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Abstract
Test-to-code traceability links model the relationships between test artefacts and code arte-
facts. When utilised during the development process, these links help developers to keep
test code in sync with tested code, reducing the rate of test failures and missed faults. Test-
to-code traceability links can also help developers to maintain an accurate mental model of
the system, reducing the risk of architectural degradation when making changes. However,
establishing and maintaining these links manually places an extra burden on developers and
is error-prone. This paper presents TCTRACER, an approach and implementation for the
automatic establishment of test-to-code traceability links. Unlike existing work, TCTRACER

operates at both the method level and the class level, allowing us to establish links between
tests and functions, as well as between test classes and tested classes. We improve over exist-
ing techniques by combining an ensemble of new and existing techniques that utilise both
dynamic and static information and exploiting a synergistic flow of information between the
method and class levels. An evaluation of TCTRACER using five large, well-studied open
source systems demonstrates that, on average, we can establish test-to-function links with a
mean average precision (MAP) of 85% and test-class-to-class links with an MAP of 92%.

Keywords Software testing · Traceability · Software development · Software engineering

1 Introduction

Unit testing is an integral part of software development, however, to fully realise the benefits
of unit testing, it is necessary to maintain an accurate picture of the relationships between the
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tests and the tested code. Traceability links provide an intuitive mechanism for modelling
these relationships.

Once established, test-to-code traceability links can improve the software engineering
process in several ways, including making changes to the system safer, facilitating the reuse
of artefacts, and aiding program comprehension (De Lucia et al. 2008; Antoniol et al. 2002;
Winkler and von Pilgrim 2010). Changes to the system become safer as, when a devel-
oper makes a change to a piece of tested code, they can use the traceability links to easily
discover which tests also need to be changed, and vice-versa. This helps to promote the co-
evolution of code as it highlights to the developer code that needs to evolve along with a
change. This is important as previous work has shown that test repair and test modification
is a common and important task (Pinto et al. 2012) and that co-evolution is desirable but
typically does not happen consistently over the course of a project (Zaidman et al. 2011).
This work has shown that testing is often done in short intense periods between periods of
increasing test stagnation. Co-evolution, therefore, is often not consistent in practice and the
utilisation of automated test-to-code traceability link establishment could help to improve
this and reduce the risk of desynchronisation between the tests and code, an issue that can
cause test failures and prevent the discovery of new faults. While developers can use fault
localisation techniques to discover which functions may be causing test failures, traceabil-
ity links have the benefit of being bidirectional, so developers can start from a function and
find the corresponding tests. Traceability links are also used in regression test suite opti-
misation in continuous integration (Elsner et al. 2021) to identify and execute tests that are
potentially affected by a change and where executing the full test suite would be too expen-
sive. This parallel between test-to-code traceability link establishment and regression test
case selection is also noted by Soetens et al. (2016) who discovered that existing test-to-
code traceability techniques, such as naming conventions, fixture element types, static call
graphs, and LCBA can work well but are very situational.

Industrial need for the automated establishment of test-to-code traceability links is
demonstrated by Ståhl et al. (2017) through case studies and developer interviews. The
developer interviews were focused on themes and the theme that encompasses this work,
’Test Results and Fault Tracing’, attracted the most number of relevant statements, with
interviewees stating, for example, that it was ’particularly important’ and ’super crucial’.
Using trace links to ‘drill down’ when troubleshooting failed tests was specifically men-
tioned. The developers also made clear that automation is crucial as manual traceability
handling is a major blocker for more frequent deliveries of software. Traceability is also
gaining importance due to the recent growth of machine learning for software engineer-
ing, where traceability links have been used to build corpora of training data. Watson et al.
(2020), White and Krinke (2018, 2020) are examples of work that utilise test-to-code trace-
ability links for building a training corpus for neural networks that generate test code for a
given function. In this use case, test-to-code traceability links are used to train sequence to
sequence machine learning models to generate test code using a function as input. There-
fore, a large, high-quality data set of test-to-code traceability links is required to train and
test the model. As the performance of the model is dependent on the size and quality of the
data set, developing approaches for automatically and accurately establishing traceability
links can produce larger data sets and reduce the amount of noise, thus improving the ability
of the models to solve these problems.

While there has been an effort on some projects to have developers manually main-
tain traceability links, this practice is not common as it creates extra work for developers.
Instead, developers often employ naming conventions, e.g., matching the names of test
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classes with the names of tested classes, with ‘Test’ appended. In most instances, where
projects have attempted to manually maintain traceability links, these have been at the class
level where the number of links is more manageable and the relationships between test arte-
facts and tested artefacts are usually simple. Therefore, to avoid creating extra work for the
developers and the errors associated with the manual maintenance of traceability links, the
research community has focused on developing approaches for the automatic establishment
of traceability links.

The difficulty in establishing test-to-code links lies in the fact that not all code executed
by a test is part of the code that is being tested. This is because many tests will call functions
that are not considered to be amongst the functions under test, such as helper functions,
getters and setters, or functions that initialise the state of an object before the functions under
test are invoked. Therefore, simply considering all executed code as tested code (Hurdugaci
and Zaidman 2012) is not an accurate technique of establishing test-to-code traceability
links.

In this paper, we present TCTRACER, an approach and implementation1 which aims to
overcome the weaknesses of existing test-to-code traceability link establishment approaches
by employing a wide range of techniques that utilise information from dynamic call traces
and static information. TCTRACER also joins these techniques to produce a combined score
that performs better overall than any individual technique. In addition, unlike previous work,
TCTRACER is applied to both the method level and the class level which allows us to estab-
lish links between individual tests and their tested functions as well as whole test classes and
their tested classes. TCTRACER uses its multilevel aspect to create a flow of information
between the levels that can improve effectiveness.

Our approach is evaluated using a manually curated ground truth (White and Krinke
2021), at both the method and class levels, from five non-trivial and well-studied sub-
ject projects.2 Our findings show that, on average, using our combined technique, we can
achieve an increase in effectiveness over existing techniques at both the method and the
class levels. At the class level, our findings reveal that static naming techniques alone can
produce results equivalent to the combined score.

In addition to this evaluation, we conduct experiments to assess an alternative technique
for combining scores using machine learning (ML), the effect of weighting techniques dur-
ing combination, and a manual investigation into the causes of false negatives and false
positives.

This is an extension to our previous work (White et al. 2020) where we first introduced
TCTRACER. We build on the previous work by incorporating static techniques, investigating
alternate combination methods and technique weighting schemes, expanding the ground
truth, and performing a more in-depth analysis of the accuracy of the approach.

The main contributions of this paper are:

– An approach to test-to-code traceability that utilises an ensemble of techniques using
dynamic and static information and a multilevel flow of information.

– A comparative evaluation of each technique at both the method and class levels and
across information types.

– An evaluation of the benefit gained by utilising multilevel information.

1Available at https://github.com/RRGWhite/tctracer.
2Evaluation artefacts available at https://doi.org/10.5281/zenodo.4608587.
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– An evaluation of two methods for combining individual techniques and the effect of
weighting individual techniques prior to combination

– A manual investigation into the causes of false positive and false negative links
– An updated manually curated ground truth dataset (White and Krinke 2021) of test-to-

function and test-class-to-class links.

The paper is structured as follows: Section 2 provides the background and motivation
for this work by presenting a review of previous work which explores the current state-of-
the-art and highlights the weaknesses of existing approaches which TCTRACER addresses.
Section 3 presents an overview of the approach used by TCTRACER. Section 4 provides
the details of the techniques used while Section 5 describes how we utilise the techniques
within our approach to generate the predicted traceability links. Section 6 describes the
implementation of TCTRACER and TCAGENT, the Java Virtual Machine agent used for the
collection of the dynamic trace information. Section 7 presents the evaluation, including
the experimental setup, research questions, and results and Section 8 presents a discussion
of these results and other findings and discussion points, including the main takeaways.
Section 9 describes the internal and external threats to validity and ethical considerations.
Section 10 discusses additional related work that does not form part of the background in
Section 2. Finally, Section 11 presents the overall conclusion of the work.

2 Background

Establishing and maintaining traceability links between tests and their tested functionality
has received significant attention from the research community as traceability links have
multiple applications in the software engineering process, such as determining which test
cases need to be rerun after a change has been made, maintaining consistency during refac-
toring, and providing a form of documentation. Test-to-code traceability can, for example,
help to locate the fault that causes a test case to fail. Qusef et al. (2014) describe these
benefits in detail and (Parizi et al. 2014) presents an overview of the achievements and chal-
lenges of test-to-code traceability. Prior research has investigated the use of gamification
to improve manual maintenance of traceability links (Parizi 2016; Meimandi Parizi et al.
2015) but this approach has not seen significant adoption.

Most previous work on test-to-code traceability (see Parizi et al. (2014) for an overview)
has focused on the class level, where test classes are linked to their tested classes (Van
Rompaey and Demeyer 2009; Qusef et al. 2014; Gethers et al. 2011; Kicsi et al. 2018;
Csuvik et al. 2019a, b).

Van Rompaey and Demeyer (2009) is the closest work to ours as they investigate six
traceability techniques to link test classes to classes-under-test over three projects from
which they extracted a ground truth of 59 links. They report perfect precision and recall for
the use of naming conventions, but report very low precision and recall for using similarity
(LSI) between test classes and classes-under-test. Rompaey and Demeyer investigate mostly
static techniques and only use tracing to establish LCBA. While they only investigate on the
class level, we investigate dynamic techniques on the class and the method level over much
larger ground truths.

SCOTCH+ (Source code and Concept based Test to Code traceability Hunter) is a trace-
ability system introduced by Qusef et al. (2014) that achieves better accuracy and provides
more benefit to developers than LCBA or NC (Qusef et al. 2013). SCOTCH+ applies
dynamic slicing to identify a set of candidate tested classes which it then filters using a
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textual coupling analysis called Close Coupling between Classes (CCBC) and name
similarity (NS) scores.

Kicsi et al. (2018) explore the usage of Latent Semantic Indexing (LSI) over source code
to establish traceability links between test classes and tested classes by assuming that a test
class should be lexically similar to its tested class. They extract a ground truth from five
open source systems by extracting only the links between test classes and tested classes
that follow (exact) naming conventions. They report that the ground truth link is ranked top
between 30% and 62% and is present in the top 5 between 57% and 89%, suggesting a low
recall (precision is not investigated). Csuvik et al. (2019b) replaced LSI with word embed-
dings within the same approach and report better precision when using word embeddings
(no investigation of recall has been done). They also compare LSI, word embeddings and
TF-IDF (Csuvik et al. 2019a) in the same way and report that word embeddings perform
best in terms of precision and recall.

Not much work has been done on the method level (Bouillon et al. 2007; Hurdugaci and
Zaidman 2012; Ghafari et al. 2015), where individual unit tests are linked to their tested
functions, despite being shown to be helpful for developers (Hurdugaci and Zaidman 2012).

EzUnit (Bouillon et al. 2007) is a framework that allows developers to annotate tests
with links to the method-under-test. To do so, it performs static analysis and identifies the
methods called by a test which are suggested for annotation. EzUnit highlights the linked
methods when an error in the test occurs. A similar tool is TestNForce (Hurdugaci and
Zaidman 2012) which links tests to methods-under-test. Like our approach, tracing is used to
identify the methods that are called by a test. No further filtering is done and their approach
will thus include a large number of utility methods leading to low precision. Ghafari et al.
(2015) also work at the method level where they break down test cases into sub-scenarios
for which they attempt to establish the tested function, termed the focal method. This is
done using static data flow analysis. The results for this technique are promising, however,
two of the four subjects used for the evaluation are very small (130 and 43 tests), while
the other two are still smaller than our smallest subject. As it is easier to achieve higher
precision and recall on smaller projects, due to fewer candidate links, the results cannot be
directly compared to those presented in this paper.

Our work is the first to address both the class level and the method level simultaneously.
This allows us to construct both types of links and utilise a cross-level flow of information
to improve overall performance. This gives our approach a more accurate and fine-grained
view of the relationships between the artefacts. Our work also distinguishes itself from
previous work by utilising both dynamic and static information and ranking potential links,
instead of the purely static information that has typically been used before to generate sets
of (unranked) links.

Therefore, the development of a new approach to test-to-code traceability establishment
is motivated primarily by the fact that all existing techniques have some weaknesses that
make them unsuitable for use as a general solution. One of the most common techniques
for establishing traceability links, naming conventions (NC), is a good example of this. This
approach relies on using the naming conventions for test artefacts (unit tests or test classes)
to identify their links to tested artefacts (functions or classes). For example, JUnit 3 required
a prefix of ‘test’ to identify test methods. The specific conventions used may vary between
projects, however, the standard convention is that a test artefact should share the same name
as the artefact that it is testing, with test prepended or appended (Van Rompaey and Demeyer
2009; Madeja and Porubȧn 2019). For example, a function named union will be considered
to be tested by a test named testUnion. However, this technique is not effective if the project
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does not adhere to the naming conventions and can have poor recall even for projects that
do. This is because it assumes a one-to-one relationship between test artefacts and tested
artefacts when this is not always the case. The Commons Collections project3 provides a
real-world example of this, where the function disjunction is tested by the tests testDis-
junctionAsUnionMinusIntersection and testDisjunctionAsSymmetricDifference. As this is a
one-to-many relationship, the names do not match the naming conventions and NC would
not be able to recover these links. While test-to-code traceability based on name similarity
has good accuracy on the class level, as developers usually follow naming conventions for
the test classes, on the method level there exist various guidelines on how to name a test
method. Madeja and Porubȧn (2019) investigated 5 popular Android projects and found that
only 49% of tests contain the full name of the method-under-test in the test name and that
76% of tests contain a partial name of a method-under-test in the test name.

Last Call Before Assert (LCBA) is another existing technique that has severe limitations.
LCBA operates on the assumption that the function which returned last before an assert is
called is the function that the assert is testing. However, this assumption is often incorrect.
One common example of this is when the purpose of a tested function is to change the state
of an object. In this case, to check that the function has performed the correct operation, a
state checking function must be called to get the changed state so that it can be compared
to an oracle. This causes LCBA to incorrectly identify the state checking function as the
tested function. Even if the tested function does directly return the value that needs to be
checked, this value will often not be checked by an assert immediately after being returned.
This could be because the test needs to call helper functions before the assert, possibly to
establish the oracle.

Finally, textual similarity measures based on information retrieval techniques have also
been used in an attempt to recover test-to-code traceability links, with varying degrees of
success (Antoniol et al. 2002; Csuvik et al. 2019a). However, none of them are sufficient on
their own as techniques designed for natural language do not directly translate to code. This
is due to the bimodality of code which leads to the possibility that two code snippets may
be closely related semantically but completely different lexically, or vice-versa (Allamanis
et al. 2018).

Given these inherent weaknesses in the individual existing techniques, there is a strong
motivation to design a new approach that, while exploiting the strengths of the individ-
ual techniques, collectively overcomes their weaknesses. This is the approach utilised in
TCTRACER and presented in this paper.

A secondary motivation for the development of a new approach to test-to-code traceabil-
ity stems from the fact that existing work has only focused on either the method level or the
class level. As both levels can provide useful information to a developer, we were motivated
to develop a single approach that worked at both levels simultaneously. This resulted in the
multilevel aspect of TCTRACER, which in turn facilitated the use of multilevel information
flow to further increase the effectiveness of the approach.

3 Approach

Our approach utilises dynamic call traces and static information to create candidate links
between test artefacts and tested artefacts. It assigns scores to the candidate links using an

3https://commons.apache.org/proper/commons-collections/
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ensemble of techniques and these scores are used to rank the candidates and predict which
of them are true test-to-code traceability links. The predicted links can then be used, e.g., in
an IDE, to navigate between tests and the tested artefacts.

We utilise dynamic information as it provides us with the call traces showing which
functions were executed by which tests, thus providing a natural filtering that serves as a
starting place for establishing traceability links. However, as dynamic analysis requires the
system-under-analysis to be executed, gathering dynamic information is not possible in all
scenarios, such as where a large and diverse corpus of code is being used. For example,
if an approach uses a corpus that includes the top 1000 GitHub projects, having to build
and execute every project would be prohibitively time-consuming. In this scenario, static
information is the only practical information source and we, therefore, incorporated tech-
niques that only require static information to determine the usefulness of the approach in
this scenario.

As we are establishing links on the method-level as well as on the class-level, we use the
terms function or method-under-test when referring to a tested method and the terms tested
class or class-under-test for the class-level. Moreover, on the class-level, a class-under-test
is tested by one or more test classes, and on the method-level, a method-under-test is tested
by one or more test methods.

Our multilevel approach starts by dynamically collecting information about the function
calls made by each test, specifically, which function was called and the depth in the call
stack of the function call relative to the calling test and the set of functions that were exe-
cuted immediately before an assert. Static information, which consists of the fully qualified
names (FQNs) and bodies of all classes, test classes, functions, and tests is also collected
by parsing the source code of the project-under-analysis. We then apply an ensemble of
traceability techniques to the method level, using the collected dynamic and static infor-
mation. This results in a set of test-to-function scores for each technique, each of which
encodes the likelihood that a given function is the tested function for a given test that
calls it. We refer to these scores collectively as the method level information. The same
process is then applied at the class level, where sets of test-class-to-class scores are estab-
lished using the same techniques, providing us with the class level information. At this
stage, we create a cross-level flow of information by utilising the method level informa-
tion for class level predictions and the class level information to augment the method level
predictions.

To compute our scores we start with the techniques which utilise the dynamic informa-
tion, for which we selected two existing test-to-code traceability techniques and formulated
six new techniques. Six of the techniques produce a score in the interval [0, 1] for
every possible link, indicating the likelihood that the link is correct, while the other two
produce binary scores. For the techniques which utilise static information, we selected
the dynamic techniques which were applicable and modified them to work with static
instead of dynamic information. We also compute a combined score for all the indi-
vidual techniques. The method of combining scores is explored in Section 7.2.5. These
scores are used to rank the candidate links so that those ranked highest are most likely
to be true traceability links. Thresholds are then applied to construct the sets of predicted
links.

We describe our techniques in the following section where, for simplicity, we will present
them at the method level. To apply them on the class level, test classes are used instead of
test methods and tested classes instead of tested functions.
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4 Techniques

As discussed in Section 2, existing test-to-code traceability techniques have weaknesses
that we try to overcome with new techniques. Despite their weaknesses, we selected two
established techniques, Naming Conventions (NC) (Van Rompaey and Demeyer 2009) and
Last Call Before Assert (LCBA) (Van Rompaey and Demeyer 2009) because they per-
form well in certain situations. The new techniques formulated for TCTRACER include four
string-based techniques: a variant of Naming Conventions (NCC), two variants of Longest
Common Subsequence (LCS-B and LCS-U), and using the Levenshtein edit distance (Lev-
enshtein 1966), which all utilise name similarity. Two statistical call-based techniques
(SCTs) based on Tarantula fault localisation (Jones et al. 2002) and Term Frequency–Inverse
Document Frequency (TFIDF) (Manning et al. 2010) are also included in the new tech-
niques. All the mentioned techniques will be discussed in their dynamic (Section 4.1) and
static (Section 4.2) variants.

The original NC was selected for our technique ensemble as it should have high pre-
cision, especially in projects where the naming conventions are strictly followed and is a
common method by which developers identify tests for a given method during develop-
ment (Hurdugaci and Zaidman 2012; Madeja and Porubȧn 2019). LCBA was selected as it
can perform well in certain circumstances, specifically when the tests conform to the style
of using an assert to test the returned value from a function immediately after the function
is called. As both NC and LCBA are well-established techniques for test-to-code traceabil-
ity recovery (Qusef et al. 2013, 2014; Madeja and Porubȧn 2019; Csuvik et al. 2019a), they
also make good candidates to serve as comparison points for our other techniques.

NCC requires that the name of the test contains the name of the tested artefact. It was
included in the technique ensemble as it utilises the strengths of NC but should achieve
higher recall as it can establish many-to-one relationships between functions and tests, as
opposed to the solely one-to-one relationships that are discoverable with traditional NC.
This helps to alleviate some of the problems with traditional NC, as discussed in Section 2.
LCS-B and LCS-U compute the ratio of the name lengths and the length of the longest
common subsequence of the names of the test and the tested artefact. They were used as they
utilise the same intuitions as NC and NCC respectively but instead of producing a binary
score, they produce a real-valued score that indicates how close to satisfying NC/NCC the
potential link is. This is useful as there are instances where NC/NCC are not satisfied but
are very close to being satisfied, for example, in the case of NC, if there are extra words
before or after the name of the function or, in the case of NCC, if the name of the function is
abbreviated or has grammatical differences in the name of the test case. In these instances,
the real-valued scores of LCS-B and LCS-U are more useful than the binary scores of NC
and NCC as we can still determine if a test and a function are likely related. We include the
normalised Levenshtein distance between the names as a technique as it provides a different
view of name similarity to the longest common subsequence which is used in the LCS-B
and LCS-U techniques. For these naming techniques, we use the simple method or class
names as using FQNs causes the scores to have less difference between them. For example,
all the FQNs in Commons Lang share the common prefix org.apache.commons.lang3 and
many share even longer prefixes. Using the FQNs, therefore, squashes the distribution of
the naming scores towards the high end making it more difficult to distinguish correct links
from incorrect links.

We include the Tarantula technique as, intuitively, the task of recovering test-to-code
traceability links is similar to the task of fault localisation as, if a function is causing a test to
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fail, it is likely that the function and the test should be linked. Therefore, our intuition is that
by adapting a well-known fault localisation technique to traceability we may find an effec-
tive method of recovering test-to-code trace links. The inclusion of the TFIDF technique is
motivated similarly to Tarantula in that we view the task of determining the relevance of
terms to a document as being analogous to the task of determining which functions are most
relevant to a test case and therefore which functions are most likely to be the targets of that
test. As TFIDF is a standard, well-tested method of establishing term relevance, we adapted
this method to test-to-code traceability.

All of the above techniques will be evaluated to identify individual strengths and weak-
nesses and compared to the established techniques NC and LCBA to establish if their known
weaknesses can be overcome. We also include all techniques in a combined score as we
believe that each technique has the potential to provide at least some information that cannot
be wholly obtained using any other technique.

All of our techniques utilise dynamic trace information and, where possible, we have
adapted the techniques to create variations that use static information. We opted to only
adapt the naming-based techniques to use static information as to use the call-based tech-
niques we would have to use static call graphs which are inherently an over-approximation
with regards to polymorphic function calls that are resolved at run-time. This results in very
low precision when using them for traceability techniques.

We have discarded a series of other techniques. First, Fixture Element Types (FET) (Van
Rompaey and Demeyer 2009) and SCOTCH+ (Qusef et al. 2014) cannot be applied
on method-level and Static Call Graph (SCG). Second, Lexical Analysis (LA), and Co-
Evolution (Co-Ev) have been discarded because of their low precision and recall (Van
Rompaey and Demeyer 2009; Parizi et al. 2014; Kicsi et al. 2018).

4.1 Dynamic Techniques

In this subsection we describe the techniques that use dynamic information to compute
traceability scores.

4.1.1 Naming Conventions

As naming conventions can change between projects (Van Rompaey and Demeyer 2009),
we have selected two techniques for traceability recovery using naming conventions:
traditional and contains.

Traditional Naming Conventions (NC). NC establishes links by considering a function to
be linked to a test if the name of the test is the same as the function after the word test has
been removed from the test name. For example, a function named union will be considered
to be tested by a test named testUnion.

score(t, f ) =
{

1, if nt equals nf

0, otherwise
(1)

where nt and nf are the names of t and f respectively, after the word test has been removed
from the name of test t .

Naming Conventions – Contains (NCC). NCC is a derivative of traditional NC which
replaces the requirement that the test name must match the function name exactly, with
the more relaxed requirement that the test name only needs to contain the function name.
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Therefore, NCC considers a function to be linked to a test if the name of the test contains
the name of the function, after removing test from the test name. A positive NCC result is
counted as a score of 1 while a negative NCC result is counted as 0:

score(t, f ) =
{

1, if nf substring of nt

0, otherwise
(2)

4.1.2 Name Similarity

Name similarity is a variation of the Naming Conventions approach and is based on the
premise that developers, following established naming conventions, give unit tests names
that are similar to or match the name of the function. Our hypothesis is that name similarity
measures have the potential to perform better than the existing NC approach as they are
less strict on exact matches and allow for slight variations in name, for example, due to
grammatical reasons. For instance, a method named clone would not be identified under NC
for a test named testCloning, whereas it would be possible under name similarity measures
for clone to be assigned a high traceability score with testCloning. We consider the name for
a method to be simply the name of the method in lower case without the class name and with
the string test removed from test names when performing comparisons. For example, for
the fully qualified method name com.example.ExampleClass.testComputeScore(boolean),
we perform name similarity comparisons on computescore.

To compute the name similarity, we use two well-established techniques, Longest
Common Subsequence (LCS) and Levenshtein Distance.

To establish the LCS similarity, we compare the length of the longest common sub-
sequence to the length of the function and test name. The longest common subsequence
techniques give function names that have more characters in common with (and in the same
order as) a test name a higher score.

Longest Common Subsequence – Both (LCS-B) In the first LCS variant, we maximise the
score at 1 when the method and function names coincide exactly (aligned with the behaviour
of the NC approach), that is, when nt = nf and LCS(nt, nf ) = nt. We divide the length of
the LCS by the greater of the length of the two strings as follows:

score(t, f ) = |LCS(nt, nf )|
max(|nt|, |nf |) (3)

Longest Common Subsequence – Unit (LCS-U) In the second variant, we divide the length
of the LCS by the length of the function name only. This variant is more closely aligned
with the behaviour of the NCC approach, with the score maximised at 1 when the function
name is contained in the test name.

score(t, f ) = |LCS(nt, nf )|
|nf | (4)

Levenshtein Distance The Levenshtein distance (Levenshtein 1966), often known as edit
distance, measures the distance between two strings by measuring the minimum number
of edits it takes to transform one string into the other. Under this technique, the distances
between the function names and test names are computed and links with the lowest Leven-
shtein distance are awarded the highest scores. We first normalise the Levenshtein distance
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by dividing it by the length of the longest string and then take the compliment so that higher
scores are given to closer strings:

score(t, f ) = 1 −
(

Levenshtein(nt, nf )

max(|nt|, |nf |)
)

(5)

4.1.3 Last Call Before Assert (LCBA)

LCBA attempts to establish traceability links by working on the assumption that the function
returned last before an assert is called is the function that the assert is testing. Therefore,
LCBA will establish links between a test and every function that is returned last before an
assert that appears in that test. In TCTRACER, if an LCBA link is established between a test
and a function it is counted as a traceability score of 1 while no LCBA link is counted as a
score of 0:

score(t, f ) =
{

1, if f is last return before an assert in t

0, otherwise
(6)

4.1.4 Tarantula

Tarantula (Jones et al. 2002) is an automatic fault localisation technique that assigns a sus-
piciousness value to code, with higher suspiciousness values indicating a higher probability
of the code in question being responsible for the fault. The use of automatic fault localisa-
tion is based on the idea that it would point to the most relevant entity if the current test
fails. The suspiciousness of a code entity e is defined as follows:

suspiciousness(e) =
failed(e)

totalfailed
passed(e)

totalpassed + failed(e)
totalfailed

(7)

where failed(e) is the number of tests that executed e and failed, totalfailed is the number
of tests that failed in total, passed(e) is the number of tests that executed e and passed, and
totalpassed is the number of tests that passed in total.

To obtain the traceability score for a given test-to-function pair, where the test executes
the function, we compute the suspiciousness of the function with respect to the test, assum-
ing that the test under consideration fails and all others pass.4 It is a heuristic to identify the
methods that are most specific to the current test. Tarantula decreases the suspiciousness of
methods executing during passing tests – in our case, passing tests that execute the method.
Using this heuristic we can derive our traceability score equation from (8):

score(t, f ) = 1
|{t ′∈T :f ∈t ′}|−1

|T |−1 + 1
(8)

where T is the set of all tests in the test suite and f ∈ t ′ indicates that function f is executed
by test t ′. For pairs where the test t does not execute the function f , a score of 0 is assigned.

4A model under which all tests executing the function fail is not suitable as the Tarantula suspiciousness
would then be 100%.
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4.1.5 Term Frequency–Inverse Document Frequency (TFIDF)

Term frequency–inverse document frequency (TFIDF) is a measure traditionally used in
information retrieval to determine how significant a term is to a document. TFIDF takes
into account the prevalence of the term in the document and in the corpus as a whole, with
the intuition being that if a term is frequent in a particular document but not frequent in
the rest of the corpus, that term must carry a high significance to the document and carries
useful information about the semantics of the document. We apply this to the domain of
test-to-code traceability by having tests take the role of the documents and functions take
the role of the terms. This expresses the intuition that if a function is executed frequently by
a particular test and infrequently by other tests, it is likely that the test is testing the function.
We define our traceability score using TFIDF as:

score(t, f ) = tf(t, f ) · idf(f ) (9)

The usual definition of the term frequency (tf) function does not match the test/function
scenario. Thus, tf and idf are defined as:

tf(t, f ) = ln

(
1 + 1

|{f ′ ∈ F : f ′ ∈ t}|
)

(10)

idf(f ) = ln

(
1 + |T |

|{t ′ ∈ T : f ∈ t ′}|
)

(11)

where T is the set of all tests in the test suite and F is the set of all functions in the system.
The tf function measures how the information of a test is spread over the called functions
and the idf function measures how common the function is over all tests.

4.2 Static Techniques

In this section, we describe the techniques we selected to adapt to using static information
and the changes that we had to make to them.

4.2.1 Naming Conventions

For the static versions of naming conventions, we use the same variants that we use for
our dynamic versions, namely the traditional and contains variants. However, in contrast to
how they are used in the dynamic approach, when using them statically we must utilise both
the function name and the class name. This is due to the fact that in the dynamic approach
we are only using the names of functions that have been executed, whereas in the static
approach we are using all the functions in the project. Therefore, if we were to use only
the function name in the static approach, we would likely have a very low precision as it is
often the case that multiple classes contain functions of the same name. This effect is most
obvious when examining commonly overloaded functions such as toString. In this instance,
using only the simple name would result in any test for a toString function being linked to
all toString functions in the project instead of just the one belonging to the appropriate class.

Static Naming Conventions (Static NC). Similar to the dynamic approach, we compare
function and test names after the word test has been removed from the test name. However,
we now also incorporate the class name and perform the same comparison with the test class
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name. Therefore, we now link a test to a function if the test and function names match and
the test class and functions class names match.

score(t, f ) =
{

1, if nt equals nf ∧ ntc equals nfc

0, otherwise
(12)

where nt and nf are the names of t and f respectively and ntc and nfc are the names of
the classes containing t and f respectively, after the word test has been removed from the
names of the test and test class.

Static Naming Conventions – Contains (Static NCC). Similar to static NC, we adapt the
NCC technique from the dynamic version to incorporate the class names for the static ver-
sion. Therefore, static NCC considers a function to be linked to a test if the name of the test
contains the name of the function and the name of the test class contains the name of the
functions class, after removing test from the test name and test class name.

score(t, f ) =
{

1, if nf substring of nt ∧ ntc substring of nfc

0, otherwise
(13)

4.2.2 Static Name Similarity

We use the same name similarity techniques in our static approach as in our dynamic
approach, namely LCS-B, LCS-U, and Levenshtein distance. The way the scores are
computed remains unchanged from the dynamic techniques, as described in Section 4.1.
However, in the case of the static techniques, we use the FQNs of the functions and the tests,
instead of just the simple names and we remove the word test from anywhere it appears in
the whole FQN of the test or test class. We use the FQN because, like the static naming con-
ventions techniques, we have to account for the fact that multiple classes are likely to have
functions of the same name. Using the FQNs accounts for this, as well as for the situation
where different packages may contain classes of the same name.

4.3 Score Scaling

Our approach utilises two techniques for scaling traceability scores which can be applied
independently as well as composed together.

4.3.1 Call Depth Discounting

Tests often do not invoke the tested functions directly, for example when a public method
delegates the actual implementation to a private method. The TCTRACER approach utilises
the intuition that the relative depth between a test and a function in the call stack can serve
as an indicator of if the function is tested by the test. We hypothesise that functions that
are closer to a test in the call stack are more likely to be the tested functions than functions
that are far away. Therefore, we utilise a relative call depth discount factor γ ∈ [0, 1],
which discounts the traceability score for a test-to-function pair in proportion to the distance
between them in the call stack:

scored(t, f ) = score(t, f ) · γ (dist(t,f )−1) (14)

Page 13 of 43    67Empir Software Eng (2022) 27: 67



Table 1 Traceability techniques, their score range (Score), if the technique is normalised (N), and the used
threshold (τ ).

Technique Score N τ

Naming Conventions (NC) 0 or 1 – –

Naming Conv. – Contains (NCC) 0 or 1 – –

LCS – Unit (LCS-U) [0, 1] Yes 0.75

LCS – Both (LCS-B) [0, 1] Yes 0.55

Levenshtein (Leven) [0, 1] Yes 0.95

Last Call Before Assert (LCBA) 0 or 1 – –

Tarantula [0, 1] Yes 0.95

TFIDF [0, 1] Yes 0.90

Static Naming Conventions (Static NC) 0 or 1 – –

Static Naming Conv. – Contains (Static NCC) 0 or 1 – –

Static LCS – Unit (Static LCS-U) [0, 1] Yes 1.0

Static LCS – Both (Static LCS-B) [0, 1] Yes 1.0

Static Levenshtein (Static Leven) [0, 1] Yes 0.995

where scored is the discounted score, score is the non-discounted score, and dist(t, f ) is
the distance between the test and the function in the call stack. We subtract one from the
distance so as to apply no discount to functions that are called directly by the test.

4.3.2 Normalisation

The computed scores can be used to rank the possible links to called functions within a test
directly, using the top-ranked link as the most likely link. However, the actual distribution of
scores can vary between techniques and between tests. Therefore, we normalise the scores
so that the largest score within a test is 1:

scoren(t, f ) = scored(t, f )

max({scored(t, f ′) | f ′ ∈ t}) (15)

where scoren is the normalised score. Normalisation allows us to define a threshold around
the top-ranked link.

In the end, we focus on thirteen individual techniques, shown in Table 1. NC, NCC vari-
ants and LCBA are binary, i.e., they produce scores of either 1 or 0 which are used directly.
The eight other non-binary techniques are normalised and use call depth discounting.

5 Link Prediction

To construct link predictions, we first apply our traceability techniques to the method level
and class level individually. The techniques can be directly applied to the class level by
using the test classes instead of test methods and tested classes instead of tested methods.
The information extracted from each level is then propagated between levels to produce
another set of links at each level. The propagation is done by utilising method level scores
in the computation of class level scores and class level scores in the computation of method
level scores.
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5.1 Method-Level Prediction

The process starts by executing each of our individual traceability techniques at the method
level, resulting in a matrix of scores for each technique:

M ∈ R
|T|×|F| (16)

where T is the set of all tests in the system and F is the set of all functions. Each element of
M is the traceability score for a given test-to-function pair (t, f ) ∈ (T × F).

Another matrix is then constructed for the combined technique by averaging over all the
individual technique matrices and normalising the rows, using (15).

Each of these nine matrices is used to build sets of predicted test-to-function traceability
links. To convert the real-valued scores into boolean link/no-link predictions we introduce a
set of thresholds, one for each technique (shown in Table 1), and consider scores above the
threshold as positive link predictions. (17) defines how each set of method level traceability
links are constructed.

LM = {(t, f ) ∈ T × F | Mtf ≥ τ } (17)
where Mtf is the score for the given test-to-function pair and τ is the threshold for the
technique.

5.2 Class-Level Prediction

We now move to the class level where, in the same way as the method level, we apply
our individual traceability techniques and combine them, resulting in nine matrices, one for
each technique:

C ∈ R
|TC|×|FC| (18)

where TC is the set of all test classes in the system and FC is the set of all non-test classes.
Each element of C is the traceability score for a given test-class-to-class pair (ct , cf ) ∈
(TC × FC).

Similarly to the method level, C is used to compute sets of class level traceability links
using (19).

LC = {(ct , cf ) ∈ TC × FC | Cct cf
≥ τ } (19)

5.3 Method- to Class-Level Propagation

Given the method level and class level score matrices, we can now propagate information
across levels. First, we elevate the method level information to the class level by extracting
scores from M and organising them into class level pairs. This allows us to use them for
computing class level traceability scores. To do this, for each test-class-to-class pair (ct , cf ),
we construct a matrix EM(ct , cf ) to hold the relevant method level information:

EM(ct , cf ) ∈ R
|t(ct )|×|f(cf )| (20)

where t(ct ) is the set of tests in test class ct , f(cf ) is the set of functions in class cf . Each
element of EM(ct , cf ) is the method level traceability score for a given test-to-function pair
(t, f ) ∈ (t(ct ) × f(cf )).

To obtain the traceability score for the test-class-to-class pair, the method-level scores in
EM(ct , cf ) are summed along both dimensions, resulting in a scalar score.

This process is executed for each test-class-to-class pair in the system and the produced
scores are used to create a symmetric matrix that holds the scores for all pairs:

EM ∈ R
|TC|×|FC| (21)
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Therefore, each element of EM is the score for a given test-class-to-class pair (ct , cf ) ∈
(TC × FC) that is derived from method level information. All rows in EM are normalised
using (15).

The scores in EM are then used to produce a set of class level predicted links using (22).

LEM = {(ct , cf ) ∈ TC × FC | EMct cf
≥ τ } (22)

5.4 Class- to Method-Level Propagation

To propagate information from the class level to the method level, we take the method level
information in M and augment it with the class level information in C, creating a new matrix
AM ∈ R

|T|×|F|. For each test-to-function pair (t, f ), the augmentation is performed by first
finding the test-class-to-class pair (ct , cf ) that corresponds to the test-to-function pair, i.e.,
the test class ct that contains the test t and the tested class cf that contains the function f .
We then take the score for the method level pair from M and the score for the class level
pair from C and multiply them to produce the augmented method level score for AM, as
shown in (23).

AMtf = Mtf · Cc(t)c(f ) (23)
Where c(m) returns the class containing method m.
From AM, the set of augmented method level traceability link predictions are produced

using (24).
LAM = {(t, f ) ∈ T × F | AMtf ≥ τ } (24)

6 Implementation

TCTRACER is compatible with any Java system that uses the JUnit 3, 4, or 5 test framework
and is compatible with Java 8 or newer. Dynamic trace data is collected from JUnit test
suite executions, which is then used for computing the dynamic traceability links by the
techniques described in Section 4.1.

To collect the dynamic execution traces, TCTRACER requires the system-under-analysis
to be instrumented. The Java Agent API was used for this as it provides access to the byte-
code of Java classes and allows for them to be transformed before being loaded by the JVM.
As shown in Fig. 1, the instructions for transforming the bytecode are provided by a Java
program, TCAGENT, which is passed to the JVM at runtime through the -javaagent flag.
TCAGENT utilises the ByteBuddy5 library and allows us to easily transform the bytecode
of the running system to log the data that is used by TCTRACER to compute the traceability
links.

The execution traces are parsed to collect the dynamic information for each test and
record the set of methods that were the last return before an assert was called, as is needed
for LCBA. Methods that are not defined in the project-under-analysis, such as those from
third-party APIs, are filtered out.

The static information is obtained by scanning for .java files in the source and test
folders in the project-under-analysis and using Java Parser6 to parse the classes and test
classes. These are used to extract the functions and tests from the project which are stored
in TCTRACER.

5https://bytebuddy.net
6https://javaparser.org/

67   Page 16 of 43 Empir Software Eng (2022) 27: 67

https://bytebuddy.net
https://javaparser.org/


Developer

Dynamic Informa�on (log)TCAgent

JUnit

Trigger
Run Tests

Trace Links

Test class_t.method_t start
Call of class_1.method_1 at depth 0
Call of class_2.method_2 at depth 1

Call of class_3.method_3 at depth 0
Assert asser�on_1
Call of class_4.method_4 at depth 0
Assert asser�on_2
Test end

TCTracerIDE Plugin
(e.g. EzUnit)

Sta�c Informa�on

Public int add(int x, int y){
return x + y;

}

Public void testAdd(){
int x, y = 0;
int expected = x + y;
assertEquals(add(x,y), expected);

} Log Analyser Code Parser

(Test, Unit) Candidate Links

Method Level Scoring (M) Class Level Scoring (C)

Elevated Method Level 
Scoring (EM)

Augmented Method Level 
Scoring (AM)

Threshold Filter, Ranking

Fig. 1 Integration of TCTRACER into JUnit

The main challenge of working with static information is the number of test-to-function
pairs that we need to compute scores for. This is essentially the total number of tests in the
project-under-analysis multiplied by the total number of functions. This leads to a very large
number of candidates pairs, even in medium-sized projects. For example, Commons Lang
has a total of 9,522,771 candidate pairs. This creates a problem when it comes to link pre-
diction as it causes the matrices to be very large and results in the time and space complexity
of the analysis increasing to the point where it is intractable on even high resource comput-
ers. To work around this problem we set a threshold on the sum of the static scores, which
we use to discard any candidate pair that does not meet the threshold, before progressing to
the link prediction phase. This threshold was set by finding the highest value which does not
have any impact on the recall and, therefore, does not filter out any true links. This does not
mean that we will achieve 100% recall overall, just that recall is not lower than it would be
without this threshold being applied. By doing this, we can filter out over 90% of the can-
didate links before the link prediction phase, effectively managing the size of the matrices,
while not affecting the ability of TCTRACER to find correct links.

In the final phase, TCTRACER computes the sets of predicted links described in Section 5
using the dynamic information, the static information, and configuration parameters, such as
threshold and call depth discount factor. If a ground truth is present, TCTRACER computes
the evaluation metrics for each set of predicted links.

7 Evaluation

This section presents our research questions, the design of the experiments carried out to
answer these questions, the results, and a discussion of the findings.

7.1 Experimental Setup

The experimental setup consists of running TCTRACER on a set of open source subjects
and computing a set of evaluation measures for each subject, using a manually established
ground truth.
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Subjects. For our subjects, we selected three well known open source projects that are writ-
ten in Java and utilise the JUnit testing framework: Commons IO,7 Commons Lang,8 and
JFreeChart.9 These subjects were selected as they are well known, widely used, and suf-
ficiently large to demonstrate the applicability of TCTRACER to real-world systems. For
the evaluation of TCTRACER, we established a ground truth for these projects at both the
method level and the class level. To establish the method level ground truth, we used a
team of three judges, one PhD student and two final-year undergraduate students, who each
independently inspected a set of tests selected uniformly at random from the subjects and
made determinations about which functions were tested by each test. In order to make these
judgements, the judges looked at evidence such as which functions were called, how often
they were called, how many other functions were called, how often called functions were
called by other tests, the names of the tests, and which functions returned values that were
then checked by an assert. After conducting this process independently, the judges collec-
tively inspected any instances where there were disagreements and were able to reach a
final, unanimous judgement, resulting in full inter-rater agreement.

In addition to our own method level ground truth, we searched for an existing ground
truth that has been used in previous work to broaden our results and cross-validate our
ground truth creation protocol. This resulted in the discovery of two other ground truths
which contained seven projects between them. We investigated the given link sets for all
seven of these projects but decided to only use one of them. The reasons for rejecting the link
sets for the other projects were numerous, with all of the link sets suffering from multiple
problems. The list of problems affecting these projects included a lack of random sampling,
poor project selection, including interface methods as tested methods, choosing functions in
base classes that were tested by many tests identical tests, choosing tests that are too similar
to each other, and inaccuracies in the links. Only the links for the project Gson10 from the
TestRoutes (Kicsi et al. 2020) data set were not affected by any of these issues, allowing
us to utilise them. In total, the method level ground truth contains 218 oracle links and an
analysis of the method level ground truth shows the number of functions per test ranges
from 1 to 12, with a median of 1 for all projects and a mean average of 1.66. The difference
between the median and the mean is due to a handful of tests in each project having an
unusually large number of tested functions. For example, in Gson, there is one test with 12
tested functions and another with 11 tested functions. This causes the average to be much
higher at 1.89 while the median is still 1.

The class level ground truth was provided mostly by the developers as, in all three
projects, a subset of the test classes contain a comment at the start of the class specifying
which classes it tests. These developer provided links were extracted and then manually
verified by a judge to confirm that they are still valid. To boost the number of links for the
project with the least developer links, Commons IO, a random sample was drawn from the
set of all test classes and the tested classes for this sample were decided by two judges in the
same way as the method level sample, again resulting in full inter-rater agreement. Another
class level ground truth had previously been established by SCOTCH+ (Qusef et al. 2014),
which we also investigated for use. However, due to the age of the projects, they were all
no longer able to be built or were incompatible with our tracing agent, TCAGENT, which

7https://commons.apache.org/proper/commons-io/
8https://commons.apache.org/proper/commons-lang/
9http://www.jfree.org/jfreechart/
10https://github.com/google/gson
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Table 2 Subject statistics

Project Version Num.
Func-
tions

Num. Tests Instruction
coverage

Num. of
method level
ground truth
links

Num. of
class level
ground truth
links

Apache Ant 1.9.5 10477 1830 50% - 79

Commons IO 2.5 1246 994 89% 41 56

Commons Lang 3.7 3111 3061 95% 78 85

JFreeChart 1.0.19 9053 2244 52% 44 388

Gson 2.8.0 635 1006 83% 55 -

requires Java 8 or newer. The only ground truth links that we were able to use were for
Apache Ant11 and the results cannot be compared directly as the oldest version of Apache
Ant that was compatible with TCAGENT was newer than the version used by SCOTCH+.
The links that we used from SCOTCH+ were independently established by three judges
with an average inter-rater agreement of 90%. In total, our class level ground truth contains
608 links. Information about the subjects and ground truth is given in Table 2.

As we use Gson at the method level, we have also investigated using it for a class level
ground truth, however, the nature of this project does not lend itself to an evaluation at the
class level. This is because most of the test classes test the same class com.google.gson. This
is due to the fact the library exposes the serialisation and deserialisation methods through
this class, which makes up the bulk of the libraries interface. Thus the test classes testing
different aspects of serialisation and deserialisation are all linked to this single class. This
makes Gson not representative of software projects in general and therefore not useful for
an evaluation which needs to produce well generalised results.

In similar fashion, as we only have class level links for the Ant project, we investigated
using Ant for a method level ground truth also. However, Ant is not suited to providing a
method level evaluation as many of the tests are not unit testing individual functions but
are testing the execution of Ant tasks. A set of Ant tasks have been pre-defined for testing
purposes and the tests call into the execute method of the task runner to run them. The
runner then runs the task and returns the output, which is then checked. This testing pattern
doesn’t fit in with our approach as it more closely resembles integration testing, rather than
unit testing, and does not allow us to establish clear test-to-function relationships.

Some previous work (Csuvik et al. 2019a) has used naming conventions to establish a
ground truth. However, as demonstrated by our work, this technique has low recall and
would introduce bias. Ultimately, when creating a new ground truth, one cannot simply
apply an existing traceability technique, as it causes a bias towards that type of technique.

Evaluation Measures. The evaluation measures we selected are: precision, recall, F1 score,
mean average precision (MAP), and area under the precision-recall curve (AUC) (Manning
et al. 2010). We selected precision and recall as they are elementary measures for evaluat-
ing the performance of a binary classifier and allow us to measure the proportion of true
positives out of all positive predictions and the proportion of all positive examples that are
retrieved. As precision and recall generally represent a trade-off between each other, the F1

11https://ant.apache.org/
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score is a useful measure as it evenly weights both precision and recall, allowing us to deter-
mine which techniques best handle the trade-off. We also use the mean average precision
(MAP) as it takes into account the rank of the true positives in our link prediction lists. This
is useful information as it shows which techniques are better at ranking true positives higher
than false positives and will also punish techniques that more often return no positives at all.

Finally, we use the area under the precision-recall curve (AUC) as it gives us a view of
the performance of each technique that is threshold independent. As most of our techniques
need a threshold to make predictions, the performance of these techniques can be very
sensitive to the values used for their thresholds. An incorrectly chosen threshold can give
the incorrect impression of the usefulness of a technique and, therefore, while we have
attempted to select the best threshold for each technique, AUC gives us a general measure
of the performance of these techniques that is not affected by threshold values. We selected
a precision-recall (PR) curve over a receiver operating characteristics (ROC) curve because
the classes in our domain are unbalanced, there are many more negative links than positive
links, and PR curves exhibit better characteristics in this situation (Davis and Goadrich
2006). All scores are presented as integer percentages for the sake of readability.

Van Rompaey and Demeyer (2009) also measure applicability, i.e., the ratio of tests for
which at least one link is retrieved. However, because of the normalisation that we apply, all
non-binary techniques will always produce at least one link, resulting in 100% applicability.

7.2 Research Questions

In the following, we will evaluate the presented techniques according to a list of research
questions:

1. How effective are our techniques at the method level?
2. How effective are our techniques at the class level?
3. What effectiveness is achieved by utilising method level information for class level

traceability?
4. Can we improve method level predictions by augmenting with class level information?
5. Can we improve predictions by combining the individual technique scores into a single

score?
6. What are the reasons for the occurrence of false negatives and false positives?

The six research questions and findings will be presented below. While the first
five research questions are answered with a quantitative evaluation, the sixth required a
qualitative evaluation. The results are discussed in Section 8.

7.2.1 Research Question 1 (Method Level)

How effective are our techniques at the method level?
This research question investigates how effective each of the techniques are for estab-

lishing test-to-function links using only method level information. To answer this question,
we compute the evaluation measures over the link sets produced using (17).

Findings From the results for RQ1, shown in Table 3, we see that, on average, LCS-U is the
most desirable as it performs best for F1 and AUC while only trailing the best MAP (LCS-B)
by one point. This means that it is good at balancing precision and recall, is consistent when
changing thresholds, and could benefit from a further optimised threshold selection. For
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Table 3 RQ1 – Method level traceability

Technique Prec. Recall MAP F1 AUC True Pos. False Pos.

Commons IO NC 100 07 09 14 – 3 0

NCC 94 39 45 55 – 16 1

LCS-U 66 76 68 70 63 31 16

LCS-B 49 85 70 63 54 35 36

Leven 66 56 60 61 58 23 12

LCBA 44 34 32 38 – 14 18

Tarantula 58 68 67 63 52 28 20

TFIDF 59 66 65 62 59 27 19

Static NC 100 07 09 14 – 3 0

Static NCC 17 39 24 24 – 16 77

Static LCS-U 13 46 32 21 9 19 124

Static LCS-B 18 32 30 23 11 13 60

Static Leven 29 49 47 36 16 20 50

Commons Lang NC 100 10 18 19 – 8 0

NCC 98 53 57 68 – 41 1

LCS-U 82 77 86 79 84 60 13

LCS-B 67 85 82 75 74 66 32

Leven 84 55 73 67 76 43 8

LCBA 84 69 64 76 – 54 10

Tarantula 79 85 87 81 84 66 18

TFIDF 89 81 85 85 87 63 8

Static NC 90 12 20 20 – 9 1

Static NCC 26 53 40 35 – 41 116

Static LCS-U 20 58 46 29 14 45 183

Static LCS-B 25 38 37 31 15 30 88

Static Leven 25 46 51 33 16 36 107

JFreeChart NC 100 16 21 27 – 7 0

NCC 92 25 32 39 – 11 1

LCS-U 63 66 77 64 61 29 17

LCS-B 30 84 82 44 60 37 87

Leven 83 57 74 68 60 25 5

LCBA 67 77 79 72 – 34 17

Tarantula 39 77 78 52 41 34 53

TFIDF 55 66 73 60 57 29 24

Static NC 80 09 12 16 – 4 1

Static NCC 56 20 20 30 – 9 7

Static LCS-U 40 41 42 40 18 18 27

Static LCS-B 47 39 43 43 20 17 19

Static Leven 39 43 51 41 21 19 30
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Table 3 (continued)

Technique Prec. Recall MAP F1 AUC True Pos. False Pos.

Gson NC 100 11 10 20 – 6 0

NCC 80 22 20 34 – 12 3

LCS-U 56 82 78 67 65 45 35

LCS-B 34 85 79 49 63 47 90

Leven 75 76 77 76 66 42 14

LCBA 58 65 65 62 – 36 26

Tarantula 59 69 70 64 54 38 26

TFIDF 61 69 70 65 54 38 24

Static NC 100 07 06 14 – 4 0

Static NCC 47 16 15 24 – 9 10

Static LCS-U 23 49 30 31 14 27 93

Static LCS-B 17 22 18 19 9 12 59

Static Leven 17 29 25 22 11 16 76

Average NC 100 11 14 20 – 6 0

NCC 91 35 38 49 – 20 2

LCS-U 67 75 77 70 68 41 20

LCS-B 45 85 78 58 63 46 61

Leven 77 61 71 68 65 33 10

LCBA 63 62 60 62 – 35 18

Tarantula 59 75 75 65 58 42 29

TFIDF 66 70 73 68 64 39 19

Static NC 93 09 12 16 – 5 1

Static NCC 37 32 25 28 – 19 53

Static LCS-U 24 49 38 30 14 27 107

Static LCS-B 27 33 32 29 14 18 57

Static Leven 27 42 44 33 16 23 66

precision alone, NC is the best, while LCS-B is best for recall. When comparing variants,
the dynamic techniques consistently outperform the static techniques.

7.2.2 Research Question 2 (Class Level)

How effective are our techniques at the class level?
This research question investigates how effective each of the techniques are for estab-

lishing test-class-to-class links, using only class level information. To answer this question,
we compute the evaluation measures over the link sets produced using (19).

Findings From the results for RQ2, shown in Table 4, we see that Static Levenshtein is the
most desirable overall with the best F1 score and only one point lower than the best MAP
(Static LCS-B) and the best AUC (Leven). It is also evident that at the class level, the static
techniques outperform the dynamic techniques with generally higher precision and recall.
For pure precision, NC variants win again.
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Table 4 RQ2 – Class level traceability

Technique Prec. Recall MAP F1 AUC True Pos. False Pos.

Apache Ant NC 100 73 75 84 – 57 0

NCC 89 73 75 80 – 57 7

LCS-U 65 71 73 67 62 55 30

LCS-B 51 72 66 60 86 56 53

Leven 87 68 72 76 86 53 8

LCBA 50 59 52 54 – 46 46

Tarantula 49 46 47 47 66 36 38

TFIDF 51 46 47 49 66 36 34

Static NC 100 83 86 91 – 65 0

Static NCC 40 87 68 54 – 68 104

Static LCS-U 37 87 64 52 40 68 118

Static LCS-B 86 88 91 87 84 69 1

Static Leven 91 87 90 89 84 68 7

Commons IO NC 100 86 89 92 – 43 0

NCC 94 90 92 92 – 45 3

LCS-U 73 90 88 80 86 45 17

LCS-B 61 92 80 73 92 46 30

Leven 100 90 93 95 92 45 0

LCBA 50 70 67 58 – 35 35

Tarantula 74 78 80 76 64 39 14

TFIDF 74 78 80 76 65 39 14

Static NC 100 86 89 92 – 43 0

Static NCC 98 92 95 95 – 46 1

Static LCS-U 82 94 94 88 78 47 10

Static LCS-B 92 88 90 90 84 44 4

Static Leven 94 90 93 92 88 45 3

Commons Lang NC 100 71 79 83 – 55 0

NCC 95 81 89 88 – 63 3

LCS-U 77 81 86 79 73 63 19

LCS-B 63 82 84 72 71 64 37

Leven 95 81 89 88 79 63 3

LCBA 51 68 67 58 – 53 51

Tarantula 50 59 63 54 38 46 46

TFIDF 34 56 56 43 32 44 85

Static NC 100 72 80 84 – 56 0

Static NCC 84 87 91 86 – 68 13

Static LCS-U 77 87 88 82 67 68 20

Static LCS-B 94 86 94 90 82 67 4

Static Leven 96 86 94 91 83 67 3
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Table 4 (continued)

Technique Prec. Recall MAP F1 AUC True Pos. False Pos.

JFreeChart NC 100 85 91 92 – 329 0

NCC 73 86 84 79 – 330 123

LCS-U 56 86 79 68 62 332 266

LCS-B 58 86 81 69 86 332 239

Leven 99 86 92 92 86 332 3

LCBA 31 82 67 45 – 314 684

Tarantula 69 77 77 73 66 295 133

TFIDF 67 77 78 72 66 297 145

Static NC 100 85 91 92 – 327 0

Static NCC 59 85 79 70 – 328 229

Static LCS-U 46 85 72 60 40 328 381

Static LCS-B 98 85 91 91 84 327 6

Static Leven 98 85 91 91 84 327 6

Average NC 100 76 80 86 – 121 0

NCC 87 78 81 82 – 124 34

LCS-U 65 77 78 70 71 124 83

LCS-B 56 78 74 65 84 125 90

Leven 92 76 81 83 86 123 4

LCBA 46 67 59 53 – 112 204

Tarantula 54 57 58 55 59 104 58

TFIDF 51 56 57 53 57 104 70

Static NC 100 81 86 89 – 123 0

Static NCC 55 87 76 66 – 128 87

Static LCS-U 49 87 72 61 56 128 132

Static LCS-B 91 87 92 89 84 127 6

Static Leven 94 86 91 90 85 127 5

7.2.3 Research Question 3 (Elevated Method Level)

What effectiveness is achieved by utilising method level information for class level trace-
ability?

This research question investigates how each of the techniques perform for establishing
test-class-to-class links when we use method level information that has been elevated to the
class level. To answer this question, we compute the evaluation measures over the link sets
produced using (22).

Findings From the results shown in Table 5 we see that TFIDF is the best for MAP, F1
score, and AUC by a clear margin. Static NC wins on precision and this time LCS-B is best
for recall.

7.2.4 Research Question 4 (Augmented Method Level)

Can we improve method level predictions by augmenting with class level information?
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Table 5 RQ3 – Elevated method level traceability

Technique Prec. Recall MAP F1 AUC True Pos. False Pos.

Apache Ant NC 53 26 26 34 – 20 18

NCC 49 29 30 37 – 23 24

LCS-U 56 55 55 55 42 43 34

LCS-B 52 58 57 55 41 45 41

Leven 64 53 55 58 43 41 23

LCBA 70 58 59 63 – 45 19

Tarantula 72 56 59 63 49 44 17

TFIDF 76 60 63 67 54 47 15

Static NC 100 35 36 51 – 27 0

Static NCC 77 44 44 56 – 34 10

Static LCS-U 30 28 29 29 14 22 52

Static LCS-B 30 28 29 29 15 22 52

Static Leven 30 28 29 29 15 22 52

Commons IO NC 87 40 40 55 – 20 3

NCC 90 56 56 69 – 28 3

LCS-U 83 80 80 82 78 40 8

LCS-B 77 82 79 80 76 41 12

Leven 80 72 73 76 72 36 9

LCBA 71 60 63 65 – 30 12

Tarantula 82 74 76 78 74 37 8

TFIDF 82 74 76 78 75 37 8

Static NC 100 38 39 55 – 19 0

Static NCC 100 60 61 75 – 30 0

Static LCS-U 02 02 02 02 1 1 46

Static LCS-B 09 08 09 08 2 4 43

Static Leven 08 08 09 08 2 4 47

Commons Lang NC 90 55 62 68 – 43 5

NCC 91 64 71 75 – 50 5

LCS-U 81 73 79 77 70 57 13

LCS-B 83 76 82 79 69 59 12

Leven 85 74 81 79 70 58 10

LCBA 83 67 74 74 – 52 11

Tarantula 82 69 76 75 66 54 12

TFIDF 88 74 82 81 72 58 8

Static NC 100 49 55 66 – 37 0

Static NCC 96 68 76 80 – 52 2

Static LCS-U 23 21 21 22 14 16 53

Static LCS-B 28 24 26 26 15 19 50

Static Leven 27 24 26 26 15 19 51
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Table 5 (continued)

Technique Prec. Recall MAP F1 AUC True Pos. False Pos.

JFreeChart NC 76 63 69 69 – 243 76

NCC 75 63 69 68 – 241 82

LCS-U 66 69 70 67 58 264 139

LCS-B 56 74 72 64 57 285 225

Leven 69 64 68 66 57 246 110

LCBA 81 76 79 78 – 292 70

Tarantula 73 63 67 68 58 243 90

TFIDF 83 75 78 79 72 287 57

Static NC 100 78 83 88 – 301 0

Static NCC 73 75 75 74 – 290 106

Static LCS-U 31 27 29 29 19 103 230

Static LCS-B 31 27 29 29 20 104 229

Static Leven 34 30 32 32 22 115 220

Average NC 76 46 49 57 – 82 26

NCC 76 53 57 62 – 86 29

LCS-U 72 69 71 70 62 101 49

LCS-B 67 72 72 69 61 108 73

Leven 75 66 69 70 61 95 38

LCBA 76 65 69 70 – 105 28

Tarantula 77 66 70 71 62 95 32

TFIDF 82 71 75 76 68 107 22

Static NC 100 50 53 65 – 96 0

Static NCC 87 62 64 71 – 102 30

Static LCS-U 21 19 20 20 12 36 95

Static LCS-B 24 22 23 23 13 37 94

Static Leven 25 23 24 24 14 40 93

This research question investigates if the method level traceability performance can be
improved by augmenting the method level information with class level information. To
answer this question, we compute the evaluation measures over the link sets produced using
(24).

Findings The results for RQ4, shown in Table 6, show that, on average, LCS-U is the
most desirable technique when utilising augmented scores as it has the highest F1 and AUC
scores. However, the average scores for LCS-U are similar to the average scores when using
the unaugmented method level technique. For pure precision TFIDF is the best technique.
It can be observed that for a number of techniques the augmentation produces a drastically
higher number of false positives.

7.2.5 Research Question 5 (Technique Combination)

As described in Section 5, we also compute a combined score which averages and nor-
malises the individual technique scores. As this score takes a simple average and weights
all techniques equally we refer to it as the simple combination method.
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Table 6 RQ4 – Augmented method level traceability

Technique Prec. Recall MAP F1 AUC True Pos. False Pos.

Commons IO NC 03 90 18 06 – 37 1237

NCC 12 73 54 21 – 30 217

LCS-U 73 73 74 73 75 30 1

LCS-B 50 90 78 64 59 37 37

Leven 65 59 63 62 62 24 13

LCBA 05 41 31 10 – 17 294

Tarantula 64 66 68 65 59 27 15

TFIDF 65 68 69 67 65 28 15

Static NC 03 90 18 06 – 37 1237

Static NCC 09 71 30 16 – 29 297

Static LCS-U 14 51 38 22 10 21 125

Static LCS-B 34 44 42 38 19 18 35

Static Leven 27 49 47 34 18 20 55

Commons Lang NC 03 95 31 07 – 74 2095

NCC 10 78 63 17 – 61 566

LCS-U 81 81 89 81 87 63 15

LCS-B 56 90 86 69 80 70 54

Leven 44 60 76 51 43 47 59

LCBA 17 74 64 27 – 58 286

Tarantula 86 79 84 83 83 62 10

TFIDF 90 81 85 85 89 63 7

Static NC 03 82 29 06 – 64 2086

Static NCC 09 77 44 15 – 60 637

Static LCS-U 20 59 47 30 14 46 184

Static LCS-B 28 44 44 34 16 34 88

Static Leven 26 47 52 33 16 37 106

JFreeChart NC 06 77 31 11 – 35 514

NCC 08 75 43 15 – 34 372

LCS-U 44 75 74 55 45 33 42

LCS-B 24 89 84 38 49 39 123

Leven 58 66 74 62 51 29 21

LCBA 57 70 71 63 – 32 23

Tarantula 43 59 64 50 36 26 34

TFIDF 52 59 63 55 49 26 24

Static NC 06 73 24 10 – 32 550

Static NCC 07 59 31 12 – 26 372

Static LCS-U 45 45 50 45 25 20 24

Static LCS-B 43 45 51 44 23 20 27

Static Leven 37 48 52 42 24 21 36
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Table 6 (continued)

Technique Prec. Recall MAP F1 AUC True Pos. False Pos.

Gson NC 09 80 28 16 – 44 465

NCC 10 76 33 18 – 42 360

LCS-U 62 78 76 69 63 43 26

LCS-B 32 85 81 46 65 47 102

Leven 75 75 76 75 66 41 14

LCBA 24 75 69 36 – 41 129

Tarantula 64 69 70 67 55 38 21

TFIDF 62 69 69 66 55 38 23

Static NC 08 78 24 15 – 43 481

Static NCC 10 75 29 17 – 41 389

Static LCS-U 19 73 36 30 16 39 170

Static LCS-B 18 67 34 28 15 37 171

Static Leven 19 71 39 30 16 39 166

Average NC 05 86 27 10 – 48 1078

NCC 10 76 48 18 – 42 379

LCS-U 65 77 78 70 68 42 24

LCS-B 41 89 82 54 63 48 79

Leven 60 65 72 62 56 35 27

LCBA 26 65 59 34 – 37 183

Tarantula 65 68 72 66 58 38 20

TFIDF 67 69 72 68 65 39 17

Static NC 05 81 24 09 – 44 1089

Static NCC 08 70 33 15 – 39 424

Static LCS-U 25 57 42 32 16 32 126

Static LCS-B 31 50 43 36 18 27 80

Static Leven 27 54 47 35 19 29 91

Technique Exclusion: Can we achieve optimal performance with a subset of the individual
techniques?

Given that we are combining a set of techniques, it is natural to ask if any of the tech-
niques are redundant, or even harmful to performance, and if we can optimise or improve
performance by removing any of the techniques from the combined score. To investigate
this, we ran the method level experiments again looking at the combined technique perfor-
mance when one of the individual techniques was excluded. This analysis was run once for
each technique to determine what the impact of removing that technique was.

Technique Weighting: Can we improve the performance of the combined scores by
weighting individual techniques differently?

As we are combining techniques, it is natural to investigate if there is a way we can
improve the results achieved using the combined score by weighting the individual tech-
nique scores before combining them. To perform a weighting we must define a weight
vector that contains a value for each of the thirteen individual techniques which we can mul-
tiply with the scores matrix before combination. This gives us an extremely large space of
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possible weight vectors to choose from. There are many possible approaches for determin-
ing the values of the weight vectors as it is simply an optimisation problem to which a wide
range of search-based approaches can be applied. However, before investing large amounts
of time and resources into optimising the weight vector, some preliminary work is required
to determine if using weightings even has the potential to deliver significant results. To test
the hypothesis that weighting can significantly change the results we used a simple approach
to weighting called precision-based weighting which allows us to select a weight vector
that should intuitively have a good chance of being beneficial. When using precision-based
weighting, we set the weight of a technique to the precision achieved by that individual
technique. For example, the weight for the Levenshtein technique at the method level is set
to 0.66 as it achieves a 66% precision in the RQ1 results. This provides an intuitive weight
vector as the more precise a technique is, the higher is it weighted.

Machine Learning: Can a machine learning method for technique combination outperform
our standard approach?

Choosing the right weights for combining the scores is complex due to the size of the
search space. We, therefore, investigate if a machine learning method can outperform our
standard approach.

As the development of machine learning techniques for combination is not a primary
focus of this paper, we opted to use a very simple feedforward network consisting of just a
single hidden layer with 64 units. To use our feedforward network for technique combina-
tion, we supply the vector of individual technique scores between a test and a function as the
input and use a single real-valued output as the probability that the test and function form
a true link. To implement this, we used the keras.Sequential model from TensorFlow with
the mean squared error loss function and the Adam optimiser. The model was constructed
with one hidden layer of 64 units and 1 unit in the output layer. We trained for 12000 steps,
checkpointing every 1000 steps, and selected the checkpoint with the best accuracy for infer-
ence. The biggest challenge with this approach is obtaining a labelled data set for training
and validation. As discussed in Section 7.1, creating ground truth data sets for traceability
is time-consuming and error-prone. Therefore, manually creating an entire data set that is
large enough to train a neural network is not feasible. Our solution to this was to augment
our manually created ground truth with extra links which we extracted by assuming that
links that had an NC score of 1 were true positive links, and links that had a very low sum
of technique scores were true negative links. We make the first assumption as the results
for RQ1 and RQ2 show that the NC technique has perfect precision. We need the second
assumption as we need to label as many true negatives as true positives to have a balanced
data set. Therefore, we take a sum of the scores for all the techniques and mark the lowest
scoring N links as true negatives, where N is the number of links marked as true positive
using the manual ground truth and the NC assumption. This gives us 2N total links with a
50/50 split between true positive labels and true negative labels. We drew the training and
validation sets from the Commons IO, Commons Lang, and JFreeChart projects, leaving
the Gson and Apache Ant projects as hold outs to check for project overfitting.

Findings The results, shown in Tables 7 and 8, reveal that, on average, the simple combined
technique outperforms any individual technique. The results from the technique exclusion
(not shown in the tables) revealed that removing any technique made the results worse for
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Table 7 RQ5 – Method level technique combination comparison

Technique Prec. Recall MAP F1

Commons IO Simple 71 83 79 76
Prec. Based Weighting 66 79 79 72
FFN 71 37 34 48

Commons Lang Simple 89 86 92 88
Prec. Based Weighting 85 71 84 77
FFN 84 72 67 77

JFreeChart Simple 81 80 86 80
Prec. Based Weighting 63 68 74 65
FFN 65 80 64 71

Gson Simple 73 84 83 78
Prec. Based Weighting 72 85 84 78
FFN 56 36 36 44

Average Simple 79 83 85 81
Prec. Based Weighting 72 76 80 73
FFN 69 56 50 60

at least two of the projects with the exception of naming conventions, for which the removal
had no effect on the results. As for precision-based weighting, at the method level it under-
performs no weighting, while at the class level both approaches are essentially equivalent.
The results for the machine learning based combination reveal that the standard combination
approach consistently outperforms the neural network approach.

Table 8 RQ5 – Class level technique combination comparison

Technique Prec. Recall MAP F1

Apache Ant Simple 79 90 92 84
Prec. Based Weighting 78 90 91 83
FFN 60 67 70 63

Commons IO Simple 98 96 97 97
Prec. Based Weighting 98 96 97 97
FFN 84 86 87 85

Commons Lang Simple 90 85 92 87
Prec. Based Weighting 92 86 94 89
FFN 84 78 85 81

JFreeChart Simple 98 86 92 92
Prec. Based Weighting 98 86 92 92
FFN 90 86 90 88

Average Simple 91 89 93 90
Prec. Based Weighting 92 90 94 90
FFN 74 74 79 74
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Table 9 RQ6 – Incorrect link reason categorisation

Category ID Description

A The tested function has low naming scores compared to other functions.

B LCBA finds a non-tested function and does not find the tested function.

C LCBA cannot find the tested function as JUnit fail calls are not executed and therefore
not accounted for by LCBA.

D A non-tested method is called frequently.

E A non-tested overload of a tested function has similar scores to the tested function.

F A non-tested or default constructor is wrongly marked as tested due to similar naming
technique scores as the tested constructor.

G A non-tested function is higher in the call stack than the tested function.

H The test tests class functionality, not individual functions.

I The test is named after an issue number resulting in poor naming scores.

J The test doesn’t execute the tested method.

K The test tests an exception not the function.

7.2.6 Research Question 6 (False Negative and False Positive Analysis)

What are the reasons for the occurrence of false negatives and false positives?
Although we achieve high F1 scores using the simple combined technique there are still

instances where we produce false positives and false negatives. Investigating these instances
and determining the reasons for them is useful as it may reveal ways in which we can
improve the approach or show opportunities for improving the software engineering pro-
cess. To do this, we investigated every false positive and false negative in the Commons IO,
Commons Lang, and JFreeChart projects using the simple combined score at the method
level and categorised the reason for it. This was done by determining the cause of the false
positive or false negative and either adding that cause to the list of categories or assigning it
to the existing category if we had already encountered that cause for another example. The
resulting categories are defined in Table 9.

Table 10 RQ6 – False positive and false negative analysis

Category Commons IO Commons Lang JFreeChart Totals

FP FN FP FN FP FN FP FN

A 0 0 0 10 0 5 0 15

B 0 0 0 1 5 0 5 1

C 0 2 0 0 5 0 5 2

D 1 0 5 0 0 0 6 0

E 3 0 0 0 1 0 4 0

F 0 0 3 0 1 0 4 0

G 2 2 0 0 0 0 2 2

H 4 2 0 0 0 0 4 2

I 0 0 0 2 0 3 0 5

J 0 0 0 0 0 1 0 1

K 0 1 0 0 0 0 0 1
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Table 11 Extended manual precision evaluation results

Project True Positives False Positives Precision Fleiss’ kappa

Commons Net 5 20 20% 0.48

Commons Text 22 3 88% 0.62

Findings The results for RQ6, shown in Table 10, show the largest sources of false neg-
atives are the tested function scoring poorly in the naming techniques versus some other
non-tested function and the test being named after an issue number rather than a tested func-
tion. The primary source of false positives is non-tested functions being called frequently,
leading to high scores from the SCTs, and the fact that fail calls are not captured by LCBA
because they are not executed in passing tests.

7.3 Extended Manual Precision Evaluation

To further demonstrate the generalisability of the results we executed TCTRACER on two
other projects: Commons Net12 and Commons Text13 and manually labelled a sample of
25 predicted links from each project as true positives or false positives. These links were
produced by the combined technique with simple combination, as RQ5 shows this is the
most effective technique and were selected uniformly at random. The links were then inde-
pendently judged by two judges and the inter-rater agreement was computed using Fleiss’
kappa. Once the inter-rater agreement over the original ratings had been computed the
judges conferred to resolve differing judgements leaving one canonical set of judgements
from which the precision could be calculated.

The results, presented in Table 11, show a very large difference between the two projects
with Commons Text performing very well with 88% precision while Commons Net lags
behind with only 20%. There are several reasons for this. Firstly, Commons Net contains a
sizeable number of empty tests and abstract functions. TCTRACER does not currently fil-
ter these out and where one of these empty tests or abstract functions were predicted in a
link, that link was necessarily a false positive. This issue is easily resolvable by simply fil-
tering out those artefacts. Another contributing factor is the number of classes in Commons
Net that have very similar names due to them implementing the same logic for different
protocols. For example, UnixFTPEntryParser, VMSFTPEntryParser, NTFTPEntryParser,
OS2FTPEntryParser, OS400FTPEntryParser, and others have very similar names, making
false positives more likely. In projects where this regularly occurs, it may be possible to
somewhat negate this effect by setting the thresholds more strictly to reduce the number of
false positives.

7.4 Parameter Value Selection

Our approach includes tunable parameters; a threshold value for each technique and the call
depth discount factor, all of which are real numbers. The current values for the thresholds
and the call depth discount have been established in a pre-study with smaller ground truth
and a smaller set of projects. We used the pre-study to empirically determine the threshold

12https://commons.apache.org/proper/commons-net/
13https://commons.apache.org/proper/commons-text/
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for each technique by starting from zero and incrementing the threshold in steps of 0.01,
each time recording the precision, recall, and F1 score. We then gathered all of the results
and selected thresholds that generalised well across projects for the F1 score. We, therefore,
consider the current thresholds to be sufficiently general and the best performing overall.
However, the score distributions can vary between projects and a practitioner may want to
alter the thresholds to match to a specific project if they have a ground truth or some other
heuristic on which to base this decision. In the absence of a mechanism to measure precision
and recall on a specific project, we suggest that practitioners use the given thresholds.

We also observed that a discount factor <= 0.5 usually gives the highest F-score and
varying the factor between 0 and 0.5 does not change the results. Increasing the factor above
0.5 has only a small effect on recall and a larger negative effect on precision, lowering the
F-score overall. Given these results, we selected a final discount factor of 0.5.

7.5 Call Depth Discounting Analysis

As discussed in Section 4.3.1, we incorporate the principal of call depth discounting into
our approach as it encodes the assumption that the further away in the call stack a function
is from its calling test, the less likely it is that the function is tested by the test. Using our
evaluation, we can determine the accuracy of this assumption by looking at the depth of the
known tested functions in our ground truth links. This data, as shown in Table 12, reveals
that Commons IO is the only project which has more than one tested function that is not
called directly by the test and, therefore, has a depth greater than zero. These results support
the assumption behind call depth discounting in general. However, as Commons IO has a
relatively large number of such examples, it shows the quality of this assumption can vary
between projects. We, therefore, also wanted to assess how well our approach handles tested
functions that have a depth greater than zero when they do occur. Table 12 shows the number
of ground truth links at each depth that we discover using the combined score and shows
that our approach handles tested functions at depth one and two very well as we correctly
identify seven out of the eight tested functions at these depths. We do not discover the few
tested functions at depth three and four as the scores are so heavily discounted at this level
that we very rarely make a prediction at those depths. In general, this is the correct approach
as the few counter-examples at depth three and four are outliers in the way the tests are
implemented and are not representative of tests in general. A breakdown of the number of
functions we predict to be the tested function at each depth is presented in Table 13 and the
numbers shown here are broadly in line with the distribution of tested functions over depths
in the ground truth data where the two projects that have tested functions at a depth greater
than zero are the two projects that have a lower proportion of predicted functions at depth
zero.

Table 12 Call depths of true positive functions (found versus total)

Project Depth 0 Depth 1 Depth 2 Depth 3 Depth 4

Commons IO 28/31 5/6 1/1 0/1 0/2

Commons Lang 66/77 1/1 0/0 0/0 0/0

JFreeChart 35/44 0/0 0/0 0/0 0/0

Gson 46/55 0/0 0/0 0/0 0/0
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Table 13 Total predicted function call depths

Project Depth 0 Depth 1 Depth 2 Depth 3 Depth 4

Commons IO 1554 (82%) 291 (15%) 51 (3%) 9 (0.5%) 0 (0%)

Commons Lang 4136 (83%) 757 (15%) 49 (1%) 36 (0.7%) 0 (0%)

JFreeChart 3923 (95%) 179 (4%) 10 (0.2%) 6 (0.1%) 3 (0.07%)

Gson 1602 (93%) 112 (7%) 6 (0.3%) 1 (0.006%) 0 (0%)

8 Discussion

The results reveal some insights that allow us to draw conclusions about the relative effec-
tiveness of the techniques and differences between the projects, weighting, and combination
techniques.

8.1 Techniques

First, we compare the naming conventions techniques, NC and NCC. At the method level,
NC has perfect precision for the dynamic variant and very high precision for the static
variant. This is expected as it is unlikely that a test and function will share the same name,
after the word test has been removed, without being linked. However, this strictness results
in generally low recall for NC. In contrast, NCC trades-off some of this precision for more
recall, resulting in better F1 scores for the NCC variants. However, due to their overall low
recall on the method level, NC and NCC are unsuitable at that level. On method-level, other
naming conventions are often followed. This observation was also made by Madeja and
Porubȧn (2019). At the class level, NC beats NCC for F1 score as it is easier for developers
to maintain traditional naming conventions at this level compared to the method level and,
therefore, recall does not suffer as much with NC at the class level.

When comparing LCS-U and LCS-B, we see that LCS-U usually performs better for
precision, whereas LCS-B generally performs better for recall. This could be explained
by the interaction between the distribution of the scores and the way the thresholds are
selected. As the two techniques produce difference score distributions and the thresholds
are optimised for F1 score, the natural point at which the F1 is maximised may differ for the
two techniques, with the optimal F1 being reached at a high recall/low precision point for
LCS-B and a high precision/low recall point for LCS-U. This intuitively matches with the
thresholds that were chosen by this process: 0.55 for LCS-B and 0.75 for LCS-U as higher
threshold values are typically associated with higher precision. However, as the difference
in precision is greater than the difference in recall, LCS-U is the better choice overall as
evidenced by its better F1 score.

LCBA performs poorly in general but is especially bad for Commons IO in RQ1. This
is an artefact of the nature of Commons IO, where the effect of many function calls is to
change some state, rather than return the result of a computation. Therefore, the returns of
method calls are not as frequently testable by simply comparing the return value to an oracle;
instead, a further function call is required to check that the state was changed correctly. This
causes many false positives for LCBA. Commons Lang is the opposite of Commons IO
in this regard, as tested functions usually have their return values checked against oracles
immediately after returning, resulting in a relatively high LCBA score. The differences in
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scores for LCBA are due to the simplicity of the LCBA heuristic which cannot distinguish
between acting and asserting methods (when the arrange–act–assert pattern is used).

Overall, LCS-U, Levenshtein, and TFIDF are the most consistently well-performing
from the set of individual techniques, but which one performs best is project dependent.
However, the results from RQ5 show that our simple combined score is consistently bet-
ter than any individual technique for MAP, F1, and AUC at the method level. These results
confirm our intuition that the benefit gained from combining the individual strengths of the
techniques outweighs the negative effects of combining their weaknesses, thus giving a bet-
ter result overall. Due to the strengths of the static techniques at the class level, the combined
score is not always the best here for F1, but it is the best on average for AUC, indicating
that its performance could be improved with a more optimised threshold.

8.2 Static vs. Dynamic Techniques

When comparing dynamic and static techniques, a mixed picture emerges due to the large
differences in the method level results and class level results. At the method level, the
dynamic techniques outperform the static techniques by a large margin, however, at the class
level, the static techniques often perform marginally better than the dynamic techniques.
This is due to the complexity of the task. At the method level, we have to match both the test
class to the tested class and the test to the function, whereas at the class level we only have
to do the former. This makes the method level task significantly more difficult, especially
when using naming based techniques where we have issues relating to the reuse of func-
tion names across multiple classes or many classes/functions being named similar things.
The dynamic techniques perform better as we are only considering executed functions as
candidates and, therefore, we find less false positives. At the class level, the problem is
much simpler and good naming conventions are more strictly adhered to as its is relatively
straightforward to name a test class similar to the tested class. The static techniques, there-
fore, do not suffer the same precision loss as at the method level and can pick up slightly
more recall, resulting in marginally better F1 scores overall. This is an important observa-
tion as it shows that, if only class level traceability is required, the static techniques alone
are sufficient and there is no reason to go to the extra effort of using dynamic information.
However, if method level traceability is required, the use of static name-based techniques
alone will likely not be sufficiently accurate.

8.3 Multi-Level Information

In terms of the usefulness of multilevel information, RQ3 shows that using method level
information for class level traceability produces worse results than just using class level
information. RQ4 shows that method level traceability performance may be improved when
augmenting with class level information, such as in the case of Commons IO where the
largest F1 score is improved by three points. However, on average there is no significant
improvement. As a result of the augmentation changing the distribution of scores, some
of the techniques, most notably NC and NCC, change their characteristics with regards to
how they balance precision and recall. However, this does not confer an overall benefit
for F1 score. These results are in contrast to our previous work (White et al. 2020) where
we showed that using multilevel information at the method level has a positive impact on
results. This work shows that adding static techniques removes this benefit, however, it
produces better results using only method level information than the previous work.
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8.4 Weighted Technique Combinations

In RQ5, our technique exclusion study results confirm that all techniques contribute some
useful information, with the possible exception of NC, which has no effect on the results
obtained over our subject projects. One possible explanation for this is that NCC also pro-
vides all the information provided by NC, which is, therefore, redundant. However, despite
this possibility, our advice to practitioners would be to include the technique as it does not
incur significant cost in time or space complexity and may still provide useful information
on projects outside of our set of experimental subjects.

With regards to the weighting experiments, the results seem unintuitive as weighting
better techniques more should benefit the combined score. However, we selected precision
as our weighting mechanic because it was a simple and intuitive way of testing the value
of weighting as a concept and it is very possible this approach may not be the best way of
weighting techniques. There is also the issue of thresholds. As the threshold was set based
on the unweighted combination, we cannot be sure the threshold is still optimised when
changing weights, as weighting changes the overall distribution of the scores. This means
that to extensively search for weights, optimal thresholds would have to be recomputed
every time any of the weights are changed, adding complexity. Overall, our experiments
showed that weighting techniques do not seem to be beneficial.

Our experiments assessing the possibility of using neural networks to perform the tech-
nique combination show disappointing results for the performance of our neural network.
However, the model we used was extremely simple as we wanted to ensure it was fast to
implement and train and would provide a baseline for comparison with our standard com-
bination approach. Therefore, it’s likely the results in this work are not representative of
the maximum achievable using a machine learning combination method, as it is entirely
possible that larger more complex models would perform better. Also, as mentioned in
Section 7.2.5, the manual creation of a labelled data set large enough to train a network on
is not feasible and, therefore, we had to make some assumptions and use technique scores
to label additional true positives and true negatives. This approach to creating a data set is
not perfect and some noise or bias may be introduced into the data set.

8.5 Interpretation

Our investigations into the causes of false negatives and false positives show that the
majority of these errors occur when our fundamental assumptions about the relationships
between tests and their tested functions are subverted. These assumptions include the idea
that test and tested function names should in some way be similar, tests should execute
their tested functions relatively frequently, and tested functions should be high up in the
call stack. These types of assumptions help us craft our techniques and achieve good per-
formance, however, as shown by this analysis, there will always be examples where these
assumptions do not hold and TCTRACER produces a false negative or false positive. Some
of these assumptions can be tested, such as in the case of call depth discounting, as discussed
in Section 7.5.

Finally, we gain some additional insights into the differences between subjects by util-
ising the two categories of techniques, naming-based and statistical call-based techniques
(SCTs), to provide a new interpretation of the results: We use the naming-based techniques
as a proxy for how well organised the test suites are, the SCTs at the method level as a
proxy for how coherent the tests are, and the SCTs at the class level as a proxy for how
cohesive the test classes are. This interpretation of the naming-based techniques flows from
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the intuition that the better test suites are organised, such as by maintaining simple one-to-
one relationships between tests and units-under-test, the better the naming techniques will
perform. For the SCTs, this interpretation comes from the fact that they are measures of
how many different units-under-test are called by an individual test unit and, thus, serve as
a proxy for method level coherence and class level cohesiveness. Using this interpretation,
we see that Commons Lang is the best organised and most coherent at the method level,
while Commons IO is the best organised and most cohesive at the class level. Commons
Lang scores poorly for the SCTs at the class level because some of its test classes are large
and contain many tests. Therefore, these test classes have lots of calls to non-tested classes,
introducing noise.

8.6 Comparison with Earlier Work

We attempted to compare our results to results from previous work. However, the only two
previous works on method level (Bouillon et al. 2007; Hurdugaci and Zaidman 2012) sug-
gest all called methods in a test, leading to very low precision. On the class level, we can
compare our results as we have (in part) reimplemented suggested approaches, namely NC
and LCBA. Our results are similar to Van Rompaey and Demeyer (2009), but direct compar-
ison is not possible as their ground truth is not available. Moreover, their techniques do not
provide any ranking over recommended links. They also evaluate combined techniques, but
as their ground truth has 100% precision and recall for NC, all combinations result in lower
accuracy. In comparison, our results show that a combination of techniques outperforms
individual techniques.

Previous work that is based on similarity between tests and units-under-test (Kicsi et al.
2018; Csuvik et al. 2019a, b) use the NC results as a ground truth and therefore cannot be
directly compared to our study, however, their precision and recall values are lower than the
ones from our class-level combined approach.

8.7 Traceability Integration

As shown in Fig. 1, our approach can be easily integrated into the software development
process. TCAGENT is injected into the JUnit framework to collect the necessary data which
is then analysed by TCTRACER at the end of a JUnit run to generate the test-to-code trace-
ability links which are ready to be used. TCAGENT and TCTRACER can be used inside the
IDE via a framework like EzUnit (Bouillon et al. 2007), allowing a developer to navigate
between tests and tested code quickly. TCTRACER is also easy to integrate into a standard
continuous integration process (Shahin et al. 2017; Elsner et al. 2021). This integration is
made simple by the fact that TCAGENT instruments the JUnit test suite and, therefore, the
gathering of dynamic trace information happens automatically during the testing stage. All
that remains is to add an extra step that executes TCTRACER. The addition of this step
is easy in most modern continuous integration frameworks such as Travis CI14 and Jenk-
ins15. The gathered traceability links can then be used to backtrack from executed tests to
the tested code or vice versa. Moreover, the traceability links are constantly kept up-to-
date as part of the continuous integration pipeline and are readily available. For example,

14https://travis-ci.org/
15https://jenkins.io/
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a developer can change code and corresponding tests at the same time, ensuring their co-
evolution. Also, further analysis of the produced links can be performed as part of the
continuous integration process, such as automatically alerting developers when a function
has no tests even if it is covered (executed) during testing or identifying tests affected by a
change for regression test optimisation (Elsner et al. 2021). Therefore, using TCTRACER to
automate test-to-code traceability link capture through continuous integration can provide
multiple benefits and could be especially useful in safety-critical systems that are subject to
regulations requiring that traceability links are maintained (Cleland-Huang 2012).

8.8 Unit vs. Integration Testing

A further point of discussion is how TCTRACER interacts with integration tests and what
the differences are between using TCTRACER for unit tests and using it for integration tests.
Our approach targets traceability for unit tests we excluded some obvious integration tests
from our evaluation as discussed in Section 7.1. As Trautsch et al. (2020) concludes, there
is no longer a clear distinction between unit testing and integration testing in modern soft-
ware testing, and the JUnit framework is often used for both. Interestingly Orellana et al.
(2017) use naming conventions to distinguish unit and integration tests and Trautsch et al.
(2020) use coverage information for the same purpose, thus utilising techniques which are
similar to those we evaluate. Orellana et al. (2017) did find a difference between unit and
integration tests with regards to the time and developer coordination needed to fix them but
the findings were unintuitive as they found that unit tests took more time and coordination
to fix than integration tests. Given this, it may not be easy to clearly define the differences
one may find when using TCTRACER for integration tests versus unit tests. However, if
we accept the fundamental assumption that integration tests test more units than unit tests
and may not have as close a relationship to them, for example, not be as easily matched by
name similarity, intuitively, TCTRACER may struggle to work with the same level of preci-
sion. However, this is merely conjecture and would need to be validated with experimental
evidence but we are not aware of a ground truth that would allow this.

8.9 Takeaway Messages

The first key takeaway message is to use the combined score at both the method and the class
levels as it is the most consistent and performs the best in the majority of cases. Secondly, we
selected our thresholds for good generalisability so they should be sufficient in the general
case but if a ground truth is available for the project under analysis, practitioners can tune the
thresholds to their specific project. The final takeaway is that, at the class level, static (name-
based) techniques alone are sufficient as adding dynamic techniques confers no benefit.

Method level traceability has recently become important for approaches that generate
assert statements. However, current approaches use simple approaches with low precision or
recall that may affect the quality of the recommendations. For example, Watson et al. (2020)
uses a static version of LCBA which in our evaluation only achieved 63% precision and
62% recall. Another approach (Villmow et al. 2021) uses a name similarity based approach
where from the called methods of a test method the most similar name is assumed to be the
tested method. The authors report 94% precision over a random sample, but their approach
was only able to identify a tested method for 36% of tests (an upper limit for recall). As our
approach achieves significantly higher precision and recall, it has the potential to improve
recommendation approaches like ATLAS or CONTEST significantly.
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9 Threats to Validity

This section describes the main external and internal threats to validity.

9.1 External Threats

The main threats to validity come from the subjects and the ground truth. Firstly, the rep-
resentativeness of the subjects is an external threat to validity as we have no clear evidence
as to how representative these subjects are of the general population of software projects.
However, the subjects that we have selected are widely used in research and by practitioners
and are large enough to demonstrate the applicability of our approach to non-trivial systems.

Name-based techniques rely on projects following some form of naming convention. NC
is a very simple but often used heuristic to establish links. It is based on the requirement to
have the “test” prefix to identify tests in JUnit 3. However, experience and our results show
that while NC on class-level performs well, it does not do so well on method-level where
often other naming conventions are used (see Madeja and Porubȧn (2019)).

While our paper targets unit testing, JUnit is used for unit and integration testing and
therefore our evaluation includes both, unit and integration tests. The presence of integration
tests can be a challenge for traceability techniques as discussed in Section 7.1. It would be
interesting to separate integration tests and unit tests in our evaluation, however, Trautsch
et al. (2020) observes that the current definitions of unit and integration tests may need to
be reconsidered.

Finally, there is a threat to generalisability as our experiments only cover Java projects
that use the JUnit framework and we do not know how representative our chosen projects
are. Therefore, we do not have direct evidence that this approach would apply to other lan-
guages or testing frameworks. However, in our estimation, there is nothing inherent in our
approach that would prevent the application of the TCTRACER approach in other scenarios.

9.2 Internal Threats

The use of manual investigation for establishing the ground truth poses an internal threat to
validity as there is room for interpretation when determining which functions or classes are
tested by a test or test class. However, all judgements were validated by more than one judge.
For the method level ground truth, three judges were used and a full inter-rater agreement
was achieved. All of the judges were students which may have introduced some bias but
despite sharing the student status, the judges were from varied backgrounds with significant
previous experience and there is no clear reason to believe their judgements on which tests
test which functions would be different to that of an average developer. Additionally, as
there was a meeting to discuss differences after each judge had independently made their
judgements, the process was not entirely independent. However, the number of differences
was small and the minimal changes enacted in the meeting were the result of fixing mistakes
rather than convincing judges to change their judgements. At the class level, the majority
of links were provided by the developers and verified by a judge, and a small number of
links (12) were created by two judges, again with a full inter-rater agreement. As we are
using some developer created links, there is potential for a bias to be introduced due to the
selection of classes that were annotated by the developers. While a manual inspection does
not reveal any obvious bias, the existence of one cannot be ruled out.
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As with any approach that uses thresholds, the results are based on the chosen values for
the thresholds. While we attempted to choose good general thresholds, different thresholds
may lead to different results, observations, and conclusions.

9.3 Ethics

The ethics of analysing the subject systems and the extraction of traceability links have been
considered and are in line with the ethics of mining software repositories (Gold and Krinke
2020, 2022). The work presented in this paper was performed in line with research ethics at
UCL (UCL Research Ethics Committee 2020).

10 Related Work

In this section we discuss additional related work exploring techniques and research areas
that do not form part of the background, as presented in Section 2 but are also of interest to
this work, provide opportunities for future work, or have cross-over with the techniques.

Gergely et al. (2019) do not extract links between units directly, but instead, use clus-
tering. The clustering is done with static (packaging structure) and dynamic (coverage)
analysis. The two sets of traceability clusters are compared and the differences are manually
analysed to produce the final traceability links.

Ståhl et al. (2017) focuses on the deployment of traceability into continuous integration
and delivery systems. As part of this work, they present an investigation into existing needs
and practices and propose a unified framework for integrating traceability establishment into
continuous integration systems. The investigation into existing practices showed that there
is a strong desire among developers for the integration of automated traceability handing
into build systems which is, in large part, currently not being fulfilled. This demonstrates
the demand for tools such as TCTRACER. In a related work, Elsner et al. (2021) have used
a subset of the techniques we presented in their evaluation of regression test optimisation
approaches in a continuous integration setting. This is interesting as it demonstrates that the
types of techniques we have developed for traceability link establishment have applications
in other use cases.

Soetens et al. (2016) uses static and dynamic method invocations for determining which
tests need to be included in a regression test case run. This problem is similar to that of trace-
ability establishment and they experimented with some existing traceability techniques in
previous work. The TCTRACER approach could, therefore, also improve over these existing
techniques when utilised for the regression test selection use case. Conversely, the tech-
niques developed by Soetens et al. (2016) could be recast as traceability recovery techniques
and evaluated for that use case.

A recent work (Aljawabrah et al. 2021) has also explored the visualisation of traceability
links as a way of assisting developers to utilise them and providing the ability to see the
difference in predicted links between techniques. This further demonstrates the potential
applicability of test-to-code traceability links and the appetite for their usage.

11 Conclusion

In this paper, we have presented TCTRACER, an approach and implementation for estab-
lishing test-to-code traceability links at both the method level and class level. TCTRACER
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utilises a wide range of new and existing test-to-code traceability link establishment tech-
niques using dynamic and static information and enhances them by combining them and
applying them to both the method level and class level. This makes TCTRACER the first
approach that establishes two types of links and utilises a cross-level information flow. An
empirical evaluation of TCTRACER was conducted, at both the method level and class level,
with five real-world open source projects. The results show that, on average, TCTRACER is
more effective at both the method level and the class level than any single existing technique
and at the class level only static information is required to achieve the best performance.
This makes TCTRACER the most effective approach for test-to-code traceability to date.
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