v2 can at most trace to features that are in v1, and vice versa.
5. Artifacts in v1 and v2 can at most trace to features that are in v1 or v2.

In our work, we build upon these rules and extend them to feature revisions. In the
following, we first discuss the rules based on features, ignoring revisions for the time being.
We now describe the criterion and two resulting equations based on the aforementioned five
rules for including a clause in a presence condition, which composes the traces between
artifacts and feature revisions.

Criterion for the Inclusion of a Clause in a Condition. For a clause c to be contained in a
presence condition C of an artifact a, the artifact a must be contained in every variant v ∈ V

that contains the clause c (c ∈ clauses(v.F)) and there must be at least one variant in V

that contains clause c.

c ∈ C ⇔ (∀v ∈ V : c ∈ clauses(v.F) =⇒ a ∈ v.A) ∧
(∃v ∈ V : c ∈ clauses(v.F))

(1)

Criterion for Likely Clause. Our approach additionally provides a smaller and more specific
set of clauses C′, that is a subset of C, to which the artifacts are more likely tracing than
to others. This is based on our observation that, in practice, presence conditions with a
logical OR between features are much less likely to occur than conditions with a logical
AND (Michelon et al. 2019). Therefore, a clause c′ is contained in the set of likely clauses
C′ if all variants that have clause c′ also have artifact a (inclusion criterion (1)). In addition,
all variants that have artifact a also have clause c′ (additional criterion).

c′ ∈ C′ ⇔ (∀v ∈ V : c′ ∈ clauses(v.F) ⇐⇒ a ∈ v.A) ∧
(∃v ∈ V : c′ ∈ clauses(v.F))

(2)

Adding Revisions Extending the previous ideas to revisions is then straightforward. Only
one revision of a feature can be present in any given variant. In other words, if a feature f is
present in a variant v, it is present in exactly one revision r . Therefore, the set of revisions
of a feature literal in a clause is the union of all revisions r of feature f that were present
when the artifact a was present. Literals in clauses of a presence condition now do not refer
to single features anymore but to a set of feature revisions.

Steps for Trace Computation Algorithm1 shows the steps of the trace computation. This
algorithm receives as input a set of variants V and computes the sets of all clauses C (Line 2)
and all artifacts A (Line 3) in the input variants V . Subsequently, it computes for every
artifact a ∈ A (Line 5) a trace t with conditions C′ and artifact a (Line 19) that is added
to the set of traces T (Line 20) that is returned (Line 22). The set of clauses C′ receives all
clauses c ∈ C that satisfy the inclusion criterion of likely clauses in (2) (Lines 7-11). If there
are no such traces (Line 12) it receives all clauses c ∈ C that satisfy the regular inclusion
criterion in (1) (Lines 13-17).

112   Page 14 of 54 Empir Software Eng (2022) 27: 112



Now, to better understand the definitions, let us recall the running example (Listing 1).
The computation of traces consists of computing new, or updating existing, ones after the
artifacts alignment for equivalence. The variants v3 and v4 have equivalent artifacts under
the function ssh fd poll(SSH SESSION *session). When the variant is used as
input, the comparison for artifacts equivalence is performed between the Lines from List-
ings 4 and 5. Then, as feature revision location is an incremental process, the existing traces
in the repository from the equivalent artifacts have to be updated. The updated traces thus
include this new feature revision in the clauses of the traces containing the equivalent arti-
facts. In the incremental feature revision location, after input variant v4, the old artifact
in Line 7 from variant v3 is traced solely to the feature revision HAVE SELECT1. Also, a
new trace is created for the new code in Line 7 from Listing 5 to the new feature revision
HAVE SELECT2.

Mapping feature revisions to artifacts can be challenging when a set of variants is not
sufficient to determine a unique set of traces. We thus have to consider more restrictive
traces by adding negated features in presence conditions to represent artifacts of a variant
that do not appear when specific features are present. A feature absent in a configuration
can influence the implementation of a variant (Liu et al. 2006).

Our approach uses presence conditions to map artifacts and feature revisions with
negated features when a specific artifact only exists in a variant with a specific feature absent
in the configuration. We use logical negation (¬) to express an absent feature. Despite a
variant configuration contains a feature either present in a specific revision or simply absent,
our approach can trace artifacts with presence conditions containing positive and negated
features. The final set of clauses clauses(v.F) contains all positive features and negated

Page 15 of 54    112Empir Software Eng (2022) 27: 112



features. Negated features in presence conditions are not labeled with a revision, which
indicates that a specific artifact only appears in a variant when the feature negated in the
presence condition is not present in the variant configuration. On the other hand, presence
conditions containing positive features indicate that an artifact is present in a variant if at
least one of the clauses is satisfied with the set of feature revisions of a variant configura-
tion. For the last assumption, it does not matter if features of the other clauses of a presence
condition are absent in the configuration.

In our example, a developer does not have to indicate the absence of the features
HAVE SELECT and HAVE POLL with a logical negation (¬) in an input configuration of a
variant (such as variant v2), as including BASE in the configuration is sufficient. However,
when preprocessing the variant, our approach computes traces for the specific artifacts that
do not belong to the feature BASE, i.e., the core of the system, but are part of a variant when
a specific feature is not part of the configuration. For example, in an #if and #else condi-
tional compilation, the #else block artifacts of a system will be part of a variant only when
a feature of the #if is absent in the configuration, similar to an #if !(Feature). How-
ever, including BASE in the configuration cannot guarantee that the #else part will be in
the variant as the feature from the #if part also has to be absent in the configuration. This
is why only adding positive feature revisions in clauses is not sufficient for creating traces
to artifacts that are part of a variant only when specific features are present and specific fea-
tures are absent. In such cases, different possible traces can affect the variants created in the
future.

The output of the feature revision location for our running example shown in Table 2
contains all clauses that satisfy the criterion for inclusion, even if initially redundant. For
example, the condition in t1 could be simplified to just HAVE POLL1. However, since
the input variants were not sufficient to be certain that the actual condition cannot be,
HAVE POLL1 ∧ ¬HAVE SELECT it is still included in the condition.

4.2.2 Optimization Aspects

We do not consider every artifact individually, but cluster artifacts that never appear without
each other in any variant and assign presence conditions to those clusters instead of every
individual artifact. For example, since the artifacts from Lines 1-2, 8-9 and 23 in our running
example in Listing 1 always appear together and never without each other, they are grouped
in one artifact cluster instead of treating them individually.

Table 2 Output: Set of Traces T = {t1, t2, t3, t4, t5, t6, t7}
Trace ti Presence condition ti .C Artifacts ti .A

t1 F31 ∨ (F31 ∧ F11) ∨ (F31 ∧ ¬F2) ∨ (F31 ∧ F11 ∧ ¬F2) Lines 4,11-12 (L 1)

t2 F21 ∨ (F21 ∧ ¬F3) ∨ (F21 ∧ F11) ∨ (F21 ∧ F11 ∧ ¬F3) Line 15 (L 1)

t3 F11 ∧ ¬F2 ∧ ¬F3 Lines 20-21 (L 1)

t4 F21∨2 ∨ (F21∨2 ∧ ¬F3) ∨ (F21∨2 ∧ F11) ∨ (F21∨2 ∧ F11 ∧ ¬F3) Lines 14,16-18 (L 1)

t5 F11 Lines 1-2,8-9,23 (L 1)

t6 F11∧ ¬F3 Line 6 (L 1)

t7 F22 ∨ (F22 ∧ ¬F3) ∨ (F22 ∧ F11) ∨ (F22 ∧ F11 ∧ ¬F3) Line 7 (L 5)

L = Listing; BASE = F1; HAVE SELECT = F2; HAVE POLL = F3

112   Page 16 of 54 Empir Software Eng (2022) 27: 112



We use counters to evaluate the above criterion for inclusion of clauses (1) in presence
conditions. For every clause c, we count in how many input variants it was contained, for
every artifact cluster a in how many input variants it was contained, and for every pair (c, a)

of clause and artifact cluster in how many input variants both were contained together. This
has the advantage that it works incrementally, i.e., new input variants can be added whenever
necessary, simply by increasing the respective counters. Hence, already computed traces
do not have to be recomputed when a new variant is encountered. Instead, the counters are
simply increased and the existing presence conditions are trimmed by removing the clauses
for which the above conditions do not hold anymore.

Table 3 presents the counters of our running example that match the set of variants V

in Table 1. The rows list the nine artifact clusters with the total number of appearances in
variants. The columns list (a subset of) the clauses ci ∈ ⋃

v∈V clauses(v.F) with the total
number of appearance in variants, sorted by the number of literals, i.e., interacting features
first in total without considering revisions, and then per revision. Each cell contains the
number of times that the artifact cluster and the clause appear together in a variant. For
example, artifacts from Lines 1, 2, 8, 9 and 23 in Listing 1 appear in four variants. The
clause F1, which represents the feature revision BASE, also appears in four variants. Finally,
the artifacts and the clause appear together also in four variants. Therefore, the criterion for
likely clauses (2) is satisfied. The cells in Table 3 highlighted with gray color indicate pairs
of feature revision(s) and artifact(s) that always appear together in input variant(s).

The correct presence conditions shown in Table 2 can only be created with the addi-
tional criterion for likely clause (2). This shows why trivial, i.e., less restrictive presence
conditions are not complete and can result in different traces. For example, trace t1
has a presence condition containing a disjunction of four clauses: (HAVE POLL1) ∨
(HAVE POLL1∧¬ HAVE SELECT) ∨ (BASE∧ HAVE POLL1)∨ (BASE∧ HAVE POLL1∧
¬ HAVE SELECT). The first clause is obtained by the criterion for likely clause because
artifacts from Lines 4,11-12 in Listing 1 are contained in every variant that contains the
feature HAVE POLL1 and all variants that have artifacts from Lines 4,11-12 in Listing 1
also have the feature HAVE POLL1. The second clause is also created with the criterion
for likely clause, where all variants that have artifacts from Lines 4,11-12 in Listing 1 also
have feature BASE1. Although artifacts from Lines 4,11-12 are not from BASE1, BASE1

Table 3 Implementation Example: subset (cut off right) of counters for artifact clusters (rows) and clauses
(columns)

L = Listing; BASE = F1; HAVE SELECT = F2; HAVE POLL = F3

Page 17 of 54    112Empir Software Eng (2022) 27: 112



was present in the variants containing these artifacts. That is what we show in the counter
table for storing this information (Table 3), while the third clause is created because all
absent features for a specific artifact are negated in our approach. Thus the third clause
(HAVE POLL1 ∧ ¬ HAVE SELECT) has the feature HAVE SELECT negated because this
feature does not appear in variants with the artifacts from Lines 4,11-12 in Listing 1. The
fourth clause is the most restrictive condition, combining the previous clauses.

Analyzing the second row of Table 3 shows that the artifacts from Lines 4, 11-12 are
present in one variant, where BASE1 is present. However, BASE1 is present in four vari-
ants. When looking at the other columns of the second row of the Table 3, we can see
that the feature revision HAVE POLL1 is also present in one variant, only in the one con-
taining the artifacts from Lines 4, 11-12 from Listing 1. Therefore, we know the feature
revision HAVE POLL1 must be traced to Line 4 and our final presence condition contains
the feature revision BASE1, as Line 4 appears only once and in a variant containing also
the feature BASE1 in its configuration. Thus, the first clause is less restrictive and the
fourth clause is the most restrictive condition of the presence condition of the trace t1. If
another input variant would exist with only the feature revision HAVE POLL1, and contain-
ing Lines 4, 11-12 from Listing 1, the trace t1 would be refined and its presence condition
would be (HAVE POLL1) ∨ (HAVE POLL1∧¬HAVE SELECT) ∨ (HAVE POLL1∧¬BASE)
∨ (HAVE POLL1 ∧ ¬HAVE SELECT ∧¬BASE). Having a clause in a presence condition
with ¬BASE does not mean that this feature must not exist in the configuration of a vari-
ant containing the respective trace artifact, but that BASE was absent in a variant where
the respective trace artifact appears and was thus not mapped to the artifact. Hence, BASE
would not be a mandatory feature for having these artifacts in a variant.

4.3 Variant Composition

For a given configuration containing a set of feature revisions, we compute a checkout
operation, similar to the checkout in a VCS (Conradi and Westfechtel 1998). The checkout
operation retrieves a working copy of the content from a repository. Thus, the checkout
operation joins the artifacts of the feature revisions from a repository in order to compose a
system variant.

Composition We compose a variant v from a set of traces T given a configuration F (set
of feature revisions). First, the set of traces T ′ selected from the set of all traces T :

T ′ = {t | t ∈ T ∧ clauses(v.F) ∩ t .C = 0} (3)

The final resulting variant v is then given as v = (F,A), where A is the set of artifacts:

A =
⋃

t∈T ′
t .A (4)

The developer is responsible for selecting a valid configuration to compose a valid
variant. We do not consider variability models, which define a set of choices and their
dependencies for obtaining configurations(Rabiser et al. 2012), but rather focus on feature
revision location and variant composition. The composition thus generates a product variant
and a file with hints of the traces containing possible surplus and/or missing clauses used
to compose the variant. With these hints, developers can analyze which artifacts may need
to be added and/or removed for completing the product variant. The file with hints contains
the trace identifier (hash code), which can be used to look in the ECCO repository which
artifacts belong to a stored trace.

112   Page 18 of 54 Empir Software Eng (2022) 27: 112



As an example, consider selecting feature revisions HAVE POLL1, HAVE SELECT1 and
BASE1 to compose a variant. The traces t1, t2, t4, t5 (Table 2) corresponding to these feature
revisions will be retrieved from the repository and their artifacts will be joined in order to
create a variant. These traces are considered in the set of traces T ′ because at least one
clause of the presence condition is satisfied (clauses are split with the ∨ logical operator).
For example, t1 contains a clause with F31, which represents the feature HAVE POLL and
is one of the features of the configuration. However, this combination of feature revisions
has feature interactions, as we can see in Listing 1. Then, when composing the variant we
also get the hints, which we will explain next.

Computation of Hints To provide the artifacts for a variant, we retrieve the existing traces
with at least one clause from the disjunction of clauses in a presence condition containing
the feature revision(s) of the configuration. Traces containing clauses with negated features
that are in the configuration are not considered in the set of traces T ′ selected to compose
a variant, i.e., the artifacts of a trace will not be included in the variant, while every other
trace with the positive feature(s) will. If a configuration contains a feature revision that
does not exist in the repository, the composed variant will contain only the artifacts of
other existing feature revisions in the configuration. Then, with the composed variant, a
hint will be retrieved with Missing Clauses because no traces exist for unknown feature
revisions in the repository. Also, a missing trace can be retrieved if a feature interaction
of a configuration is missing in the existing set of traces because no trace containing the
needed implementation yet exists. Therefore, the set of potential Missing Clauses H− for a
composed variant v with a configuration F is:

H− = clauses(v.F) \
⋃

t∈T ′
t .C (5)

From the set of of selected clauses for composition, we can determine one or more Surplus
Clauses H+ as follows:

H+ =
⋃

t∈T ′
t .C \ clauses(v.F) (6)

From a trace containing multiple clauses, when a clause of a trace contains a feature revision
that should be part of a variant and some clauses of the trace contain feature revisions that
are not present in the configuration, our approach issues a hint on surplus clauses. This
means that all artifacts of the trace were added as artifacts of the variant. However, not
all clauses contained in the trace contain only the feature revisions of the configuration,
which can result in potential surplus artifacts in the variant from the other feature revisions
and show possible feature interactions and/or dependencies due to the artifacts in common.
As explained before, our approach computes a presence condition for a (set of) artifact(s)
containing a disjunction of clauses. The trace is added to compose a product variant for
every presence condition containing a feature revision in one of its clauses, unless there is
at least one feature existing in the configuration that is negated in the less restrictive clause
of the presence condition. In this case, the trace is not added for composing a variant, which
can have missing artifacts.

The hints retrieved by our approach will inform the surplus clauses followed by the trace
identifier that can have artifacts surplus and should not be in the variant. The hints retrieved
by the new configuration (HAVE SELECT2, HAVE POLL1, BASE1) to compose a variant,
used as example, contains some of the clauses of the trace t1 and t4 as Surplus Clauses.
Trace t1 is selected to compose the variant because it contains a clause with HAVE POLL1

Page 19 of 54    112Empir Software Eng (2022) 27: 112



and another with BASE1∧ HAVE POLL1 from the existing ones in the presence condi-
tion of t1. However, two clauses are Surplus Clauses: (HAVE POLL1∧ ¬HAVE SELECT)
and (BASE1∧ HAVE POLL1∧ ¬HAVE SELECT), as they correspond to artifacts that never
appear together within the artifacts of all existing revisions of the feature HAVE SELECT.
The same happens with trace t4, which results in hints for possible surplus artifacts, because
some of the artifacts of the input variant containing the feature revision HAVE SELECT2
did not appear with some artifacts of the input variant containing the feature revision
HAVE POLL1. The hints can help developers that need to manually remove part of the
artifacts of a specific trace from the composed variant, if the new combination of feature
revisions has conflicts when used together.

5 Evaluation

We now present the research questions and the methodology adopted for evaluating the
ECSEST approach. This evaluation covers both feature revision location in variants of soft-
ware systems evolving in space and time as well as SPL evolution by reusing the located
feature revisions for automatically composing new variants. We introduce the input dataset,
i.e., the characteristics of our subject systems. Then, we explain the process adopted to
obtain a ground truth dataset used for evaluating ECSEST’s efficiency for locating feature
revisions and composing variants. Finally, we describe the metrics used to evaluate ECSEST.

5.1 Research Questions

The evaluation of ECSEST was guided by five research questions (RQs):
RQ1. To what extent do features evolve in space and time? This RQ investigates

how features evolve in space and time in real systems to show the practical relevance and
implications of our approach for evolving software systems in space and time at the level of
feature revisions.

RQ2. To what extent does ECSEST support feature revision location of existing
variants that evolved in space and time? We evaluate how effective ECSEST is for
locating feature revisions in existing families of software systems that evolved over time.

RQ3. How effective is ECSEST for composing new variants with feature revisions?
We investigate if ECSEST can effectively compose new variants by joining artifacts traced
to feature revisions with our feature revision location approach from a set of system variants
that have evolved in space and time.

RQ4. How useful are the hints suggested by ECSEST for completing new variants
and finding feature interactions when creating new configurations? We estimate how
helpful the hints provided by ECSEST are for the manual completion of new variants.

RQ5. What is ECSEST’s performance for extracting feature revisions and compos-
ing variants? This RQ answers the execution time of our approach for performing feature
revision location per variant and for composing a variant.

5.2 Method

Figure 4 illustrates the methodology we followed to evaluate ECSEST. We investigated both
the feature revision location and the composition of variants with feature revisions. We
started by mining ground truth variants (Step 1) from feature revisions in preprocessor-based
SPLs in VCSs (cf. Section 5.4). We then applied our feature revision location approach to

112   Page 20 of 54 Empir Software Eng (2022) 27: 112



Output
Traces

Feature 
Revision
Location

Mining Ground
Truth Variants

Output 
Traces

Compose
Variants

Compare
Artifacts

Compute 
Metrics

Output
Traces
Output
Traces

Ground truth
Variants

Ground truth
Variants

Input
Variants

1 2

3

4

5

Variants Input
Configurations

Variants New
Configurations

+ Hints
Output
Traces
Output
Traces
Metrics
Results

Output
Traces
Output
Traces
Output
Traces

Ground truth
Variants

Ground truth
Variants
Variants

Ground TruthLegend:
Artifacts Step Git Repository

Fig. 4 Methodology for evaluating ECSEST to support software systems evolving in space and time

input product variants obtained from the ground truth generation (Step 2). The input vari-
ants are the ones generated from existing configurations, and the remaining ground truth
variants are the ones generated with new configurations, which we used later on to compare
the composed variants with new configurations. For variants with new configurations, we
randomly choose a set of feature revisions existing for each point in time. The step of locat-
ing feature revisions was performed incrementally with the input variants. Thus, as long as
we had different input variants, we used them for locating feature revisions with ECSEST,
which continuously created new and/or refined existing traces.

After locating the feature revisions from all existing input variants, we used the com-
puted traces to compose variants with existing configurations and with a new combination
of feature revisions (Step 3) by joining the artifacts of the desired feature revisions. Next, we
compared the composed variants with the corresponding ground truth variants containing
the same configuration (Step 4). The comparison of variants was performed by comparing
each composed artifact with each ground truth artifact both file-by-file and line-by-line (cf.
Section 5.5). To compute differences of the artifacts of input and composed variants, we
implemented a Java program for performing the comparison operations between textual data
using a Java diff library15. Finally, we computed metrics (Step 5) to quantify missing rele-
vant information or surplus information retrieved in relation to the variants composed from
existing configurations (cf. Section 5.5). We also computed metrics for the hints retrieved

15https://github.com/java-diff-utils/java-diff-utils

Page 21 of 54    112Empir Software Eng (2022) 27: 112

https://github.com/java-diff-utils/java-diff-utils


when composing new configurations of possible surplus or missing source code of feature
revisions in new configurations of variants composed.

5.3 Dataset

The evaluation of the proposed approach relies on six open source preprocessor-based SPLs
(Liebig et al. 2010) using the VCS Git. Table 4 presents details of the SPLs: (i) Marlin,
a variant-rich open-source embedded firmware for 3D printers16; (ii) LibSSH, a multiplat-
form C library implementing the SSHv2 protocol on client and server side17; (iii) SQLite,
a library implementing an SQL database engine18; (iv) Irssi, an internet relay chat client
program for Linux19; (v) Bison, a general-purpose parser generator20; and (vi) Curl, a
command-line tool for transferring data specified with URL syntax. We try to reduce bias
by choosing different application domains. Furthermore, each system has a considerable
history of development and use in research (Gargantini et al. 2016; Ha and Zhang 2019;
Krüger et al. 2018; Krüger et al. 2019; Liebig et al. 2010; Medeiros et al. 2018; Vale and
Almeida 2019). Moreover, we choose systems of different sizes, which we measured by
counting the total number of lines of code of their last release (excluding blank lines and
comments). We used variants from the first Git commits from the main trunk ordered by the
date of each system to avoid bias in choosing a specific interval of commits.

The number of variants we mined (last column in Table 4) is the largest one that we
could use as input for each subject system given the memory limitation of the used Java
Virtual Machine (JVM) to store and manipulate data. Specifications of the machine used
to run the experiments are given in Section 5.5. The number of variants used as input is
influenced by the number of artifacts of a system and the degree of artifacts evolution,
which determines how many traces and feature revisions have to be stored and manipulated.
Therefore, for our evaluation we used input variants from a large number of commits and
of more than one release for some of the systems. This is a considerable extension to our
previous work (Michelon et al. 2020d), since we now apply ECSEST to more systems, cov-
ering more Git commits and many more variants with different features at different points
in time for each system. The variability thus comes from the Git commits. The changes vary
from lines in a file to multiple files affected. Some commits introduce new feature revi-
sions, some commits change existing feature revisions, while some commits introduce new
feature revisions and change existing ones in parallel. This mining process is presented in
Section 6.1.

5.4 Mining Ground Truth Variants from Evolution in Space and Time

Our evaluation needs ground truth variants containing feature revisions, i.e., variants that
contain features with different implementations at different points in time. We thus extracted
variants of preprocessor-based SPLs in VCSs whenever a feature evolved in time, i.e., was
changed via a Git commit (Michelon et al. 2020a). Figure 5 illustrates the time dimension
(Git commits) on the y-axis and the space dimension representing the multiple features
that originated from multiple variants, which are in the x-axis. The different colors of the

16https://github.com/MarlinFirmware/Marlin
17https://gitlab.com/libssh/libssh-mirror
18https://github.com/sqlite/sqlite
19https://github.com/irssi/irssi
20https://github.com/akimd/bison

112   Page 22 of 54 Empir Software Eng (2022) 27: 112

https://github.com/MarlinFirmware/Marlin
https://gitlab.com/libssh/libssh-mirror
https://github.com/sqlite/sqlite
https://github.com/irssi/irssi
https://github.com/akimd/bison


Table 4 Overview of the subject systems

System Since LoC Commits Features Feature revisions Input variants

Marlin 2011 281355 52 151 106 191

LibSSH 2005 110590 400 44 538 577

SQLite 2000 173714 337 36 388 424

Irssi 2007 85325 400 30 414 441

Bison 2002 39904 240 134 272 310

Curl 1999 22490 350 84 422 485

edges represent different points in time of features. For every change in a Git commit, we
mined feature revisions that were then used to preprocess the variants. Finally, we used
the resulting variants as ground truth to represent software systems with different features’
artifacts at different points in time.

Although our approach can locate feature revisions in any type of artifact of system vari-
ants, even without a variability mechanism, we choose preprocessor-based SPLs in VCSs
as input variants because they are widely used to deal with system evolution in space and
time (Berger et al. 2019). Therefore, every time a feature changes in a Git commit we gener-
ate variants containing a new feature revision for simulating our incremental step of locating
feature revisions whenever a feature has a new implementation. In summary, our approach
for generating the ground truth consists of getting changes from one commit to another for
a set of Git commits. This approach can be computationally expensive but is well suited for
precisely locating feature revisions. To cover all changes, a set of configurations is deter-
mined by a constraint satisfaction problem (CSP) solver. For each configuration composed
of external features, we preprocess the version of the system in the specific commit, which
results in an input variant for evaluating ECSEST. Next, we explain this process in detail.

Variant

Time (Git
Commit)

Feature Revisions

T1

T2

...

Tn

VariantVariantVariants

BASE.1 BASE.1
FeatA.1

BASE.1
FeatY.1

BASE.1
FeatY.2

BASE.n
FeatB.1

BASE.n
FeatA.n

Fig. 5 The changes of Git commits represent the evolution of features in time in VCSs. They resulted in a
set of feature revisions, which are used to create ground truth variants for the ECSEST evaluation

Page 23 of 54    112Empir Software Eng (2022) 27: 112



We use the example in Fig. 6, which contains a corner case with a feature interaction
and a feature implication to explain the methodology for mining the ground truth variants.
Let us consider the code of the file main.c presented in Fig. 6 before performing the change
in Line 12 at the point in time called T1. Then, changes of a second commit (point in time
T2) can be seen in Line 12 of the file main.c in Fig. 6. We identify the possible features in
these two points in time. In this example, three features are introduced in point T1 (BASE,
A, Y) and one existing feature changed in point T2 (Y revision 2). Based on that, the mining
process is as follows.

Identifying feature literals As our target systems do not have a variability model available,
we used the following strategy to identify possible features. We first classified all feature
literals, i.e, macros annotated to characterize features of the system along all Git commits
analyzed. For this, we distinguished external, internal, and transient feature literals. External
feature literals can only be set externally to configure variants from the compiler command
line. In Fig. 6, the feature literals A and Y are external. Internal feature literals are defined at
some point in the code via a #define directive. Thus, we can see in Fig. 6, that the feature
literals B and C defined in main.c as well as the feature literals X and Z defined in header.h
are internal.

We considered feature literals as system features only if they were external in all Git
commits analyzed. We cannot ensure that all identified external feature literals are actually
features of the system. However, according to Berger et al. (Berger et al. 2015), features
are also used for testing and debugging purposes. In addition, our approach enables the
manual setting of system features if the set of features is known. Our ground truth generator

11
12
12

    <code>
    #if 2 + 9 > Z
-     <code1>
+     <code2>
    #endif

    #if 2 + 9 > Z
    <code>
    #if X(B,C) > Z
-     <code1>
+     <code2>

12 -     <code1>
12 +     <code2>

-     <code1>
+     <code2>

11
12
12
13

11    #if X(B,C) > Z

1
2
3
4
5
6
7
8
9
10

13
14

1
2
3
4
5

  #include "header.h" 
  #if A
    #define B 2
    #define C 9
  #endif
  #if Z
    #define D
  #endif
  #if Y

  #endif

  #include "header.h" 
  #if A
    #define B 2
    #define C 9
  #endif
  #if Z
    #define D
  #endif
  #if Y

    #endif
  #endif

  #define Z 3
  <code>
  #if Z > 2
    #define X(m,n) m+n
  #endif

After resolving 
macros in 
conditions

1
2
3
4
5
6
7
8
9
10

14

main.c

header.h

  #define Z 3
  <code>
  #if Z > 2
    #define X(m,n) m+n
  #endif

main.c

header.h

1
2
3
4
5

Fig. 6 Mining feature revisions from changes in time in preprocessor-based SPLs

112   Page 24 of 54 Empir Software Eng (2022) 27: 112



approach is limited to systems that do not consider dependencies in Kconfig and Makefiles
such as the Linux Kernel system (Michelon et al. 2020a).

Resolving macros in conditions For each analyzed Git commit, we started preprocessing
the annotated code to find macros that can accept parameters and return values. The output
of this step is the code from the specific commit with all macros in conditions resolved, i.e.,
the macro code is expanded to the degree where the conditions of the conditional statements
only consist of feature literals. This step is necessary because we need only macros and their
values in the expressions of conditional blocks to correctly collect all possible features from
conditions. Obtaining these values from expressions and functions is important to build up
the constraints and to retrieve a possible solution via a CSP Solver. After expanding macros
in conditions, all #define and #include statements and conditional blocks remained in
the code, as they can modify the resulting code of the variants. On the right of Fig. 6, we
see that the highlighted Line 11 is the only one that changed after this step replacing #if
X(B,C) > Z with #if 2 + 9 > Z.

Computing changes For each Git commit n we created a tree structure for representing
variability in source code, as shown in Fig. 7. Files at a certain point in time are represented
either by SourceNodes or BinaryNodes. The SourceNodes contain child nodes each with
the content of a source code file, e.g., .c/.cpp. A SourceNode has as a root node BASE
that emulates the feature BASE, which contains ConditionalNodes as much as needed to
represent each #ifdef in a file. DefineNodes represent the location in a file of #define
and #undef preprocessor statements, while IncludeNodes represent the #include pre-
processor statements in a file. The tree nodes are used to determine the differences between
an actual commit and its previous one according to Git-diff21. The adopted tree structure
has a higher level of abstraction, i.e., for every annotated block, a child stores its content
in its respective node category, e.g., conditional nodes, define nodes, and include nodes.
This makes our mining process computationally less expensive. We adopted the changes at
Git-diff granularity, i.e., files and lines, to be able to easily inspect the correctness of the
generated ground truth variants according to changes of features annotated in Git VCS.

The choice of inspecting changes from consecutive commits was to avoid bias in choos-
ing specific commits to generate variants as any change results in new feature revision(s)
as input for our approach to generate variants. Therefore, in case of the first Git commit of
the project, we consider all files inserted as the difference. From the differences, we can
get the tree node reflecting the changes. In case any external feature changed or differences
are detected in non-code files, e.g., binary, BASE is considered the changed feature, i.e., for
every code added/removed in the body of the project that does not belong to an external
feature the root feature, i.e., BASE is considered as the changed node. Figure 6 shows two
files, the header file (on top of the figure indicated by an arrow) and the file containing 14
lines on the bottom of the figure. At point T1 we have these two files, and at point T2 the
main file (the file on the bottom of the Fig. 6) has been changed in Line 12.

Computing configurations Every changed node was then used to generate a variant con-
taining the code activated by this node. We used the Choco solver22 library to provide the
first possible solution for a given constraint to activate the conditional blocks. To find a

21https://git-scm.com/docs/git-diff
22https://github.com/chocoteam/choco-solver

Page 25 of 54    112Empir Software Eng (2022) 27: 112

https://git-scm.com/docs/git-diff
https://github.com/chocoteam/choco-solver


Commit n

Binary

Nodes

Source

Nodes

BASE

Define

Nodes

Conditional

Nodes

Define

Nodes

Conditional

Nodes

Include

Nodes

Include

Nodes

Conditional

Nodes

Define

Nodes

Conditional

Nodes

Include

Nodes

Conditional

Nodes...

... ...

Fig. 7 Structure for computing Git commit differences to analyze changes in annotated blocks of code

configuration for the preprocessor that activates the desired block of code, we obtain an
assignment for all the annotated feature literals that are part of the condition of the block. We
then create a set of constraints that are handed over to a solver. The constraints we build con-
sist of three parts, which will be explained using the example in Fig. 6. Firstly, we retrieve
the local condition, i.e., the condition of the closest conditional block to the changed code.
As mentioned before, point T1 is the code of the file main.c before the change in Line 12,
and point in time T2 is when the change was performed in the code of Line 12 of the file
main.c (Fig. 6). Thus, the logic formula of the local condition in the example at point T2 is:
2 + 9 > Z. The second part is the global condition of the desired block, which is a con-
junction of all parent conditions, i.e., all conditional blocks wrapping the closest conditional
block. We obtain it by walking up the tree, starting from the changed node, which in our
example results in a global condition with logic formula: Y ∧ (2 + 9 > Z).

The feature implications make the third part used to create and apply a mapping of all
internal feature literals to just external feature literals. We thus traverse the tree to build the
feature implications. For example, in Fig. 6, we can be seen that A defines B=2 (Line 3,
main.c) and C=9 (Line 4, main.c), and BASE defines Z=3 as there is no conditional block
wrapping Line 1 in the file header.h. Thus, BASE implies header.h and the features that
activate the code block that changed (Line 12) are X, B, C, and Z, which are defined by
features A and BASE. Still, when walking up the file we see that there is an outermost code
block with a condition expression involving the feature Y (Lines 9-14), which wraps the
changed block. The feature implications are mathematically defined as follows: (A =⇒
(B = 2)) ∧ (A =⇒ (C = 9)) ∧ (BASE =⇒ (Z = 3)). The conjunction of all these
parts, local and global condition and implications, are the logic expression to the problem
constraint that can be handed to the solver: (A =⇒ (B = 2)) ∧ (A =⇒ (C =

112   Page 26 of 54 Empir Software Eng (2022) 27: 112



9)) ∧ (BASE =⇒ (Z = 3)) ∧ Y ∧ (2 + 9 > Z). The solution assigned that satisfies this
formula is then: BASE = T RUE ∧ Y = T RUE ∧ A = T RUE. We thus know that these
features must be selected to include the changed block of code in a variant.

If the solver finds no solution, the part of code we want to activate is dead as no config-
uration can activate it. If a solution can be found, we validate that all feature literals with
assignments are external. If the set of assignments are not empty at this point, we obtain a
configuration for mining a variant. Before using these variants as ground truth for evaluat-
ing ECSEST, it was essential to know what features should be marked as changed for the
respective changed node and thus be treated as a feature revision. We assumed the features
annotated closest to a change as the ones that caused it. Therefore, we got a solution using
only the local condition without any implications. In cases where a local condition contains
more than one feature to activate a particular changed block of code, nothing affects the
ground truth generator approach because the constraint is built considering all the features
of the conditional block. Then, the CSP solution is retrieved according to the constraints
and can assign the change to more than one feature. Therefore, depending on the feature
interactions in more complex conditional expressions comprising several features, it might
happen that a changed block of code is assigned to more than one feature revision.

In case the solution did not retrieve any potentially changed feature, meaning that there
were no positive external features in the closest condition, we repeated the same process
with the parent conditions until we find a positive external feature from the solution. In
the worst case, we reached the node corresponding to BASE, which is trivially a positive
solution.

Generating ground truth variants After these previous steps, we generated the ground
truth variants by partially preprocessing the code. Finally, the solution found by the Choco
solver for the configuration was used to retrieve the variant, which could be used as input
for locating feature revisions. Figure 5 illustrates the variants mined with a set of feature
revisions from the changes in time T1 and T2.

5.5 Metrics

We present and discuss the metrics we used for the evaluation of our approach. We first
computed metrics characterizing system evolution in space and time in real systems to show
the need of such approach at the level of feature revisions. Thus, we computed feature
revision characteristics showing the feature evolution over time, related to their source code
artifacts. We continued by computing the metrics for evaluating the ECSEST approach.
Furthermore, we computed metrics to evaluate ECSEST for composing new variants with
a new combination of feature revisions. Additionally, we also measured runtime metrics to
evaluate the performance for locating feature revisions and composing variants.

The Feature Evolution Metrics are computed to show the number of new features intro-
duced and the number of features that were changed over the life cycle of a system. Thus,
they indicate the feature evolution of the ground truth variants used in our experiments.

– FeaturesIntroduced. Number of new features introduced over the Git commits
analyzed.

– FeaturesChanged . Number of features changed over the Git commits analyzed.

The Feature Revision Metrics are computed to characterize the differences of the source
code of different revisions of a feature in terms of AST nodes. These metrics represent the
variability existing in the ground truth variants used to evaluate our approach. We thus count

Page 27 of 54    112Empir Software Eng (2022) 27: 112



the number of AST nodes used to represent the feature revisions artifacts by our adapter for
C language artifacts. Each of the following metrics counts the number of a specific AST
node within the source code of a feature revision.

– Header . Number of header files.
– Def ine. Number of defines.
– Field . Number of field/struct declarations.
– Function. Number of functions.
– If . Number of if conditions.
– For . Number of for loops.
– Do. Number of do loops.
– Switch. Number of switch conditions.
– Case. Number of case statements.
– While. Number of while loops.
– Problem. Number of problem blocks not recognized in the C AST.

Feature Revision LocationMetrics Precision, recall, and F1-score measure how well infor-
mation is retrieved by a system in relation to the relevant information (Ting 2010). They are
commonly used to evaluate feature location techniques (Cruz et al. 2019; Martinez et al.
2018; Michelon et al. 2019). In order to assess the effectiveness of ECSEST to correctly
locate and not miss any relevant artifacts, we analyzed if the stored traces allow retrieving
the artifacts belonging to a specific feature revision. We applied the aforementioned met-
rics by comparing artifacts of feature revisions composed by the traces of ECSEST with
the artifacts of the ground truth (see Section 5.4). We used two levels of granularity, due
to the feature evolution analyzed, and the different kinds of files that existed in the subject
systems (C, binary and text files): file-level comparison of two complete files by matching
their content; line-level comparison of two code files. As the C files from the input variants
used for the feature revision location consist of source code after resolving preprocessor
directives, the composed variants also contain the C source code files with preprocessor
directives resolved. Thus, the comparison is performed on the C source code files after
resolving preprocessor directives.

Precision of the file-level comparison is the percentage of correctly composed files, i.e.,
retrieved files with entire content matching the relevant ones. Recall measures the total
percentage of entire matching of all composed files relative to all relevant files. Regarding
line-level comparison, precision is the percentage of correctly retrieved lines, while recall is
the percentage of matched lines retrieved relative to the total of relevant lines.

– PrecisionF ileLevel. The percentage of correctly retrieved files in relation to the total
retrieved.

– RecallF ileLevel. The percentage of correctly retrieved files in relation to the total
ground truth ones.

– F1ScoreF ileLevel. The percentage of the weighted average of Precision and Recall
at the file level.

– PrecisionLineLevel. The percentage of correctly retrieved lines in relation to the total
retrieved.

– RecallLineLevel. The percentage of correctly retrieved lines in relation to the total
ground truth ones.

112   Page 28 of 54 Empir Software Eng (2022) 27: 112



– F1ScoreLineLevel. The percentage of the weighted average of Precision and Recall
at the line level.

Hint Metrics. To estimate the usefulness of the hints to complete new variants we used the
Artif actsRatio indicating for how many new variants with hints it might be necessary to
add and/or remove artifacts. Measuring the InteractionsRatio shows the ratio of variants
with hints that say there is no trace with this new combination. This can help to analyze
feature interactions as two specific feature revisions that never appeared together often can-
not co-exist in the same configuration. The Artif actsRatio is used to present how helpful
our hints can be for showing possible feature interactions when composing a product with
a new combination of feature revisions never used before. Thus, we evaluate if hints with
surplus/missing artifacts are the result of possible feature interactions or an invalid config-
uration. Therefore, the correctness of the approach for composing variants is measured by
precision and recall from comparing artifacts of a composed variant with the corresponding
ground truth variant.

– Artif actsRatio. The percentage of the number of new variants composed with hints
that have artifacts missing/surplus in relation to the total of new variants with hints.

– InteractionsRatio. The percentage of the number of new variants composed with
hints that have feature interactions and retrieved missing/surplus artifacts in relation to
the total number of new variants.

As mentioned in Section 4, the invalid configurations used to compose a variant can
retrieve invalid variants due to feature interactions. However, our approach is designed to
trace artifacts to feature revisions and use them to compose variants. Thus, our evalua-
tion aims to quantify the correctness of the traces computed and the feasibility of using
our approach for composing new variants or new product revisions with feature revisions
containing updated implementation. In this way, if artifacts are retrieved correctly, valid
configurations will result in valid variants. Our evaluation does not focus on analyzing if
valid configurations are created but on whether our approach can correctly locate feature
revisions and compose variants given a configuration with feature revisions. Despite already
providing some hints, we need to improve our approach to help users to compose valid and
consistent configurations with the evolution over time. We plan to improve our approach in
future work to analyze the evolution of dependencies and interactions in the source code of
feature revisions, as shown by Feichtinger et al. (2021).

Performance Metrics To run the experiments we used a machine with an Intel�CoreTM

i7-6700U processor (3.4GHz, 4 cores), 32GB of RAM, SSD storage, and the Windows 10
operating system. Thus, under this capacity circumstances we measured the approach
performance:

– ExtractionT ime. The time in seconds for locating feature revisions, i.e., for extraction
of mappings of feature revisions to artifacts from a variant.

– CompositionT ime. The time in seconds for composing a new variant, i.e., the time
needed to retrieve traces from a set of feature revisions and compose their artifacts in
order to generate a variant.

Regarding the performance metrics, we are interested only in evaluating ECSEST and
not the process of mining the ground truth. The mining process was just necessary to create

Page 29 of 54    112Empir Software Eng (2022) 27: 112



the ground truth and input variants for the evaluation. We thus evaluate our approach sup-
porting the evolution of annotation-based SPLs in VCSs by locating feature revisions and
composing variants.

5.6 Implementation Aspects

We implemented ECSEST on top of the VarCS ECCO2 and performed some optimizations
to implement the concepts of our approach presented in Section 4.

Feature Interaction Limit. We limited the maximum size of clauses in presence conditions,
i.e., the number of feature literals in a conjunction, which corresponds to the number of
interacting features, to a threshold based on previous empirical research (Fischer et al. 2016;
Fischer et al. 2014). This provides a major improvement to the scalability of the approach,
as otherwise the number of clauses would grow exponentially with the number of features.

The threshold can be freely configured, however, for the evaluation presented in this
paper it was set up to three interacting features, which strikes a reasonable balance between
computational effort and quality of results (Fischer et al. 2014, 2016). Considering higher-
order feature interactions would yield only very little additional gain while significantly
increasing cost, similar to t-wise interaction testing of product lines. Using a threshold of
feature interactions limits higher orders of feature interactions in a clause in the set of
clauses of a trace.

Artifact Sequence Alignment The artifact equivalence is performed by an adaptation of
the Longest Common Subsequence (LCS) algorithm (Deorowicz et al. 2014) to perform
multi-sequence alignment for comparing more than two variants (Fischer et al. 2014;
Linsbauer et al. 2017a), e.g., if they have the same method whose statements must be
aligned.

Artifact Adapters We keep the approach independent of the types of implementation arti-
facts by utilizing artifact type specific adapters that are responsible for parsing respective
files and generating the generic artifact tree structure consisting of folders, files, and further
file type-specific artifacts. The only requirement is that artifacts can be uniquely identi-
fied and compared for equivalence. In this work, we used the Eclipse CDT23, i.e., a C/C++
Development Tooling for implementing the adapter for parsing our target systems artifacts.

The approach itself is implemented with the Java programming language and the data
storage and manipulation depend on the JVM memory. The more nodes have to be created
to store uncommon artifacts, the higher is the memory consumption. This is why we use
fine-grained parsing to store the artifacts. With this new plug-in, compared to our previous
work (Michelon et al. 2020d), we can locate more feature revisions because of the reuse of
the tree structure nodes for storage and manipulation of traces and feature revisions in the
repository.

23https://www.eclipse.org/cdt/

112   Page 30 of 54 Empir Software Eng (2022) 27: 112

https://www.eclipse.org/cdt/


6 Results and Discussion

This section discusses the results of our empirical analysis of the feature evolution in space
and time from the six subject systems. Based on the results and analysis, we provide answers
for the five posed RQs.

6.1 Feature evolution in space and time

Figure 8 summarizes the evolution in space and time, i.e., the number of features introduced
and changed over the range of Git commits for each of the six systems. The blue line rep-
resents the evolution in space, i.e., the number of new features introduced, while the red
line represents the evolution in time, i.e., the number of revisions of already existing fea-
tures. First, regarding evolution in space, Fig. 8a shows the feature evolution of the Marlin
system. After the product started with Git commit #1 with just feature BASE, the second
commit introduced 16 new features. Then, later in Git commit 51, 109 new features were
introduced. Furthermore, additional new features were included in four Git commits.

For the LibSSH system, shown in Fig. 8b, the initial version started in Git commit #1
with 13 features. Then, there were ten changes affecting the evolution in space in the 400+
commits analyzed resulting in a total of 39 new features.

In case of SQLite, shown in Fig. 8c, after the first Git commit introducing only the feature
BASE, four features were added in the second commit. Along the commits analyzed, within
11 commits 33 new features introduced. Regarding the evolution over time, there were 29
Git commits with feature revisions.

In the Irssi system (Fig. 8d), six features were added in Git commit #2, eight in Git
commit #32 and 10 features in Git commit #162. In three other commits evolving the system
in space, only one feature was introduced. Over time, usually, one feature changed, with
exceptions in eight Git commits, ranging from two up to five features introduced in the same
commit.

Regarding Bison, shown in Fig. 8(e), features were introduced in 14 Git commits. The
evolution over time resulted in 270 feature revisions over the 241 commits analyzed, ranging
from one to four revisions per commit.

In the Curl system (Fig. 8f), 46 features were introduced in the first Git commit of the
project. The next evolution in space happened in 10 Git commits. The evolution over the
350 Git commits resulted in 422 feature revisions, with the highest number of revisions (15)
in a single commit happening in Git commit #189.

From the analysis of system evolution over time of these six systems, we observed that
many features change over time besides the feature that represents the core of the system,
i.e., the feature BASE. For Marlin, 22 different features changed in the Git commits ana-
lyzed. In the LibSSH and Curl systems, 30 features evolved over their Git commits analyzed.
For the SQLite system, 24 features changed, and for the commits analyzed in the Irssi and
Bison systems, 12 and 13 different features changed, respectively.

The evolution over time by feature revision can strongly impact product configurations
of configurable software systems. For example, LibSSH had six features changed and four
introduced in Git commit #38. This evolution in space and time in a single commit makes
engineering tasks complex. Suppose an engineer needs to recover an older version of a
specific feature introduced before commit #38, keeping the change of other features. This
would require great effort and would be error-prone since other current variants of the Lib-
SSH system could be still using the newer version of that feature. Considering these six
subject systems with different domains, we can see that features have been introduced and

Page 31 of 54    112Empir Software Eng (2022) 27: 112



Fig. 8 Relation of the number of features introduced and changed over the Git commits analyzed for each
system

changed frequently during their development, which would benefit from a mechanism to
handle feature revisions, such as the ECSEST approach.

Regarding feature evolution, we considered not only functional features because accord-
ing to Berger et al. (2015), in the industrial systems features are also needed for testing,

112   Page 32 of 54 Empir Software Eng (2022) 27: 112



debugging, build, optimization, deployment, simulation, or monitoring. These atypical fea-
tures can be introduced for the optimization of non-functional aspects. Therefore, features
such as YYDEBUG from the Curl system (shown in Fig. 9f), indirectly realize customer
requirements. An interesting example of a feature revision that have to be reused in pre-
vious revisions of the SQLite system can be seen in the feature SQLITE TEST24, which
evolved meaning that its change had to be applied in four releases of the system: branch-3.9,
branch-3.18, branch-3.19 and branch-3.22.

In Fig. 9, we show the evolution of the C artifacts in the AST of the feature revisions
that most often changed over the Git commits analyzed for each target system without con-
sidering the BASE feature. The number of AST nodes of the feature HAVE SSH1 from the
LibSSH system (Fig. 9b) has constant changes, but the number of fields increased signif-
icantly in its second revision. This is also the case for the feature SQLITE TEST from
SQLite and the feature MSDOS from the Bison system in revision 6 (Fig. 9c and e), and for
the feature ADVANCE from Marlin in revision 4 (Fig. 9a). The evolution over time of the
feature SQLITE TEST from the SQLite system (Fig. 9c) shows an increasing number of
AST nodes up to its sixth revision. After that, the AST nodes remain constant in terms of
numbers per node type, and in case of field nodes, the number decreases in the twelfth revi-
sion of the feature SQLITE TEST. The feature GNUC from the Irssi system (Fig. 9d)
has not been changed regarding the number of AST nodes over the three revisions, with
the exception of the number of problem statements/blocks and defines AST nodes, which
increased during the second revision. For example, for the feature YYDEBUG from the Curl
system (Fig. 9f) the number of header files, define, field, if, and for AST nodes increased in
its fourth revision. In the fifth revision, for example, 14 header files were removed from its
implementation.

Knowing which commits have new feature revisions can make it easier for developers
to find a specific revision of a feature. The chart on Fig. 9a, for example, shows that the
fourth revision of ADVANCE from the Marlin system substantially changed compared to
its predecessor. We analyzed the Git commit 094afe725 and saw from the commit message
that a merge was performed. A developer added 12 new files, changed eight, and removed
two files that affected the source code of the feature ADVANCE, and hence, the behavior of
how the movement of the printer is done with linear acceleration. For every new revision of
this feature, the movement is affected. In the ninth revision (Git commit 65934ee26) many
changes were performed in the planner source code, which influences the buffers movement
commands and manages the acceleration profile plan.

We now use the feature YYDEBUG from the Curl system as an example. The revisions
of this feature are from five different releases of the system. This feature is used for debug-
ging purposes and contains many fprintf calls to print the debug messages in a file. Thus,
depending on the revision selected, different debug messages are printed. If developers want
to use the revision of this feature to get more debug messages and combine it with features
of another release, it can be supported with ECSEST instead of manually retrieving the Git
commits of the feature revision and release. Besides that, developers will need to work man-
ually copy, paste and modify the code of the release with the code of the desired feature
revision.

24https://www.sqlite.org/src/info/7b4583f932ff0933
25https://github.com/Marlin/commit/094afe7c1065d5663628b389f27687a5f465abb8
26https://github.com/Marlin/commit/65934eee9c6ae792c708bc1cea9996c8a5df67f5

Page 33 of 54    112Empir Software Eng (2022) 27: 112

https://github.com/MarlinFirmware/Marlin/commit/094afe7c1065d5663628b389f27687a5f465abb8
https://github.com/MarlinFirmware/Marlin/commit/65934eee9c6ae792c708bc1cea9996c8a5df67f5
https://www.sqlite.org/src/info/7b4583f932ff0933
https://github.com/MarlinFirmware/Marlin/commit/094afe7c1065d5663628b389f27687a5f465abb8
https://github.com/MarlinFirmware/Marlin/commit/65934eee9c6ae792c708bc1cea9996c8a5df67f5


Fig. 9 Evolution over time of the number of AST nodes from feature revisions of each system

With the analysis of feature revisions and their number of AST nodes over time in Fig. 8,
we can see that feature evolution happens over time, because the source code changes cover
more than single lines and also affect header files, defines, fields, conditions, and loops.
Thus, if a developer wants to use, for example, an older revision of a specific feature with
the previous revisions of other features, ECSEST eases the process of combining features

112   Page 34 of 54 Empir Software Eng (2022) 27: 112



with different revisions to obtain their different source code, thus producing different system
behaviors.

6.2 Locating feature revisions

The results of ECSEST for locating feature revisions are shown in Table 5. The precision
for the six subject systems was 100% at file level and 99% at line level, except for the Bison
system, which was 100% at line level too. The recall values ranged from 92% up to 99% at
file level and were 99% at line level for all systems. The values of F1, which consider both
precision and recall, are between 96% and 99% at file level and 99% at line level, showing
that ECSEST reliably locates feature revisions by a given set of variants in different space
configurations and in many points in time. Overall, when computing the average of all
systems shows that precision and recall stay above 97% at file level and 99% at line level.

Although in this work we developed an adapter more fine-grained for the specific syntax
of the C programming language, there are still issues: some deleted lines are shown in the
example from a code snippet in Listing 6, with comments after a source code statement. Our
adapter was not developed to capture this kind of comment split into multiple lines. It thus
ignores Lines 2 and 3, which are false negatives in the composed variant when comparing it
with the input variant. False positives are due to some lines that are split into multiple lines
by our adapter when reading the source code. For example, Listing 7 shows a Do Block
followed by the If Block and followed by the While Block at the same line. The parser gets
the statement and adds the Do Block in a new line, the If Block in another line, and the

Table 5 Average precision, recall and F1-score metrics of composed artifacts per system

Subject system Granularity Precision Recall F1 − Score

Marlin FileLevel 1.00 0.95 0.98

LineLevel 0.99 0.99 0.99

LibSSH FileLevel 1.00 0.99 0.99

LineLevel 0.99 0.99 0.99

SQLite FileLevel 1.00 0.97 0.98

LineLevel 0.99 0.99 0.99

Bison FileLevel 1.00 0.99 0.99

LineLevel 1.00 0.99 0.99

Curl FileLevel 1.00 0.92 0.96

LineLevel 0.99 0.99 0.99

Irssi FileLevel 1.00 0.99 0.99

LineLevel 0.99 0.99 0.99

All FileLevel 1.00 0.97 0.99

LineLevel 0.99 0.99 0.99

Page 35 of 54    112Empir Software Eng (2022) 27: 112



Listing 6 Code snippet from Curl, file download.c

While Block in a third line due to our tree structure for parsing the artifacts in specific types
of AST nodes (Fig. 2). Therefore, the source code retrieved is correct but retrieved in more
lines. Therefore, in the end, if we look for the total amount of lines of all variants of the
systems we could easily get a higher number of lines in these specific cases as explained in
the Listings 6 and 7.

There were only 350 false negative lines and about 300 false positive lines in the Marlin
system from a total of 692,001 relevant lines across all 191 compared variants. In the Lib-
SSH system, 39 lines were missing and 151 were surplus over all 577 composed variants
of a total of 8,191,428 relevant lines. In the SQLite system, 358 lines were false positives
and 152 were false negative lines in all 424 composed variants from a total of 4,187,636
relevant lines. In the Irssi system, 725 were inserted lines and 789 were missing lines from
a total of 7,549,177 relevant lines. In the Bison system, there were no inserted lines and
only three missing lines from 1,799,181 relevant lines. In the Curl system, there were 241
inserted lines and 5,163 deleted lines from a total of 4,556,535 relevant lines. Despite not
having 100% of precision and recall, as explained before, the few false positives and false
negatives resulted from comment lines ignored when parsing the C source code files or dif-
ferent alignments, which did not change the code semantically. Furthermore, compared to a
traditional VCS, evolution is tracked at the level AST nodes of feature revisions, not at the
level of text lines or entire files.

6.3 Composing variants with new configurations of existing feature revisions

Table 6 shows the precision, recall, and F1-score from the comparison of artifacts (file
and line levels) of the ground truth and our composed variants according to the random
configurations generated for the Git commits analyzed. ECSEST retrieves artifacts with
100% precision and 92%-99% recall at file-level granularity. At line-level granularity, the
average precision and recall are 99% for all systems, with an exception for the recall of the
system Bison that is 100%. All values for F1 are greater than 96% at file level, and as well
as the F1 achieved at line level with the F1 achieved from the input variants, all systems
have 99% F1 from random configurations.

Listing 7 Code snippet from LibSSH, file client.c

112   Page 36 of 54 Empir Software Eng (2022) 27: 112



Table 6 Average Precision, Recall and F1 − Score metrics of composed artifacts for random configura-
tions per system at FileLevel and LineLevel

Subject system Granularity Precision Recall F1 − Score

Marlin FileLevel 1.00 0.96 0.98

LineLevel 0.99 0.99 0.99

LibSSH FileLevel 1.00 0.99 0.99

LineLevel 0.99 0.99 0.99

SQLite FileLevel 1.00 0.99 0.99

LineLevel 0.99 0.99 0.99

Bison FileLevel 1.00 0.99 0.99

LineLevel 0.99 1.00 0.99

Curl FileLevel 1.00 0.92 0.96

LineLevel 0.99 0.99 0.99

Irssi FileLevel 1.00 0.99 0.99

LineLevel 0.99 0.99 0.99

All FileLevel 1.00 0.97 0.99

LineLevel 0.99 0.99 0.99

For the Marlin system, within a total of 133,161 relevant lines, 64 were inserted and 67
were missing lines. For the LibSSH system, 1002 were inserted lines and 97 lines were
deleted lines, from a total of 5,433,889 relevant lines. For the SQLite system, zero were
false negative lines and 369 were false positive lines in the composed variants with random
configurations from a total of 3,375,242 relevant lines of ground truth random variants.
The false positive lines in the composed variants are caused by feature interactions in the
chosen configurations, which we randomly chose without considering whether a selected
feature excludes parts of code that can be in other features when preprocessing ground
truth variants. Therefore, when the random combination of feature revisions resulted in
an invalid configuration, the ground truth variant cannot be correctly preprocessed, and
thus, has missing artifacts. An example of an invalid random configuration generated in our
evaluation is the random variant generated in Git commit #12 of LibSSH, which contains
the features HAVE SSH1, DEBUG CRYPTO, HAVE PTY H and BASE.

Listing 8 shows that when preprocessing a variant with feature HAVE SSH1 defined,
the ground truth variant will contain Line 2 and not Line 4. Only when this feature is not
defined Line 4 will be present in the variant. Our feature revision location approach correctly
mapped the artifact from Line 2 to presence conditions containing feature HAVE SSH1 and
Line 4 to presence conditions containing BASE and other features from the respective point
in time. However, the ground truth variant does not contain artifacts of both #ifdefs
and #else blocks, hence, not matching with the composed variant. Curl random variants
were composed with 208 inserted lines and 3,787 deleted lines among a total of 3,266,773
relevant lines. The randomly composed variants from the Bison system retrieved 54 inserted
lines and no deleted lines from a total of 1,412,709 relevant lines. From a total of 6,972,575
relevant lines in the Irssi system, 786 lines were inserted in the randomly composed variants
and 1,017 lines were deleted.

We did not test the approach’s capability for combining feature revisions from different
points in time due to limitations of our ground truth generator. However, the efficient feature
revision location assures that feature revisions are correctly traced. In addition, our results

Page 37 of 54    112Empir Software Eng (2022) 27: 112



Listing 8 Code snippet from LibSSH, file options.c

of precision and recall for composing new variants only presented lower values when invalid
configurations were used due to feature interactions. We did not evaluate if valid configura-
tions can be retrieved, but if our approach can correctly compose variants with the located
feature revisions. Our focus is on supporting the feature evolution of annotation-based SPLs
in VCSs as variability models of our target systems were not available.

As explained above and in Section 4, false negatives and false positives can be retrieved
in the variants depending on how features are annotated in the ground truth variants and
which feature revisions are combined when composing a new configuration that did not
exist so far. However, the false positives and negatives can be identified easier with the hints
retrieved by ECSEST when composing a new variant. It can happen that in some composed
variants, no artifacts are missing/surplus and the hints file can either have no hints retrieved
or can present hints even there are no feature revision interactions. In the last case, the
hints are retrieved because some of the feature revisions of the configuration never appeared
together in the input variants.

Table 7 shows the Artif actsRatio indicating that the retrieved hints are useful for all
systems with exception of the hints retrieved for the Bison system. For Bison, only a few
false positives were retrieved from the new variants, which are almost all false positives
caused by the AST nodes used to store the source code in a tree structure. Thus, the false
positives in the Bison system do not stem from the algorithm for locating feature revisions,
and most of them were not retrieved due to feature interactions, as we see when comparing
which artifacts were surplus in relation to the ground truth.

Analyzing the InteractionsRatio, the hints with missing traces were most useful for
finding artifacts surplus/missing for Marlin (90%) but not as useful for SQLite (37%). In
SQLite, this means that despite having new configurations with feature revisions never
used together previously, most of the new configurations can be combined and might not
have feature interactions. For the Bison system, 66% of the hints with missing traces really
pointed to new configurations with surplus artifacts, which means some of them have been
useful to find that some features should not be used together.

Although hints were obtained for Marlin, SQLite, and Irssi, they do not reflect actual
missing or surplus artifacts. The missing or surplus artifacts were retrieved due to the dif-
ferences found when parsing the C source code. For example, the SQLite system has 77
surplus lines due to feature interactions used in the random configurations from the total
false positive lines retrieved. In the Curl system hints have been more useful for finding

112   Page 38 of 54 Empir Software Eng (2022) 27: 112



Table 7 Hints metrics

Subject system Artif actsRatio InteractionsRatio

Marlin 88% 90%

LibSSH 38% 88%

SQLite 75% 37%

Bison 2% 66%

Curl 100% 100%

Irssi 60% 83%

All 60.5% 77%

surplus/missing artifacts (100% Artif actsRatio) and alerting for missing/surplus arti-
facts because all new variants have feature interactions due to feature revisions never used
together.

6.4 Performance of ECSEST to locate feature revisions and compose variants

The performance of ECSEST to extract features from systems evolving in space and time
(ExtractionT ime) is shown in Fig. 10. The least time a variant took for extraction of
feature revisions is the minimum value on the left side of each system box plot. While the
highest time for extracting feature revisions of a variant can be seen in the maximum value,
excluding outliers, on the right side of each box plot. On average, the analysis took around
83 seconds for Bison, 250 seconds for Curl, 25 seconds for Irssi, 249 seconds for LibSSH,
88 seconds for Marlin, and 212 seconds for SQLite. In the worst case, it took around 15
minutes for the Curl and LibSSH systems, which are the systems with the highest number
of variants in relation to the other systems.

As expected, the runtime for locating feature revisions increases with the number of
feature revisions and artifacts because the number of artifacts and features is greater to
refine the traces. Thus, the time to create new and update traces, increases for every new
input variant. For the Marlin system, the outliers (represented in Fig. 10 by circles) were
caused by Git commit #52, because of the huge number of features introduced (56) and the
necessary refinement of the traces of BASE for every input variant. In addition, it takes a
long time for every new input variant to extract what is new and update from what is already
in the repository. For SQLite the longer extraction time compared to Irssi is probably caused
by the huge number of artifacts that had to be compared.

Thus, independently of the number of feature revisions, the size of artifacts can impact
the time to refine traces. Another thing that impacts the time to refine traces is the com-
plexity of the tree structure nodes used to store the artifacts in the repository. It is our
implementation limitation, and as many more different artifacts from one commit to another
in the input variants, many more tree nodes are created to store this information in a tree

Page 39 of 54    112Empir Software Eng (2022) 27: 112



Fig. 10 ExtractionT ime for feature revision location per variant

structure. In a real scenario, developers may limit the number of commits and variants
to extract feature revisions, using only the desired ones for new combination of feature
revisions. Further, despite developers may need to wait, using the ECSEST approach does
not require developers’ time and effort, which they can use in parallel to complete other
higher-level tasks and decision making.

The CompositionT ime for composing a new variant, i.e., joining the artifacts from
traces of a set of feature revisions, is presented in Fig. 11. Similar to box plots in Fig. 10,
the least time to compose a variant with feature revisions is the minimum value on the left
side of each system box plot, while the highest time for composing a variant with feature
revisions can be seen in the maximum value, excluding outliers, on the right side of each
box plot. For the system with the best runtime performance, it took around two seconds on
average per variant. For the system with the worst average, it took around 45 seconds per
variant. Some of the outliers (represented in Fig. 11 by circles) in the systems are due to the
warm-up effect of the JVM. After the warm-up effect, the time remains constant to compose
variants.

For the LibSSH and Curl systems, we had some outliers for which it took up to seven
minutes to compose a variant (Fig. 11). When comparing the time between systems, we see
that it is higher in repositories containing more traces and feature revisions because many
clauses from many traces need to be analyzed to join the artifacts into a variant. However,
the number of artifacts is also a factor that influences the composition time. For example,
the Bison system has the smallest number of artifacts compared to the other systems (see

112   Page 40 of 54 Empir Software Eng (2022) 27: 112



Fig. 11 CompositionT ime for composing each variant

Table 4) and also the smallest time to compose variants. However, the Curl system is smaller
than the Irssi system in terms of artifacts, but took more time to compose variants because
it has more feature revisions, hence, more input variants, which results in a higher number
of traces. Thus, more time is needed to compose a variant with high numbers of feature
revisions and artifacts.

Regarding the composition time, the composition requires that the extraction process
was already performed. Despite the extraction time, only new variants with new feature
revisions have to be analyzed in our incremental process of locating feature revisions, i.e.,
the approach uses existing variants and refines existing and creates new traces only when
needed. Optimizations of the runtime performance can be performed in the implementation
aspects of the approach to store the artifacts and the counter table for mapping feature
revisions to artifacts. Still, the composition time in the worst case only took seven minutes,
while the approach could save significant effort of manually copying and pasting artifacts
for composing variants or for propagating changes of features.

Page 41 of 54    112Empir Software Eng (2022) 27: 112



7 Threats to Validity

We discuss the threats to the validity of our evaluation using the taxonomy of Wohlin et al.
(2000). We also describe how we mitigated possible threats.

The threats to construct validity are related to the study setup. Firstly, the scenarios used
to validate our approach contain changes to features, but we did not have data on the actual
type of evolution, e.g, performance improvement, new hardware support, bug fixing, etc.
However, the Git commit hashes of every variant and revisions of the features are available
in our dataset for future replications and deeper analysis. Secondly, the methodology chosen
to evaluate our approach was based on variants in space and time created by a configuration
of features in specific changes of annotated code in the Git commits we analyzed. This was
necessary since there is no ground truth available with variants containing feature revisions.
To mitigate this threat and to demonstrate the efficiency of our approach, we generated new
variants with different configurations of feature revisions, which were not used as input and
randomly chosen for the points in time we analyzed.

Another constructive threat can be related to the correctness of our mining ground truth
approach. To mitigate this threat, we manually inspected the ground truth variants generated
for the first 50 Git commits of each target system. Yet, regarding the sufficient variability
of the ground truth variants, we used variants from Git commits containing introduced and
changed features. Furthermore, we also presented some results of how representative the
feature evolution of the mined ground truth variants is for the real systems we used.

A further threat to construct validity is the new combinations of feature revisions, as we
do not ensure that they are type-safe. However, as mentioned, our approach is intended for
tracing feature revisions to artifacts and using the revisions to compose variants. Thus it is
the user’s responsibility to select valid configurations. Our aim in this work is to analyze if
the mapping between feature revisions and artifacts is performed correctly, and if the vari-
ant composition approach works. Hence any valid configuration will be correctly composed
when every feature revision is correctly traced and the variant composition results in the
expected artifacts. Furthermore, work by Feichtinger et al. (Feichtinger et al. 2021), presents
an approach to inform engineers about possible inconsistencies between code-level depen-
dencies to feature models. Thus, we can improve our approach in future work by using a
similar analysis to the variant composition.

A threat to internal validity is the limitation of the underlying tools that could have
affected our results. We implemented our approach in ECCO, in which source code is avail-
able and was used in previous works (Fischer et al. 2014; 2015, 2019, Linsbauer et al. 2015;
Michelon et al. 2019) that shows its efficiency to extract features and compose variants. We
also used our developed adapter to parse the C source code and to write it back when com-
posing variants. Although we did not compile the resulting code of the composed variants,
we validated the correct composition of artifacts with smaller examples and subsets of the
dataset. Furthermore, our implementation is also available for further comparison and to
reduce possible bias in our results.

A threat to external validity is related to our findings be generalized beyond the cases we
considered. Despite we conducted our evaluation with only six systems, these systems are
from different domains and have different sizes with different behaviors in terms of how
often their features change along the Git commits. Furthermore, the range of Git commits
analyzed for each system varies, which makes our analysis valid for systems with a higher
number of feature revisions. To mitigate bias in relation to the number of Git commits
we used for each system, we performed a triage specifically for each system, allowing us

112   Page 42 of 54 Empir Software Eng (2022) 27: 112



to define how far we could go with the memory limitations of our machine used to run
the experiments. We thus believe that our results cover diverse enough scenarios and our
approach can support a large number of feature revisions.

From the perspective of conclusion validity, a threat can be related to the metrics we
used to evaluate our approach effectiveness. However, precision, recall, and F1-score are
efficient to measure how correct is the information retrieved (Ting 2010). Furthermore, they
are commonly used to evaluate feature location techniques (Cruz et al. 2019; Martinez et al.
2018; Michelon et al. 2019, 2021b), and hence, can make easier the comparison of our
results.

8 RelatedWork

Many existing solutions for evolution in space consider only variability in space, such as
SPL, and require integration with a VCS to manage the evolution of software systems in
time (Berger et al. 2019). Thus, there is a lack of dedicated and mature tools supporting sys-
tem evolution in both dimensions for tracing and developing features over time (Ananieva
et al. 2020). Considering both dimensions, Ananieva et al. (2020) presented a conceptual
model, which proposes a unified terminology for tools managing variability in space and
time. The conceptual model aims at clarifying communication between researchers and
developers for understanding and comparing existing tools, and for preventing duplicated
tool development.

Regarding existing tools for software system evolution in space and time, ECCO was
presented by Fischer et al. (2014) as an extraction and composition tool for re-engineering
cloned system variants into SPL. After mapping all existing features to artifacts, developers
can select the desired set of features to compose a new product variant and also provide hints
for manual completion of which software artifacts would need adaptation. Then, ECCO was
built upon the checkout/commit workflow for distributed software development (Linsbauer
et al. 2016). It evolved to extract variability information from system variants computing
traces of not only single features but also feature interactions and absence of features, non-
unique traces, and dependencies between traces (Linsbauer et al. 2017b). ECCO has also
been used in a large-scale industrial case study (Hinterreiter et al. 2020). In this work,
we present a significant extension to the tool, with a feature revision location (Michelon
et al. 2020d) and composition of variants to support system evolution and comprehension
of feature evolution.

Superimposition of Models (SuperMod) (Schwȧgerl and Westfechtel 2016) is a tool for
evolving model and implementation of SPLs in a conceptual framework for integrating
revision and variation control of model-driven software projects (Schwägerl and Westfechtel
2019). Similar to VCSs, SuperMod is based on a workspace repository, where the user can
store and edit the files of source code and modeling of all revisions and variants of an SPL.
Thus, the workspace is populated with the feature model and the model artifacts belonging
to a revision of the SPL. The tool allows artifacts and feature models to co-evolve. The
SPL is evolved in iterations via commit/checkout operations, similarly to VCSs. SuperMod
allows collaborative development, where each user works with a local repository and can
copy and update the central remote repository. One of the tool limitations is that there is no
possibility of working with different artifacts than model and text files. Furthermore, there
are some adoption barriers to migrating the SPLs from external tools.

Page 43 of 54    112Empir Software Eng (2022) 27: 112



DeltaEcore (Seidl et al. 2014) is a tool for capturing variability in space by automat-
ically defining delta languages for a variety of languages relevant for SPLs and software
ecosystems (SECOs). These delta languages can be textual, graphical, or use any other rep-
resentation, and are required for software systems that consist of multiple artifacts, such as
design models, source code, configuration files, or documentation. Thus, the tool is able to
derive syntax and semantics for custom delta languages from a specific source language’s
meta-model. Furthermore, the tool supports editing, parsing, and interpreting a generated
delta language, which can be integrated into a mechanism for composing variants of an
SPL or SECO. Despite the tool supports variability model based on a Hyper Feature Model
(HFM) (Seidl et al. 2013), which depicts the dependencies and incompatibilities of features
version ranges of SPLs, it is limited to the evolution of system families in time, because it
does not support to evolve artifacts and/or features.

A recent survey by Linsbauer et al. (2021) describes existing VarCSs and their essen-
tial differences, the challenges, and insights for the future generation of tools to support the
development of system families evolving in space and time. Among the challenges men-
tioned, the externalization expression of which functionalities (variable artifacts) are part
of a variant can become cognitively complex to handle because a high number of revisions
and variants can exist and a million thousand features. For instance, the Linux kernel has
15,000+ features (configuration options), which some of them can have 3 values: “yes”,
“no”, or “module”, with an estimated number of 315,000 possible variants of Linux (Pereira
et al. 2020). It is still unclear when and for what developers would have advantages by using
a VarCS in such a context. Thus, it is important to conduct studies on what characteristics a
VarCS should have to help to deal with systems evolving in space and time. This includes
the types of artifacts VarCSs should allow to create and manipulate, the kind of operations
they should support, and features ensuring usability to deal with the cognitive complexity
involved. In this direction, studies are needed to investigate the ECCO VarCS capabilities
in more detail. For example, evaluating if its characteristics and operations are useful and
can be performed efficiently to support the evolution of system families. Our study shows
ECCO’s current utility and suggests for improvements, which can serve as a basis for new
studies and the development of tools for software system variability and evolution.

An approach to support the composition of new variants based on opportunistic reuse,
namely clone-and-own methodology, is presented by Ghabach et al. (2018). It supports map-
pings between features and artifacts in an automated and incremental way. The paper also
discusses possible scenarios, constraints and cost estimation for operations to compose new
variants using clone-and-own. The scenarios are given by three hints: (i) clone and retain,
when developers clone an artifact and can retain it as it is, without modifying its implemen-
tation; (ii) clone and remove, when developers may clone an artifact instance, and have to
remove from it the implementation artifacts that are not required by the configuration; and
(iii) extract and add, when developers extract from product artifact implementation of fea-
ture required by the configuration and add it to a cloned new variant under composition.
The mapping of features and composition hints and cost estimation is defined by means
of correlations, indicating the coexistence of a feature and an artifact, or a feature and an
artifact. Thus, this approach, similar to ours for locating features from existing system vari-
ants, is independent of the artifacts types. However, ECSEST is able to locate features at
different points in time. Regarding the composition of new variants, ECSEST can also use
existing cloned variants to compose new products. In addition, ECSEST can easily retrieve
the variant in an automated way by informing the set of feature revisions desired in the
configuration. Our hints can help developers to determine if the variants generated in an

112   Page 44 of 54 Empir Software Eng (2022) 27: 112



automated way have possible remaining or missing artifacts. The results from our feature
revision location technique (Michelon et al. 2020d) show that our approach maps features
to their artifacts with high precision and recall, which means that less effort is needed to tai-
lor a variant, as fewer removals and additions are necessary when composing variants with
new configurations.

But4Reuse (Martinez 2016) is an approach for migrating software variants into an SPL
by constructing its feature model. Also, a unified, generic, and extensible framework is pro-
posed to create benchmarks of feature location techniques and enable users, developers, and
researchers to analyze and compare different techniques (Martinez et al. 2015). However,
the approach does not permit an incremental evolution of the SPL, and the feature location
approach is not able to locate feature revisions. Furthermore, although it is not the focus of
our work, we also present a mining tool to generate ground truth variants. Then, ground truth
variants can be generated with our mining tool and the ones already used in our work are
available too. Also, future work on locating feature revisions and re-engineering software
system variants with multiple revisions can benefit of our ground truth generator.

9 Conclusions and FutureWork

Existing feature location techniques are limited to analyzing specific system snapshots at
one certain point in time. To address this limitation, this paper demonstrated the importance
of feature location in both space and time and introduced an automated approach for fea-
ture revision location, which allows to reason about features in different points of time and
supports software systems evolving in space and time. The results show that our approach
can locate the features’ artifacts with a precision of 100% at file-level and ≥ 99% at line-
level granularity, as well as a recall of 97% at file-level and 99% at line-level granularity.
The incorrect information retrieved is due to the different syntactic structures of the seman-
tic of a source code. Regarding the performance of our feature revision location approach,
we reported that it took on average in the worst case 250 seconds and in the best case 25
seconds to trace artifacts to feature revisions for each input variant.

For composing a new variant, our approach took around 18 seconds on average of all
systems to compose a variant. Even if manual completion is necessary, it will not require
extensive code additions or deletions by a developer. The hints provided by our approach
make it easier to find possible artifacts to be added or removed based on the presenting
missing and surplus clauses containing the feature revisions and traces with conflicts and/or
that do not exist in the repository. Thus, our automated approach can aid developers to
evolve and maintain software systems at the level of feature revisions, thereby saving time
and effort. Hence, it facilitates the management of system variability in space and time
by composing variants with feature revisions easily and in a reasonable time. It also sup-
ports combining feature revisions that never were combined previously. Therefore, ECSEST
provides additional functionalities than commit messages in Git VCS, such as location of
feature revisions and combination of feature revisions from different commits.

We hope that our results will inspire researchers and tool builders to work with fea-
ture revisions to treat feature evolution in space and time, and will also encourage them to
address current VarCSs limitations and/or improve other existing variability tools combined
with a strategy for dealing with the evolution in time. We encourage future work compar-
isons with our work to reuse ECSEST approach’s strength, or fulfill remaining gaps, and

Page 45 of 54    112Empir Software Eng (2022) 27: 112



improve its weaknesses/limitations by the use of common metrics, such as precision and
recall, and by the dataset available27 containing the ground truth used.

As future work, we want to conduct more experiments with industrial systems and from
different domains, considering other programming languages such as Java, and other dif-
ferent artifact types. We also want to evaluate ECSEST for managing clones in product
line engineering with feature revisions, using operations such as a Git VCS pull and push,
but using a distributed ECCO repository for feature revisions to aid the implementation
of system variants with feature revisions (Hinterreiter et al. 2021). In addition, we plan to
improve our approach for dealing with evolution of dependencies and interactions in the
source code of feature revisions, similar to Feichtinger et al. (Feichtinger et al. 2021), to
automatically check for inconsistencies between feature revisions and their implementation
when composing new configurations. Concluding, our future biggest goal is to provide an
independent mechanism for enabling the management of variants with any combination of
feature revisions.

Acknowledgements This research was funded by the LIT Secure and Correct Systems Lab; the Aus-
trian Science Fund (FWF), grant no. P31989; Pro2Future, a COMET K1-Centre of the Austrian Research
Promotion Agency (FFG), grant no. 854184; the Brazilian National Council for Scientific and Technolog-
ical Development (CNPq), grant no. 408356/2018-9; and Carlos Chagas Filho Foundation for Supporting
Research in the State of Rio de Janeiro (FAPERJ), program PDR-10 Fellowship, grant no. 202073/2020. The
support by the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for
Research, Technology and Development is gratefully acknowledged. This work was partially supported by
the Natural Sciences and Engineering Research Council of Canada (NSERC) grant RGPIN-2017-0542, and
also has been supported by the competence centers program COMET of the Austrian Research Promotion
Agency (FFG), grant no. 865891.

Funding Open access funding provided by Johannes Kepler University Linz.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ananieva S, Greiner S, Ku̇hn T, Kru̇ger J, Linsbauer L, Gru̇ner S, Kehrer T, Klare H, Koziolek
A, Lȯnn H, Krieter S, Seidl C, Ramesh S, Reussner RH, Westfechtel B (2020) A conceptual
model for unifying variability in space and time. In: Lopez-herrejon RE (ed) 24th ACM interna-
tional systems and software product line conference, volume - a, SPLC ’20. ACM, pp 15:1–15:12.
https://doi.org/10.1145/3382025.3414955

Angerer F, Grimmer A, Prähofer H, Grünbacher P (2019) Change impact analysis for maintenance
and evolution of variable software systems. Autom Softw Eng 26:417–461. https://doi.org/10.1007/
s10515-019-00253-7

Apel S, Batory D, Kstner C, Saake G (2013) Feature-Oriented Software product lines: Concepts and
implementation. Springer Publishing Company, Incorporated, New York

27http://doi.org/10.5281/zenodo.4555199

112   Page 46 of 54 Empir Software Eng (2022) 27: 112

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3382025.3414955
https://doi.org/10.1007/s10515-019-00253-7
https://doi.org/10.1007/s10515-019-00253-7
http://doi.org/10.5281/zenodo.4555199


Assunção KG, Vergilio SR (2014) Feature location for software product line migration: a mapping study. In:
18Th international software product line conference: Companion volume for workshops, demonstrations
and tools - volume 2, SPLC 2014. ACM, New York, pp 52–59. https://doi.org/10.1145/2647908.2655967

Bennett KH, Rajlich VT (2000) Software maintenance and evolution: a roadmap. In: Conference on the future
of software engineering, ICSE ’00. ACM, New York, pp 73–87. https://doi.org/10.1145/336512.336534

Berger T, Chechik M, Kehrer T, Wimmer M (2019) Software evolution in time and space: Unifying version
and variability management (dagstuhl seminar 19191). Dagstuhl Rep 9(5):1–30. https://doi.org/10.4230/
DagRep.9.5.1

Berger T, Lettner D, Rubin J, Grünbacher P, Silva A, Becker M, Chechik M, Czarnecki K (2015) What
is a feature?: a qualitative study of features in industrial software product lines. In: 19Th international
conference on software product line, SPLC 2015. ACM, New York, pp 16–25. https://doi.org/10.1145/
2791060.2791108

Berger T, She S, Lotufo R, Czarnecki K, Wasowski A (2010) Feature-to-code mapping in two large product
lines. In: Bosch J, Lee J (eds) Software product lines: Going beyond. Springer, Berlin, pp 98–499

Berger T, She S, Lotufo R, Wasowski A, Czarnecki K (2013) A study of variability models and languages in
the systems software domain. IEEE Trans Softw Eng 39(12):1611–1640. https://doi.org/10.1109/TSE.
2013.34

Berger T, Steghȯfer J, Ziadi T, Robin J, Martinez J (2020) The state of adoption and the challenges of
systematic variability management in industry. Empir Softw Eng 25(3):1755–1797. https://doi.org/10.
1007/s10664-019-09787-6

Clements P, Northrop LM (2002) Software product lines: Practices and patterns. SEI series in software
engineering. Addison-wesley, Boston

Collins-Sussman B, Fitzpatrick BW, Pilato CM (2002) Version Control with Subversion. O’Reilly Media.
http://svnbook.red-bean.com/

Conradi R, Westfechtel B (1998) Version models for software configuration management. ACM Comput
Surv 30(2):232–282. https://doi.org/10.1145/280277.280280

Cruz D, Figueiredo E, Martinez J (2019) A literature review and comparison of three feature location tech-
niques using argouml-spl. In: 13Th international workshop on variability modelling of software-intensive
systems, VAMOS 2019. ACM, New York, pp 16:1–16:10. https://doi.org/10.1145/3302333.3302343

Deorowicz S, Debudaj-Grabysz A, Gudyṡ A (2014) Kalign-LCS — a more accurate and faster variant
of Kalign2 algorithm for the multiple sequence alignment problem. In: Gruca D. A., Czachórski T,
Kozielski S. (eds) Man-machine interactions 3. Springer International Publishing, Cham, pp 495–502

Dit B, Revelle M, Gethers M, Poshyvanyk D (2013) Feature location in source code: a taxonomy and survey.
J Softw Evol Process 25(1):53–95. https://doi.org/10.1002/smr.567

Estublier J (2000) Software configuration management: a roadmap. In: Conference on the future of software
engineering, ICSE ’00. ACM, New York, pp 279–289. https://doi.org/10.1145/336512.336576

Feichtinger K, Hinterreiter D, Linsbauer L, Prȧhofer H, Gru̇nbacher P (2021) Guiding feature model evo-
lution by lifting code-level dependencies. J Comput Lang 63:1–17. https://doi.org/10.1016/j.cola.2021.
101034

Fischer S, Linsbauer L, Lopez-Herrejon RE, Egyed A (2014) Enhancing clone-and-own with systematic
reuse for developing software variants. In: 30Th IEEE international conference on software maintenance
and evolution, ICSME 2014. IEEE, New York, pp 391–400. https://doi.org/10.1109/ICSME.2014.61

Fischer S, Linsbauer L, Lopez-Herrejon RE, Egyed A (2015) The ecco tool: Extraction and composition
for clone-and-own. In: 37Th IEEE international conference on software engineering, ICSE 2015, vol 2.
IEEE, New York, pp 665–668. https://doi.org/10.1109/ICSE.2015.218

Fischer S, Linsbauer L, Lopez-herrejon RE, Egyed A (2016) A source level empirical study of features and
their interactions in variable software. In: 16Th international working conference on source code analysis
and manipulation, SCAM 2016. IEEE, New York, pp 197–206

Fischer S, Ramler R, Linsbauer L, Egyed A (2019) Automating test reuse for highly configurable software.
In: 23Rd international systems and software product line conference, SPLC 2019. ACM, Paris, pp 1–11.
https://doi.org/10.1145/3336294.3336305

Gargantini A, Petke J, Radavelli M, Vavassori P (2016) Validation of constraints among configuration
parameters using search-based combinatorial interaction testing. In: Sarro F, Deb K (eds) Search based
software engineering. Springer International Publishing, New York, pp 49–63

Ghabach E, Blay-fornarino M, Khoury FE, Baz B (2018) Clone-and-own software product derivation based
on developer preferences and cost estimation. In: 12Th international conference on research challenges
in information science. IEEE, pp 1–6. https://doi.org/10.1109/RCIS.2018.8406682

Grünbacher P, Hanl R, Linsbauer L (2021) Using music features for managing revisions and variants in
music notation software. In: Gottfried R, Hajdu G, Sello J, Anatrini A, MacCallum J (eds) International
conference on technologies for music notation and representation, TENOR’20/21. Hamburg University
for Music and Theater, Hamburg, pp 212–220

Page 47 of 54    112Empir Software Eng (2022) 27: 112

https://doi.org/10.1145/2647908.2655967
https://doi.org/10.1145/336512.336534
https://doi.org/10.4230/DagRep.9.5.1
https://doi.org/10.4230/DagRep.9.5.1
https://doi.org/10.1145/2791060.2791108
https://doi.org/10.1145/2791060.2791108
https://doi.org/10.1109/TSE.2013.34
https://doi.org/10.1109/TSE.2013.34
https://doi.org/10.1007/s10664-019-09787-6
https://doi.org/10.1007/s10664-019-09787-6
http://svnbook.red-bean.com/
https://doi.org/10.1145/280277.280280
https://doi.org/10.1145/3302333.3302343
https://doi.org/10.1002/smr.567
https://doi.org/10.1145/336512.336576
https://doi.org/10.1016/j.cola.2021.101034
https://doi.org/10.1016/j.cola.2021.101034
https://doi.org/10.1109/ICSME.2014.61
https://doi.org/10.1109/ICSE.2015.218
https://doi.org/10.1145/3336294.3336305
https://doi.org/10.1109/RCIS.2018.8406682


Ha H, Zhang H (2019) Performance-influence model for highly configurable software with fourier learning
and lasso regression. In: 35Th international conference on software maintenance and evolution, ICSME
2019. IEEE, New York, pp 470–480. https://doi.org/10.1109/ICSME.2019.00080

Herzig K, Just S, Zeller A (2016) The impact of tangled code changes on defect prediction models. Empir
Softw Eng 21(2):303–336. https://doi.org/10.1007/s10664-015-9376-6

Hinterreiter D, Linsbauer L, Feichtinger K, Prähofer H, Grünbacher P (2020) Supporting feature-oriented
evolution in industrial automation product lines. Concurr Eng Res Appl 28:265–279. https://doi.org/10.
1177/1063293X20958930

Hinterreiter D, Linsbauer L, Grünbacher P., Prähofer H. (2021) Feature-oriented clone and pull for dis-
tributed development and evolution. In: 14Th international conference on the quality of information and
communications technology, QUATIC ’21

Hinterreiter D, Nieke M, Linsbauer L, Seidl C, Prähofer H, Grünbacher P (2019) Harmonized temporal
feature modeling to uniformly perform, track, analyze, and replay software product line evolution. In:
18Th international conference on generative programming: Concepts & experiences, GPCE 2019. ACM,
New York, pp 115–128. https://doi.org/10.1145/3357765.3359515

Krüger J, Mukelabai M, Gu W, Shen H, Hebig R, Berger T (2019) Where is my feature and what is it about?
a case study on recovering feature facets. J Syst Softw 152:239–253. https://doi.org/10.1016/j.jss.2019.
01.057

Kru̇ger J, Ċalikli G, Berger T, Leich T (2021) How explicit feature traces did not impact developers’ memory.
In: 28Th IEEE international conference on software analysis, evolution and reengineering, SANER ’21.
IEEE, pp 610–613. https://doi.org/10.1109/SANER50967.2021.00075

Krüger J., Gu W, Shen H, Mukelabai M, Hebig R, Berger T (2018) Towards a better understanding of
software features and their characteristics: a case study of marlin. In: 12Th international workshop
on variability modelling of software-intensive systems, VAMOS 2018. ACM, New York, pp 105–112.
https://doi.org/10.1145/3168365.3168371

Liebig J, Apel S, Lengauer C, Kästner C, Schulze M (2010) An analysis of the variability in forty
preprocessor-based software product lines. In: 32Nd ACM/IEEE international conference on software
engineering - volume 1, ICSE 2010. ACM, New York, pp 105–114. https://doi.org/10.1145/1806799.
1806819

Linsbauer L, Berger T, Gru̇nbacher P (2017) A classification of variation control systems. In: Flatt M, Erdweg
S (eds) 16Th international conference on generative programming: Concepts and experiences, GPCE
’17. ACM, New York, pp 49–62. https://doi.org/10.1145/3136040.3136054

Linsbauer L, Egyed A, Lopez-herrejon RE (2016) A variability aware configuration management and revi-
sion control platform. In: Dillon LK, Visser W, Williams LA (eds) 38th International Conference on
Software Engineering, ICSE ’16. ACM, pp 803–806. https://doi.org/10.1145/2889160.2889262

Linsbauer L, Fischer S, Lopez-Herrejon RE, Egyed A (2015) Using traceability for incremental construction
and evolution of software product portfolios. In: 8Th international symposium on software and systems
traceability, SST 2015. IEEE, New York, pp 57–60. https://doi.org/10.1109/SST.2015.16

Linsbauer L, Lopez-Herrejon ER, Egyed A (2013) Recovering traceability between features and code in
product variants. In: 17Th international software product line conference, SPLC 2013. ACM, New York,
pp 131–140. https://doi.org/10.1145/2491627.2491630

Linsbauer L, Lopez-herrejon RE, Egyed A (2017) Variability extraction and modeling for product variants.
Softw Syst Model 16(4):1179–1199. https://doi.org/10.1007/s10270-015-0512-y

Linsbauer L, Lopez-herrejon RE, Egyed A (2017) Variability extraction and modeling for product variants.
Softw Syst Model 16(4):1179–1199. https://doi.org/10.1007/s10270-015-0512-y

Linsbauer L, Schwägerl F, Berger T, Grünbacher P (2021) Concepts of variation control systems. J Syst
Softw 171:110,796. https://doi.org/10.1016/j.jss.2020.110796

Liu J, Batory D, Lengauer C (2006) Feature oriented refactoring of legacy applications. In: 28Th
international conference on software engineering, ICSE 2006. ACM, New York, pp 112–121.
https://doi.org/10.1145/1134285.1134303

MacKay SA (1995) The state of the art in concurrent, distributed configuration management. In: Selected
papers from the ICSE SCM-4 and SCM-5 workshops, on software configuration management. Springer,
Berlin, pp 180–193

Martinez J (2016) Mining software artefact variants for product line migration and analysis. Ph.D. thesis,
Pierre and Marie Curie University, France. http://orbilu.uni.lu/handle/10993/28675

Martinez J, Ziadi T, Bissyandé TF, Klein J, Le Traon Y (2015) Bottom-up adoption of software product lines:
a generic and extensible approach. In: 19Th international conference on software product line, SPLC
’15. ACM, New York, pp 101–110. https://doi.org/10.1145/2791060.2791086

Martinez J, Ziadi T, Papadakis M, Bissyandé TF, Klein J, le Traon Y (2018) Feature location benchmark
for extractive software product line adoption research using realistic and synthetic eclipse variants. Inf
Softw Technol 104:46–59. https://doi.org/10.1016/j.infsof.2018.07.005

112   Page 48 of 54 Empir Software Eng (2022) 27: 112

https://doi.org/10.1109/ICSME.2019.00080
https://doi.org/10.1007/s10664-015-9376-6
https://doi.org/10.1177/1063293X20958930
https://doi.org/10.1177/1063293X20958930
https://doi.org/10.1145/3357765.3359515
https://doi.org/10.1016/j.jss.2019.01.057
https://doi.org/10.1016/j.jss.2019.01.057
https://doi.org/10.1109/SANER50967.2021.00075
https://doi.org/10.1145/3168365.3168371
https://doi.org/10.1145/1806799.1806819
https://doi.org/10.1145/1806799.1806819
https://doi.org/10.1145/3136040.3136054
https://doi.org/10.1145/2889160.2889262
https://doi.org/10.1109/SST.2015.16
https://doi.org/10.1145/2491627.2491630
https://doi.org/10.1007/s10270-015-0512-y
https://doi.org/10.1007/s10270-015-0512-y
https://doi.org/10.1016/j.jss.2020.110796
https://doi.org/10.1145/1134285.1134303
http://orbilu.uni.lu/handle/10993/28675
https://doi.org/10.1145/2791060.2791086
https://doi.org/10.1016/j.infsof.2018.07.005


McGovern J, Ambler SW, Stevens ME, Linn J, Jo EK, Sharan V (2003) The practical guide to enterprise
architecture. Prentice Hall, PTR

Medeiros F, Kȧstner C, Ribeiro M, Nadi S, Gheyi R (2015) The love/hate relationship with the C prepro-
cessor: an interview study (artifact). Dagstuhl Artifacts Ser 1(1):07:1–07,32. https://doi.org/10.4230/
DARTS.1.1.7

Medeiros F, Ribeiro M, Gheyi R, Apel S, Kästner C, Ferreira B, Carvalho L, Fonseca B (2018) Discipline
matters: Refactoring of preprocessor directives in the #ifdef hell. IEEE Trans Softw Eng 44(5):453–469.
https://doi.org/10.1109/TSE.2017.2688333

Melo J, Brabrand C, Wasowski A (2016) How does the degree of variability affect bug finding? In:
38Th international conference on software engineering, ICSE ’16. ACM, New York, pp 679–690.
https://doi.org/10.1145/2884781.2884831

Michelon GK, Assunção WKG, Obermann D, Linsbauer L, Grünbacher P, Egyed A (2021a) The life cycle
of features in highly-configurable software systems evolving in space and time. In: 20Th international
conference on generative programming: Concepts & experiences, GPCE 2021. ACM, New York, pp 1–
14. https://doi.org/10.1145/3486609.3487195

Michelon GK, Linsbauer L, Assunċȧo WKG, Egyed A (2019) Comparison-based feature location in argouml
variants. In: 23Rd international systems and software product line conference - Volume A, SPLC 2019.
ACM, pp 17:1–17:5. https://doi.org/10.1145/3336294.3342360

Michelon GK, Linsbauer L, Assunċȧo WKG, Fischer S, Egyed A (2021b) A hybrid feature location technique
for re-engineering single systems into software product lines. In: Gru̇nbacher P, Seidl C, Dhungana D,
Lovasz-Bukvova H (eds) 15th International Working Conference on Variability Modelling of Software-
Intensive Systems, VaMoS ’21. ACM, pp 11:1–11:9. https://doi.org/10.1145/3442391.3442403

Michelon GK, Obermann D, Assunċȧo WKG, Linsbauer L, Gru̇nbacher P, Egyed A (2021c) Managing
systems evolving in space and time: four challenges for maintenance, evolution and composition of
variants. In: 25Th international systems and software product line conference - Volume A. ACM, New
York, pp 75–80. https://doi.org/10.1145/3461001.3461660

Michelon GK, Obermann D, Assunção WKG, Linsbauer L, Grünbacher P., Egyed A (2020a) Mining feature
revisions in highly-configurable software systems. In: 24Th ACM international systems and software
product line conference - Volume B, SPLC ’20. ACM, New York, pp 74–78. https://doi.org/10.1145/
3382026.3425776

Michelon GK, Obermann D, Linsbauer L, Assunċȧo WKG, Gru̇nbacher P, Egyed A (2020d) Locating fea-
ture revisions in software systems evolving in space and time. In: Lopez-herrejon RE (ed) 24th ACM
international systems and software product line conference, volume - a, SPLC ’20. ACM, pp 14:1–14:11.
https://doi.org/10.1145/3382025.3414954

Michelon GK, Sotto-Mayor B, Martinez J, Arrieta A, Abreu R, Assunção W. K. G. (2021d)
Spectrum-based Feature Localization: A Case Study Using argoUML, SPLC ’21, ACM, New York.
https://doi.org/10.1145/3461001.3473065

Nassif M, Robillard MP (2017) Revisiting turnover-induced knowledge loss in software projects. In: 2017
IEEE International conference on software maintenance and evolution, ICSME ’17. IEEE computer
society, pp 261–272. https://doi.org/10.1109/ICSME.2017.64

Passos L, Padilla J, Berger T, Apel S, Czarnecki K, Valente MT (2015) Feature scattering in the large:
a longitudinal study of linux kernel device drivers. In: 14Th international conference on modularity,
MODULARITY 2015. ACM, New York, pp 81–92. https://doi.org/10.1145/2724525.2724575

Pereira JA, Acher M, Martin H, Jėzėquel J (2020) Sampling effect on performance prediction of configurable
systems: A case study. In: Amaral JN, Koziolek A, Trubiani C, Iosup A (eds) International Conference
on Performance Engineering, ICPE ’20. ACM, pp 277–288. https://doi.org/10.1145/3358960.3379137

Pohl K, Böckle G., Linden FJvd (2005) Software Product Line Engineering: foundations, Principles and
Techniques. Springer, Berlin

Pohl K, Metzger A (2018) Software Product Lines. Springer International Publishing, Cham, pp 185–201.
https://doi.org/10.1007/978-3-319-73897-0 11

Rabiser R, Gru̇nbacher P, Lehofer M (2012) A qualitative study on user guidance capabilities in product
configuration tools. In: International conference on automated software engineering, ASE ’12. ACM,
pp 110–119. https://doi.org/10.1145/2351676.2351693

Rubin J, Chechik M (2013) A survey of feature location techniques. In: Domain Engineering, Prod-
uct Lines, Languages, and Conceptual Models. Springer, Berlin, pp 29–58. https://doi.org/10.1007/
978-3-642-36654-3 2

Schwȧgerl F (2018) Version control and product lines in model-driven software engineering. Ph.D. thesis,
University of Bayreuth, Germany

Schwȧgerl F, Westfechtel B (2016) Supermod: tool support for collaborative filtered model-driven software
product line engineering. In: Lo D, Apel S, Khurshid S (eds) 31st International Conference on Automated
Software Engineering, ASE ’16. ACM, pp 822–827. https://doi.org/10.1145/2970276.2970288

Page 49 of 54    112Empir Software Eng (2022) 27: 112

https://doi.org/10.4230/DARTS.1.1.7
https://doi.org/10.4230/DARTS.1.1.7
https://doi.org/10.1109/TSE.2017.2688333
https://doi.org/10.1145/2884781.2884831
https://doi.org/10.1145/3486609.3487195
https://doi.org/10.1145/3336294.3342360
https://doi.org/10.1145/3442391.3442403
https://doi.org/10.1145/3461001.3461660
https://doi.org/10.1145/3382026.3425776
https://doi.org/10.1145/3382026.3425776
https://doi.org/10.1145/3382025.3414954
https://doi.org/10.1145/3461001.3473065
https://doi.org/10.1109/ICSME.2017.64
https://doi.org/10.1145/2724525.2724575
https://doi.org/10.1145/3358960.3379137
https://doi.org/10.1007/978-3-319-73897-0_11
https://doi.org/10.1145/2351676.2351693
https://doi.org/10.1007/978-3-642-36654-3_2
https://doi.org/10.1007/978-3-642-36654-3_2
https://doi.org/10.1145/2970276.2970288


Schwägerl F, Westfechtel B (2019) Integrated revision and variation control for evolving model-driven soft-
ware product lines. Softw Syst Model 18(6):3373–3420. https://doi.org/10.1007/s10270-019-00722-3

Seidl C, Schaefer I, Aßmann U (2013) Capturing variability in space and time with hyper feature models.
In: 8Th international workshop on variability modelling of software-intensive systems, VAMOS 2014.
ACM, New York, pp 6:1–6:8. https://doi.org/10.1145/2556624.2556625

Seidl C, Schaefer I, Aßmann U (2014) Deltaecore – A model-based delta language generation framework.
In: Fill H, Karagiannis D, Reimer U (eds) Modellierung 2014, LNI, vol P-225, pp 81–96

Sincero J, Schirmeier H, Schröder-Preikschat W, Spinczyk O (2007) Is The Linux Kernel a Software Product
Line?. In: van der Linden, F, Lundell B (eds) International Workshop on Open Source Software and
Product Lines, SPLC-OSSPL ’07, Kyoto

Strüber D, Mukelabai M, Krüger J, Fischer S, Linsbauer L, Martinez J, Berger T (2019) Facing the truth:
Benchmarking the techniques for the evolution of variant-rich systems. In: 23Rd international sys-
tems and software product line conference - Volume A, SPLC ’19. ACM, New York, pp 177–188.
https://doi.org/10.1145/3336294.3336302

Ting KM (2010) Precision and Recall. Springer US, Boston. https://doi.org/10.1007/978-0-387-30164-8 652
Vale T, Almeida ES (2019) Experimenting with information retrieval methods in the recovery of feature-code

SPL traces. Empir Softw Eng 24(3):1328–1368. https://doi.org/10.1007/s10664-018-9652-3
Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2000) Experimentation in

software engineering: an introduction. Kluwer Academic Publishers, USA. https://doi.org/10.1007/
978-1-4615-4625-2

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Gabriela Karoline Michelon is currently a PhD student at the Institute for Software Systems Engineering
(ISSE) and LIT Secure and Correct Systems Lab at the Johannes Kepler University Linz (JKU) - Aus-
tria. Gabriela received her M.Sc. in Informatics (2018) from the Federal Technological University of Paran
(UTFPR) - Brazil with a period of three months in University of California (UC Davis) - United States.
Her areas of interest are variability management, software systems evolution, highly configurable software
systems, software product lines, and version control systems. Website: https://gabrielamichelon.github.io/

112   Page 50 of 54 Empir Software Eng (2022) 27: 112

https://doi.org/10.1007/s10270-019-00722-3
https://doi.org/10.1145/2556624.2556625
https://doi.org/10.1145/3336294.3336302
https://doi.org/10.1007/978-0-387-30164-8_652
https://doi.org/10.1007/s10664-018-9652-3
https://doi.org/10.1007/978-1-4615-4625-2
https://doi.org/10.1007/978-1-4615-4625-2
https://gabrielamichelon.github.io/


David Obermann is currently a master’s computer science student at the Johannes Kepler University (JKU)
in Linz, Austria. Until 2020 he worked as a research assistant at the Institute for Software Systems Engineer-
ing (ISSE) at JKU Linz where he assisted in the areas of software systems evolution, variability management
and highly configurable systems.

Wesley K. G. Assunção is currently a University Assistant at Johannes Kepler University Linz (JKU) - Aus-
tria, Post-Doctoral researcher at Pontifical Catholic University of Rio de Janeiro (PUC-Rio) - Brazil, and
visiting professor at the Graduate Program in Computer Science at Western Paran State University (Unioeste)
- Brazil. Wesley received his M.Sc. in Informatics (2012) and Ph.D. in Computer Science (2017) both
from Federal University of Paran (UFPR) - Brazil. His areas of interest are Software Modernization, Vari-
ability Management, Collaborative Engineering of Complex Systems, Software Testing, and Search Based
Software Engineering. He published research papers, in collaboration with international researchers, in con-
ferences like ICSME, SANER, MSR, EASE, SPLC, SSBSE, GECCO, to cite some, as well as in journals
such as EMSE, IST, and JSS. Wesley has also been serving as reviewers for many conferences and jour-
nal, and as organizer of conference, symposiums, workshops, competitions, and meetings. Website: https://
wesleyklewerton.github.io/

Page 51 of 54    112Empir Software Eng (2022) 27: 112

https://wesleyklewerton.github.io/
https://wesleyklewerton.github.io/


Lukas Linsbauer is currently a postdoctoral researcher at the Institute of Software Engineering and Auto-
motive Informatics at the Technische Universitt Braunschweig in Germany. He received his Doctorate in
2016 from the Institute for Software Systems Engineering at the Johannes Kepler University Linz in Austria
under the supervision of Prof. Alexander Egyed and Dr. Roberto Erick Lopez-Herrejon. His research inter-
ests include highly variable and configurable systems, software product lines, feature-oriented software and
systems development, clone detection, and version control systems.

Paul Grünbacher is an Associate Professor at the Institute of Software Systems Engineering at Johannes
Kepler Universitt Linz (Austria). His research interests include software product lines, model-based devel-
opment and evolution, requirements engineering, and software monitoring. From 2013-2021 Paul headed the
Christian Doppler Laboratory for Monitoring and Evolution of Very-Large-Scale Software Systems. He has
published more than 150 papers in international peer-reviewed journals, conferences, and workshops. Paul is
an Editorial Board Member of the Empirical Software Engineering Journal (Springer) and the Information
and Software Technology Journal(Elsevier). He is regularly serving as a reviewer for international journals
and conferences. He is member of ACM, ACM SIGSOFT, the IEEE CS, the Austrian Computer Society,
and Euromicro. In 2021 he was designated as a Fellow of Automated Software Engineering by the Steering
Committee of the IEEE/ACM International Conferences on Automated Software Engineering.

Stefan Fischer received the M.Sc. and Doctoral degree in software engineering and computer science from
Johannes Kepler University Linz, Linz, Austria. He is a Senior Researcher in the Software Competence Cen-
ter Hagenberg, Hagenberg, Austria. He has several years of experience in software engineering research and
technology transfer. His main research interests include configuration-aware software testing, and software
analytics.

112   Page 52 of 54 Empir Software Eng (2022) 27: 112



Roberto E. Lopez-Herrejon is an Associate Professor at the Department of Software Engineering and Infor-
mation Technology of the Ecole de Technologie Superieure of the University of Quebec in Montreal, Canada.
Prior he was a senior pstdoctoral researcher at the Johannes Kepler University in Linz, Austria. He was an
Austrian Science Fund (FWF) Lise Meitner Fellow (2012-2014) at the same institution. From 2008 to 2014
he was an External Lecturer at the Software Engineering Masters Programme of the University of Oxford,
England. From 2010 to 2012 he held an FP7 Intra-European Marie Curie Fellowship sponsored by the Euro-
pean Commission. He obtained his Ph.D. from the University of Texas at Austin in 2006, funded in part by a
Fulbright Fellowship sponsored by the U.S. State Department. From 2005 to 2008, he was a Career Develop-
ment Fellow at the Software Engineering Centre of the University of Oxford sponsored by Higher Education
Founding Council of England (HEFCE). His main expertise is in software customization, software product
lines, and search based software engineering.

Alexander Egyed is Professor for Software-Intensive Systems at the Johannes Kepler University, Austria.
He received his Doctorate from the University of Southern California, USA and worked in industry for
many years. He is most recognized for his work on software and systems design - particularly on variability,
consistency, and traceability.

Page 53 of 54    112Empir Software Eng (2022) 27: 112



Affiliations

Gabriela Karoline Michelon1 ·David Obermann2 ·Wesley K. G. Assunção2,3 ·
Lukas Linsbauer4 ·Paul Grünbacher2 · Stefan Fischer5 ·Roberto E. Lopez-Herrejon6 ·
Alexander Egyed2

1 Institute for Software Systems Engineering, LIT Secure and Correct Systems Lab, Johannes Kepler
University Linz, Linz, Austria

2 Institute for Software Systems Engineering, Johannes Kepler University Linz, Linz, Austria
3 Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
4 Institute of Software Engineering and Automotive Informatics, Technische Universität Braunschweig,

Braunschweig, Germany
5 Software Competence Center Hagenberg GmbH, Hagenberg, Austria
6 École de Technologie Supérieure (ÉTS), University of Quebec, H3C 1K3, Montreal, Quebec, Canada

112   Page 54 of 54 Empir Software Eng (2022) 27: 112

http://orcid.org/0000-0002-9638-8569

	Evolving software system families in space and time with feature revisions
	Abstract
	Introduction
	Background
	Software Product Lines
	Feature Location
	Version and Variation Control



	Motivation
	ECSEST Approach
	Data Structures
	Variants (Input)
	Features and Revisions
	Implementation Artifacts
	Traces (Output)


	Feature Revision Location
	Trace Computation
	Presence Conditions
	Criterion for the Inclusion of a Clause in a Condition.
	Criterion for Likely Clause.
	Adding Revisions
	Steps for Trace Computation

	Optimization Aspects

	Variant Composition
	Composition
	Computation of Hints



	Evaluation
	Research Questions
	Method
	Dataset
	Mining Ground Truth Variants from Evolution in Space and Time
	Identifying feature literals
	Resolving macros in conditions
	Computing changes
	Computing configurations
	Generating ground truth variants


	Metrics
	Feature Revision Location Metrics
	Hint Metrics.
	Performance Metrics


	Implementation Aspects
	Feature Interaction Limit.
	Artifact Sequence Alignment
	Artifact Adapters



	Results and Discussion
	Feature evolution in space and time
	Locating feature revisions
	Composing variants with new configurations of existing feature revisions
	Performance of ECSEST to locate feature revisions and compose variants

	Threats to Validity
	Related Work
	Conclusions and Future Work
	References
	Affiliations


