Empirical Software Engineering (2022) 27: 43
https://doi.org/10.1007/510664-021-10065-7

®

Check for
updates

Analysing app reviews for software engineering:
a systematic literature review

Jacek Dabrowski'2 @ . Emmanuel Letier! - Anna Perini? - Angelo Susi?

Accepted: 5 October 2021/ Published online: 20 January 2022
© The Author(s) 2022, corrected publication 2022

Abstract

App reviews found in app stores can provide critically valuable information to help software
engineers understand user requirements and to design, debug, and evolve software products.
Over the last ten years, a vast amount of research has been produced to study what useful
information might be found in app reviews, and how to mine and organise such informa-
tion as efficiently as possible. This paper presents a comprehensive survey of this research,
covering 182 papers published between 2012 and 2020. This survey classifies app review
analysis not only in terms of mined information and applied data mining techniques but also,
and most importantly, in terms of supported software engineering activities. The survey also
reports on the quality and results of empirical evaluation of existing techniques and iden-
tifies important avenues for further research. This survey can be of interest to researchers
and commercial organisations developing app review analysis techniques and to software
engineers considering to use app review analysis.

Keywords App store analysis - Mining app reviews - User feedback - Mining software
repository - Software engineering - Systematic literature review

Communicated by: David Lo

< Jacek Dabrowski
j-dabrowski@cs.ucl.ac.uk

Emmanuel Letier
e.letier@cs.ucl.ac.uk

Anna Perini
perini@fbk.eu

Angelo Susi
susi@fbk.eu

University College London, London, UK

Fondazione Bruno Kessler, Trento, Italy

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10065-7&domain=pdf
http://orcid.org/0000-0003-3392-0690
mailto: j.dabrowski@cs.ucl.ac.uk
mailto: e.letier@cs.ucl.ac.uk
mailto: perini@fbk.eu
mailto: susi@fbk.eu

43 Page 2 of 63 Empir Software Eng (2022) 27: 43

1 Introduction

App stores have become important platforms for the distribution of software products. In
2020, Google Play Store and Apple Store host over 5 million apps and are widely used for
the discovery, purchase and updates of software products (Clement 2020). The emergence
of these App Stores have had important effects on software engineering practices, notably
by bridging the gap between developers and users, by increasing market transparency and
by affecting release management (AlSubaihin et al. 2019). In 2017, Martin et al. (2017)
used the term ‘app store analysis’ to denote the emerging research using app store data for
software engineering. Their survey identified the richness and diversity of research using
App Store data, notably for API analysis, feature analysis, release engineering, security and
review analysis (Martin et al. 2017).

This paper focuses on analysing app reviews for software engineering. App reviews are
textual feedback associated with a star rating that app users can provide to other App Store
users and app developers about their experience of an app (App Store 2021). Most reviews
have length up to 675 characters (Pagano and Maalej 2013); and convey information on
variety of topics such as feature requests, bug reports or user opinions (Martin et al. 2017
Al-Hawari 2020). Analysing these reviews can benefit a range of software engineering
activities. For example, for requirements engineering, analyzing app reviews can help soft-
ware engineers to elicit new requirements about app features that users desire (Johann et al.
2017; Dabrowski et al. 2020); for testing, app reviews can help in finding bugs (Maalej
and Nabil 2015; Iacob et al. 2016; Shams et al. 2020) and evaluating users’ reactions
to released beta versions of their apps (Gao et al. 2019; AlSubaihin et al. 2019); during
product evolution, analysing app reviews may help in identifying and prioritizing change
requests (Villarroel et al. 2016; Gao et al. 2018b; Gao et al. 2019; Dabrowski et al. 2020).

In recent years, scholars have been also studying on-line user feedback from other digital
sources such as microblogs e.g., Twitter (Guzman et al. 2017), on-line forums e.g., Reddit
(Khan et al. 2019), or issue tracking systems e.g., JIRA (Nyamawe et al. 2019). Most research
efforts, however, have been focused on analyzing app reviews (Lim et al. 2021). Supposedly,
the large number of this data, their availability and their usefulness make app reviews unique
and thus the most frequently studied type of on-line user feedback (Lim et al. 2021).

Significant research has been devoted to study what relevant information can be found in
app reviews; how the information can be analysed using manual and automatic approaches;
and how the information can help software engineers. However, this knowledge is scattered
in literature, and consequently there is no clear view on how app review analysis can support
software engineering. The previous survey on app store data analysis (Martin et al. 2017)
identified app review analysis as one important topic within the broader area of app store
analysis but does not present a detailed comprehensive analysis of app review analysis tech-
niques. Other literature reviews focus on specific types of review analysis such as opinion
mining (Genc-Nayebi and Abran 2017) and information extraction (Tavakoli et al. 2018;
Noei and Lyons 2019) but they do not cover the whole range of research on analysing app
reviews. In contrast, this paper provides a systematic literature review of the whole range of
research on analysing app reviews from the first paper published in 2012 up to the end of
2020. The paper objectives are to:

— identify and classify the range of app review analysis proposed in the literature;

— identify the range of natural language processing and data mining techniques that
support such analysis;

— identify the range of software engineering activities that app review analysis can support;

@ Springer

Empir Software Eng (2022) 27: 43 Page30of63 43

— report the methods and results of the empirical evaluation of app review analysis
approaches.

To accomplish these objectives, we have conducted a systematic literature review follow-
ing a well-defined methodology that identifies, evaluates, and interprets the relevant studies
with respect to specific research questions (Kitchenham 2004). After a systematic selection
and screening procedure, we ended up with a set of 182 papers, covering the period 2012 to
2020, that were carefully examined to answer the research questions.

The primary contributions of the study are: (i) synthesis of approaches and techniques
for mining app reviews, (ii) new knowledge on how software engineering scenarios can be
supported by mining app reviews, (iii) a summary of empirical evaluation of review mining
approaches, and finally (iv) a study of literature growth patterns, gaps, and directions for
future research.

2 Research Method

To conduct our systematic literature review, we followed the methodology proposed
by Kitchenham (2004). We first defined research questions and prepared a review protocol,
which guided our conduct of the review and the collection of data. We then performed the
literature search and selection based on agreed criteria. The selected studies were read thor-
oughly, and data items as in Table 3 were collected using a data extraction form. Finally, we
synthesized the results for reporting.

2.1 Research Questions

The primary aim of the study is to understand how analysing app reviews can support
software engineering. Based on the objective, the following research questions have been
derived:

— RQ1: What are the different types of app review analyses?

— RQ2: What techniques are used to realize app review analyses?

— RQ3: What software engineering activities are claimed to be supported by analysing
app reviews?

— RQ4: How are app review analysis approaches empirically evaluated?

— RQS: How well do existing app review analysis approaches support software engi-
neers?

The aim of RQI is to identify and classify the different types of app review analysis pre-
sented in primary literature; where an app review analysis refers to a task of examining,
transforming, or modeling data with the goal of discovering useful information. The aim of
RQ?2 is to identify the range of techniques used to realize the different types of app review
analysis identified in RQ1; where a technique stands for a way for facilitating an app review
analysis. The aim of RQ3 is to identify the range of software engineering activities that
have been claimed to be supported by analyzing app reviews; where a software engineer-
ing activity refers to a task performed along the software development life cycle (Bourque
et al. 1999). The aim of RQ4 is to understand how primary studies obtain empirical evi-
dences about effectiveness and the perceived-quality of their review analysis approaches.
The aim of RQ5 is to summarize the results of empirical studies about effectiveness and
user-perceived quality of different types of app review analysis.

@ Springer

43 Page 4 of 63 Empir Software Eng (2022) 27: 43

g Publications identified
;g from digital libraries
% (n = 1,656)
~
=]
3
= Duplicates removed
(n = 303)
— Publications screened
(n = 1,353)
a0
g
=
& Publications excluded
b3 (n = 1,225)
wn
- Publications meet-
ing inclusion criteria
(n = 128)
Publications included
o from issue-to-issue
2 search (n = 14) and
= snowballing (n = 40)
=
[
Publications surveyed
(n = 182)

Fig.1 PRISMA diagram showing study search and selection

2.2 Literature Search and Selection

We followed a systematic search and selection process to collect relevant literature pub-
lished between January 2010' and December 2020. Figure 1 outlines the process as a
PRISMA diagram?; it illustrates the main steps of the process and their outcomes (the
number of publications).3

The initial identification of publications was performed using keyword-based search on
six major digital libraries: ACM Digital Library, IEEE Xplore Digital Library, Springer
Link Online Library, Wiley Online Library and Elsevier Science Direct. We defined two
search queries that we applied in both the meta-data and full-text (when available) of the

IWe selected 2010 to be the initial period of our search as the earliest study of app store analysis had been
reported that year (Martin et al. 2017).

2A description of the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
method can be found in (Mobher et al. 2009).
3The first author conducted the entire literature search and selection process.

@ Springer

Empir Software Eng (2022) 27: 43 Page 50f63 43

publications. To construct the first query, we looked at the content of several dozen publica-
tions analysing reviews for software engineering.* We identified key terms that these papers
share and used the terms to formulate a specific query:

(‘app review mining’ OR ‘mining user review’ OR ‘review mining’ OR
‘review analysis’ OR ‘analyzing user review’ OR ‘analyzing app review’)
AND (‘app store’)

To not omit other relevant papers not covered by this specific query, we formulated a
general query based on phrases reflecting key concepts of our research objective:

(‘app review’ OR ‘user review’ OR ‘app store review’ OR ‘user feedback’)
AND (‘software engineering’ OR ‘requirement engineering’ OR ‘software
requirement’ OR ‘software design’ OR ‘software construction’ OR
‘software testing’ OR ‘software maintenance’ OR ‘software configuration’
OR ‘software development’ OR ‘software quality’ OR ‘software coding’)
AND (‘app store’)

The initial search via digital libraries resulted in 1,656 studies, where 303 of them were
duplicated. We screened 1,353 studies obtained through the initial search and selected them
in accordance with the inclusion and exclusion criteria (see Table 1). To ensure the reliability
of our screening process, the four authors of this paper independently classified a sample
of 20 papers® (each paper was assigned to two authors). We then assessed their inter-rater
agreement (Cohen’s Kappa = 0.9) (Viera and Garrett 2005).

Due to the conservative searching, the majority of the studies were found to be unrelated
to the scope of the survey. We excluded 1,225 publications that did not meet the inclusion
criteria. Subsequently, we complemented our search process with two other strategies to find
relevant papers that could have been missed in the initial search. We performed a manual
issue-by-issue search of major conference proceedings and journals in software engineering
in the period from January 2010 to December 2020. The searched journal and proceedings
are listed in Table 2. That step produced another 14 unique publications. Finally, we com-
pleted the searching with a snowballing procedure following guidelines proposed by Wohlin
(2014). We performed backward snowballing considering all the references from relevant
studies found by previous searching strategies. Moreover, we conducted forward snow-
balling based on the 10 most cited papers. Using snowballing procedure, an additional 40
relevant articles were found to match our inclusion criteria. We used these criteria to screen
the papers based on the title, abstract and full-text (if needed). Accordingly, we ended up
with 182 articles included in the survey.

2.3 Data Extraction

The first author created a data extraction form to collect detailed contents for each of the
selected studies. They used extracted data items to synthesize information from primary
studies and answer research questions RQ1-RQ5. Table 3 presents the data items the first
author extracted:

4We identified papers from previous surveys on app store analysis (Martin et al. 2017).
SWe selected this number of studies to satisfy the sample size requirements for Cohen’s Kappa calcula-
tion (Bujang and Baharum 2017).

@ Springer

43 Page 6 of 63 Empir Software Eng (2022) 27: 43

Table 1 Inclusion and exclusion criteria

No.

1

No.

Inclusion Criteria

Primary studies related to software engineering and may have actionable consequences for
engineers or researchers

Peer-reviewed studies published as conference, journal, or workshops papers or a book chapter
Studies related to the use of app reviews in support to at least one software engineering activity
(directly or indirectly) (Bourque et al. 1999)

Exclusion Criteria

Papers not written in English

Papers analyzing app reviews without the purpose to support software engineering

Secondary or tertiary studies (e.g., systematic literature reviews, surveys, etc.) technical reports or
manuals

Title, Author(s), Year, Venue, Citation (F1-F5) are used to identify the paper and its
bibliographic information. For F5, we record the citation count for each paper according
to Google Scholar as of the 4th of August 2021).

Review Analysis (F6) records the type of app review analysis (F6.1) (e.g. review clas-
sification), mined information (F6.2) (e.g. bug report) and supplementary description
(F6.3).

Technique (F7) records what techniques are used to realize the analysis. We recorded
the technique type (F7.1) e.g., machine learning and its name (7.2) e.g., Naive Bayes.
Software Engineering Activity (F8) records the specific software engineering activi-
ties (e.g. requirements elicitation) mentioned in the paper as being supported by the
proposed app review analysis method. We used widely known taxonomy of software
engineering phases and activities to identify and record these items (Bourque et al.
1999).

Justification (F9) records the paper’s explanation for how the app review analy-
sis support the software engineering activities. Some papers do not provide any
justification.

Table 2 Selected conference proceedings and journals for manual search

Venue Abbr.
International Conference on Software Engineering ICSE
European Software Engineering Conference and Symposium ESEC/FSE
on the Foundations of Software Engineering

International Conference on Automated Software Engineering ASE
International Conference on Software Maintenance and Evolution ICSM/ICSME
Conference on Advanced Information Systems Engineering CAiSE
International Requirements Engineering Conference RE

IEEE Transactions on Software Engineering TSE

ACM Transactions on Software Engineering and Methodology TOSEM
IEEE Software IEEE SW
Empirical Software Engineering EMSE
Information and Software Technology IST
Requirements Engineering Journal REJ

@ Springer

Empir Software Eng (2022) 27: 43 Page 7 of 63 43

Table 3 Data extraction form

Item ID Field Use

F1 Title Documentation
F2 Author(s) Documentation
F3 Year Documentation
F4 Venue Documentation
F5 Citation Documentation
F6 Review Analysis RQI1

F7 Mining Technique RQ2

F8 Software Engineering Activity RQ3

F9 Justification RQ3

F10 Evaluation Objective RQ4

F11 Evaluation Procedure RQ4

F12 Evaluation Metrics and Criteria RQ4

F13 Evaluation Result RQ5

F14 Annotated Dataset RQ4

F15 Annotation Task RQ4

Fl16 Number of Annotators RQ4

F17 Quality Measure RQ4

F18 Replication Package RQ4

Evaluation Objective (F10) records the general objective of the paper’s evaluation
section (F10.1) (e.g. quantitative effectiveness, or user-perceived usefulness) and the
type of evaluated app review analysis (F10.2).

Evaluation Procedure (F11) records the paper’s evaluation method and detailed evalu-
ation steps.

Evaluation Metrics and Criteria (F12) records the quantitative metrics (e.g. precision
and recall) and criteria (e.g. usability) used in the evaluation.

Evaluation Result (F13) records the result of empirical evaluation with respect to the
evaluation metrics and criteria.

Annotated Dataset (F14) records information about the datasets used in the study. We
stored information about App Store name from which reviews were collected (F14.1)
e.g., Google Play, and the number of annotated reviews (F14.2).

Annotation Task (F15) records the task that humans annotators performed when
labeling a sample of app reviews e.g., classify reviews by discussed issue types.
Number of Annotators (F16) records number of human annotators labeling app reviews
for empirical evaluation.

Quality Measure (F17) are the measures used for assessing reliability of the annotated
dataset e.g., Cohen’s Kappa.

Replication Package (F18) records whether a replication package is available. When
one is available, we also recorded details about its content such as the availability of an
annotated dataset, analysis method implementation, and experiment’s scripts. In addi-
tion to the reported information; we contacted the authors of primary studies to check
the availability of the replication packages.

The reliability of data extraction was evaluated through inter- and intra- rater agree-

ments (Ide and Pustejovsky 2017). The agreements were measured using percentage

@ Springer

43 Page 8 of 63 Empir Software Eng (2022) 27: 43

agreement on a recommended sample size (Graham et al. 2012; Bujang and Baharum 2017).
To evaluate intra-rater agreement, the first author re-extracted data items from a random
sample of 20% of selected papers. An external assessor® then validated the extraction results
between the first and second rounds; and computed percentage agreement. To evaluate
inter-rater agreement, the assessor cross-checked data extraction; the assessor independently
extracted data items from a new random sample of 10% of selected papers. The first author
and the assessor then compared their results and computed agreement. The intra-rater agree-
ment was at the level of 93% whereas the inter-rater agreement was of 90%, indicating
nearly the complete agreement (Ide and Pustejovsky 2017).

2.4 Data Synthesis

Most data in our review are grounded in qualitative research. As found by other researchers,
tabulating the data is useful for aggregation, comparison, and synthesis of informa-
tion (Kitchenham 2004). The data was thus stored in the spreadsheets, manually reviewed,
and interpreted to answer research questions. Parts of the extracted data we synthesized
using descriptive statistics.

We also used three classification schemas to group collected information on app review
analysis (F6), mining techniques (F7) and SE activity (F8). We constructed each schema
following the same general procedure based on the content analysis method (Bauer 2007);
the first author initially examined all the collected information of a specific data item type;
then performed an iterative coding process. During the coding, each information was labeled
with one of the categories identified in the literature or inferred from the collected data.

To create the schema of app review analyses, we adopted 5 categories proposed in the
previous survey (Martin et al. 2017). As the categories were not exhaustive for the coding;
we extended them with 14 additional categories: 7 categories from the taxonomy of mining
tasks (Cannataro and Comito 2003), and 7 standard types of text analytics (Miner et al.
2012); we referred to data and text mining areas as they have well defined terminology for
text analysis. We then merged semantically-related categories; and removed those unrelated
to the domain of app review analysis. The resulting list of 8 categories we then extended by
adding the Recommendation category abstracted from the remaining unlabelled data. With
9 categories, the first author performed the final coding. Table 7, in the corresponding result
section, presents the nine types of app review analyses.

The classification schema of mining techniques is informed by categories in previous
survey on intelligent mining techniques (Tavakoli et al. 2018) and text analytics (Miner
et al. 2012; Singh 2021; Software 2021). We first identified 5 categories of mining tech-
niques: 4 categories proposed in the previous survey (Tavakoli et al. 2018); and 1 category
identified from text analytics i.e., statistical analysis (Miner et al. 2012; Singh 2021; Soft-
ware 2021). While coding, we however excluded feature extraction category referring to
an instance of general information extraction task rather than a type of technique (Miner
et al. 2012); and performed the final coding using the remaining 4 categories. The resulting
mining techniques categories can be found in Table 9.

We derived the schema of SE activities based on the terminology from the software
engineering body of knowledge (Bourque et al. 1999); we first identified 258 terms related
to the main software engineering concepts; and then selected 58 terms describing candidate

%The assessor has an engineering background and experience with manual annotation; they has no
relationship with this research.

@ Springer

Empir Software Eng (2022) 27: 43 Page 9 of 63 43

Table 4 The intra- and inter-rater agreement for the classification schemas

Classification Schema Intra-Rater Agreement Inter-Rater Agreement
App Review Analysis 93% 87%
Software Engineering Task 100% 87%
Mining Technique 90% 80%

activities for the coding process. While coding, we excluded 44 terms as they did not match
any data items; and performed the final coding using the remaining 14 terms (from now SE
activities). Table 13 list the the resulting software engineering activities in the corresponding
result section.

We validated the coding reliability of each schema using inter- and intra- rater agree-
ment. We measured the reliability using percentage agreement on a recommended sample
size (Graham et al. 2012; Bujang and Baharum 2017). To evaluate intra-rater agreement,
the first authors re-coded a random sample of 20% of selected papers. The external asses-
sor then checked the coding between the first and second coding. To evaluate inter-rater
agreement, both the first author and the assessor coded a new random sample of 10% of the
papers. They then cross-checked their results. The percentage intra- and inter-rater agree-
ments were equal or above 90% and 80% for coding each schema, indicating their very
good quality (Ide and Pustejovsky 2017); Table 4 provides detail statistics for the reliability
evaluation.

The spreadsheets resulting from our data extraction and data grouping can be found in
the supplementary material of this survey (Dabrowski 2021).

3 Result Analysis
3.1 Demographics

Figure 2 shows the number of primary studies per year, including breakdown of publication
type (Journal, Conference, Workshop, and Book). The publication date of primary studies
ranges from 2012 to 2020.” We observed that 53% of the primary studies were published
in the last 3 years, indicating a growing interest in research on analyzing app reviews to
support software engineering.

Figure 3 shows the distribution by venue type: 65% of papers are published in confer-
ences, 23% in journals, 10% in workshops and 2% as book chapters. Table 5 lists the top
ten major venues in terms of the number of published papers.® The venues include the
main conferences and journals in the software engineering community. Table 6 lists twenty
most cited papers in the field of app review analysis for software engineering; and summa-
rize their contributions. These studies advanced the field in substantial ways, or introduced
influential ideas.

7No study was published in 2010 and 2011.
8The complete list of venues can be found in supplementary material (Dabrowski 2021).

@ Springer

43 Page 10 of 63 Empir Software Eng (2022) 27: 43

Book Conference M Journal M Workshop

Number of publications
55 [w
S G S

5_—

0

U . o T - T Y. - T~ AN |

YR XX RN RN R RN @

O R O T SO
Year

Fig.2 Number of publications per year. The first papers on app review analysis were published in 2012

Key insights from demographics

— The interest in the research on app review analysis rose substantially in
the last 3 years.

— The main venues publishing research in app review analysis include the
main general software engineering conferences and journals (ICSE, FSE,
ASE, IEEE Software) as well as the main specialized venues in empir-
ical software engineering (ESEM) and requirements engineering (RE,
REFSQ).

3.2 RQ1: App Review Analysis

In this section, we answer RQ1 (what are the different types of app review analysis) based
on data extracted in F6 (review analyses). To answer the question, we grouped data items
into one of nine general categories, each representing a different review analysis type (F6.1).
We performed the grouping following the classification schema we had constructed for
this study (see Section 2.4); and categories previously proposed in the context of app store
analysis (Martin et al. 2017) as well as data and text mining (Cannataro and Comito 2003;
Miner et al. 2012). Here, we focused on an abstract representation, because primary studies
sometimes use slightly different terms to refer to the same type of analysis. Table 7 lists the
different types of app review analyses and their prevalence in the literature.

3.2.1 Information Extraction

App reviews are unstructured text. Manually extracting relevant information from large vol-
ume of reviews is not cost-effective (Vu et al. 2015a). To address the problem, 56 of the
primary studies (31%) proposed approaches facilitating information extraction. Formally,
information extraction is the task of extracting specific (pre-specified) information from the
content of a review; this information may concern app features (Guzman and Maalej 2014;
Johann et al. 2017; Dabrowski et al. 2020), qualities (Groen et al. 2017; Wang et al. 2020b),
problem reports and/or new feature requests (e.g., lacob and Harrison 2013; Wang et al.
2017; Gao et al. 2019; Shams et al. 2020), opinions about favored or unfavored features
(e.g., Guzman and Maalej 2014; Gu and Kim 2015; Vu et al. 2015a; Li et al. 2017) as well

@ Springer

Empir Software Eng (2022) 27: 43 Page 11 0f 63 43

O Book
2%

Workshop
10%

Journal
23%

Conference
65%

Fig. 3 Pie chart showing the distribution of research papers per venue type in the period from 2010 to
December 31, 2020

as user stories (Guo and Singh 2020). Relevant information can be found at any location
in the reviews. For instance, a problematic feature can be discussed in a middle of a sen-
tence (Guzman and Maalej 2014; Williams et al. 2020), or a requested improvement can be
expressed anywhere in a review (Gao et al. 2015; Guo and Singh 2020).

3.2.2 Classification

Classification consists of assigning predefined categories to reviews or textual snippets (e.g.,
sentences or phrases). Classification is by far the most common type of app review analy-
sis found in the literature: 58% of publications describe techniques for classifying reviews.
Classification can be used to separate informative reviews from those that are uninforma-
tive (e.g., Oh et al. 2013; Chen et al. 2014; Di Sorbo et al. 2016; Di Sorbo et al. 2020),
spam (Chandy and Gu 2012) or fake (Martens and Maalej 2019b). Informative reviews can

Table 5 Top ten venues publishing papers on app review analysis between 2010 and 2020

Venues No. Studies

International Requirements Engineering Conference (RE) 11

—
(=]

Empirical Software Engineering Journal (EMSE)

International Working Conference on Requirements Engineering (REFSQ)
International Conference on Software Engineering (ICSE)

IEEE Software (IEEE Softw)

International Symposium on Foundations of Software Engineering (FSE)
International Conference on Automated Software Engineering (ASE)
International Workshop on App Market Analytics (WAMA)

Intl. Conference on Mobile Software Engineering and Systems (MOBILESoft)

[RV Y e e e R

Intl. Conference on Evaluation and Assessment in Software Engineering (EASE)

@ Springer

43 Page 12 of 63

Empir Software Eng (2022) 27: 43

Table 6 Twenty most influential papers in the field of app reviews analysis for software engineering, ordered

by year of publication

Reference Contribution Citat.
Vasa et al. (2012) Preformed the first preliminary analysis of mobile app reviews. 123
Carrefio and Winbladh (2013) Proposed an approach extracting requirements from feedback. 329
Fuet al. (2013) Proposed WisCom system for analyzing millions of reviews. 415
Tacob and Harrison (2013) Developed a tool extracting and summarizing user requests. 334
Pagano and Maalej (2013) Studied the content and the usefulness of app reviews for RE. 514

Chen et al. (2014)
Guzman and Maalej (2014)
Guzman et al. (2015)
Khalid et al. (2015)
Maalej and Nabil (2015)
Martin et al. (2015)
Panichella et al. (2015)
Palomba et al. (2015)
Gu and Kim (2015)

Vu et al. (2015a)

Di Sorbo et al. (2016)
Maalej et al. (2016)
Maalej et al. (2016)
Mcllroy et al. (2016)
Villarroel et al. (2016)

Developed AR-Miner tool for filtering and prioritizing reviews. 480

Proposed an approach for feature-based sentiment analysis. 531
Proposed ensemble methods for app review classification. 101
Studied user complains in reviews and their impact on ratings. 415
Benchmarked techniques for automatically classifying reviews. 381
Studied the app sampling problem for app store mining. 121
Taxonomy and an approach for identyfing users’ intentions. 352
CRISTALS approach facilitating reviews-to-code traceability. 156
Developed and evaluated SUR-Miner tool for opinion mining. 110
MARK framework searching and analyzing user opinions. 140
SUREF tool summarizing users’ needs and topics from reviews. 197
Large-scale empirical study on classification techniques. 166
Proposal for utilizing on-line user feedback to support RE. 209
Automatically analyzed the types of user issues in reviews. 126
Automatic approach for release planning by review analysis. 205

be subsequently classified to detect user intentions (e.g., Maalej et al. 2016; Zhou et al.
2020) and discussion topics (e.g., Di Sorbo et al. 2017; van Vliet et al. 2020). User intentions
include reporting an issue or requesting a new feature (Panichella et al. 2015; Panichella
et al. 2016; Srisopha et al. 2020b).

Discussion topics include a variety of concerns such as installation problems, user inter-
face, or price (Mujahid et al. 2017; Ciurumelea et al. 2018; Williams et al. 2020); topics
concerning user perception e.g., rating, user experience or praise (Pagano and Maalej 2013;

Table7 App review analysis types and their prevalence in the literature

App Review Analysis No. Studies Percentage
Information Extraction 56 31%
Classification 105 58%
Clustering 44 24%
Search and Information Retrieval 24 13%
Sentiment Analysis 40 22%
Content Analysis 54 30%
Recommendation 30 16%
Summarization 25 14%
Visualization 20 11%

@ Springer

Empir Software Eng (2022) 27: 43 Page 13 0f 63 43

Li et al. 2020); or topics reporting different types of issues (Khalid 2013; Mcllroy et al.
2016; Tao et al. 2020). For instance, review classification has been proposed to detect differ-
ent types of usability and user experience issues (Bakiu and Guzman 2017; Algahtani and
Orji 2019), quality concerns (Mercado et al. 2016; Wen and Chen 2020) or different types
of security and privacy issues (Cen et al. 2014; Tao et al. 2020). Similarly, app store feed-
back can be classified by their reported requirements type (Yang and Liang 2015; Deocadez
etal. 2017a; Lu and Liang 2017; Wang et al. 2018; Wang et al. 2018; Wen and Chen 2020).
This could help distinguish reviews reporting functional requirements from those report-
ing non-functional requirements (Yang and Liang 2015; Deocadez et al. 2017a; Wang et al.
2018; Wang et al. 2020b); distilling non-functional requirements into fine-grained quality
categories such as reliability, performance, or efficiency (Lu and Liang 2017; Wang et al.
2018). Another key use of the classification task is rationale mining; it involves detecting
types of argumentations and justification users describe in reviews when making certain
decisions, e.g. about upgrading, installing, or switching apps (Kurtanovi¢ and Maalej 2017,
Kurtanovic and Maalej 2018; Kunaefi and Aritsugi 2020).

3.2.3 Clustering

Clustering consists of organizing reviews, sentences, and/or snippets into groups (called a
cluster) whose members share some similarity. Members in the same group are more similar
(in some sense) to each other than to those in other groups. Unlike classification, cluster-
ing does not have predefined categories. Clustering is thus widely used as an exploratory
analysis technique to infer topics commonly discussed by users (Pagano and Maalej 2013;
Guzman et al. 2014; Guzman and Maalej 2014; Liu et al. 2018) and aggregate reviews con-
taining semantically related information (Chen et al. 2014; Guzman et al. 2015; Palomba
et al. 2017; Zhou et al. 2020). Clustering can be used for grouping reviews that request the
same feature (Peng et al. 2016; Di Sorbo et al. 2016), report similar problems (Martin et al.
2015; Villarroel et al. 2016; Gao et al. 2018b; Williams et al. 2020), or discuss a similar
characteristic of the app (Vu et al. 2016; Chen et al. 2019; Xiao et al. 2020). The gener-
ated clusters might help software engineers synthesize information from a group of reviews
referring to the same topics rather than examining each review individually (Fu et al. 2013;
Gao et al. 2015; Wang et al. 2017; Hadi and Fard 2020).

3.2.4 Search and Information Retrieval

Search and information retrieval concerns finding and tracing reviews (or their textual snip-
pets) that match needed information. The task can be used to find reviews discussing a
queried app feature (Vu et al. 2015a; Vu et al. 2015b; Dabrowski et al. 2019), to obtain
the most diverse user opinions in reviews (Guzman et al. 2015), or to trace what features
described in the app description are discussed by users (Johann et al. 2017; Li et al. 2018).
Information retrieval is also used to establish traceability links between app reviews and
other software engineering artefacts (Palomba et al. 2015; Palomba et al. 2018), such as
source code (Palomba et al. 2017; Zhou et al. 2020; Shams et al. 2020), stack tracers (Pel-
loni et al. 2018), issues from tracking systems (Palomba et al. 2015; Noei et al. 2019), and
warnings from static analysis tools (Wei et al. 2017) in order to locate problems in source
code (Palomba et al. 2017; Ciurumelea et al. 2017; Grano et al. 2018), suggest potential
changes (Palomba et al. 2015; Palomba et al. 2017), or to flag errors and bugs in an appli-
cation under test (Wei et al. 2017). Such traceability links can be also detected between
reviews and feedback from other source like Twitter to study if the same issues are discussed

@ Springer

43 Page 14 of 63 Empir Software Eng (2022) 27: 43

in both digital channels (Yadav and Fard 2020; Yadav et al. 2020; Oehri and Guzman 2020);
or between reviews and goals in goal-model to understand the extent to which app satisfies
the users’ goals (Liu et al. 2020; Gao et al. 2020).

Table 8 summarizes types of data that have been combined with app reviews using search
and information retrieval; indicates the purpose of the analysis; and provides references to
primary studies.

3.2.5 Sentiment Analysis

Sentiment analysis (also known as opinion mining) refers to the task of interpreting user
emotions in app reviews. The task consists in detecting the sentiment polarity (i.e., positive,
neutral, or negative) in a full review (Martens and Johann 2017; Martens and Maalej 2019a;
Srisopha et al. 2020c), in a sentence (Guzman and Maalej 2014; Panichella et al. 2015;
Panichella et al. 2016), or on in a phrase (Gu and Kim 2015; Dabrowski et al. 2020).

App reviews are a rich source of user opinions (Guzman and Maalej 2014; Malik et al.
2018; Masrury and Alamsyah 2019; Martens and Maalej 2019a; Wen and Chen 2020). Min-
ing these opinions involves identifying user sentiment about discussed topics (Gu and Kim
2015; Dabrowski et al. 2020), features (Guzman and Maalej 2014; Gunaratnam and Wick-
ramarachchi 2020) or software qualities (Bakiu and Guzman 2017; Masrury and Alamsyah
2019; Franzmann et al. 2020). These opinions can help software engineers understand how
users perceive their app (Guzman and Maalej 2014; Gu and Kim 2015; Huebner et al.
2018; Franzmann et al. 2020), discover users’ requirements (Dabrowski et al. 2019; Dalpiaz
and Parente 2019) and preferences (Guzman and Maalej 2014; Bakiu and Guzman 2017;

Table 8 Types of data that have been combined with app reviews using search and information retrieval

Type of Data Purpose

App Description Use features from app descriptions to filter informative reviews (Johann et al.
2017); to discover ‘hot’ features (Johann et al. 2017); to understand users’
preferences (Li et al. 2018); and to identify domain features (Liu et al. 2019).

Git Commit Detect links between reviews and source code changes to analyze the impact of
user feedback on the development process; to keep track on requests that have
(not) been implemented (Palomba et al. 2015; Palomba et al. 2018).

Goal Model Detect links between reviews and goals in goal model; to identify users’ satis-
faction w.r.t. these goals; or to recommend new goals that need to be satisfied by
the app (Liu et al. 2020; Gao et al. 2020).

Issue Report Detect links between reviews and issue to understand what reports have (not) be
addressed (Palomba et al. 2015; Palomba et al. 2018); to identify issue report
duplications; and to prioritize the issues (Noei et al. 2019).

Lint Warning Recover the links between warnings from static analysis tools and app user
reviews to support warning prioritization (Wei et al. 2017).

Source Code Link reviews to source-code to locate components related to requested changes;
to recommend software changes (Palomba et al. 2017; Zhou et al. 2020); to
estimate the impact of the changes (Ciurumelea et al. 2017).

Stack Trace Link reviews to stack trace to integrate user feedback into app testing (Grano
et al. 2018); to augment testing report with contextual information that can ease
the understanding a failure (Pelloni et al. 2018).

Tweet Link reviews to user feedback from Twitter (Oehri and Guzman 2020); to inte-
grate the feedback from both channel; and to understand what different issues
are discussed by app users (Yadav and Fard 2020; Yadav et al. 2020).

@ Springer

Empir Software Eng (2022) 27: 43 Page 150f63 43

Malik et al. 2018; Nicolai et al. 2019), and factors influencing sales and downloads of the
app (Liang et al. 2015). Not surprisingly, knowing user opinions is an important informa-
tion need developers seek to satisfy (Buse and Zimmermann 2012; Begel and Zimmermann
2014; Dabrowski et al. 2020).

3.2.6 Content Analysis

Content analysis studies the presence of given words, themes, or concepts within app
reviews.

For example, studies have analysed the relation between user ratings and the vocabulary
and length of their reviews (Hoon et al. 2012; Vasa et al. 2012). Studies have shown that
users discuss diverse topics in reviews (Pagano and Maalej 2013; Shams et al. 2020), such
as app features, qualities (Williams and Mahmoud 2018; Franzmann et al. 2020), require-
ments (Wang et al. 2018; Wang et al. 2018) or issues (Khalid 2013; Algahtani and Orji
2019; Kalaichelavan et al. 2020; Williams et al. 2020). For example, using content analy-
sis, researchers analysed recurring types of issues reported by users (Mcllroy et al. 2016;
Wang et al. 2020a; Shams et al. 2020), their distribution in reviews as well as as relations
between app issue type and other information such as price and rating (Iacob et al. 2013bj;
Hassan et al. 2018) or between issue type and code quality indicators (Di Sorbo et al. 2020).
Interestingly, studies have pointed out that users’ perception for the same apps can vary per
country (Srisopha et al. 2019), user gender (Guzman and Paredes Rojas 2019), development
framework (Malavolta et al. 2015a), and app store (Ali et al. 2017). Content analysis can be
also beneficial for software engineers to understand whether cross-platform apps achieve
consistency of users’ perceptions across different app stores (Hu et al. 2018; Hu et al. 2019),
or whether hybrid development tools achieve their main purpose: delivering an app that is
perceived similarly by users across platforms (Hu et al. 2019). Finally, studying the dialogue
between users and developers has shown evidences that the chances of users to update their
rating for an app increase as result of developer’s response to reviews (Mcllroy et al. 2015;
Hassan et al. 2018).

3.2.7 Recommendation

Recommendation task aims to suggest course of action that software engineers should fol-
low. Several mining approaches, for instance (Chen et al. 2014; Villarroel et al. 2016;
Scalabrino et al. 2019; Gao et al. 2020), have been proposed to recommend reviews that soft-
ware engineers should investigate. These approaches typically assign priorities to a group
of comments reporting the same bug (Gao et al. 2015; Man et al. 2016; Gao et al. 2018b),
requesting the same modification or improvement (Villarroel et al. 2016; Keertipati et al.
2016; Scalabrino et al. 2019; Zhou et al. 2020). Such assigned priorities indicate relative
importance of the information that these reviews convey from the users’ perspective. Fac-
tors affecting the importance vary from e.g., the number of reviews in these groups (Chen
et al. 2014; Zhou et al. 2020), to the influence of this feedback on app download (Tong et al.
2018), and the overall sentiment these comments convey (Licorish et al. 2017; Gunaratnam
and Wickramarachchi 2020). In line with this direction, mining approaches have been elab-
orated to recommend feature refinement plans for the next release (Licorish et al. 2017;
Zhang et al. 2019), to highlight static analysis warnings that developers should check (Wei
et al. 2017), to recommend test cases triggering bugs (Shams et al. 2020), to indicate
mobile devices that should be tested (Khalid et al. 2014), and to suggest reviews that devel-
opers should reply (Greenheld et al. 2018; Gao et al. 2019; Srisopha et al. 2020c); the

@ Springer

43 Page 16 of 63 Empir Software Eng (2022) 27: 43

approaches can analogously recommend responses for these reviews (Greenheld et al. 2018;
Gao et al. 2019), stimulating users to upgrade their ratings or to revise feedback to be more
positive (Mcllroy et al. 2015; Vu et al. 2019).

3.2.8 Summarization

Review summarization aims to provide a concise and precise summary of one or more
reviews. Review summarisation can be performed based on common topics, user inten-
tions, and user sentiment for each topic (e.g., Guzman and Maalej 2014; Ciurumelea et al.
2018; Liu et al. 2020). For example, Di Sorbo et al. (2016, 2017) proposed summarizing
thousands of app reviews by an interactive report that suggest to software engineers what
maintenance tasks need to be performed (e.g., bug fixing or feature enhancement) with
respect to specific topics discussed in reviews (e.g., Ul improvements). Other review sum-
marization techniques give developers a quick overview about users’ perception specific to
core features of their apps (Iacob and Harrison 2013; Guzman and Maalej 2014; Xiao et al.
2020), software qualities (Ciurumelea et al. 2018), and/or main users’ concerns (Iacob et al.
2013a; Iacob et al. 2016; Ciurumelea et al. 2017; Tao et al. 2020). With the addition of
statistics e.g., the number of reviews discussing each topic or requesting specific changes,
such a summary can help developers to prioritize their work by focusing on the most impor-
tant modifications (Ciurumelea et al. 2017). In addition, such a summary can be exported
to other software management tools e.g., GitHub, JIRA (Iacob et al. 2016) to generate new
issue tickets and help in problems resolution (Phetrungnapha and Senivongse 2019).

3.2.9 Visualization

Visualization can aid developers in identifying patterns, trends and outliers, making it eas-
ier to interpret information mined from reviews (Guzman et al. 2014; Liu et al. 2020). To
communicate information clearly and efficiently, review visualization uses tables, charts,
and other graphical representations (Guzman et al. 2014; Maalej et al. 2016), accompanied
by numerical data (Maalej et al. 2016; Bakiu and Guzman 2017). For example, Maalej et al.
(2016) demonstrated that trend analysis of review type (e.g., bug report, feature request, user
experience) over time can be used by software engineers as an overall indicator of how the
project’s health. Other studies proposed visualizing dynamics of main themes discussed in
reviews to identify emerging issues (Gao et al. 2015; Gao et al. 2015; Gao et al. 2018b; Gao
et al. 2019), or to show the issue distribution for an app across different app stores (Man
et al. 2016). Simple statistics about these issue (e.g., ‘How many reviews reported specific
issues?’) can give an overall idea about the main problems, in particular if compared against
other apps (e.g., ‘Do users complain more about security of my app compared to similar
apps?’). Similarly, analyzing the evolution of user opinions and bug reports about specific
features can help software engineers monitor the health of these features and to prioritize
maintenance tasks (Vu et al. 2015a; Vu et al. 2016; Bakiu and Guzman 2017; Shah et al.
2019c¢). For instance, software engineers can analyse how often negative opinions emerge,
for how long these opinions have been reported, and whether their frequency is rising or
declining (Vu et al. 2015a; Gu and Kim 2015; Tao et al. 2020). This information could pro-
vide developers with evidence of the relative importance of these opinions from a users’
perspective (Bakiu and Guzman 2017; Dabrowski et al. 2019).

@ Springer

Empir Software Eng (2022) 27: 43 Page 17 of 63 43

RQ1: App Review Analysis

— 9 broad types of review analyses have been identified in the literature: (1)
information extraction; (2) classification; (3) clustering; (4) search and
information retrieval; (5) sentiment analysis; (6) content analysis; (7) rec-
ommendation; (8) summarization and (9) visualization.

— Reviews classification, clustering, and information extraction are the
mostly frequently applied automatic tasks; they help to group reviews,
discover hidden patterns and to focus on relevant parts of reviews.

— Content analysis is used to characterize reviews, to identify discussed top-
ics, and to explore information needs that can be satisfied by the feedback.

— Searching and information retrieval aids software engineers to query re-
views with information of their interest, and to trace it over other software
artefacts (e.g., stack traces, issue tracking system or goal-models) or other
sources of on-line user feedback (e.g. tweets).

— Summarizing and visualizing information scattered across a large amount
of reviews can aid developers in interpreting the information that could be
costly and time-consuming to undertake if done manually.

— Mined information is commonly used to recommend engineers a course
of their maintenances actions e.g., bugs in need of urgent intervention, or
localizing the problem in the source code.

3.3 RQ2: Mining Techniques

App review analyses (see Section 3.2) are realized using different text mining techniques. In
this section, we address RQ2 (what techniques are used to realize app review analysis) based
on extracted data in F7 (mining technique) that we grouped following the classification
schema we had constructed for this study (see Section 2.4). The categories of this schema
comes from the survey on intelligent mining techniques and tools (Tavakoli et al. 2018) and
text analytics area (Miner et al. 2012; Singh 2021; Software 2021).

In answer to this question, we identified 4 broad categories of mining techniques: content
analysis (CA), natural language processing (NLP), machine learning (ML) and statistical
analysis (SA). Table 9 lists the techniques and their prevalence in the literature. It can be
observed more than a half of studies employed NLP or ML; whereas MA and SA were
present in 25% and 29% of the studies. Table 10 reports how many studies used a certain
technique to realize a given type of app review analysis. We observe that the NLP or ML
are dominant for realizing app review analyses, except for Content Analysis that is mostly
performed using MA or SA technique.

A single study frequently used the same type of technique for realizing several app review
analyses (e.g., Clustering, Classification)’; on the other hand, we also recorded studies fre-
quently combined the techniques together to perform a single app review analysis. Table 11

9No. studies, in the furthest right column, is thus less or equal than the sum of a row.

@ Springer

43 Page 18 of 63 Empir Software Eng (2022) 27: 43

Table 9 Mining techniques and

their prevalence in the literature Mining Techniques No. Studies Percentage
Manual Analysis 45 25%
Natural Language Processing 113 62%
Machine Learning 108 59%
Statistical Analysis 53 29%

reports what combinations of techniques were used in the literature and how many studies
used each combination for realizing a specific app review analysis.'? The results indicates
NLP and ML were mostly combined for Classification; MA and SA were used together
for Content Analysis; whereas NLP and SA was adopted for Information Extraction. The
following sections discuss each type of technique.

3.3.1 Manual Analysis

Scholars have shown an interest in manual analysis of app reviews (Kurtanovic and Maalej
2018; van Vliet et al. 2020). The technique is used to facilitate Content Analysis e.g., to
understand topics users discuss (Pagano and Maalej 2013; Franzmann et al. 2020; Williams
et al. 2020) and to develop a ground truth dataset for training and evaluating mining tech-
niques (Kurtanovi¢ and Maalej 2017; Dabrowski et al. 2020). Manual analysis typically
takes a form of tagging a group of sample reviews with one or more meaningful tags (repre-
senting certain concepts). For example, tags might indicate types of user complaint (Khalid
et al. 2015; Wang et al. 2020a), feature discussed in reviews (Maalej and Nabil 2015;
Dabrowski et al. 2020), or sentiment users expresses (Séanger et al. 2016). To make repli-
cable and valid inferences upon manual analysis, studies perform it in a systematic manner.
Figure 4 illustrates the overall procedure of manual analysis. Scholars first formulate the
analysis objective corresponding to the exploration of review content (e.g., understanding
types of user complaints) or the development of ground truth (e.g., labelling types of user
feedback). They then select the reviews to be analysed, and specify the unit of analysis
(e.g., areview or a sentence). Next, one or more humans (called ‘coders’) follow a coding
process to systematically annotate the reviews. A coder examines a sample of reviews and
tags them with specific concepts. Unless these concepts are known in advance or coders
agree about the tagging, the step is iterative; When, for example, new concepts are identi-
fied, coders examine once again all the previously tagged reviews and check if they should
be also tagged with the new concepts. Such iterations minimize the threat of human error
when tagging the reviews. Once all the reviews are tagged, authors either analyse findings
or use the dataset to evaluate other mining techniques (Stanik et al. 2019; Williams et al.
2020; Dabrowski et al. 2020).

Manual analysis is time-consuming and require a vast human effort (Pagano and Maalej
2013; Guzman and Maalej 2014; van Vliet et al. 2020); a pilot study typically proceeds an
actual analysis (Singer et al. 2016; Kurtanovi¢ and Maalej 2017; Dabrowski et al. 2020);
subsequently the actual tagging, focusing on a statistically representative sample of reviews,
takes places (Khalid et al. 2015). For example, Guzman and Maalej (2014) involved seven
coders who independently tagged 2800 randomly sampled user reviews. For each review,

10A single study could use a certain combination of techniques to facilitate multiple review analyses. The
total number, on the right hand side, is thus less than the sum of a row.

@ Springer

Page 19 of 63 43

Empir Software Eng (2022) 27: 43

%6C €S Cl I €C 0 ! 1 [4 6 SisA[euy [eonsnels
%6S 801 [4 €l € L [4 9¢ €L 01 Sururea ouryORN
Surssaooig
a8enSue
%TY €l 01 6 S 61 ¥C €l 99 9¢ [eImeN
sisA[euy
%bST Sy 0 0 LE C 0 ! Il ! [enuepy onbruyoay,
[eAdLIOY
sIsA[euy SIsA[euy "oju] pue uonoenXyg
ofejuoorod IoqUINN UONEZLIBWIWING UOHEPUSWIIODDY — JUSJUOD) JUSWINUIS yorea§ SulIdISN[) UONEDJISSE[) UONEBWLIOJU]
saIpmg sIsA[euy maIady ddy

sisATeue ma1adl dde jo od4y e asiyear 01 sonbruyoo) Jururw urelrad pasn sarpmys Arewid usajjo moHq (L djqeL

pringer

A's

Empir Software Eng (2022) 27: 43

43 Page 20 of 63

%1 4 0 0 0 0 1 0 I 0 VS+TAN+JdIN
%1 1 0 0 I 0 0 0 0 0 VS+dIN+VIN
%8 S1 € 0 [4 0 0 1 0 6 VS+d1IN
%6¢ 939 0 14 0 9 [4 8 6¢ 8 TN +dIN
%1 4 0 I 0 0 0 0 0 0 VS +1IA
%S 6 0 0 6 0 0 0 I 0 VS+VIA
%1 I 0 0 I 0 0 0 0 0 dIN+ VI
%1 I 0 0 I 0 0 0 0 0 TN+ VIN
%91 0¢ 6 0l 11 0 0 0 0 0 VS
Pe 29 4 8 4 1 0 8¢ [43 [4 TN
PbLE L9 L S ! €l C 14 S1 [43 d'IN senbruyoag,
%L1 1€ 0 0 4 4 0 1 1T 1 VIN Jo ‘quop
[eAdLNOY
sisA[euy sisA[euy oju] pue uonoenxyg
o3ejueorod IoquINN UONBZLBWIWING UOHEPUSUIIOIIY JUSUOD) IJUSWNUIS yored§ SuleISN[) UONEBOIJISSB[) UONRULIOJUT
saIpnIg sIsA[euy ma1Ady ddy

SISA[eUE [BO1)STIR)S SAIJIUSIS V'S pue ‘SUIUIBd] QuIydoew syIeuwl A ‘Surssoooid oFenSue|

[eINJRU SAJOUSP JIN ‘SISA[eUR [enuew JI0J spuels YN :sisA[eue maraar dde jo odAy v asiear 03 sonbruyoa) jo uoneurquod urenrad pasn sarpms Arewrd usjjo Moy L1 djqel

pringer

A's

Empir Software Eng (2022) 27: 43 Page 21 of 63 43

* Formulate analysis objective

Select reviews for analysis

* Perform coding process

J
]
Specify unit of analysis]
]
J

* Analyze dataset or use it for evaluation

cceex

Fig.4 Figure showing the overall process of manual analysis

two coders independently tagged the type of user feedback, features mentioned in the review
and sentiments associated to these features. The study reports that coders spent between 8
and 12.5 hours for coding around 900 reviews.

3.3.2 Natural Language Processing

User-generated content of app reviews takes the form of text (Hoon et al. 2012; Vasa et al.
2012). Such text has plenty of linguistic structure intended for human consumption rather
than for computers (Jurafsky and Martin 2009). The content must, therefore, undergo a
good amount of natural language processing (NLP) before it can be used (Manning et al.
2008; Jurafsky and Martin 2009). Given this fact, it is not surprising that the majority of
primary studies (62% of surveyed papers) adopt NLP techniques to support review analy-
sis (see Section 3.2). At a high level, pre-processing can be simply seen as turning review
content into a form that is analysable for a specific mining task (see Section 3.2). There are
different ways to pre-process reviews including text normalization, cleaning and augment-
ing (Manning et al. 2008; Jurafsky and Martin 2009; Panichella et al. 2015; Gao et al. 2020).
These pre-processing steps typically involve converting texts into lowercase (Fu et al. 2013;
Sanger et al. 2016; Hadi and Fard 2020), breaking up a text into individual sentences (Lu
and Liang 2017; Jha and Mahmoud 2017a; Zhou et al. 2020), separating out words i.e.,
tokenization (Iacob et al. 2016; Palomba et al. 2017; Al-Hawari 2020), spelling correc-
tion (Palomba et al. 2017; Grano et al. 2018) as well as turning words into their base forms
e.g., stemming or lemmatization (Maalej and Nabil 2015; Lu and Liang 2017; Panichella
et al. 2015; Xiao 2019). Of course, not all the review content is meaningful (Guzman and
Maalej 2014; Chen et al. 2014; Oehri and Guzman 2020). Some parts are noisy and obstruct
text analysis (Palomba et al. 2015; Palomba et al. 2017; Gunaratnam and Wickramarachchi
2020). The content is thus cleaned by removing punctuation (Puspaningrum et al. 2018; Hu
et al. 2019), filtering out noisy words like stop words (Johann et al. 2017; Ciurumelea et al.
2017; Gunaratnam and Wickramarachchi 2020), or non-English words (Palomba et al. 2015;
Stanik et al. 2019). Such normalized and cleaned text tends to be augmented with additional
information based on linguistic analysis e.g., part-of-speech tagging (PoS) (Puspaningrum
et al. 2018; Zhang et al. 2019; Gunaratnam and Wickramarachchi 2020) or dependency
parsing (Gu and Kim 2015; Liu et al. 2018; Song et al. 2020).

A review can be modelled as a words sequence (Johann et al. 2017), bag-of-words
(BoW) (Maalej and Nabil 2015) or in vector space model (VSM) (Vu et al. 2015a) to sereve
as input for other mining techniques. In particular, primary studies refers to NLP techniques

@ Springer

43 Page 22 of 63 Empir Software Eng (2022) 27: 43

comparing text similarity (Vu et al. 2015b; Wang et al. 2018), pattern matching (Groen et al.
2017; Johann et al. 2017; Song et al. 2020) and collocations finding (Guzman and Maalej
2014; Li et al. 2018; Dalpiaz and Parente 2019; Xiao et al. 2020).

Text similarity techniques (employed in 21 studies) determine how “close” two textual
snippets (e.g., review sentences) are (Manning et al. 2008). These snippets, represented
in VSM or BoW, are compared using similarity measure like Cosine similarity (Vu et al.
2015a; Shams et al. 2020), Dice similarity coefficient (Palomba et al. 2015; Zhou et al.
2020) or Jaccard index (Iacob et al. 2016). These techniques support Searching and Infor-
mation Retrieval e.g., to link reviews with issue reports from issue tracking systems (Noei
et al. 2019), Recommendation e.g., to recommend review responses based on old ones that
have been posted to similar reviews (Greenheld et al. 2018), Clustering e.g., to group seman-
tically similar user opinions (Vu et al. 2016; Malgaonkar et al. 2020), and Content Analysis
e.g., to compare review content (Malavolta et al. 2015a).

Pattern matching techniques (employed in 22 studies) localize parts of review text (or
its linguistic analysis) matching hand-crafted patterns. Such patterns can take many forms,
such as, regular expressions (Yang and Liang 2015; Groen et al. 2017; Uddin et al. 2020),
PoS sequences (Vu et al. 2016; Johann et al. 2017), dependencies between words (Gu and
Kim 2015; Peng et al. 2016; Di Sorbo et al. 2017; Srisopha et al. 2020c) or simple keyword
matching (Yang and Liang 2015; Maalej et al. 2016; Di Sorbo et al. 2017; Tao et al. 2020).
The technique has been adopted in Information Extraction e.g., to extract requirements from
reviews (Yang and Liang 2015; Groen et al. 2017), Classification e.g., to classify require-
ments into functional and non-functional (Yang and Liang 2015) and Summarization e.g.,
to provide a bug report summary (Groen et al. 2017).

Collocation finding techniques are employed for Information Extraction e.g., to extract
features (Guzman and Maalej 2014; Xiao 2019) or issues (Gao et al. 2018b) from reviews.
Such collocations are phrases consisting of two or more words, where these words appear
side-by-side in a given context more commonly than the word parts appear separately (Juraf-
sky and Martin 2009). The two most common types of collocation detected in the primary
studies are bigrams i.e., two adjacent words (Guzman and Maalej 2014; Dalpiaz and Par-
ente 2019). Co-occurrences may be insufficient as phrases such as ’all the’ may co-occur
frequently but are not meaningful. Hence, primary studies explore several methods to filter
out the most meaningful collocations, such as Pointwise Mutual Information (PMI) (Gao
et al. 2018b; Malgaonkar et al. 2020) and hypothesis testing (Jurafsky and Martin 2009;
Guzman and Maalej 2014; Dabrowski et al. 2020).

3.3.3 Machine Learning

Overall, 108 of 182 primary studies (59%) reported the use of machine learning (ML) tech-
niques to facilitate mining tasks and review analysis. Table 12 reports ten most commonly
applied ML techniques. Most of them (i.e., 8 techniques) are supervised, whereas 2 of
them are unsupervised (Bishop 2006). The widespread interest in ML techniques may be
attributed to the fact that Clustering e.g., to group reviews discussing the same topics (Fu
et al. 2013; Srisopha et al. 2020b) and Classification e.g., to categorize user feedback based
on user intention (Dhinakaran et al. 2018; Zhou et al. 2020), among the most common
review analysis types (see Table 7), are mainly facilitated using ML. When looking at the
whole spectrum of review analysis these ML techniques support, we have also recorded their
use for Sentiment Analysis e.g., to identify feature-specific sentiment (Gu and Kim 2015),
Recommendation e.g., to assign priorities to reviews reporting bugs (Villarroel et al. 2016)
and Information Extraction e.g., to identify features (Singer et al. 2017; Wang et al. 2020b).

@ Springer

Empir Software Eng (2022) 27: 43 Page 23 0of 63 43

Table 12 Distribution of machine learning techniques used in primary studies in the period form 2010 to
December 31, 2020

Type Machine Learning Techniques No. Studies Percentage

Supervised Naive Bayes 43 24%
Support Vector Machine 39 21%
Decision Tree 31 187%
Logistic Regression 23 13%
Random Forest 20 1%
Neural Network 12 7%
Linear Regression 7 4%
K-Nearest Neighbor 4 2%

Unsupervised Latent Dirichlet Allocation 36 20%
K-Means 8 4%

Scholars experimented with many textual and non-textual review properties'! to make
ML techniques work best (Maalej and Nabil 2015; Guzman et al. 2015). Choosing informa-
tive and independent properties is a crucial step to make these techniques effective (Bishop
2006; Maalej et al. 2016). Textual properties, for example, concern: text length, tense of
text (Kurtanovi¢ and Maalej 2017; Kurtanovic and Maalej 2018), importance of words e.g.,
td-idf (Lu and Liang 2017; Williams et al. 2020), a word sequence e.g., n-gram (Maalej
and Nabil 2015; Al-Hawari 2020) as well as linguistic analysis e.g., dependency rela-
tionship (Shah et al. 2018). These properties are commonly combined with non-textual
properties like user sentiment (Maalej et al. 2016; Srisopha et al. 2020a), review rating (Kur-
tanovi¢ and Maalej 2017) or app category (Gao et al. 2019). We found that primary studies
experiment with different properties (Maalej et al. 2016; Kurtanovic and Maalej 2018;
Al-Hawari 2020).

3.3.4 Statistical Analysis

Statistical analysis is used in many papers to report research results (Martin et al. 2015;
Sénger et al. 2016; Di Sorbo et al. 2020), demonstrate their significance (Vasa et al. 2012;
Khalid et al. 2016), and draw conclusions of a large population of reviews by analysing
their tiny portion (Pagano and Maalej 2013; Mercado et al. 2016; Wang et al. 2020a). We
observed an interest in use of descriptive and inferential techniques for Content Analysis
e.g., Vasa et al. (2012), Pagano and Maalej (2013), Mercado et al. (2016), Guzman et al.
(2018), and Wang et al. (2020a). Summary statistics, box plots, and cumulative distribution
charts help to gain understanding of review characteristics like their vocabulary size (Hoon
et al. 2012; Vasa et al. 2012), issue type distribution (Mcllroy et al. 2016; Hu et al. 2018;
Williams et al. 2020), or topics these reviews convey (Pagano and Maalej 2013; Srisopha
and Alfayez 2018). Scholars employ different statistical tests to test check their hypothe-
sis (Khalid et al. 2016; Guzman and Paredes Rojas 2019; Franzmann et al. 2020), to examine
relationship between reviews characteristics (Srisopha and Alfayez 2018; Guzman and Pare-
des Rojas 2019; Di Sorbo et al. 2020), and to study how sampling bias affects the validity
of research results (Martin et al. 2015).

11 We refer to a property as a concept denoting a feature in the machine learning domain.

@ Springer

43 Page 24 of 63 Empir Software Eng (2022) 27: 43

Guzman et al. (2018) and Guzman and Paredes Rojas (2019), for example, conducted an
exploratory study investigating 919 reviews from eight countries. They studied how reviews
written by male and female users differ in terms of content, sentiment, rating, timing, and
length. The authors employed Chi-square (e.g., content) and Mann-Whitney (e.g., rating)
non-parametric tests for nominal and ordinal variables respectively (Guzman and Paredes
Rojas 2019). Srisopha and Alfayez (2018) studied whether a relationship exists between
user satisfaction and the application’s internal quality characteristics. Having employed
Pearson correlation coefficient, the authors studied to what extent do warnings reported by
static code analysis tools correlate with different types of user feedback and the average user
ratings. Similarly, another study employed the Mann-Whitney test to examine if densities
of such warnings differ between apps with high and low ratings (Khalid et al. 2016).

RQ2: Mining Techniques

— Primary studies employ 4 broad types of techniques to realize app re-
view analyses: (1) manual analysis; (2) natural language processing; (3)
machine learning and (4) statistical analysis.

— Manual analysis is used to study review content; and to develop datasets
for training/evaluating data mining techniques. The technique is time-
consuming and requires substantial human effort.

— NLP techniques play an important role for review analysis. The major-
ity of primary studies (62%) use the techniques for a wide spectrum of
review analyses: Search and Information Retrieval, Classification, Clus-
tering, Content Analysis, Information Extraction, Summarization or Rec-
ommendation.

— ML is employed by ca. 59% of papers for Clustering, Classification, Sen-
timent Analysis, Recommendation, or Information Extraction. Scholars
experiment with textual and non-textual review properties to boost the
effectiveness of the techniques.

— Statistical analysis is used to support Content Analysis: to summarize
findings; to draw statistically significant conclusions; or to check their
validity.

3.4 RQ3: Supporting Software Engineering

To answer RQ3 (what software engineering activities might be supported by analysing app
reviews), we used data extracted in F8 (software engineering activity) and F9 (justification)
as well as the classification schema of SE activities derived from the software engineering
body of knowledge (see Section 2.4). Table 13 provides mapping between primary studies
and SE activities that the studies claim to support'?; it also reports the number and the
percentage of the studies per each activity. We can observe that primary studies motivated
their approaches to support activities across different software engineering phases, including
requirements (36%), maintenance (36%), testing (15%) and design (4%); 14 SE activities
are supported in total; mostly research effort is focused on requirements elicitation (26%),

121t is worth noting that some papers fall into more than one category i.e., claim to support more than one
activity. In such case, we assigned the study to all the claimed activities.

@ Springer

Empir Software Eng (2022) 27: 43 Page 25 0of 63 43

requirements prioritization (10%), validation by users (11%), problem and modification
analysis (23%), and requested modification prioritization (11%). We also recorded that 62
studies (34%) did not specify any SE activity that their approaches support.

To support the SE activities, primary studies used 9 broad types of app review analysis
we identified with answer to RQ1 (see Section 3.2). Table 14 shows how often a type of
review analysis was used for a SE activity.'? It can be observed that each SE activity was
supported using multiple analyses; classification was the most commonly used one; this was
also the only analysis motivated for all the activities. A further result analysis revealed stud-
ies used the analyses in combination to mine useful information and support SE activities;
we recorded 53 unique combinations; each composed of 1 to 5 types of analysis with the
median of 2. Table 15 lists combinations used at least in 2 primary studies. The following
sections provides a through synthesis on how mining useful information from app reviews
might support SE activities.

3.4.1 Requirements

Requirements engineering includes involving system users, obtaining their feedback and
agreeing on the purpose of a software to be built (Maalej et al. 2016). It therefore
is not surprising that review analysis has received much attention to support require-
ments engineering activities, including requirements elicitation, requirements classification,
requirements prioritization and requirements specification (see Table 13).

Requirements Elicitation In app reviews, users give feedback describing their experi-
ence with apps, expressing their satisfaction with software products and raising needs for
improvements (Pagano and Maalej 2013; AlSubaihin et al. 2019). Software engineers can
make use of the reviews to elicit new requirements (AlSubaihin et al. 2019; Dalpiaz and
Parente 2019; Dabrowski et al. 2019; 2020). For instance, they can employ opinion mining
approaches to examine reviews talking negatively about app features (Guzman and Maalej
2014; Shah et al. 2016; Li et al. 2018; Shah et al. 2019c; Liu et al. 2019; Dalpiaz and Parente
2019; Dabrowski et al. 2019; 2020). This can help developers to understand user concerns
about problematic features, and potentially help eliciting new requirements (Johann et al.
2017; Dalpiaz and Parente 2019; Dabrowski et al. 2019; 2020). Additionally, searching and
retrieving users reviews that refer to a specific feature they are responsible for will allow
them to quickly identify what users have been saying about their feature (Li et al. 2018;
Dabrowski et al. 2019; Liu et al. 2019). In line with this direction, approaches have been
proposed to classify reviews by their user intention (e.g., reviewer requesting a new fea-
ture) (Iacob et al. 2013a; Maalej and Nabil 2015; Maalej et al. 2016; Villarroel et al. 2016;
Scalabrino et al. 2019; Song et al. 2020) and by the type of requirements these reviews for-
mulate (e.g., functional or non-functional) (Yang and Liang 2015; Lu and Liang 2017; Al
Kilani et al. 2019; Jha and Mahmoud 2019; Wen and Chen 2020). Such aggregated infor-
mation can be further summarized and visualized to developers as a report of all the feature
requests reported for an app (Iacob et al. 2013a; Iacob et al. 2016; Di Sorbo et al. 2016; Di
Sorbo et al. 2017; Ciurumelea et al. 2018; Liu et al. 2020).

Requirements Classification User feedback can be classified in a number of dimen-
sions (Bourque et al. 1999). Several studies classified user comments based on types of

3Table excludes papers that did not specify any SE activity; in case of papers supporting multiple SE
activities, we assigned their facilitated analyses to all the claimed activities.

@ Springer

Empir Software Eng (2022) 27: 43

43 Page 26 of 63

(0T02) "Te 19 oerX pue ‘(0z0T) T8 10 BismoIqk ‘(610¢) OBIX (6107) "¢ 10 uIreqnsy (6102)
‘e 30 08D ‘(96107) ‘Te 32 yeys “(810¢) " 12 [[oInd (8107) ‘Te 32 nI (8107) ‘e 30 ea[owmnIni) (L [(g) Uewzny pue
noyeq ‘(9102) Te 12 [PreeN “(9107) ‘T8 10 BN “(STOT) WY pue no ‘(ST0T) 19N pue [ofeelN “(+107) [oreein pue

uewzng ‘($10g) ‘[e 10 uewznn (qg107) ‘e 12 qode ‘(B¢ 10T) T8 12 qOde] ‘(£[(T) UOSLIRH Pue qOdE] (¢10T) ‘[e 10 N %11 0t s1os() Aq uonepIfeA
%S1T 8¢ ONILSH],
(020T) I1yseq pue ewIeyS pue ‘(0z07) Te 10 uuewzuel] (6107) 110 pue rueiyebry %T € u31SA(T dovFIIU] J0S[)
(020T) 18ns)Iy pue yoruny
puE ‘(6107) pnowyeN pue eyr (8107) P[eel pue dstaouermy] ‘(L107) PIee pue draoueuny] ‘(L107) ‘e 10 201D %€ ¢ amde) sfeuoney usisoq
by 8 NOISad
(0207) 'Te 30 SWeI[Ip pue (8107) [oreen pue
orsouelmy “(L107) fereey pue graouenmy| “(910¢) Te 32 e “(9107) 'Te 12 [PreeN “(€107) [oreeyl pue oueSeqd %€ 9 uoneoyads syudwarmbay
(0207) "Te 32 0qI0S 1 PuE ‘(OgOT) Uewzng pue LyaQ (q0z0T) ‘e 10 eydosus «(0z0T) 'Te 10 HsmoIqeq (6102
Te 30 urgreqngIV (6102) e 32 Sueyz “(96107) T8 10 Yeys ‘(6107) 'Te 12 OULIqe[eds (8107) [o[eey pue draoueimnyy
‘(LT0T) Te 10 ueoIn “(L107) fereey pue graoueimy| ‘(L10g) e 12 uueyor “(9107) 'T& 32 [OME[[IA (9107) Te 10 loreey
($107) 'Te 30 uewzny ‘(4 10¢) freey pue uewzno (¢107) [P[eejn pue ouesed ‘(710T) ‘T8 19 BSeA “(Z10T) ‘e 19 U0oH %01 61 uoneznuoLy sjudwaImbay
(90207) 'Te 30 Suep pue “(070T) T8 19 WIA UeA (0ZOT) USYD pue usp (6107) PROWYRIA pue eyf “(8107) e 10
Sue “(8107) 'Te 19 Suep “(L107) Suerypue 0] ‘(L10T) 'Te 32 U20ID ‘(8L [0T) Te 19 zopedoa(‘(§10¢) Suer pue Suex %S 01 uoneoysse[) syuawarmbay
(0207) 1ryseq pue ewreyg pue <(0z0z) ‘e 32 nr (070T) ‘T8 30 oerX “(0z07) 18nsiuy pue yaeuny] ((qO0T) ‘T8 10
Suepm (0707) pred pue 1peH (0707) ‘Te 1@ I'T “(0207) YSuIS pue on (0z07) ‘Te 19 IIA UeA “(0707) ‘Te 10 pIezi],
(0202) Te 32 oeD ‘(0z0T) U_YD pue udM “(020T) ‘Te 30 uIpp (020T) e 39 Suog “(q0z0T) Te 30 eydosus (00T)
Te 30 D{smoIqE ‘(96107) T8 1° YeyS (6107) 'T& 32 OULIqe[edS (6107) 'Te 19 MUY [V ‘(6107) Auared pue zeidieq
“(6107) "Te 10 mysmoIqe(‘(6107) PnowyeIy pue eyf ‘(610¢) T8 32 uay) “(6107) e 32 0T “(6107) '[& 12 ulyreqns[y
(8107) 'Te 10 Suep “(8107) 'Te 32 I'T “(8107) 'Te 30 voppWNINL) (3707) '[e 10 uereyeuryq ‘(8107) PROWYRIA pue
SWETIM “(LT07) Suer] pue 0T (qL10T) ‘Te 10 Zapeood ‘(L107) Te 1@ Sueyz (L107) 'Te 19 Ud01D) “(L10T) ‘Te 10
PeQV “(LT0T) ‘Te 39 uueyof “(L]0T) T8 12 0qI0S 1 “(9107) ‘Te 12 [P01e[[IA “(9107) T¢ 1@ [o[ee]N ((9107) 'Te 30 Suad
“(9102) "Te 30 09108 I “(9T0T) ‘Te 32 QOdEL “(9T07T) T 32 Yeys (9107) Te 10 [ofeeNl “($107) Suery pue Suex (S107)
[1qeN pue [S[eeIA “(S107) T8 32 0rD (S107) Susd pue ung§ “(+107) freey pue uewzng ‘(eg107) T8 12 Q098] (£107)
foreen pue ouesed (¢107) Te 10 YO ‘(€107) YPRIQUIA PUB OUSLIED) ‘(¢T(7) UOSLLIEH pue qode] ‘(Z107) e 19 [noD %0€ 99 UoTRII[H sjuewaImbay
%9¢ 99 SINAWHIINOTY
QOUAIRJAY 9FeIUAdIdd SAIpMIS "ON ANAnoy 9S

sisATeue ma1aal dde £q paytoddns sonianoe SulreduIuo aremijos €| ajqel

pringer

&H's

Page 27 of 63 43

Empir Software Eng (2022) 27: 43

(0T02) "Te 12 ueAR[AYDIR[EY PUB (0TOT) IYIYIBIBWEDIIA pU®
wewereuns ‘(0z0g) ‘e 12 Aepex (070c) Pied pue Aepex ‘(610C) Te 10 Aajred “(6107) ‘Te 12 [Pree “(A6107)
e 30 YeyS ‘(6107) eysmo3oy-feg pue yoiquoiem ‘(86107) fPreey pue susley (6107) YeAswely pue A
-Se]N “(610¢) seloy separed pue uewznn (610g) ‘[e 10 eydosug “(6107) [e 10 Juwl§ (610T) ‘T& 10 Te[0dIN
(Q610) [ereeIAl pue sualEIN ‘(86107) 'T€ 32 YeyS ‘(8107) T& 30 uesseH ‘(8107) T¢ 32 Yeys “(810¢) pnowyey
pue ey(‘(8107) T¢ 32 pryelmyyl (eg107) '[& 19 08D (8107) ‘& 12 Jougeny (810¢7) '[& 12 1ON “(8107) '[& 12 B
-0098 “(8107) ‘[& 10 uewizny (810¢) [e 10 wniuruedsng ‘(81(0¢) duoy pue spuedysa((3107) zoAej[y pue
eydosug (8107) T8 12 NH ‘(810T) T¢ 10 1qKeN ‘(L10T) ‘T¢ 32 KOIN “(L10T) ‘T8 30 Suep “(qL10T) PROWYEN
pue eyf ‘(L107) "8 10 ung ‘(L10T) e 39 I'T “(L10T) 'T& 32 piyelpy ‘(2L [0T) prowyey pue eyf (L[0g) uueyof
pue sualeIN ‘(L102) T 32 IV ‘(L10T) ‘Te 10 oueID (L107) Te 12 1GAEN ‘(L107) ‘Te 32 JSUES “(9107) Te 1
PIEYY “(910T) UOOH pue suowwis “(9[(0g) ‘[& 32 OPedIdJA ((910T) '[e 12 e[[ydIued “(9107) qeyrys pue ued
-deseN (9107) Te 30 AOI[IPIN ‘(9107) T8 10 103UES “(9107) 'Te 19 UOOH “(4ST0T) ‘e 10 EIOAB[EI ‘(BSTOT) TE 10
el[oAR[EIN “(S10T) 'T& 30 Suel] ‘(95 10T) '8 19 NA ‘(BS10T) T8 10 NA ($10T) ‘T8 10 uewzny “(BG[(7) T8 I PIEyS]
(ST0T) 'Te 10 UnIRA “(£10T) ‘Te 12 Uy “(€10T) T2 19 U0OH ‘(€107) 1ouSepm pue eH (Z10g) MO pue Apuey)

(0T0?) "Te 32 noyz pue (810¢) 'Te 39 Bquoled (L10¢) T8 39 Bquoled (L107) Te 39 eo[ownIni) (S107) T8 10 equiofeq
(80207) 'Te 10 eydosus pue ‘(90z07) T8 10

eydosiig ‘(610¢) Te32 1A “(6107) ‘T8 32 08D (8107) Te 19 ployuealn (8107) Te 12 uesseH ($10T) Te 19 Ao
(0T02) "Te 39 0qI0g I pue ‘(07OT) UrwZny pue

Y20 (6107) 'Te 30 outiqe[eds “(6107) e 10 Dismoiqe “(6107) Te 32 0N (6107) 'Te 32 120N “(6107) e 30 nH
“(8107) Te 12 ZoUnIA “(L10T) 'Te 12 1M “(LT0T) Te 32 YsLIodTT “(9107) Te 32 WA “(9T0T) 'T& 12 [20LIR[TIA (9T0T)
“Te 32 qode] {(910¢) '[& 32 Bednaay] ‘(S10T) 'T& 32 PHeYy ($10T) T8 32 0eD “(S10T) Wiy pue no ‘(107) PIeys
(6107) oerx pue (0702)

preg pue IpeH ‘(0202) Te 3@ I'T “(0207) Ysurs pue ongy ‘(0g0c) HemeH-v (0Z0T) ‘Te 30 OBL “(00T) Te 10
prezif, “(e0z0c) ‘T8 10 Suep (0T0T) ‘T8 32 noyz “(0T0T) ‘e 10 TequoeS[EA ‘(0Z0T) USyD Pue uapm “(0z0T) & 10
upp() “(610T) "e 19 uIreqngy ‘(96102) T8 10 Yrys (6107) T8 10 0D “(6107) 9s3uoaluag pue eydeusunnoyd
“(610¢) @uared pue zedeq (8107) e 10 MBI “(8107) 'T& 32 Zouny “(810¢) ‘T¢ 3@ SuoL ‘(48107) & 10
oeD “(8107) [e 32 BQuIo[ed (8107) T 12 IUO[[2d “(qL10T) 'Te 12 Zapedodd (L107) ‘T¢ 1 Suem (L107) Te 1
UsHooIT *(L107) uewzny pue nnjeq ‘(L107) Te 30 M “(L107) ‘Te 32 equofed “(L107) ‘Te 3o uueyor “(9107)
‘T 32 qooe] (9107) PINYSYeYS pue JIEN (9107) Te 12 0qI0S I (9107) Te 32 nA *(ST0T) Te 19 B[[oyoTued
(S102) "Te 39 oeD (S107) T 10 quofed (S10T) ‘Te 39 uewzng ‘(qS107) T8 12 PIRYN (S10T) ‘T8 39 pieyy]
“(ST02) Te 12 08D (STOT) Te 12 ZowoD “(107) T 10 uewzng ‘(107) Te 32 uaD (€107) PIEY ‘(€107) Te 12 ng

(9107) 'Te 30 U\ pue “(S10T) T8 32 PIey “(+107) 'Te 19 preys|
(0207) "Te 10 sweyg pue ‘(£107) [e 39 01D “(9107) T8 12 Pree “(9107) Te 19 UB
(8107) ‘Te 12 Tuo[[ad pue “(107) 'Te 19 ouel) (9107) Te 12 qodoe|

%re
%e

%Dy

%01

%ST

%9¢
%T
%T
%T

9

QEIH10ddS LON
sisA[euy joedwy

yso(dioH

uoneznuoug

8] UONEOIPO]A paisenbay

sisA[euy

9 UONEIYIPO PUE WA[qOI]

99

€
¥
€

HONVNHLNIVIA
UONBZILION IS,
u31So(q 1897,
UONBIUAWNIO(] 1S3,

Q0UQIVJOY 9TBIUS0Id] SAIPNIS "ON

Aranoy gs

(ponunuoo) g1 3|qeL

pringer

A's

43 Page 28 of 63

Empir Software Eng (2022) 27: 43

Table 14 How often a type of app review analysis are used to realise a SE activity

Software Engineering Activity Studies

REQUIREMENTS

DESIGN TESTING MAINTENANCE

=
o 2
§ § % 5§ g
E :E § §~ 15 é -2
@ U & & 5 /8 3 £ 2 s % %
2 @ 2 2 =] 5 = =1 S z
= E = £ g & 2 s g = =
I5) 15} 5} S g & £ £ = = =} o
1 = = =1 50 =] < k=] = < en
£ & £ E x 3) 2 'z 15 2 s < = &
s g & 28 = E 2 § 2 £ § 37 & 35 £2 £
s 2 35 35 »: © 3§ /& &8 &« 2z 2 7 3 £ g
§ 3§ 3 2 2 5 % 3 3 2 3 = E 2 &
o~ 4 4 ~ A s} > = E |- 4 o=t = 4 [
Information Extraction 25 4 6 1 1 0 13 1 3 1 20 5 0 0 56 31%
2 Classification 32 9 7 5 4 1 9 2 1 127 11 4 3 105 58%
—: Clustering 13 0 4 2 0 0 8 0 0 0 13 7 0 2 44 24%
£
< Search and Info. Retrieval 8 0 1 0 0 0 0 3 1 0 9 5 0 5 24 13%
; Sentiment Analysis 14 1 3 0 0 1 10 0 0 0 12 3 1 0 40 22%
E Content Analysis 10 2 6 2 1 3 4 0 1 2 8 5 4 0 54 30%
2 Recommendation 7 0 3 0 0 2 2 0 2 1 12 8 3 2 30 16%
< Summarization 14 0 1 0 0 0 5 2 0 0 9 1 0 3 25 14%
Visualization S 0 1 1 0 0 8 0 1 1 10 4 1 0 20 11%

requirements the feedback conveys (Yang and Liang 2015; Deocadez et al. 2017a; Lu and
Liang 2017; Groen et al. 2017; Wang et al. 2018; Wang et al. 2018; Jha and Mahmoud 2019;
Wen and Chen 2020). These works typically classified the feedback into two broad cate-
gories: functional requirements (FRs) specifying the behavior of an app, and non-functional
requirements (NFRs) describing the constraints and quality characteristics of the app. The

Table 15 How often certain combination of app review analyses are used to realise a SE activity; IE
refers to Information Extraction; CL denotes Classification; CU signifies Clustering; CA presents Content
Analysis; SA denotes Sentiment Analysis; SIR refers to Search and Information Retrieval; RE presents
Recommendation; SU denotes Summarization; and VI signifies Visualization

Software Engineering Activity Studies

REQUIREMENTS

DESIGN TESTING MAINTENANCE

. 8
s F % s E
I N - - S < g
m O & @« = /R 35 B £ s % 2
2 2 2z 2 § 8 » 8 § S ES
H =} E g 2 s B g <« & =2 = 5 @
2 o) 2]) 5 = = E 5 £ § = £ &0
£ =} £ £ ~ 3 3 3 'z 5] 54 B < " k)
& &2 8 & T E £ £ £ £ §E 7 & & 2 =
5 35 5 5 2 . £ &8 &8 & 2 & 5 8 £ 3
$ 3 5 8 &2 2 35 % 3 %z 2 § = E 2 B
~ o~ ~ -2 a =] > = = = [~ == = z A~
CL 9 4 4 2 3 0 1 0 0 0 6 I 1 0 18 10%
cu 20 0 0 0O O 0O O O O 1 1 0 0 3 2%
2 CA 1 o 2 0 0 1 1 0 0 2 3 1 1 0 9 5%
Z CL+CA 22 0 o0 1 1 0 0O 0 O 2 1 0 0 6 3%
2 CL+sU 2.0 0 0 0 O 1 0 0 0 0O 0 0 0 2 1%
£ SR+sU o 0 o0 0 0O 0O O O 0O 0 2 0 0 2 2 1%
;:a CA +RE o 0 o 0 0O 0 O O 0O O 1 2 1 0 2 1%
g IE+CA+SU 20 0 0 0 0 2 0 0 0 0O 0 0 0 2 1%
S IE+CL+CU 1 0 o 0 O O 1 0 0 O 1 1 0 0 4 2%
S CL+SR+SU o 0 o 0 0 0 O 1 O0 0 1 0 0 1 2 1%
E CL+CU+SU 1 0o 0o 0 O O O O O 0O 2 0 0 0 2 1%
© IE+SA+RE 1 o 0o 0 0 O O 0O O O 1 0 0 0 2 1%
IE + SA + CL + VI 1 o 1 0 O O 2 0 0 0 2 0 0 0 2 1%
IE+CL+CU+RE+VI 0 O ©O0O O O 0O O O 0 0 2 1 0 0 2 1%

@ Springer

Empir Software Eng (2022) 27: 43 Page 29 of 63 43

classification at a further level of granularity has been also demonstrated (Lu and Liang
2017; Wang et al. 2018; Jha and Mahmoud 2019; Wen and Chen 2020; van Vliet et al.
2020); User feedback can be classified into the concrete quality characteristics it refers to
e.g., defined by ISO 25010 model (ISO/IEC 25010 2011) so that software engineers could
analyse candidate requirements more efficiently.

Requirements Prioritization Statistics about user opinions and requests can help priori-
tizing software maintenance and evolution tasks (Pagano and Maalej 2013; Guzman and
Maalej 2014; Maalej et al. 2016; Johann et al. 2017; Dabrowski et al. 2019; 2020). Bugs and
missing features that are more commonly reported can be prioritized over those less com-
monly reported (Villarroel et al. 2016; Kurtanovi¢ and Maalej 2017; Kurtanovic and Maalej
2018; Scalabrino et al. 2019; Di Sorbo et al. 2020). Users’ request may not by themselves be
sufficient for prioritization (one must also consider costs and the needs of other stakehold-
ers) but can provide valuable evidence-based information to support prioritization (Maalej
et al. 2016; Shah et al. 2019¢; Oehri and Guzman 2020).

Requirements Specification Requirements specification consists in structuring and docu-
menting detailed descriptions of the software required behaviour and quality properties (van
Lamsweerde 2009). App reviews can instead serve for generating lightweight partial
documentation of user requirements; they conveys information about functional and non-
functional requirements, usage scenarios and user experience (Pagano and Maalej 2013;
Maalej et al. 2016; Maalej et al. 2016; Kurtanovi¢ and Maalej 2017; Kurtanovic and Maalej
2018; Williams et al. 2020). Software engineers can immediately benefit from review
mining approaches to facilitate this information in the form of first drafts of software
requirements specifications (SRS) or user stories (Pagano and Maalej 2013; Maalej et al.
2016; Maalej et al. 2016). These approaches can for example classify reviews by the type
of requests users make (e.g., asking for new functions); summarise reviews referring to the
same requests and generate provisional SRS based on the information. Such SRS may list
new functions that users require; recap scenarios in which these functions are used; and
report statistics indicating relative importance of the requirements e.g., by the number of
users requesting the functions (Maalej et al. 2016). Since users often justify their needs and
opinions, SRS may also document user rationales serving later for requirements negotiation
or design decisions (Kurtanovi¢ and Maalej 2017; Kurtanovic and Maalej 2018).

3.4.2 Design

A few studies motivated app review analysis to assist software design activities: user inter-
face (UI) design (Algahtani and Orji 2019; Sharma and Bashir 2020; Franzmann et al. 2020)
and capturing design rationale (Groen et al. 2017; Kurtanovi¢ and Maalej 2017; Kurtanovic
and Maalej 2018; Jha and Mahmoud 2019; Kunaefi and Aritsugi 2020).

User Interface Design The success of mobile applications depends substantially on user
experience (AlSubaihin et al. 2019; Franzmann et al. 2020). For the app to be successful,
software engineers should design the interface to match the experience, skills and needs
of users (Bourque et al. 1999). Algahtani and Orji performed the content analysis of user
reviews to identify usability issues in mental health apps (Algahtani and Orji 2019). They
manually tagged 1,236 reviews with different types of usability issues for 106 apps from

@ Springer

43 Page 30 of 63 Empir Software Eng (2022) 27: 43

Apple’s App Store and Google Play. Poor design of user interface was the second most
frequently reported issue. It has been found that user-submitted content concerning interface
may provide valuable design recommendations on how to improve interface layout, boost
readability and easy app navigation. UI/UX designers should therefore take advantage of the
feedback. If addressed, it would likely increase user engagement with the apps and reduce
the attrition rate (Franzmann et al. 2020).

Design Rationale Capture Design rationale is essential for making the right design deci-
sions and for evaluating architectural alternatives for a software system (Nuseibeh 2001;
Burge et al. 2008). A few studies motivated their approaches to capture potential reasons
for design decisions (Groen et al. 2017; Kurtanovi¢ and Maalej 2017; Kurtanovic and
Maalej 2018; Jha and Mahmoud 2019; Kunaefi and Aritsugi 2020). Kurtanovi¢ and Maalej
devised a grounded theory for gathering user rationale and evaluated different review clas-
sification approaches to mine the information from app reviews (Kurtanovi¢ and Maalej
2017; Kurtanovic and Maalej 2018). User justifications e.g., on problems they encounter
or criteria they chose for app assessment (e.g., reliability or performance) can enrich doc-
umentation with new design rationale and guide design decisions. Similarly, user-reported
NFR can convey architecturally significant requirements and serve as rationale behind an
architecture decision (Nuseibeh 2001; Groen et al. 2017; Kunaefi and Aritsugi 2020). To
capture such requirements, app reviews can be classified by quality characteristics users
discuss (Nuseibeh 2001; Groen et al. 2017)

3.4.3 Testing

App reviews analysis can be used to support various testing activities: validation by
users (Iacob et al. 2013a; Iacob et al. 2013b; Iacob and Harrison 2013; Guzman et al. 2014,
Guzman and Maalej 2014; Maalej and Nabil 2015; Gu and Kim 2015; Maalej et al. 2016;
Bakiu and Guzman 2017; Ciurumelea et al. 2018; Durelli et al. 2018; Liu et al. 2018; Shah
et al. 2019¢; Gao et al. 2019; AlSubaihin et al. 2019; Dabrowski et al. 2020; Xiao et al.
2020), test documentation (Iacob et al. 2016; Grano et al. 2018; Pelloni et al. 2018), test
design (Man et al. 2016; Maalej et al. 2016; Groen et al. 2017; Shams et al. 2020) and test
prioritization (Khalid et al. 2014).

Validation by Users Evaluating a software system with users usually involves expensive
usability testing in a laboratory (Iacob et al. 2013a) or acceptance testing performed in a
formal manner (IEEE 1990). In the case of mobile apps, software engineers can exploit user
feedback to assess user satisfaction (Fu et al. 2013; Iacob et al. 2013a; Iacob et al. 2013b;
Gu and Kim 2015; Bakiu and Guzman 2017; Ciurumelea et al. 2018; Shah et al. 2019c;
Xiao 2019; Dabrowski et al. 2020) and to identify any glitches with their products (Iacob
et al. 2013a; Maalej and Nabil 2015; Gu and Kim 2015; Maalej et al. 2016; Ciurumelea
et al. 2018; AlSubaihin et al. 2019; Gao et al. 2019). A recent survey with practitioners has
shown that developers release the alpha/beta version of their apps to test the general reaction
of users and to discover bugs (AlSubaihin et al. 2019).

In line with the direction, several approaches have been proposed to mine user opin-
ions (Guzman and Maalej 2014; Guzman et al. 2014; Gu and Kim 2015; Bakiu and Guzman
2017; Shah et al. 2019¢c; Dabrowski et al. 2020; Xiao et al. 2020) and to generate bug reports
(Tacob et al. 2013a; Maalej and Nabil 2015; Maalej et al. 2016; Man et al. 2016; Ciurumelea

@ Springer

Empir Software Eng (2022) 27: 43 Page 31 0f 63 43

et al. 2018; Liu et al. 2018; Shah et al. 2019c¢). Opinion mining approaches help to discover
the most problematic features and to quantify the number of negative opinions. Knowing
what features users praise or hate can give a developer a hint about user acceptance of these
features (Bakiu and Guzman 2017; AlSubaihin et al. 2019; Dabrowski et al. 2020). Assum-
ing core features have been modified, the team may want to know how users react to these
features so that they can fix any issues quickly and refine these features. Analogously, iden-
tifying and quantifying reported bugs within a given time frame can help a development
team during beta testing before official release (Iacob et al. 2013a; Iacob et al. 2013b; Ciu-
rumelea et al. 2018; Gao et al. 2019; Shah et al. 2019c). If the number of reported issues is
unusually high, development teams can reschedule the release of a new version in order to
refocus on quality management and testing (Maalej and Nabil 2015; Maalej et al. 2016).

Test Documentation Test documentation can be partly supported by analysing app
reviews (lacob et al. 2016; Pelloni et al. 2018; Grano et al. 2018). Iacob et al. developed a
tool that produce a summary of bugs reported in reviews with breakdown by app version and
features that these bugs refer to (Iacob et al. 2016). Such summary can form the basis for
later debugging the app and fixing the problems. User comments can also be integrated into
mobile app testing tools (Pelloni et al. 2018; Grano et al. 2018). Originally, the tools gener-
ate a report of stack traces leading to an app crash (Pelloni et al. 2018; Grano et al. 2018).
Analyzing the information to understand the root of the problems can be often counterin-
tuitive. In such case, user comments can be used as a human readable companion for such
report; linked to a related stack trace, user-written description of the problem can instantly
guide testers where to look up for the emerged fault (Pelloni et al. 2018; Grano et al. 2018).

Test Design Analysing app reviews can support test case design (Man et al. 2016; Maalej
et al. 2016; Groen et al. 2017; Shams et al. 2020). Analysing reported issues can help
testers determine the app behavior, features, and functionality to be tested (Man et al. 2016).
Reviews may describe particular use of the software in which users encountered an unusual
situation (e.g., crashing without informing users of what happened) or inform about the lack
of supporting users in finding a workaround (Maalej et al. 2016). Such information may
help testers to design test cases capturing exceptions leading to a problem or to exercise
new alternative scenarios other those initially considered (Maalej et al. 2016; Groen et al.
2017; Shams et al. 2020). Additionally, identifying negative comments on quality character-
istics can help in specifying acceptance criteria an app should hold (Groen et al. 2017). For
example, user complaints about performance efficiency can indicate performance criteria
for functions that are expected to finish faster or more smoothly (Groen et al. 2017).

Test Prioritization Reviews and their ratings have been found to correlate with a down-
load rank, a key measure of the app’s success (Khalid et al. 2015; Martin et al. 2017).
User complaints about specific issues can have a negative impact on rating, and in turn
discourage users from downloading apps (Khalid et al. 2015). Therefore, it has been there-
fore suggested to prioritize issue-related test cases based on frequency and impact of these
complaints (Khalid et al. 2015; Man et al. 2016). To address device-specific problems a
development team must test their apps on a large number of devices, which is inefficient and
costly (Erfani et al. 2013). The problem can be partially ameliorated by selecting devices
submitted from reviews having the greatest impact on app ratings (Khalid et al. 2014). The
strategy can be particularly useful for the team with limited resources that can only afford

@ Springer

43 Page 32 0f63 Empir Software Eng (2022) 27: 43

to buy a few devices. Using the strategy, they can determine the optimal set of devices they
can buy on which to test their app (Khalid et al. 2014).

3.4.4 Maintenance

In attempt to support software maintenance, review analysis has been proposed for prob-
lem and modification analysis, requested modification prioritization, help desk and impact
analysis (see Table 13).

Problem and Modification Analysis Software engineers strive continuously to satisfy user
needs and keep their app product competitive in the market (AlSubaihin et al. 2019). To this
end, they can exploit approaches facilitating problem and modification analysis (Fu et al.
2013; Khalid 2013; Cen et al. 2014; Guzman et al. 2014; Gao et al. 2015; Gomez et al. 2015;
Panichella et al. 2015; Gao et al. 2015; Palomba et al. 2015; Guzman et al. 2015; Khalid
et al. 2015; Khalid et al. 2015b; Malik and Shakshuki 2016; Vu et al. 2016; Di Sorbo et al.
2016; Iacob et al. 2016; Wei et al. 2017; Licorish et al. 2017; Johann et al. 2017; Bakiu
and Guzman 2017; Deocadez et al. 2017b; Wang et al. 2017; Palomba et al. 2017; Malik
et al. 2018; Gao et al. 2018b; Muioz et al. 2018; Palomba et al. 2018; Pelloni et al. 2018;
Tong et al. 2018; Dalpiaz and Parente 2019; Phetrungnapha and Senivongse 2019; Gao et al.
2019; Shah et al. 2019¢; AlSubaihin et al. 2019; Li et al. 2020; Hadi and Fard 2020; Zhou
et al. 2020). The approaches detect user requests in app store feedback and classify them as
problem reports and modifications requests (Zhou et al. 2020). Fine-grained classification
can be carried out too, for example, to detect specific issues like privacy (Khalid 2013; Cen
et al. 2014; Tao et al. 2020) or concrete change requests like features enhancement (Palomba
et al. 2017; Al-Hawari 2020). Mining such information allows software engineers to deter-
mine and analyze user demands in timely and efficient fashion (Gao et al. 2015; Wang et al.
2017; Gao et al. 2018b; Gao et al. 2019; Guo and Singh 2020). By analysing the dynamics
of reported problems over time, software engineers can immediately spot when a "hot issue”
emerges and link it to a possibly flawed release (Fu et al. 2013; Guzman et al. 2014; Gao
et al. 2015; Shah et al. 2019c). Moreover, they can generate a summary of user demands to
obtain interim documentation serving as change request/problem report (Iacob et al. 2016;
Di Sorbo et al. 2016; Phetrungnapha and Senivongse 2019).

Requested Modification Prioritization App developers may receive hundreds or even
thousands of reviews requesting modifications and reporting problems (Khalid 2013; Vil-
larroel et al. 2016; Noei et al. 2019). It is therefore not a trivial task for developers to select
those requests which should be addressed in the next release (Villarroel et al. 2016). As
with requirements, developers can investigate statistics concerning these requests (e.g., how
many people requested specific modifications), estimate their impact on perceived app qual-
ity (e.g., expressed as user rating) or analyze the how these requests change over time (Gu
and Kim 2015; Gao et al. 2015; Khalid et al. 2015; Man et al. 2016; Keertipati et al. 2016;
Villarroel et al. 2016; Iacob et al. 2016; Licorish et al. 2017; Wei et al. 2017; Mufioz et al.
2018; Scalabrino et al. 2019; Dabrowski et al. 2019; Hu et al. 2019; Noei et al. 2019; Noei
et al. 2019; Oehri and Guzman 2020). Assuming developers have to decide which change to
address first, they could select one with the largest share in the numbers of requests, or the
one whose feedback most drives down the most app rating (Gu and Kim 2015; Dabrowski
et al. 2019; Di Sorbo et al. 2020). Similarly, observing a sharp growth in feedback reporting

@ Springer

Empir Software Eng (2022) 27: 43 Page 33 0f 63 43

of a specific problem (e.g., security and privacy), it may suggest that the issue is harmful to
users and should be resolved quickly.

Help Desk Help desk typically provides end-users with answers to their questions, resolve
their problems or assist in troubleshooting (Bourque et al. 1999). Analogously, app
developers can respond to specific user reviews to answer users’ questions, to inform about
fixing problems or to thank users for their kind remarks about apps (Mcllroy et al. 2015;
Hassan et al. 2018; Srisopha et al. 2020a; Srisopha et al. 2020c). Though the task is not
traditionally included in the typical responsibilities of software engineers, user support and
managing the product reputation on the app store are essential to the app success; they
should be viewed as important activities in in the software lifecycle. In fact, responding to
reviews motivate app users to revise their feedback and ratings to be more positive (Mcll-
roy et al. 2015). Some users even update their feedback to inform developers that the
response solved users’ problems or to thank for help (Mcllroy et al. 2015; Hassan et al.
2018). Since responding to a large number of reviews can be time-consuming, develop-
ers can make use of approaches highlighting reviews that are more likely to require a
response Srisopha et al. (2020a) and Srisopha et al. (2020c); and generating automatic
replies to these reviews (Greenheld et al. 2018; Hassan et al. 2018; Vu et al. 2019; Gao et al.
2019).

Impact Analysis Review mining approaches help developers to discover modification
requests posted in reviews; to identify app source code affected by these modifica-
tions (Zhou et al. 2020); and to estimate how implementing the modifications may impact
users’ satisfaction; (Palomba et al. 2015; Ciurumelea et al. 2017; Palomba et al. 2017;
Palomba et al. 2018). The approaches typically cluster feedback requesting the same mod-
ifications (Ciurumelea et al. 2017; Palomba et al. 2017; Zhou et al. 2020), then search
and retrieve links between review clusters and corresponding source code artefacts refer-
ring to the modifications (Palomba et al. 2015; Ciurumelea et al. 2017; Palomba et al.
2017; Palomba et al. 2018; Zhou et al. 2020). Such information can be useful for engineers
before an issue of new release as well as afterwards. Software engineers can track which
requests have (not) been implemented; monitor the proportion of reviews linked to software
changes; and estimate the number of users affected by these changes. After the release has
been issued, software engineers can also use the approaches to observe gain/loss in terms of
average rating with respect to implemented changes.

RQ3: Supporting Software Engineering

— Analysing app reviews can support software engineers in requirements,
design, testing, and maintenance activities.

— Most primary studies analyse app reviews to support (i) requirements
elicitation, (ii) requirements prioritization, (iii) validation by users, (iv)
problem and modification analysis, and (v) requested modification prior-
itization.

— 62 of primary studies (34%) do not describe software engineering use
cases of their review mining approaches.

@ Springer

43 Page 34 0f 63 Empir Software Eng (2022) 27: 43

3.5 RQ4: Empirical Evaluation

To answer RQ4 (how are app review analysis approaches empirically evaluated), we used
data items: F10 (evaluation objective), F11 (evaluation procedure), F12 (metrics and cri-
teria), F14 (annotated datasets), F15 (annotation task), F16 (number of annotators), F17
(quality measure) and F18 (replication package). We found that 109 primary studies per-
formed empirical evaluation of review mining approaches; 105 studies included evaluation
of effectiveness and 23 of user-perceived quality.

3.5.1 Effectiveness Evaluation

A common procedure for effectiveness assessment consists of four steps: (i) formulate an
evaluation objective, (ii) create an annotated dataset, (iii) apply the approach on the anno-
tated dataset, and (iv) quantify the effectiveness. The evaluation objective refers to assessing
the degree to which an approach can correctly perform a specific mining task or analysis
(see Section 3.2). Human judgement is usually required to create the annotated dataset.

Primary studies involved humans performing the task manually on a sample of reviews
and annotating the sample with correct solutions. Such annotated dataset (called the “ground
truth”) served as a baseline for evaluating the approach and quantifying the outcome.

Most studies provided a detail description of how each step of their evaluation methods
have performed. Hence, we could record additional information:

Availability of Dataset and Tool Most studies have not released their annotated datasets
nor the tools they evaluated.'* Tables 16 provides an overview of 23 annotated datasets that
are publicly available, reporting the reference to the paper, a short description of the dataset
and its size in terms of number of reviews, whereas Table 17 presents 16 available tools, 1
providing the reference to the paper and a short description of the characteristics of the tool.

Evaluation Objective Scholars evaluated the effectiveness of their app review mining
approaches in performing: Classification, Clustering, Sentiment Analysis, Information
Extraction, Searching and Information Retrieval, Recommendation and Summarization.

Annotation Procedure The number of annotators labeling the same review sample (or
their fragment) ranged from 1 to 5 with the median of 2 human annotators. Only 26
primary studies (25%) reported how the quality of their annotated datasets has been mea-
sured. The three most common metrics for inter-rater agreement evaluation were Cohen’s
Kappa (Pustejovsky and Stubbs 2012), Percentage Agreement (Hallgren 2012) and Jac-
card index (Manning et al. 2008). Percentage Agreement and Cohen’s Kappa were used
to measure the quality of human annotation for Classification, Sentiment Analysis, or Fea-
ture Extraction; Jaccard index was used for assessing the human agreement for the task of
Searching and Information Retrieval; whereas Fleiss’ Kappa was used to assess the quality
of manual Clustering. No study reported how the agreement was measured when annotators
performed, Recommendation, or Summarization task.

141 addition to the reported information in the surveyed literature; we also contacted the authors of 105
primary studies to request replication packages.
15The references to the tools and the datasets are available in the supplementary material (Dabrowski 2021)

@ Springer

Empir Software Eng (2022) 27: 43

Page 350f63 43

Table 16 Publicly-available datasets of annotated reviews

Ref. Description Size

Chen et al. (2014) Indicated whether the content of each review is informative or 12,000
uninformative.

Guzman et al. (2015) Tagged reviews with topics (e.g., bug report, feature shortcom- 4,500
ing, complaint, usage scenario).

Gu and Kim (2015) Identified type of user request each review convey (e.g., bug 2,000
report, feature requests).

Maalej and Nabil (2015) Reviews labeled with a type of user requests (bug report, 4,400
feature request, rating, user experience).

Di Sorbo et al. (2016) Reviews labeled with 12 topics (e.g. security) and user inten- 3,439
tion (e.g., problem discovery).

Panichella et al. (2016) Reviews labeled with 5 categories useful from maintenance 852
perspective (e.g., problem discovery).

Sidnger et al. (2016) Identified user opinions (feature and sentiment). 1,760

Ciurumelea et al. (2017) Tagged reviews with mobile specific categories (e.g. perfor-
mance, resources, battery, memory).

Groen et al. (2017) Labeled reviews with software quality requirements (e.g., 360
usability, reliability, portability, compatibility).

Lu and Liang (2017) Reviews labeled with functional and non-functional require- 2,000
ments (e.g., usability, performance).

Grano et al. (2018) Annotated reviews with their topics and a type of issue users 6,600
reports.

Jha and Mahmoud (2018) Annotated a type of user feedback (feature request, bug 2,930
reports, and others).

Nayebi et al. (2018) Annotated reviews with a type of a user request (e.g., problem 2,383
discovery).

Pelloni et al. (2018) Reviews labeled with a crash report category. 534

Scoccia et al. (2018) Annotated reviews with 10 categories of users’s concern. 1,000

Al Kilani et al. (2019) Labeled reviews with 5 categories: bug, new feature, perfor- 7500
mance, security, usability or sentimental.

Dabrowski et al. (2019) Reviews annotated with 20 app features. 200

Jha and Mahmoud (2019) Labeled reviews with non-functional requirements user dis- 6,000
cuss (e.g. usability, dependability).

Scalabrino et al. (2019) Reviews labeled with feedback category (e.g., bug report, 3,000
feature request).

Shah et al. (2019a) Identified features discussed in reviews. 3,500

Stanik et al. (2019) Annotated a type of user feedback (problem reports, inquiries, 6,406
and irrelevant).

Dabrowski et al. (2020) Annotated reviews with 1,521 user opinions i.e., pairs of 1,000
features and their related users’ perceived sentiment.

Guo and Singh (2020) Annotated reviews with user stories i.e., action-problem pairs. 200

Characteristics of Dataset Most annotated datasets were created using reviews coming
from Google Play and Apple Store (84% in total); the remaining datasets have been created
using reviews from Amazon Appstore, Black Berry App World; Huawei Store, Windows
Phone Store and 360 Mobile Assistant. On average, an annotated dataset has been prepared
using 2,800 reviews collected from a single app store; the reviews were collected for 19

@ Springer

43 Page 36 of 63

Empir Software Eng (2022) 27: 43

Table 17 Publicly-available app review mining tools

Ref.

Description

Di Sorbo et al. (2016)

Panichella et al. (2016)

Johann et al. (2017)

Wei et al. (2017)

Deshpande and Rokne (2018)
Dhinakaran et al. (2018)
Scoccia et al. (2018)
Shah et al. (2018)

Jha and Mahmoud (2019)
Pelloni et al. (2018)
Scalabrino et al. (2019)
Shah et al. (2019a)

Shah et al. (2019b)
Stanik et al. (2019)

Guo and Singh (2020)

Hadi and Fard (2020)

SUREF tool classifies reviews by users’ intention; cluster them then
generates their summaries.

ARdoc tool classifies reviews with a type of user requests (e.g., feature
request, problem discovery, information seeking, information giving
and other.)

SAFE tool extracts features from reviews and match them with features
present in app descriptions.

OASIS tool classifies reviews by reported issue; links them to warn-
ings from static analysis tools; and recommend the priorities of these
warnings.

The tool classifies reviews by a type of a user request (e.g., problem
discovery).

The tool classifies reviews based on types of user feedback i.e., feature
request, bug report, user experience and rating

The tool classifies app reviews into users’ concerns related to android
run-time permission.

A tool classifying app reviews based on their feedback type (e.g.,
feature request, problem report).

Tool classifies app reviews by non-functional requirements user discuss
(e.g. usability, dependability).

BECLoMA tool links stack traces from testing tools to user reviews
referring to the same crash.

CLAP tool classifying reviews by their types; clustering them; then
recommend their relative-importance.

SAFE tool reimplementation facilitating feature extraction from
reviews and app descriptions.

A reimplementation of a tool facilitating feature extraction using
supervised ML technique.

A tool classifying reviews by the the type of user feedback (problem
reports, inquiries, and irrelevant).

CASPER tool for extracting and synthesizing user stories of problems
from app reviews.

AOBTM tool discovers coherent and discriminative topics in reviews.

apps from 6 app categories. Table 18 provides five-number summary that details descriptive
statistics about the datasets.

Effectiveness Quantification Three most common metrics used for assessing the effective-
ness of app review mining approach are precision, recall, and F1-measure (Manning et al.
2008). The metrics were employed for evaluating Classification, Clustering, Information
Extraction, Searching and Information retrieval, Sentiment Analysis, Recommendation and
Summarization.

A few studies deviate from the common procedure outlined above. The studies evaluated
their review mining approaches without annotated datasets:

— Eight studies asked annotators to assess the quality of output produced by their
approaches, instead of creating an annotated dataset before applying the mining

@ Springer

Empir Software Eng (2022) 27: 43 Page 37 of 63 43

Table 18 Five-summary numbers providing descriptive statistics of annotated datasets that primary used to
evaluate app review mining approaches

Characteristics Min. Q1 Med. Q3 Max.

No. App Stores 1 1 1 2 3

No. Apps 1 7 19 185 1,430,091
No. App Categories 1 4 6 10 35

No. App Reviews 80 1,000 2,800 4,400 41,793

approach. This was practiced for evaluating Classification (Li et al. 2017), Clus-
tering (Guzman and Maalej 2014; Vu et al. 2015a; Palomba et al. 2017), Infor-
mation Extraction (Johann et al. 2017; Li et al. 2017), Searching and Information
Retrieval (Wei et al. 2017), and Recommendation (Shams et al. 2020).

— Seven studies used other software artefacts as an evaluation baseline rather than creat-
ing an annotated dataset (Gao et al. 2015; Man et al. 2016; Gao et al. 2018b; Uddin et al.
2020; Srisopha et al. 2020a; Srisopha et al. 2020c; Xiao et al. 2020). To evaluate Rec-
ommendation (e.g., determining priorities for reported issues), the studies compared
recommended priorities for issues with priorities for the issues reported in user forums
or changelogs; to assess the quality of Clustering, the studies benchmarked the output of
their approaches with topics from app changelogs; whereas to evaluate their approaches
in Recommending reviews that need to be responded, the studies used information of
already responded reviews that developers posted in app stores.

3.5.2 User Study

Twenty three studies evaluated their review mining approaches through user studies (Guz-
man et al. 2014; Chen et al. 2014; Gu and Kim 2015; Guzman et al. 2015; Villarroel et al.
2016; Maalej et al. 2016; Panichella et al. 2016; Di Sorbo et al. 2016; Di Sorbo et al. 2017;
Ciurumelea et al. 2017; Palomba et al. 2017; Ciurumelea et al. 2018; Greenheld et al. 2018;
Liu et al. 2018; Gao et al. 2018b; Dalpiaz and Parente 2019; Scalabrino et al. 2019; Liu et al.
2019; Zhou et al. 2020; Gao et al. 2020; Tao et al. 2020; Shams et al. 2020; Liu et al. 2020).
The objective of these evaluation was to qualitatively assess how the approach and/or their
facilitated analysis are perceived by intended users (e.g., software engineers). Such evalua-
tion procedure typically consists of the following steps: (i) define an evaluation subject and
assessment criteria, (ii) recruit participants, (iii) instruct participants to perform a task with
an approach or a produced analysis, (iv) elicit participant’s opinion of the approach through
questionnaire and/or interviews.

We looked in details at how studies perform each of the steps. The extracted data yields
the following insights:

Evaluation Subjects User studies evaluated the following types of app review analy-
ses: Clustering, Classification, Sentiment Analysis, Information Extraction, Search and
Information Retrieval, Recommendation, Summarization, and Visualization.

@ Springer

43 Page 38 of 63

Empir Software Eng (2022) 27: 43

Table 19 Reference mapping of user studies with breakdown of evaluation criterion and app review analysis

Criterion

App Review Analysis

Accuracy

Efficiency

Informativeness

Usability

Usefulness

Information Extraction (Gao et al. 2018b; Dalpiaz and Parente 2019), Classi-
fication (Villarroel et al. 2016; Panichella et al. 2016; Di Sorbo et al. 2016;
Scalabrino et al. 2019), Clustering (Palomba et al. 2017; Zhou et al. 2020),
Summarization (Di Sorbo et al. 2017).

Classification (Chen et al. 2014; Ciurumelea et al. 2017; Ciurumelea et al. 2018),
Recommendation (Greenheld et al. 2018; Shams et al. 2020), Summarization (Di
Sorbo et al. 2016; Di Sorbo et al. 2017; Liu et al. 2019; Tao et al. 2020).

Classification (Ciurumelea et al. 2017; Liu et al. 2018; Dalpiaz and Parente
2019), Recommendation (Gao et al. 2020) Summarization (Di Sorbo et al. 2016;
Di Sorbo et al. 2017; Tao et al. 2020), Visualization (Guzman et al. 2014; Gao
et al. 2018b).

Recommendation (Greenheld et al. 2018), Summarization (Di Sorbo et al. 2016;
Di Sorbo et al. 2017; Dalpiaz and Parente 2019).

Information Extraction (Guzman et al. 2015; Gao et al. 2018b; Dalpiaz and Par-
ente 2019), Classification (Panichella et al. 2016; Di Sorbo et al. 2016; Maalej
et al. 2016; Ciurumelea et al. 2017; Ciurumelea et al. 2018; Liu et al. 2018),
Clustering (Palomba et al. 2017), Search and Information Retrieval (Palomba
et al. 2017), Sentiment Analysis (Guzman et al. 2015), Recommendation (Vil-
larroel et al. 2016; Scalabrino et al. 2019; Gao et al. 2020; Shams et al.
2020), Summarization (Di Sorbo et al. 2017; Liu et al. 2019; Tao et al. 2020),
Visualization (Gu and Kim 2015; Liu et al. 2020).

Assessment Criteria Five evaluation criteria were typically taken into account: 1) Use-
fulness denoting the quality of being applicable or having practical worth; 2) Accuracy
indicating the ability of being correct; 3) Usability signifying the quality of being easy

Table 20 Reference mapping of user studies with breakdown of the types of participants taking part in the

studies

Sector Participant

Reference

Academia Student

Researcher

Industry Architect

(Di Sorbo et al. 2017; Ciurumelea et al. 2017; Greenheld et al. 2018;
Liu et al. 2018; Gao et al. 2018b; Liu et al. 2019; Tao et al. 2020; Shams
et al. 2020; Liu et al. 2020)

(Chen et al. 2014; Maalej et al. 2016; Di Sorbo et al. 2016; Di Sorbo
et al. 2017; Ciurumelea et al. 2018; Liu et al. 2019)

(Maalej et al. 2016)

Business Analyst (Dalpiaz and Parente 2019)

Developers

(Guzman et al. 2014; Guzman et al. 2015; Gu and Kim 2015; Panichella
et al. 2016; Maalej et al. 2016; Di Sorbo et al. 2016; Palomba et al.
2017; Di Sorbo et al. 2017; Ciurumelea et al. 2017; Liu et al. 2018; Liu
et al. 2019; Zhou et al. 2020; Gao et al. 2020; Liu et al. 2020)

Product Manger Dalpiaz and Parente (2019)
Project Manager (Maalej et al. 2016; Villarroel et al. 2016; Di Sorbo et al. 2016;

Scalabrino et al. 2019)

Requirement Engineer (Maalej et al. 2016)
Software Engineer (Di Sorbo et al. 2016; Di Sorbo et al. 2017; Liu et al. 2018; Dalpiaz and

Software Tester

Parente 2019)
(Di Sorbo et al. 2016; Di Sorbo et al. 2017)

@ Springer

Empir Software Eng (2022) 27: 43 Page 39 of 63 43

to use; 4) Efficiency indicating the capability of producing desired results with little or
no human effort; and 5) Informativeness denoting the condition of being informative and
instructive. Table 19 provides reference mapping of user studies with a breakdown of
evaluation criteria and evaluated subjects.

Study Participants The number of participants involved in the study ranges from 1 to 85
with the median of 9 participants. The participants included professionals, scientists and
students; Table 20 details the types of participants taking part in user studies and provide
references to the corresponding studies.

Evaluation Procedure A The participants were instructed to either perform specific task
with or without the use of the mining approach being evaluated, to review the outputs pro-
duced by the approach, or to simply trial the proposed approach without being given any
specific tasks.

RQ4: Empirical Evaluation

— Review mining approaches are evaluated in terms of their effectiveness in
performing review analyses and their user-perceived quality.

— To evaluate effectiveness, studies compare outputs of mining approaches
with human-generated ones on sample datasets. Most datasets, however,
have not been published.

— To assess perceived quality, studies perform user studies with software
professionals, scientists and students. Participants are typically tasked to
use a mining approach with a certain objective; then assess it based on
specific quality criteria e.g., usefulness.

3.6 RQ5: Empirical Results

We answered RQ5 (how well do existing app review analysis approaches support software
engineers) based on data item F13 (evaluation result). The data come from 87 studies report-
ing results of their empirical evaluations: effectiveness evaluations (83 studies) and user
studies (18 studies). We synthesize results of these studies in the subsequent subsections.

3.6.1 Effectiveness Evaluation Results

The methodology that primary studies employed for effectiveness evaluation was too
diverse to undertake a meta-analysis or other statistical synthesis methods (Higgins et al.
2019); these studies characterized for example diversity in their treatment (e.g., review min-
ing approach), population (e.g., review dataset) or study design (e.g., annotation procedure).
We thus employed ‘summarizing effect estimates’ method (Higgins et al. 2019); Table 21
reports the magnitude and range of effectiveness results that primary studies reported for
different review analyses with breakdown of mined information type.®

16N effectiveness evaluation was performed w.r.t. content analysis and visualization.

@ Springer

Empir Software Eng (2022) 27: 43

43 Page 40 of 63

(810 PROWYRTA PUE BY[) %1 JO [9A3] U 18 [[20y

(610 "Te 30 0BD) %9¢ JO [9A9] oY) 1B H-NATd

"(9810T 'Te 30 0BD) SG1(T Te 30 08D) 9,79 JO UoIsIaId UeIpaw Ay} YIIM 9,¢9 0} 9 (9 woiy aSuer uorsoard

{6107 Te 10 OULIqe[edS 9107 'Te 19 [QOIIB[[IA) %8/ JO AOBINOOE UBIPAW AU} UNIM 9€Q O} 97/ WOIJ a3uel AoeInooy

"(610T yeAswe]y pue KINISBIA) %] 6 JO [QAS] oY) J8 AorINdOY

(0T0T '8 10 DismoIqe(*L10T UBWIZND pUe neq) %L9
*JO UBIPAW 9U) YIIM 9% ()L O3 %9 WOIJ SOSURI [[BIA $9]/ JO UOISIOAId URIPOW Y YIIM 9/ 0) 9% Q9 WOIJ SITUBI UOISIOA]

(810 '[® 19 ouBID 1§10 e 12 TUO[[3d) %S L JO [[EI21 UBIpaW

o I (L10T Te 30 va[eWnINL) L1OT T¢ 30 BqUIOTRd) %6L O3 %(L WOy d3uel [[2231 (8T0T 'Te 3 TUONRd ‘L10T T¢ 3
rqUIOEd) %78 JO uoisioald uerpaw oy} yim (107 [30 OurlD ¢/ [0 ‘[& 10 BA[OWININI)) 9,78 03 %[S WOIj dFuel UoIsIalg
(810 T¢ 10 BqIOLE (ST0T T8 19 BAWIO[E]) %EL JO [9A9]) 8 [[2031 (10T T8 10

equiored) 9./ Jo uoisioard uerpaw oy} YPIm (6107 T8 12 10N G10T ‘Te 12 equiofed) %6 O} 9%/ [WOIJ ULl UOISIdaI]

“(0T0T "I& 39 0BD *0TOT 'T¢ 19 NI'T) %EL JO [[BI1 URIPIW SU) YIIM %L O3 %L
woxy a3uel [[2aI {(0Z0T ‘T8 32 08D ‘0Z0T ‘T8 32 NI']) %G8 JO uoIsIoard UeIpaw Ay} YIIM 968 0} 9%§Q WOIJ dSULI UOISIOAI]

“(L10T 810

UUETO[) 9596 JO [[BID URTPAW O} YIIM (6T0T T8 12 NI :6T0T ‘Te 19 DISMOIqR(T) %(L O} %9 WOLy ORI [[2d1 (L T(T 'Te 12
uueyofr) 950/ Jo uorsioaid uerpawr 3yl YIm (6107 T8 39 NI S610T ‘T8 12 DSmoIqe) 9%¢€] 01 %9¢ Woly dFuel uoIsIAId
"(610T I8 10 OULIGR[ROS

‘9T0T 'TE 32 [P0LIE[[IA) %08 JO ALIOOIN UBTPIUT oY) UM 9,/ 0} %€/ WOy dFuel NAOOIN (2STOT T8 19 NA) %ES JO
Koeanooe ueipaw Y} YPIM (60T ‘8 39 100N ‘6107 os3uoaruag pue eydeusSunnoyd) 966 03 %08 WOI} a3uer AoeIndoy

"(810T "[& 19 BI009S) %6L
JO [[e99I UBIPAW) YIIM (90T ‘T 10 OPRIISN 9T(0T 'Te 10 KOIOIN) %76 01 %S9 woIy oSuel [[eddl (8107 ‘T8 10 B
-209S) 99/ Jo uorsioard uerpaw Ay} PIM (9T(T Te 39 OPLIIdIN 9107 T& 312 KOIIOIN) %001 O} %99 WOI} AFULI UOTSIOAJ

*(610C PnowyeN pue eyf 1/ [07 Suer] pue ny) %6/ JO [[ed21
UBIpaUI) Yim (RTOT '8 10 SUBA *GTOT SURIT PUE SUBX) %76 O) % €9 WOIJ 95URI [[891 {(L [T SUer] pue 0] :g10g Suer]
pue Suex) %4/ Jo uorsioaid uerpawr Y} Ym (8107 T 312 Suep ‘9107 T 12 OPBIISIN) %001 O} %¢9 WOIj IFURI UOISIOAIJ

“(€10T T8 32 4O :910T 'Te 10 Sudd) %78 JO

[[e991 ueIpaw Ay} Yim (810 ‘Te 10 wniduruedsnd ¢q/ [()7 PROWYRIA PUR BY[) %66 O) 9%]S Wwoij d3uel [[edaI {707 ‘T8 10
3u0§) 908 Jo uorsroaid uerpaw oy Y (qLTOT PROWYEIA PUE B[(GTOT ‘T8 32 UIIBIN) %F6 O) %GE WOI) AFUT UOISIAI]
“(L10T 'Te 12 U201D) 9%T6 JO [2A3] Y} J& UOISIdAI]

"(910€ T8 32 qode]) %68

JO [[e091 uBIpaW Y} YIM (BEI(OT ‘T8 10 qOJ®[‘¢() UOSLLIRH PUB QOOB]) 9,68 O} 9%/8 WOIJ d3URI [[BOAI (9[0T T8 10
qooe]) 916 Jo uotstoard uerpaw oy M (BETOZ ‘T8 32 QOOB] ‘€7 UOSLLIRH pue qode]) 916 03 %G8 WOoIJ 93uel UoISIodlg
(910T B0

193UES) 979 JO [[BI2X UBIPIU AU} (I (86 [T T8I0 Yeys ‘10T T2 30 NI[BIN) %LL 03 %TH woly a3uer [[2da1 (4]0 [o[eeN
pue uewznn) 9,8¢ Jo uorsioald uerpaw oY) YPIm (07O T8 312 0D BGTOT T8 12 YeYS) %18 01 9%] WoIj dFuel UoIsIoalg

Areuwruung MoTAdY
suodsay morAdy

Kot 1senboy] 105
MITADY

oryroadg-oInyes

SYUIT 9POD)-MIIADY
SYUTT ONSST-MOIAY

SYUI'] [BOD)-MOIARY

MIIAYY dJ10adG-oInyes,|

SMIIARY JTe[IuIs

odAg, onsst

9dAYL ¥IN

adA], 1senbay 195
AN

jsanbay 105

saInjeaq

uonezIeuImng

UONEPUIWWOIY

SISA[euy JUOWNUSS

[eadLnoy
UOIBULIOJU] PUE YO1BdS

SunsnD

UOTIBOIJISSE[D)

uondenxy uoneuriojuy

S)nsay

UOTJEULIOJU] PAUTA

sIsATeuy moraay ddy

sonbrutdey s1sATeue maraar dde Jo ssouaAn0dJo 9y} SuLmseaw sjuaWLIAdXa PI[[ONUOD JO SINSAT oY) Jo Arewruing | d|qel

pringer

&H's

Empir Software Eng (2022) 27: 43 Page 41 0f 63 43

Information Extraction The effectiveness of extracting information from reviews depends
on the type of mined information. Techniques for extracting features from reviews has the
lowest performance: median precision of 58% (Guzman and Maalej 2014) and median recall
of 62% (Singer et al. 2016); and the most diverging results: precision varies from 21% to
84% (Shah et al. 2019a; Gao et al. 2020). Techniques for extracting user requests and NFRs
from reviews have higher performance with a median precision above 90% (Iacob et al.
2016; Groen et al. 2017) and only small variations between techniques.

Classification App reviews can be classified by information types these reviews contain,
such as user requests, NFRs and issues. State-of-the-art review classification techniques
have a median precision above 81% (Yang and Liang 2015; Lu and Liang 2017; Deshpande
and Rokne 2018; Scoccia et al. 2018) and median recall around 83% (Peng et al. 2016; Lu
and Liang 2017; Scoccia et al. 2018; Nayebi et al. 2018; Jha and Mahmoud 2019).

Clustering Studies have shown the accuracy of clustering semantically related reviews to
be 83% (Vu et al. 2015a); this result is in line with findings concerning the quality of review
clustering, where authors reported MojoFM of 80% (Villarroel et al. 2016; Scalabrino et al.
2019).

Search and Information Retrieval Mining approaches showed effectiveness in retrieving
reviews to specific information needs; in particular, the results show that tracing information
between reviews and issues in ticketing systems and between reviews and source code can
be precise: the median precision above 75% (Palomba et al. 2017; Palomba et al. 2018;
Pelloni et al. 2018); and complete: median recall above 70% (Palomba et al. 2015; Palomba
et al. 2018; Pelloni et al. 2018; Grano et al. 2018); whereas linking reviews to goals in
goal-models have been achieved with the median precision of 85%; and the median recall
of 73% (Liu et al. 2020; Gao et al. 2020) Similarly, finding reviews related to specific
features has been reported with 70% of precision and recall of 56% (Johann et al. 2017).
The variability of the results e.g., precision between 36%-80% (Dabrowski et al. 2019; Liu
et al. 2019), however, may lead to inconclusive findings.

Sentiment Analysis The overall sentiment of a review can be identified with an accuracy
of 91% (Masrury and Alamsyah 2019). Identifying the sentiment of a review with respect
to a specific app feature is less effective with the median precision of 71% and the median
recall of 67% (Bakiu and Guzman 2017; Dabrowski et al. 2020).

Recommendation Recommending priorities for user requests was reported with medium
to high effectiveness: the median accuracy of 78% (Villarroel et al. 2016; Scalabrino et al.
2019) and precision of 62% (Gao et al. 2015; Gao et al. 2018b). Whereas, generating review
responses was reported with BLEU-4!7 greater than 30% (Gao et al. 2019), which reflects
human-understandable text.

Summarization Mining techniques were recorded to generate a compact description
outlining the main themes present in reviews with recall of 71% (Jha and Mahmoud 2018).

17The metrics quantifying the quality of generated text on a scale of 0% to 100%.

@ Springer

43 Page 42 of 63 Empir Software Eng (2022) 27: 43

3.6.2 User Study Results

Twenty three studies evaluated user-perceived quality of review mining approaches.
Table 22 provides synthesis of user study results that primary studies reported for different
review analyses with breakdown of evaluation criterion.

Information Extraction Extracting information from reviews e.g., issue reports and user
opinions is useful for developers (Gao et al. 2018b); it can help to elicit new requirements or
prioritize development effort (Guzman et al. 2015; Dalpiaz and Parente 2019). In particular,
machine learning techniques are able to identify issues with acceptable accuracy (Gao et al.
2018b); feature extraction methods instead produce too imprecise analyses to be applicable
in practice (Dalpiaz and Parente 2019).

Classification Review classification showed their utility for identifying different users’
needs e.g., feature requests, or bug reports (Di Sorbo et al. 2016; Panichella et al. 2016;
Maalej et al. 2016; Ciurumelea et al. 2017; Liu et al. 2018; Ciurumelea et al. 2018; Zhou
et al. 2020). Such categorized feedback is informative and ease further manual review
inspection (Ciurumelea et al. 2017; Liu et al. 2018; Dalpiaz and Parente 2019). Practitioners
reported to save up to 75% of their time thanks to the analysis (Chen et al. 2014; Ciurume-
lea et al. 2017; Ciurumelea et al. 2018); and that their accuracy is sufficient for the practical
application (Villarroel et al. 2016; Di Sorbo et al. 2016; Panichella et al. 2016; Scalabrino
et al. 2019).

Clustering Review clustering is convenient for grouping feedback conveying similar
content; for example, those reporting the same feature request or discussing the same
topic (Palomba et al. 2017; Zhou et al. 2020). Evaluated approaches can perform the analysis
with a high level of precision and completeness (Palomba et al. 2017; Zhou et al. 2020).

Searching and Information Retrieval Developers admitted the usefulness linking reviews
to the source code components to be changed (Palomba et al. 2017); the task traditionally
requires an enormous manual effort and is highly error-prone.

Sentiment Analysis Analyzing user opinions can help to identify problematic features and
to prioritize development effort to improve these features (Guzman et al. 2015).

Recommendation Project managers found recommending priorities of user requests use-
ful for release planning (Villarroel et al. 2016; Scalabrino et al. 2019); it can support their
decision-making w.r.t. requirements and modifications that users wish to address. Devel-
opers perceived an automatic review response system as more usable than the traditional
mechanism (Greenheld et al. 2018); recommending reviews that require responding and
suggesting responses to the reviews can reduce developers’ workload (Greenheld et al.
2018). Similarly, recommending goals that an app needs to satisfy is informative and may
guide this app evolution (Gao et al. 2020); whereas suggesting test cases triggering bugs
can be useful for developers to reproduce bug-related user reviews; and save cost on manual
bug reproduction (Shams et al. 2020).

Summarization Compact description outlining most important review content is useful for
developers in their software engineers activities (Di Sorbo et al. 2017; Liu et al. 2019; Tao

@ Springer

Page 43 of 63 43

Empir Software Eng (2022) 27: 43

*(S10T ‘Te 19 uBWZND)) SAINILIJ ISAY)
aaoxdur 03 110339 Juawdofaasp Sursnuond yoddns ued 31 (sarnjesy dde Jnoqe suorurdo xesn Sunoejep 10y (nydjeH

(L10T T 19 equio[eq) (Suwreu p[o1} IO sSe[d ‘spoyiowt “3-9) sjuouoduwrod 201n0s 0} smaraal Sunjur| 10} [nydjeyg
*(L10T T8 12 equio[eq) sonsst awres ay) Suntodar 8- agessow Je[rwis e Jurreaq smaraalr Jurdnois 1oy [njasn

"(020T 'Te 12 NOYZ :L10T [12 BQUO[E]) SSOU
-9191dwod pue uorsioard y3Iiy s pau1ogiad ST UOTJBULIOJUL JR[IWIS A[[EONUBWAS SUIKIAUOD SMITAI SULIAISN]D

“(810T T8 32 NI “§10T '[® 19 BI[PWININLY 1L [T
“Te 32 BopowInINI)) ‘9107 ‘Te 12 [d[eeA) seinjeay onewaqoid pue sensst pajiodar Surpuayardwos (10 T8 10 NIy

{9T0T Te 39 e[[oYdIUEd ‘9T(Z T8 30 0qI0S I(]) SPAU SI9SN JUAIIJIP SUIAJIIUSPI JOF [NFOSN ST SMATAdI SuIkJIsse[)
(610 2uared pue zeid[e(q ‘§10T '[8 32 NI ¢£ 10T ‘T8 10 Bo[ownint)) syuswarmbar mou ‘sansst Sursows ‘samjeay
dde <39 01 oyyroads speau s1osn pareys ssaidxe Aew dnoiS e foanonnsur st soidoy £q yoeqpeaey Surdnoin

(810 'Te 19 B[@UININL) ¢/ [0 TB 32 BI[QWNINID (T ‘T8 12 UayD) uonsadsur yorqpasy [enuew & 10j puads
s1odoraaap dde jey) awn) Jo 95,6/ 01 dn 2onpa1 p[nood (sysanbarasn £q ©'3-9) A[eorIEWOINEG SMIIAAI SUIAJISSB]D

“(610¢ @uared pue zerdre) N odurs

01 Aoemode ur Jorradns are sanbruypa) TN (610 T8 12 OULIQR[RIS 90T T8 12 0qI0S I 91T T8 12 [QOLIR[[IA
910T ‘T8 12 e[eyorued) asn [eonoeld 103 juaroiyns st soidoy ‘sysonbax 1osn jo sadA) £q smaraar Surkjisse|d)
‘(610 uareq pue zeide <G10¢ [12 Uewznn) 310332 juswdo[aaap aznuoud o) pue ‘suorurdo

J1osn 9zATeue 03 d[oy Aew UONORIIXS 2INJBAJ {(q8TOT T8 19 0BD) douruajurewr dde 10§ [njasn ST sansst Funoenxyg

(610 Auared pue zeid[e(]) uonoenxa 2Injedy 10 saAnisod as[e} Auew 00) S9JeIouad
swy)LIo3[e uonedo[[0d {(q8 10T ‘Te 12 0eD) Aorindoe 2[qe1dodoe y)im sansst s)oenxd sanbruyo) Jurures| auryory

ssou[nyos)

ssou[nyasn

ssau[nyasn

Koenooy

ssounyasn
SSOUQATIRULIOJUT

Kouaroryyg

KoeInooy
SsouNyas)

KoeInooy

SISATeUY Juawnuag

[eAdINY

UOTBULIOJU] PUB OIBdS

Suusny)

UOTBITJISSB[D)

uonoRIXH UOT)BULIOJU]

S)nsoy

UOTIAIID)

sIsA[euy maraoy ddy

sonbruyoay sisATeue maraar dde jo Ajpenb paareorad oy Sunen[ead sarpnys Josn Jo Arewwung gz ajqel

pringer

A's

Empir Software Eng (2022) 27: 43

43 Page 44 of 63

"(020¢
‘Te 19 nr) sfeod ,s1asn paysnes dde ue JuaIxa Jeym 0) puelsSIopUN O} Pue {(G[(OZ WIS PuB NO) SAINJLJ ONBUII]

-qoxd Amuapt 03 s1edofaasp djoy ued oW ISA0 SpUL] IIOY) IO SIUAWNUSS ofroads-armesy jo dew-jeay Surmoys ssounjos)
‘(10T ‘T 12 uewzno) suoturdo I1asn JUBAI[AL 10 ‘(98107
‘[e 30 0BD) sANssI SUISIOWID JNOQe ULIOJUT UBD QW) JOAO d3ueyd A9y} MOy pue SSnosip s1asn so1do) jeym Junuasalg SSQUQATIRULIOJU] uoneziensiy
“(0T0T T8 19 OB, :610T '[8 1 NI :L10T '[B 19 0GI0S L) SpduU
.SIosn SUIpUL)SIOPUN 19119q JOJ [NJasn ST KSAUOD SMITAQI JeY) SINSSI AJLInoas Jo/pue so1do) ‘sysenbai 1osn Surzrewwng SSQUINJIS)
(6107 2uared pue zedeq
$L10T ‘T8 312 09108 1 ‘9107 B 32 0qI0S I(]) peal 03 Asea st so1doy pue ‘sysanbax 1osn peysod Apjuenbaiy Surmoys 9[qey, Anngesn
(0T0T "TB 19 OBL, £ T0T T8 12 0qI0S I ‘9[0T Te 12 0qI0S I(J) SI9AUISUS 2IBMIJOS IO dAISSAIdxa
pue oAnjeWLIOJUI SI 9[qe) Arewwuns e y3noiy) sonsst A)noas Jo sordoy ‘(surodar 3nq <'3-9) sisonbar resn Junsry SSQUQAIIRULIOJU]
“(0c0T B 10
0B, {6107 T8 3 nIT) sanssI AJLNdas 10 s)sanbai 1osn ‘suorurdo 19sn puejsiopun A[aerpawl 03 sdiay 11 <(0z0g T8 10
oe], ¢£10T Te 32 09108 I ‘910T ‘Te 30 0qI0S I1(]) oeqpasj SurzA[eue 10 parmbal owm oY) JO Jey ULy} SIOW SJUSAIJ Kouororyyyg
"(L10T 'Te 12 0gJ0S 1) Aoeandoe Y31y yiim apewr aq ued 3sod s1asn jey) sysenbai pue sordoy Surzuewwng KovInooy uoneZLIBWWNG
*(0Z0T "I 12 SWeYS) SMITAAI 1asn paje[aI-3nq donpoidar 0y sxadojeaap djoy ued s3nq Suro33in sased 159}
Surpuawwiosar seardym ()z0z ‘Te 12 oen) uonnjoad dde siy) oddns Aew Aysnes 0y spaau dde ue sjeo3 Sunse33ns
(6107 T8 12 OULIQR[BIS ‘9 "[® 12 [201re[[IA) Sutuue[d asea[a1 J0j [njasn I s)sanbai 1osn Jo Ajuond Surpuswoossy] ssauNyas)
(8102 T 19 P[oYUIID) WA)SAS A} Y} paIoAe] sjuapuodsar
KoaIns ‘wstueyooauwr 2103s dde [euruo ayy 03 paredwod Ajiqesn 19YSIY SMOYS WIISAS Isuodsal MIIAI dNBWOINY Anpqesn
“(0z0T
‘Te 10 oen) 2anvadsiad s10do[oAdp 9 WOIJ dATBWLIOJUT ST AJsnyes 0) spaou dde ue Jey) s[eos s1osn SUIPUSIIOINY SSQUQATIRULIOJU]
(0Z0T ‘Te 12 sweys) uononpoidal Snq [enuewr Uo 1103J9 SI0dO[oAIP 2AES UeD S3nq SULIAZ3LI) Sased
159) 3unsadsns {(10¢ ‘8 12 PleYudRIn) peopiom siadojaaop dde 1omor sasuodsar Surnmbar smaradr Sunsa3sng Kouaroryy UOTBPUSWIIOIIY
SIREEN UOLIAILID) sIsA[euy marAoy ddy

(ponunuod) gz ajqeL

pringer

A's

Empir Software Eng (2022) 27: 43 Page 45 0f 63 43

et al. 2020); in particular, summaries conveying information about frequently discussed top-
ics, user opinions, user requests and security issues. Facilitating this information in a tabular
form is easy to read and expressive (Di Sorbo et al. 2016; Di Sorbo et al. 2017; Dalpiaz and
Parente 2019). Such summaries are generated with sufficient accuracy to be used in practi-
cal scenarios (Di Sorbo et al. 2017; Tao et al. 2020); in fact, developers reported to save up
to 50% of their time thanks to the analysis (Di Sorbo et al. 2016; Di Sorbo et al. 2017; Liu
et al. 2019; Tao et al. 2020).

Visualization Presenting trends of frequently discussed topics can inform developers about
urgent issues, hot features’, or popular user opinions (Guzman et al. 2014; Gao et al.
2018b). Heat-map illustrating feature-specific sentiment (i.e., user options) help developers
to understand users experience with these features (Gu and Kim 2015); it indicates which
features users praise and which are problematic. Visualizing how user opinions change over
time aids developers in examining users’ reactions e.g., to newly implemented modifica-
tions for these features; and understanding to what extent an app satisfies users’ goals (Liu
et al. 2020).

RQS5: Evaluation Results

— Mining approaches perform well for 5 broad app review analyses: (1)
Classification; (2) Clustering; (3) Searching and Information Retrieval;
(4) Recommendation and (5) Summarization.

— Software engineers generally consider app review analyses useful. The
analyses can ease their SDLC activities; reduce their workload; and sup-
port their decision-making.

— Software engineers find accuracy of most app review analyses promising
for the practical usage; yet the quality of (6) Information Extraction and
(7) Sentiment Analysis seem to be insufficient.

4 Discussion

In this section we highlight and discuss some of the findings from our study, summarize
literature gaps, pointing to directions for future research.

4.1 Mining App Reviews Is a Growing Research Area

Mining app reviews for software engineering is a relatively new research area. The first use
of app reviews for software engineering purposes can be dated back to 2012. Nevertheless,
the analysis of demographics has revealed that the research area increasingly attracts the
attention of scholars. The number of papers published in line with the directions has grown
substantially in the last three years. A recent survey in app store analysis found 45 papers
relevant to app review analysis published up to 2015 (Martin et al. 2017). Our findings
show that the number of published papers in the area has quadrupled by the end of 2020.
The most frequent venues where scholars have published their work concern high-quality
software engineering conferences and journals (see Table 5). These imply there is not only
increasing effort on exploring the research direction, but also suggest contributions of these
efforts are relevant from a software engineering perspective; in fact, empirical evidences

@ Springer

43 Page 46 of 63 Empir Software Eng (2022) 27: 43

(RQ5) demonstrate that software engineers find mining app reviews useful in support of
their SDLC activities; mining approaches can reduce their workload; facilitate knowledge
that would be difficult to obtain manually. As other work (Martin et al. 2017), we also
hypothesize factors leading to the research interest in the field concerns increased popularity
of mobile apps, an easy access to user feedback on a scale not seen before as well as a
general interest in adopting data mining techniques for mining software repository.

4.2 Software Engineering Goals and Use Cases

App reviews analysis has broad applications in software engineering (RQ3). It can be used
to support a variety of activities in requirements, design, testing and maintenance (see Table
6). Researchers however do not always clearly describe the envisioned software engineering
use cases for their techniques.

So far, research in this area has been driven mostly by the opportunity to apply ML tech-
niques on app reviews. Most studies (61%) relate their approaches to potential software
engineering activities, but the remain vague about details of how they envision the tech-
niques to be used in practice. A greater focus on software engineering goals and use cases
would increase the relevance and impacts of app review analysis techniques. This systematic
literature review includes a complete inventory of already envisioned software engineering
use cases for the various app review analysis technique (RQ3). This inventory can provide
the basis for a more detailed investigation of software engineering goals and use cases for
app review analysis tools. This investigation will contribute to designing future app review
analysis tools that best serves the needs of software engineers.

4.3 Need Of Reference Model For Review Mining Tools

Reference model of stakeholders goals, use cases and system architectures for review
mining tools would help structuring research efforts in this area, and communicate how
fitting review mining techniques together help to address real stakeholders’ needs. In the
future, scholars can elaborate such model by generalizing existing review mining solu-
tions; explaining how different components help to realize intended use cases and satisfy
stakeholders’ goals. The model would also help researchers to identify and reuse common
components in a typical architecture of review mining tools as well as explain the novelty
and contribution of their work within that framework.

4.4 Small Size Of Evaluation Datasets

A great deal of effort has been made to evaluate the effectiveness of data mining techniques
(RQ4). Primary studies, however, used evaluation datasets of small size (on average 2,800
reviews). This is a tiny portion of user-submitted feedback in app stores. Popular mobile
apps (like WhatsApp or Instagram) can receive more than 5,000 reviews per day, and more
than one million reviews in a year (App Annie 2020). This is a significant threat to the
validity of their results when trying to generalize them e.g., (Ciurumelea et al. 2017; Deo-
cadez et al. 2017a; Dabrowski et al. 2019). The problem is attributed to the substantial
effort of manual review annotation; labeling 900 reviews can take up to 12.5 hours (Guzman
and Maalej 2014). As none of the surveyed studies tried to tackle the problem, it opens an
avenue for future research. Researchers may experiment with semi-automated data labeling
techniques currently exploited to minimize effort for preparing training datasets (Deo-
cadez et al. 2017b; Dhinakaran et al. 2018; Miller et al. 2020). Providing the problem was

@ Springer

Empir Software Eng (2022) 27: 43 Page 47 of 63 43

handled, scholars should still be mindful of a sampling bias when curating dataset (Annis
2005). Techniques to ameliorate the latter problem, however, has been well-studied in a
recent study (Martin et al. 2015).

4.5 Replication Packages

Most papers did not make available their review mining tools and evaluation datasets (see
Table 16 and Table 17). This hinders the replicability of these works as well as new com-
parative studies. Our survey contains a single replication study and that study reported the
challenge in validating results of the original work due the absence of annotated dataset and
insufficiently documented evaluation procedure (Shah et al. 2019a). Future studies should
provide replication packages, including evaluation datasets, procedures, and approaches so
that researchers will be able to validate existing works and confirm reported findings. It will
also help in benchmarking approaches and provide a baseline for evaluating new approaches
aiming at improving performance of review mining techniques.

4.6 Impacts On Software Engineering Practice

It is not yet clear whether app review analysis techniques are already good enough to be
useful in practice (RQ5). Identifying what performance the approaches should have to be
useful for software engineers is an important open question (Berry 2017; 2018). Essen-
tially, an approach facilitating review analysis should synthesize reviews so that the effort
for further manual inspection of the outcomes of that analysis would be negligible or at
least manageable. Clearly, the effort would depend on a scenario an approach aims to real-
ize. In addition to evaluating review analysis tools in terms of ML performance metrics (e.g
precision and recall), it will become increasingly important to evaluate them in terms of
software engineering concerns: Does it save time? Does it improve the quality of, for exam-
ple, the requirements elicitation and prioritisation process? etc. Evaluating techniques with
respect to software engineering concerns is more difficult but necessary to ensure research
efforts are aligned with real stakeholders’ goals. Such evaluation will involve a combina-
tion of quantitative and quantitative studies aimed at reducing our current uncertainty about
potential impacts of review mining techniques on software engineering activities.

4.7 Practitioners’ Requirements For App Review Mining Tools

Numerous tools have been developed in the context of app review analysis research;
they satisfy requirements coming mainly from scholars rather than practitioners. We have
recorded no research studying what features the tools should facilitate nor what goals they
should satisfy. The current research is data-driven rather than goal-driven. The studies apply
different types of app review analyses and techniques to mine information from app reviews
without explicitly examining the practitioners’ perspective. It is not clear to what extent the
tools satisfy the real practitioners’ goals. Though existing user studies provides evidences
software practitioners find certain types of analyses valuable e.g., Classification (Palomba
et al. 2017), yet more systematic research is necessary in such directions to understand
practitioners’ needs. Future research should plan to actively involve practitioners, for exam-
ple via interview sessions or the analysis of their development practices, to understand
why the tools are needed; what SE goal they want to satisfy with the tools; what features
the tools should facilitate; and how the tool would be used in the organizational settings.
Such knowledge will help to understand the actual use cases scenarios of the tools, and to

@ Springer

43 Page 48 of 63 Empir Software Eng (2022) 27: 43

identify whether there is misalignment between what state-of-the-art tools offer and what
practitioners actually need.

4.8 Verifying the Industrial Needs for App Review Analysis

Most studies motivated their mining approaches to reduce the manual effort for app review
analysis. Such rationale seems to be reasonable in the context of popular apps (e.g., What-
sApp or Facebook Messenger) that are frequently commented and receive hundreds or
thousands reviews per day. However, an average app receives 22 reviews per day (Pagano
and Maalej 2013). It seems therefore legitimate to study the potential impact of the app
review analysis research on the app store industry; and to what extent the mining tools
would be useful in the industrial settings. Such a study could address this problem from
multiple perspectives e.g., what small, medium and large app development organization are
interested in app review mining tools? who in the organization would use the tools? is the
manual app review analysis ‘the real pain’ of the practitioners? if so, how ‘the pain’ mani-
fests itself? are any tasks obstructed? is the problem generating additional costs? Answering
the questions could help to understand who are the actual beneficiaries of the app review
analysis research; and what is the size of that market. Not only it would help to scope and
justify the future research directions, but it would also provide insights to commercializing
this research.

4.9 Pay Attention to Efficiency and Scalability of Mining Tools

Primary studies are mostly focused on evaluating effectiveness and perceived quality of
their mining tools. We however recorded no study focused on assessing the efficiency and
scalability of their tools; studying the efficiency informs how much time the tools take
to produce their outcomes; whereas scalability informs how the time changes when the
input of the tools increase. Efficiency and scalability are fundamental qualities of analytics
tools (Talia 2019); app review mining tools are no exception. The number of reviews that
an app receives can vary from a few to more than thousands. Existing approaches e.g.,
for feature extraction (Guzman and Maalej 2014) or app review classification (Maalej and
Nabil 2015) rely on NLP and ML techniques that may be challenging to scale-up (Analytics
India Mag 2020). Future studies, therefore, should take the efficiency and scalability into
consideration when developing and evaluating their mining tools to demonstrate the tools
can be used in the practical settings.

4.10 The Problem of Training ML Techniques

Machine learning is the most frequent type of techniques used for app review analysis
(RQ2). Most of these techniques, however, are supervised one and requires a training
dataset consisting of manually annotated reviews. Preparing manually annotated dataset is
time-consuming and often error-prone (Guzman and Maalej 2014). More importantly, such
annotated dataset might be domain- and time-specific; an annotated reviews of one app
might not be re-usable for training a technique for the feedback of the other app; further, the
dataset may be prone to data drift - a phenomenon in which the characteristics of app reviews
change over the time. In such a case, ML technique must be periodically trained with up-to-
date training dataset to maintain their predictive abilities (Explorium 2020). Recent studies
thus experimented with active learning (Dhinakaran et al. 2018) and semi-supervised tech-
niques (Deocadez et al. 2017b) to reduce the cost of annotating a large amount of data.

@ Springer

Empir Software Eng (2022) 27: 43 Page 49 of 63 43

More research is however needed to understand how many reviews should be annotated for
preparing a training dataset when the techniques is used in the industrial settings; how often
such dataset needs to prepared; and whether or not the practitioners would accept the cost
of preparing this dataset.

5 Threats to Validity

One of the main threats to the validity of this systematic literature review is incomplete-
ness. The risk of this threat highly depends on the selected list of keywords forming search
queries. To decrease the risk of an incomplete keyword list, we have used an iterative
approach to keyword-list construction. We constructed two queries: generic and one spe-
cific. The generic query was formed using keywords appearing in the index of terms in
sample studies analysing app reviews for SE. Specific query was formed based on a set of
keywords representing concepts of our research objective. As in any other literature survey,
we are also prone to a publication bias. To mitigate this threat, we complemented a digi-
tal library search with other strategies. We conducted an issue-by-issue search of top-level
conferences and journals as well as performed a backward and forward snowballing.

To ensure the quality and reliability of our study, we defined a systematic procedure
for conducting our survey, including research questions to answer, searching strategies and
selection criteria for determining primary studies of interest. We conducted a pilot study to
assess the technical issues such as the completeness of the data form and usability issues
such as the clarity of procedure instructions. The protocol was reviewed by the panel of
researchers in addition to the authors of the study. It was then revised based on their critical
feedback. Consequently, the selection of primary studies followed a strict protocol in accor-
dance to well-founded guidelines (Kitchenham 2004; Kitchenham et al. 2004; Ralph et al.
2020).

Another threat to validity we would like to highlight is our subjectivity in screening,
data extraction and classification of the studied papers. To mitigate the threat, each step
was performed by one coder, who was the first author of this paper. Then, the step was
cross-checked by a second coder. Each step was validated on a randomly selected sample of
10% of the selected papers. The percentage inter-coder agreement reached for all the phases
was equal or higher than 80%, indicating high agreement between the authors (Ide and
Pustejovsky 2017). In addition, the intra-rater agreement was performed. The first author
re-coded once again a randomly selected sample of 20% of studied papers. Then an external
evaluator, who has no relationship with the research, verified the agreement between the
first and the second rounds. The percentage intra-coder agreement was higher than 90%,
indicating near complete agreement (Ide and Pustejovsky 2017).

A similar threat concerns whether our taxonomies are reliable enough for analysing and
classifying extracted data. To mitigate this threat, we used an iterative content analysis
method to continuously develop each taxonomy. New concepts which emerged when study-
ing the papers were introduced into a taxonomy and changes were made respectively. These
taxonomies were discussed between all the authors and agreed upon their final form.

6 Related Work

This review is not the first effort synthesizing knowledge from the literature analysing app
reviews for SE (Martin et al. 2017; Genc-Nayebi and Abran 2017; Tavakoli et al. 2018; Noei

@ Springer

43 Page 50 of 63 Empir Software Eng (2022) 27: 43

and Lyons 2019). Our SLR, however, differs substantially from previous studies in scope of
the literature surveyed and depth of our analysis. Table 23 shows the differences between
our study and previous works in accordance with dimensions we considered for the compar-
ison. We grouped the dimensions into information related to study characteristics and topics
surveyed in our study. The characteristics concern study type (i.e., systematic literature
review or survey), time period covered and number of papers surveyed. The topics concern:
Paper Demographics, App Reviews Analyses (RQ1), Mining Techniques (RQ2), Supporting
Software Engineering (RQ3), Empirical Evaluation (RQ4) and Empirical Results (RQ5).

Martin et al. (2017) surveyed literature with the aim to demonstrate a newly emerging
research area i.e., app store analysis for software engineering. The scope of their survey is
much broader than of our study, as it covers literature analyzing various types of app store
data (e.g., AP, rank of downloads, or price). Our work has much narrower scope, focussing
only on app review analysis, but studies the paper in greater depths in order to answer our
five research questions.

Though the related survey also addresses (RQ1), our study is more up-to-date and larger
in scale, covering 182 papers. More importantly, most dimensions of our SLR i.e., RQ2-
RQ5, are missing in this other study.

Two other studies addressed our RQ2, but partially, as they are narrower in scope (Genc-
Nayebi and Abran 2017; Tavakoli et al. 2018). Tavakoli et al. (2018) surveyed the literature
in the context of techniques and tools for mining app reviews. Similarly, Genc-Nayebi and
Abran (2017) consolidated literature to synthesize information on techniques for opinion
mining. Our SLR addresses the dimension more broadly, rather than in context of techniques
for a specific review analysis or tool-supported approaches. We have made an effort to con-
solidate general knowledge on techniques the literature employs for 9 broad types of review
analyses. We also provided mapping between different review analyses and techniques
facilitating their realization.

Noei and Lyons (2019) summarized 21 papers analysing app reviews from Google Play.
The authors provided an overview of each paper, briefly explaining the applications, and
mention their limitations. The surveyed papers were selected subjectively, rather than fol-
lowing a systematic searching procedure. In contrast, our study is a SLR rather than a
summary. Following a systematic procedure, we selected 182 studies that we carefully read
and then synthesized to answer five research questions. The related work marginally covers
information for RQ1 and RQ2.

Table 23 Main differences between our study and previous surveys

Dimensions Our Study Martin (2017) Genc-Nayebi (2017) Tavakoli (2018) Noei (2019)
Study Type SLR Survey SLR SLR Survey
Time Period ’10-°20 ’00-’15 112715 11217 122’19
No. Papers 182 45 24 34 21

Paper Demographics v v v v

App Review Analyses (RQ1) v/ v v

Mining Techniques (RQ2) v/ v v v
Supporting SE (RQ3) v

Empirical Evaluation (RQ4) v/
Empirical Results (RQ5) v

@ Springer

Empir Software Eng (2022) 27: 43 Page 51 0f 63 43

In summary, previous studies do not cover our research questions related to software
engineering activities (RQ3) and empirical evaluations (RQ4 and RQ5). They partly cover
our research questions RQ1 and RQ2 but on a smaller set of papers and in less details.

7 Conclusion

In this paper, we presented a systematic literature review of the research on analysing app
reviews for software engineering. Through systematic search, we identified 182 relevant
studies that we thoroughly examined to answer our research questions. The findings have
revealed a growing interest in the research area. Research on analysing app reviews are
published in the main software engineering conferences and journals e.g., ICSE, TSE or
EMSE and the number of publications has tripled in the last four years. The research in this
area will likely continue to gain importance as a consequence of increased interest in mobile
app development.

This systematic literature review structures and organizes the knowledge on the different
types of app review analyses as well as data mining techniques used for their realization.
With that knowledge, researchers and practitioners can understand what useful information
can be found in app reviews, and how app review analysis can be facilitated at abstract and
technical levels. More importantly, the literature review provides a new light on why min-
ing app reviews can be useful; the findings identifies 14 software engineering activities that
have been the target of previous research on app review analysis. Important future research
for app review analysis will involve developing a deeper understanding of the stakehold-
ers’ goals and context for app review analysis tools in order to increase the applicability,
relevance and value of these tools.

The findings have revealed that software engineers find mining approaches useful and
with promising performance to generate different app review analyses. It however remains
unclear to what extent these approaches are already good enough to be used in practice.

It will become increasingly important to evaluate them in terms of software engineering
specific concerns: Does it improve the quality of, for example, the requirements elicita-
tion and prioritization process? We also recommend empirical evaluation will continue to
improve in scale and reproducibility. Research in this area is currently inconsistent quality
in terms of evaluation method and ability for the research to be reproduced. Future studies
should share evaluation datasets and mining tools, allowing their experiments to be repli-
cated. They should also pay more attention to the scalability and the efficiency of their
mining approaches.

In conclusion, this study helps to communicate knowledge on analyzing app reviews
for software engineering purposes. We hope our effort will inspire scholars to advance the
research area and assist them in positioning their new works.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer

http://creativecommons.org/licenses/by/4.0/

43 Page 52 0of 63 Empir Software Eng (2022) 27: 43

References

Abad ZSH, Sims SDV, Cheema A, Nasir MB, Harisinghani P (2017) Learn more, pay less! lessons learned
from applying the wizard-of-oz technique for exploring mobile app requirements. In: 2017 IEEE 25th
international requirements engineering conference workshops (REW). pp 132-138

Al-Hawari A (2020) Najadat H, Shatnawi R, Classification of application reviews into software maintenance
tasks using data mining techniques. Softw Qual J. https://doi.org/10.1007/s11219-020-09529-8

Al Kilani N, Tailakh R, Hanani A (2019) Automatic classification of apps reviews for requirement engineer-
ing: Exploring the customers need from healthcare applications. In: 2019 sixth international conference
on social networks analysis, management and security (SNAMS). pp 541-548

Ali M, Joorabchi ME, Mesbah A (2017) Same app, different app stores: A comparative study. In: Proceedings
of the 4th international conference on mobile software engineering and systems, MOBILESoft *17. IEEE
Press, pp 79-90

Alqgahtani F, Orji R (2019) Usability issues in mental health applications. In: Adjunct publication of the 27th
conference on user modeling, adaptation and personalization, USA, UMAP’19 Adjunct. ACM, New
York, pp 343-348

AlSubaihin A, Sarro F, Black S, Capra L, Harman M (2019) App store effects on software engineering
practices. IEEE Trans Softw Eng :1-1

Analytics India Mag (2020) https://analyticsindiamag.com/challenges-of-implementing-natural-language-
processing/, Accessed: 2021-06-01

Annis DH (2005) Probability and statistics: The science of uncertainty, Michael J. Evans and Jeffrey S.
Rosenthal. Am Stat 59:276-276

App Annie (2020) https://www.appannie.com/, Accessed: 2020-07-01

App Store (2021) Ratings, Reviews, and Responses. https://developer.apple.com/app-store/
ratings-and-reviews/, Accessed: 2021-06-01

Bailey K, Nagappan M, Dig D (2019) Examining user-developer feedback loops in the ios app store. In: 52nd
Hawaii international conference on system sciences, HICSS 2019, Grand Wailea, Maui, Hawaii, USA,
January 8-11, 2019, pp 1-10

Bakiu E, Guzman E (2017) Which feature is unusable? detecting usability and user experience issues from
user reviews. In: 2017 IEEE 25th international requirements engineering conference workshops (REW).
pp 182-187

Bauer M (2007) Content analysis. an introduction to its methodology — by klaus krippendorff from
words to numbers. narrative, data and social science — by roberto franzosi, vol 58, pp 329-331.
https://doi.org/10.1111/1.1468-4446.2007.00153_10.x

Begel A, Zimmermann T (2014) Analyze this! 145 questions for data scientists in software engineering. In:
36th international conference on software engineering. pp 12-13

Berry D (2018) Keynote: Evaluation of NLP tools for hairy RE tasks. In: Joint proceedings of REFSQ-2018
workshops, doctoral symposium, live studies track, and poster track co-located with the 23rd interna-
tional conference on requirements engineering: foundation for software quality (REFSQ 2018), Utrecht,
The Netherlands, March 19, 2018

Berry DM (2017) Evaluation of tools for hairy requirements and software engineering tasks. In: IEEE 25th
international requirements engineering conference workshops, RE 2017 Workshops, Lisbon, Portugal,
September, 4-8, 2017, pp 284-291

Bishop CM (2006) Pattern recognition and machine learning (information science and statistics). Springer,
Berlin

Bourque P, Dupuis R, Abran A, Moore J, Tripp L (1999) The guide to the software engineering body of
knowledge. IEEE Softw 16:35-44

Bujang M, Baharum N (2017) Guidelines of the minimum sample size requirements for kappa agreement
test. Epidemiol Biostat Public Health 14

Burge JE, Carroll JM, McCall R, Mistrk I (2008) Rationale-based software engineering, 1st edn. Springer
Publishing Company, Incorporated, Berlin

Buse RPL, Zimmermann T (2012) Information needs for software development analytics. In: 34th interna-
tional conference on software engineering. pp 987-996

Cannataro M, Comito C (2003) A data mining ontology for grid programming. In: Proc. Ist int. workshop
on semantics in peer-to-peer and grid computing, in conjunction with WWW2003. pp 113-134

Carrefio LVG, Winbladh K (2013) Analysis of user comments: An approach for software requirements evo-
lution. In: Proceedings of the 2013 international conference on software engineering, ICSE *13. IEEE
Press, pp 582-591

@ Springer

https://doi.org/10.1007/s11219-020-09529-8
https://analyticsindiamag.com/challenges-of-implementing-natural-language-processing/
https://analyticsindiamag.com/challenges-of-implementing-natural-language-processing/
https://www.appannie.com/
https://developer.apple.com/app-store/ratings-and-reviews/
https://developer.apple.com/app-store/ratings-and-reviews/
https://doi.org/10.1111/j.1468-4446.2007.00153_10.x

Empir Software Eng (2022) 27: 43 Page 53 of 63 43

CenL, SiL, Li N, Jin H (2014) User comment analysis for android apps and cspi detection with comment
expansion. In: Proceeding of the 1st international workshop on privacy-preserving IR (PIR). pp 25-30

Chandy R, Gu H (2012) Identifying spam in the ios app store. In: Proceedings of the 2nd Joint
WICOW/airweb Workshop on Web Quality. ACM, pp 56-59

Chen N, Lin J, Hoi SCH, Xiao X, Zhang B (2014) Ar-miner: Mining informative reviews for developers from
mobile app marketplace. In: Proceedings of the 36th International Conference on Software Engineering,
ICSE 2014. ACM, New York, pp 767-778

Chen R, Wang Q, Xu W (2019) Mining user requirements to facilitate mobile app quality upgrades with big
data. Electron Commer Res Appl 38:100889

Ciurumelea A, Schaufelbiihl A, Panichella S, Gall HC (2017) Analyzing reviews and code of mobile apps for
better release planning. In: 2017 IEEE 24th International Conference on Software Analysis, Evolution
and Reengineering (SANER). pp 91-102

Ciurumelea A, Panichella S, Gall HC (2018) Poster: Automated user reviews analyser. In: 2018 IEEE/ACM
40th international conference on software engineering: companion (ICSE-Companion). pp 317-318

Clement J (2020) Number of apps available in leading app stores as of 1st quarter 2020. https://www.statista.
com/statistics/276623/number- of-apps-available-in-leading-app-stores/, Accessed: 2020-07-01

Dalpiaz F, Parente M (2019) RE-SWOT: from user feedback to requirements via competitor analysis. In:
Requirements engineering: foundation for software quality - 25th international working conference,
REFSQ 2019, Essen, Germany, March 18-21, 2019, Proceedings. pp 55-70

Deocadez R, Harrison R, Rodriguez D (2017) Automatically classifying requirements from app stores: A
preliminary study. In: 2017 IEEE 25th international requirements engineering conference workshops
(REW). pp 367-371

Deocadez R, Harrison R, Rodriguez D (2017) Preliminary study on applying semi-supervised learning to
app store analysis. In: Proceedings of the 21st international conference on evaluation and assessment in
software engineering, EASE’17. ACM, New York, pp 320-323

Deshpande G, Rokne J (2018) User feedback from tweets vs app store reviews: An exploratory study
of frequency, timing and content. In: 2018 5th international workshop on artificial intelligence for
requirements engineering (AIRE). pp 15-21

Dhinakaran VT, Pulle R, Ajmeri N, Murukannaiah PK (2018) App review analysis via active learn-
ing: Reducing supervision effort without compromising classification accuracy. In: 2018 IEEE 26th
international requirements engineering conference (RE). pp 170-181

Di Sorbo A, Panichella S, Alexandru CV, Shimagaki J, Visaggio CA, Canfora G, Gall HC (2016) What would
users change in my app? summarizing app reviews for recommending software changes. In: Proceedings
of the 2016 24th ACM SIGSOFT international symposium on foundations of software engineering, FSE
2016. ACM, New York, pp 499-510

Di Sorbo A, Panichella S, Alexandru CV, Visaggio CA, Canfora G (2017) Surf: Summarizer of user reviews
feedback. In: Proceedings of the 39th international conference on software engineering companion,
ICSE-C ’17. IEEE Press, pp 55-58

Di Sorbo A, Grano G, Aaron Visaggio C, Panichella S (2020) Investigating the criticality of user-reported
issues through their relations with app rating. J Softw Evol Process 33(3):e2316. https://doi.org/10.1002/
smr.2316. https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2316, 2316 smr.2316

Dabrowski J (2021) Supplementary material for system literature review: analysing app reviews for software
engineering. https://github.com/jsdabrowski/SLR-SE/

Dabrowski J, Letier E, Perini A, Susi A (2019) Finding and analyzing app reviews related to specific features:
A research preview. In: Requirements engineering: foundation for software quality - 25th international
working conference, REFSQ 2019, Essen, Germany, March 18-21, 2019, Proceedings. pp 183-189

Dabrowski J, Letier E, Perini A, Susi A (2020) Mining user opinions to support requirement engi-
neering: An empirical study. In: Dustdar S, Yu E, Salinesi C, Rieu D, Pant V (eds) Advanced
information systems engineering - 32nd international conference, CAiSE 2020, Grenoble, France,
June 8-12, 2020, Proceedings, Springer, Lecture Notes in Computer Science, vol 12127. pp 401-416.
https://doi.org/10.1007/978-3-030-49435-3_25

Durelli VHS, Durelli RS, Endo AT, Cirilo E, Luiz W, Rocha L (2018) Please please me: Does the presence of
test cases influence mobile app users’ satisfaction. In: Proceedings of the XXXII Brazilian symposium
on software engineering, SBES *18. ACM, New York, pp 132-141

Erfani M, Mesbah A, Kruchten P (2013) Real challenges in mobile app development. In: 2013 ACM/IEEE
international symposium on empirical software engineering and measurement (ESEM). pp 15-24

Explorium (2020) Understanding and handling data and concept drift. https://www.explorium.ai/blog/
understanding-and-handling-data-and-concept-drift/, Accessed: 2021-06-01

Franzmann D, Eichner A, Holten R (2020) How mobile app design overhauls can be disastrous in terms of
user perception: The case of snapchat. Trans Soc Comput 3(4). https://doi.org/10.1145/3409585

@ Springer

https://www.statista.com/statistics/276623/number-of-apps-available-in- leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in- leading-app-stores/
https://doi.org/10.1002/smr.2316
https://doi.org/10.1002/smr.2316
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2316
https://github.com/jsdabrowski/SLR-SE/
https://doi.org/10.1007/978-3-030-49435-3_25
https://www.explorium.ai/blog/understanding-and-handling-data-and-conce pt-drift/
https://www.explorium.ai/blog/understanding-and-handling-data-and-conce pt-drift/
https://doi.org/10.1145/3409585

43 Page 54 of 63 Empir Software Eng (2022) 27: 43

Fu B, Lin J, Li L, Faloutsos C, Hong J, Sadeh N (2013) Why people hate your app: Making sense of user
feedback in a mobile app store. In: Proceedings of the 19th ACM SIGKDD international conference on
knowledge discovery and data mining, KDD *13. ACM, New York, pp 1276-1284

Gao C, Wang B, He P, Zhu J, Zhou Y, Lyu MR (2015) Paid: prioritizing app issues for developers by
tracking user reviews over versions. In: 2015 IEEE 26th international symposium on software reliability
engineering (ISSRE). pp 35-45

Gao C, Xu H, Hu J, Zhou Y (2015) Ar-tracker: Track the dynamics of mobile apps via user review mining.
In: 2015 IEEE symposium on service-oriented system engineering, SOSE ’15. pp 284-290

Gao C, Zeng J, Lo D, Lin CY, Lyu MR, King I (2018a) Infar: Insight extraction from app reviews. In:
Proceedings of the 2018 26th ACM joint meeting on european software engineering conference and
symposium on the foundations of software engineering, ESEC/FSE 2018. ACM, New York, pp 904-907

Gao C, Zeng J, Lyu MR, King I (2018b) Online app review analysis for identifying emerging issues. In:
Proceedings of the 40th international conference on software engineering, ICSE *18. ACM, New York,
pp 48-58

Gao C, Zeng J, Xia X, Lo D, Lyu MR, King I (2019) Automating app review response generation. In: 2019
34th IEEE/ACM international conference on automated software engineering (ASE). pp 163-175

Gao C, Zheng W, Deng Y, Lo D, Zeng J, Lyu MR, King I (2019) Emerging app issue identification from
user feedback: Experience on wechat. In: Proceedings of the 41st international conference on software
engineering: software engineering in practice, ICSE-SEIP ’19. IEEE Press, pp 279-288

Gao S, Liu L, Liu Y, Liu H, Wang Y (2020) Updating the goal model with user reviews for the evolution of
an app. J Softw Evol Process 32(8):¢2257. https://doi.org/10.1002/smr.2257. https://onlinelibrary.wiley.
com/doi/abs/10.1002/smr.2257, €2257 JSME-19-0105.R2

Genc-Nayebi N, Abran A (2017) A systematic literature review: Opinion mining studies from mobile app
store user reviews. J Syst Softw 125:207-219

Gomez M, Rouvoy R, Monperrus M, Seinturier L (2015) A recommender system of buggy app checkers
for app store moderators. In: 2nd ACM international conference on mobile software engineering and
systems. IEEE

Goul M, Marjanovic O, Baxley S, Vizecky K (2012) Managing the enterprise business intelligence app store:
Sentiment analysis supported requirements engineering. In: 2012 45th Hawaii international conference
on system sciences. pp 4168-4177

Graham M, Milanowski AT, Miller J (2012) Measuring and promoting inter-rater agreement of teacher and
principal performance ratings

Grano G, Di Sorbo A, Mercaldo F, Visaggio CA, Canfora G, Panichella S (2017) Android apps and user
feedback: A dataset for software evolution and quality improvement. In: Proceedings of the 2nd ACM
SIGSOFT international workshop on app market analytics, WAMA 2017. ACM, New York, pp 8-11

Grano G, Ciurumelea A, Panichella S, Palomba F, Gall HC (2018) Exploring the integration of user feedback
in automated testing of android applications. In: 2018 IEEE 25th international conference on software
analysis, evolution and reengineering (SANER). pp 72-83

Greenheld G, Savarimuthu BTR, Licorish SA (2018) Automating developers’ responses to app reviews. In:
2018 25th Australasian software engineering conference (ASWEC). pp 66-70

Groen EC, Kopczynska S, Hauer MP, Krafft TD, Doerr J (2017) Users — the hidden software product
quality experts?: A study on how app users report quality aspects in online reviews. In: 2017 IEEE 25th
international requirements engineering conference (RE). pp 80-89

Gu X, Kim S (2015) "What parts of your apps are loved by users?” (T). In: 30th IEEE/ACM international
conference on automated software engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015.
pp 760-770

Gunaratnam I, Wickramarachchi D (2020) Computational model for rating mobile applications based on
feature extraction. In: 2020 2nd international conference on advancements in computing (ICAC), vol 1,
pp 180-185. https://doi.org/10.1109/ICACS51239.2020.9357270

Guo H, Singh MP (2020) Caspar: extracting and synthesizing user stories of problems from app reviews. In:
2020 IEEE/ACM 42nd international conference on software engineering (ICSE). pp 628-640

Guzman E, Maalej W (2014) How do users like this feature? a fine grained sentiment analysis of app reviews.
In: 2014 IEEE 22nd international requirements engineering conference (RE). pp 153-162

Guzman E, Paredes Rojas A (2019) Gender and user feedback: An exploratory study. In: 2019 IEEE 27th
international requirements engineering conference (RE). pp 381-385

Guzman E, Bhuvanagiri P, Bruegge B (2014) Fave: Visualizing user feedback for software evolution. In:
2014 Second IEEE working conference on software visualization. pp 167-171

Guzman E, Aly O, Bruegge B (2015) Retrieving diverse opinions from app reviews. In: 2015 ACM/IEEE
international symposium on empirical software engineering and measurement (ESEM). pp 1-10

@ Springer

https://doi.org/10.1002/smr.2257
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2257
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2257
https://doi.org/10.1109/ICAC51239.2020.9357270

Empir Software Eng (2022) 27: 43 Page 55 0f 63 43

Guzman E, El-Halaby M, Bruegge B (2015) Ensemble methods for app review classification: An approach
for software evolution. In: Proceedings of the 30th IEEE/ACM international conference on automated
software engineering, ASE ’15. IEEE Press, pp 771-776

Guzman E, Ibrahim M, Glinz M (2017) A little bird told me: Mining tweets for requirements and soft-
ware evolution. In: Moreira A, Araujo J, Hayes J, Paech B (eds) 25th IEEE international requirements
engineering conference, RE 2017, Lisbon, Portugal, September 4-8, 2017, IEEE Computer Society, pp
11-20. https://doi.org/10.1109/RE.2017.88

Guzman E, Oliveira L, Steiner Y, Wagner LC, Glinz M (2018) User feedback in the app store: A cross-
cultural study. In: 2018 IEEE/ACM 40th international conference on software engineering: software
engineering in society (ICSE-SEIS). pp 13-22

Ha E, Wagner D (2013) Do android users write about electric sheep? examining consumer reviews in google
play. In: Consumer communications and networking conference (CCNC), 2013 IEEE. pp 149-157

Hadi MA, Fard FH (2020) Aobtm: Adaptive online biterm topic modeling for version sensitive short-texts
analysis. In: 2020 IEEE international conference on software maintenance and evolution (ICSME). pp
593-604. https://doi.org/10.1109/ICSME46990.2020.00062

Hallgren K (2012) Computing inter-rater reliability for observational data: An overview and tutorial. Tutor
Quant Methods Psychol 8:23-34

Hassan S, Bezemer C, Hassan AE (2018) Studying bad updates of top free-to-download apps in the google
play store. IEEE Trans Softw Eng :1-1

Hassan S, Tantithamthavorn C, Bezemer C, Hassan AE (2018) Studying the dialogue between users and
developers of free apps in the google play store. Empir Softw Eng 23(3):1275-1312

Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (2019) Cochrane handbook for
systematic reviews of interventions, 2nd edn. Wiley, Chichester

Hoon L, Vasa R, Schneider JG, Mouzakis K (2012) A preliminary analysis of vocabulary in mobile app
user reviews. In: Proceedings of the 24th Australian computer-human interaction conference. ACM, pp
245-248

Hoon L, Vasa R, Martino GY, Schneider JG, Mouzakis K (2013) Awesome! conveying satisfaction on the
app store. In: Proceedings of the 25th Australian computer-human interaction conference: augmentation,
application, innovation, collaboration, OzCHI *13. ACM, New York, pp 229-232

Hoon L, Rodriguez-Garcia M, Vasa R, Valencia-Garcia R, Schneider JG (2016) App reviews: Breaking
the user and developer language barrier. In: Trends and applications in software engineering, vol 405.
Springer International Publishing, pp 223-233

Hu H, Bezemer C, Hassan AE (2018) Studying the consistency of star ratings and the complaints in 1 &
2-star user reviews for top free cross-platform android and ios apps. Empir Softw Eng 23(6):3442-3475

Hu H, Wang S, Bezemer C, Hassan AE (2019) Studying the consistency of star ratings and reviews of popular
free hybrid android and ios apps. Empir Softw Eng 24(1):7-32

Huebner J, Frey RM, Ammendola C, Fleisch E, Ilic A (2018) What people like in mobile finance apps: An
analysis of user reviews. In: Proceedings of the 17th international conference on mobile and ubiquitous
multimedia, MUM 2018, Cairo, Egypt, November 25-28, 2018, pp 293-304

Tacob C, Harrison R (2013) Retrieving and analyzing mobile apps feature requests from online reviews. In:
Proceedings of the 10th working conference on mining software repositories, IEEE Press. pp 41-44

Tacob C, Harrison R, Faily S (2013a) Online reviews as first class artifacts in mobile app development.
In: Proceedings of the 5th international conference on mobile computing, applications, and services.
MOobiCASE °13

Tacob C, Veerappa V, Harrison R (2013b) What are you complaining about?: A study of online reviews
of mobile applications. In: Proceedings of the 27th international BCS human computer interaction
conference. British Computer Society, pp 29:1-29:6

Tacob C, Faily S, Harrison R (2016) Maram: Tool support for mobile app review management. In: Pro-
ceedings of the 8th EAI international conference on mobile computing, applications and services,
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering),
MobiCASE’16. pp 42-50

Ide N, Pustejovsky J (eds) (2017) Handbook of linguistic annotation. Springer Netherlands, Dordrecht

IEEE (1990) IEEE standard glossary of software engineering terminology

ISO/IEC 25010 (2011) ISO/IEC 25010:2011, systems and software engineering — systems and software
quality requirements and evaluation (SQuaRE) — system and software quality models

Jha N, Mahmoud A (2017a) MARC: A mobile application review classifier. In: Joint proceedings of REFSQ-
2017 workshops, doctoral symposium, research method track, and poster track co-located with the 22nd
international conference on requirements engineering: foundation for software quality (REFSQ 2017),
Essen, Germany, February 27, 2017

@ Springer

https://doi.org/10.1109/RE.2017.88
https://doi.org/10.1109/ICSME46990.2020.00062

43 Page 56 of 63 Empir Software Eng (2022) 27: 43

Jha N, Mahmoud A (2017b) Mining user requirements from application store reviews using frame semantics.
In: Requirements engineering: foundation for software quality - 23rd international working conference,
REFSQ 2017, Essen, Germany, February 27 - March 2, 2017, Proceedings. pp 273-287

Jha N, Mahmoud A (2018) Using frame semantics for classifying and summarizing application store reviews.
Empir Softw Eng 23(6):3734-3767

Jha N, Mahmoud A (2019) Mining non-functional requirements from app store reviews. Empir Softw Eng
24(6):3659-3695

Johann T, Stanik C, B AMA, Maalej W (2017) Safe: A simple approach for feature extraction from app
descriptions and app reviews. In: 2017 IEEE 25th international requirements engineering conference
(RE). pp 21-30

Jurafsky D, Martin JH (2009) Speech and language processing, 2nd edn. Prentice-Hall, Inc., Hoboken

Kalaichelavan K, Malik H, Husnu N, Sreenath S (2020) What do people complain about
drone apps? a large-scale empirical study of google play store reviews. Procedia Comput
Sci 170:547-554. https://doi.org/10.1016/j.procs.2020.03.124. https://www.sciencedirect.com/science/
article/pii/S1877050920305627, the 11th International Conference on Ambient Systems, Networks and
Technologies (ANT) / The 3rd International Conference on Emerging Data and Industry 4.0 (EDI40) /
Affiliated Workshops

Keertipati S, Savarimuthu BTR, Licorish SA (2016) Approaches for prioritizing feature improvements
extracted from app reviews. In: Proceedings of the 20th international conference on evaluation and
assessment in software engineering, EASE *16. ACM, New York

Khalid H (2013) On identifying user complaints of ios apps. In: Proceedings of the 2013 international
conference on software engineering. IEEE Press, pp 1474-1476

Khalid H, Nagappan M, Shihab E, Hassan AE (2014) Prioritizing the devices to test your app on: a case
study of android game apps. In: Proceedings of the 22nd ACM SIGSOFT international symposium on
foundations of software engineering, (FSE-22), Hong Kong, China, November 16-22, 2014, pp 610-620

Khalid H, Shihab E, Nagappan M, Hassan AE (2015) What do mobile app users complain about? IEEE
Softw 32(3):70-77

Khalid H, Nagappan M, Hassan AE (2016) Examining the relationship between findbugs warnings and app
ratings. IEEE Softw 33(4):34-39

Khalid M, Asif M, Shehzaib U (2015a) Towards improving the quality of mobile app reviews. Int J Inf
Technol Comput Sci (JITCS) 7(10):35

Khalid M, Shehzaib U, Asif M (2015b) A case of mobile app reviews as a crowdsource. Int J Inf Eng Electron
Bus (JIEEB) 7(5):39

Khan J, Xie Y, Liu L, Wen L (2019) Analysis of requirements-related arguments in user forums.
https://doi.org/10.1109/RE.2019.00018

Kitchenham BA (2004) Procedures for performing systematic reviews

Kitchenham BA, Dyba T, Jorgensen M (2004) Evidence-based software engineering. In: Proceedings of the
26th international conference on software engineering, ICSE *04. IEEE Computer Society, pp 273-281

Kunaefi A, Aritsugi M (2020) Characterizing user decision based on argumentative reviews. In: 7th
IEEE/ACM international conference on big data computing, applications and technologies, BDCAT
2020, Leicester, United Kingdom, December 7-10, 2020, IEEE. pp 161-170. https://doi.org/10.1109/
BDCAT50828.2020.00002

Kurtanovi¢ Z, Maalej W (2017) Mining user rationale from software reviews. In: 2017 IEEE 25th
international requirements engineering conference (RE). pp 61-70

Kurtanovic Z, Maalej W (2018) On user rationale in software engineering. Requir Eng 23(3):357-379

van Lamsweerde A (2009) Requirements engineering: from system goals to UML models to software
specifications. Wiley, Hoboken

Li S, Guo J, Fan M, Lou JG, Zheng Q, Liu T (2020) Automated bug reproduction from user reviews
for android applications. In: 2020 IEEE/ACM 42nd international conference on software engineering:
software engineering in practice (ICSE-SEIP). pp 51-60

Li T, Zhang F, Wang D (2018) Automatic user preferences elicitation: A data-driven approach. In: Require-
ments engineering: foundation for software quality - 24th international working conference, REFSQ
2018, Utrecht, The Netherlands, March 19-22, 2018, Proceedings. pp 324-331

Li Y, Jia B, Guo Y, Chen X (2017) Mining user reviews for mobile app comparisons. Proc ACM Interact
Mob Wearable Ubiquitous Technol 1(3)

Liang TP, Li X, Yang CT, Wang M (2015) What in consumer reviews affects the sales of mobile apps: A
multifacet sentiment analysis approach. Int J Electron Commer 20(2):236-260

Licorish SA, Savarimuthu BTR, Keertipati S (2017) Attributes that predict which features to fix: Lessons for
app store mining. In: Proceedings of the 21st international conference on evaluation and assessment in
software engineering, EASE’17. ACM, New York, pp 108-117

@ Springer

https://doi.org/10.1016/j.procs.2020.03.124
https://www.sciencedirect.com/science/article/pii/S1877050920 305627
https://www.sciencedirect.com/science/article/pii/S1877050920 305627
https://doi.org/10.1109/RE.2019.00018
https://doi.org/10.1109/BDCAT50828.2020.00002
https://doi.org/10.1109/BDCAT50828.2020.00002

Empir Software Eng (2022) 27: 43 Page 57 of 63 43

Lim S, Henriksson A, Zdravkovic J (2021) Data-driven requirements elicitation: A systematic literature
review. SN Comput Sci 2. https://doi.org/10.1007/s42979-020-00416-4

Liu Y, Liu L, Liu H, Wang X (2018) Analyzing reviews guided by app descriptions for the software
development and evolution. J Softw Evol Process 30(12):e2112. 2112 JSME-17-0184.R2

LiuY, Liu L, Liu H, Yin X (2019) App store mining for iterative domain analysis: Combine app descriptions
with user reviews. Softw Pract Exper 49(6):1013-1040. sPE-19-0009.R1

LiuY, Liu L, Liu H, Gao S (2020) Combining goal model with reviews for supporting the evolution of apps.
IET Softw 14(1):39-49. https://doi.org/10.1049/iet-sen.2018.5192

Lu M, Liang P (2017) Automatic classification of non-functional requirements from augmented app user
reviews. In: Proceedings of the 21st international conference on evaluation and assessment in software
engineering, EASE’17. ACM, New York, pp 344-353

Maalej W, Nabil H (2015) Bug report, feature request, or simply praise? on automatically classifying app
reviews. In: 2015 IEEE 23rd international requirements engineering conference (RE). pp 116-125

Maalej W, Kurtanovic Z, Nabil H, Stanik C (2016) On the automatic classification of app reviews. Requir
Eng 21(3):311-331

Maalej W, Nayebi M, Johann T, Ruhe G (2016) Toward data-driven requirements engineering. IEEE Softw
33(1):48-54

Maalej W, Nayebi M, Ruhe G (2019) Data-driven requirements engineering: An update. In: Proceedings of
the 41st international conference on software engineering: software engineering in practice, ICSE-SEIP
’19. IEEE Press, pp 289-290

Malavolta I, Ruberto S, Soru T, Terragni V (2015a) End users’ perception of hybrid mobile apps in the google
play store. In: Proceedings of the 4th international conference on mobile services (MS). IEEE

Malavolta I, Ruberto S, Terragni V, Soru T (2015b) Hybrid mobile apps in the google play store: an
exploratory investigation. In: Proceedings of the 2nd ACM international conference on mobile software
engineering and systems, ACM

Malgaonkar S, Licorish SA, Savarimuthu BTR (2020) Towards automated taxonomy generation for grouping
app reviews: A preliminary empirical study. In: Shepperd MJ, e Abreu FB, da Silva AR, Pérez-
Castillo R (eds) Quality of information and communications technology - 13th international conference,
QUATIC 2020, Faro, Portugal, September 9-11, 2020, Proceedings, Communications in Computer and
Information Science, vol 1266. Springer, pp 120-134. https://doi.org/10.1007/978-3-030-58793-2_10

Malik H, Shakshuki EM (2016) Mining collective opinions for comparison of mobile apps. Procedia Comput
Sci 94:168-175. the 11th International Conference on Future Networks and Communications (FNC
2016) / The 13th International Conference on Mobile Systems and Pervasive Computing (MobiSPC
2016) / Affiliated Workshops

Malik H, Shakshuki EM, Yoo WS (2018) Comparing mobile apps by identifying hot’ features. Future Gener
Computer Syst

Man Y, Gao C, Lyu MR, Jiang J (2016) Experience report: Understanding cross-platform app issues from
user reviews. In: 2016 IEEE 27th international symposium on software reliability engineering (ISSRE).
pp 138-149

Manning CD, Raghavan P, Schiitze H (2008) Introduction to information retrieval. Cambridge University
Press, Cambridge

Martens D, Johann T (2017) On the emotion of users in app reviews. In: Proceedings of the 2nd international
workshop on emotion awareness in software engineering, SEmotion *17. IEEE Press, pp 8-14

Martens D, Maalej W (2019) Release early, release often, and watch your users’ emotions: Lessons from
emotional patterns. IEEE Softw 36(5):32-37

Martens D, Maalej W (2019) Towards understanding and detecting fake reviews in app stores. Empir Softw
Eng 24(6):3316-3355

Martin W, Harman M, Jia Y, Sarro F, Zhang Y (2015) The app sampling problem for app store mining. In:
Proceedings of the 12th working conference on mining software repositories, MSR *15. IEEE Press, pp
123-133

Martin WJ, Sarro F, Jia Y, Zhang Y, Harman M (2017) A survey of app store analysis for software
engineering. IEEE Trans Software Eng 43(9):817-847

Masrury RA, Alamsyah A (2019) Analyzing tourism mobile applications perceived quality using sentiment
analysis and topic modeling. In: 2019 7th international conference on information and communication
technology (ICoICT). pp 1-6

Mcllroy S, Shang W, Ali N, Hassan A (2015) Is it worth responding to reviews? a case study of the top free
apps in the google play store. IEEE Software PP

Mcllroy S, Ali N, Khalid H, Hassan AE (2016) Analyzing and automatically labelling the types of user issues
that are raised in mobile app reviews. Empir Softw Eng 21(3):1067-1106

@ Springer

https://doi.org/10.1007/s42979-020-00416-4
https://doi.org/10.1049/iet-sen.2018.5192
https://doi.org/10.1007/978-3-030-58793-2_10

43 Page 58 of 63 Empir Software Eng (2022) 27: 43

Mcilroy S, Shang W, Ali N, Hassan AE (2017) User reviews of top mobile apps in apple and google app
stores. Commun ACM 60(11):62-67

Mercado IT, Munaiah N, Meneely A (2016) The impact of cross-platform development approaches for
mobile applications from the user’s perspective. In: Proceedings of the international workshop on app
market analytics, WAMA 2016. ACM, New York, pp 43-49

Miller B, Linder F, Mebane WR (2020) Active learning approaches for labeling text: Review and assessment
of the performance of active learning approaches. Polit Anal :1-20

Miner G, Elder J, Hill T, Nisbet R, Delen D, Fast A (2012) Practical text mining and statistical analysis for
non-structured text data applications, 1st edn. Academic Press, Cambridge

Moher D, Liberati A, Tetzlaff J, Altman D (2009) Preferred reporting items for systematic reviews and
meta-analyses: the prisma statement. Br Med J 8:336-341

Mujahid S, Sierra G, Abdalkareem R, Shihab E, Shang W (2017) Examining user complaints of wear-
able apps: A case study on android wear. In: 2017 IEEE/ACM 4th international conference on mobile
software engineering and systems (MOBILESoft). pp 96-99

Mujahid S, Sierra G, Abdalkareem R, Shihab E, Shang W (2018) An empirical study of android wear user
complaints. Empir Softw Eng 23(6):3476-3502

Muiioz S, Araque O, Llamas AF, Iglesias CA (2018) A cognitive agent for mining bugs reports, feature
suggestions and sentiment in a mobile application store. In: 2018 4th international conference on big
data innovations and applications (innovate-data). pp 17-24

Nagappan M, Shihab EMenzies T, Williams L, Zimmermann T (eds) (2016) Mobile app store analytics.
Morgan Kaufmann, Boston

Nayebi M, Cho H, Farrahi H, Ruhe G (2017) App store mining is not enough. In: 2017 IEEE/ACM 39th
international conference on software engineering companion (ICSE-C). pp 152-154

Nayebi M, Cho H, Ruhe G (2018) App store mining is not enough for app improvement. Empir Softw Eng
23(5):2764-2794

Nicolai M, Pascarella L, Palomba F, Bacchelli A (2019) Healthcare android apps: a tale of the customers’
perspective. In: Proceedings of the 3rd ACM SIGSOFT international workshop on app market analytics,
WAMA @ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 27, 2019, pp 33-39

Noei E, Lyons K (2019) A survey of utilizing user-reviews posted on google play store. In: Proceedings of the
29th annual international conference on computer science and software engineering, IBM Corp., USA,
CASCON ’19. pp 54-63

Noei E, Da Costa DA, Zou Y (2018) Winning the app production rally. In: Proceedings of the 2018 26th
ACM joint meeting on european software engineering conference and symposium on the foundations of
software engineering, New York, NY, USA, ESEC/FSE 2018, pp 283-294

Noei E, Zhang F, Wang S, Zou Y (2019) Towards prioritizing user-related issue reports of mobile
applications. Empir Softw Eng 24(4):1964-1996

Noei E, Zhang F, Zou Y (2019) Too many user-reviews, what should app developers look at first?IEEE Trans
Softw Eng 1-1

Nuseibeh B (2001) Weaving together requirements and architectures. Computer 34(3):115-119

Nyamawe A, Liu H, Niu N, Umer Q, Niu Z (2019) Automated recommendation of software refactorings
based on feature requests. pp 187—198. https://doi.org/10.1109/RE.2019.00029

Oehri E, Guzman E (2020) Same same but different: Finding similar user feedback across multiple platforms
and languages. In: Breaux TD, Zisman A, Fricker S, Glinz M (eds) 28th IEEE international requirements
engineering conference, RE 2020, Zurich, Switzerland, August 31 - September 4, 2020, IEEE, pp 44-54.
https://doi.org/10.1109/RE48521.2020.00017

Oh J, Kim D, Lee U, Lee JG, Song J (2013) Facilitating developer-user interactions with mobile app review
digests. In: CHI *13 extended abstracts on human factors in computing systems, CHI EA *13. ACM,
New York, pp 1809-1814

Pagano D, Maalej W (2013) User feedback in the appstore: An empirical study. In: 2013 21st IEEE
international requirements engineering conference (RE). pp 125-134

Palomba F, Linares-Vasquez M, Bavota G, Oliveto R, Di Penta M, Poshyvanyk D, De Lucia A (2015) User
reviews matter! tracking crowdsourced reviews to support evolution of successful apps. In: 2015 IEEE
international conference on software maintenance and evolution (ICSME). pp 291-300

Palomba F, Salza P, Ciurumelea A, Panichella S, Gall H, Ferrucci F, De Lucia A (2017) Recommend-
ing and localizing change requests for mobile apps based on user reviews. In: Proceedings of the 39th
international conference on software engineering, ICSE ’17. IEEE Press, pp 106-117

Palomba F, Linares-Vasquez M, Bavota G, Oliveto R, Penta MD, Poshyvanyk D, Lucia AD (2018)
Crowdsourcing user reviews to support the evolution of mobile apps. J Syst Softw 137:143-162

Panichella S, Di SorboA, Guzman E, Visaggio CA, Canfora G, Gall HC (2015) How can i improve my app?
classifying user reviews for software maintenance and evolution. In: 2015 IEEE international conference
on software maintenance and evolution (ICSME). pp 281-290

@ Springer

https://doi.org/10.1109/RE.2019.00029
https://doi.org/10.1109/RE48521.2020.00017

Empir Software Eng (2022) 27: 43 Page 59 of 63 43

Panichella S, Di Sorbo A, Guzman E, Visaggio CA, Canfora G, Gall HC (2016) Ardoc: App reviews devel-
opment oriented classifier. In: Proceedings of the 2016 24th ACM SIGSOFT international symposium
on foundations of software engineering, FSE 2016. ACM, New York, pp 1023-1027

Pelloni L, Grano G, Ciurumelea A, Panichella S, Palomba F, Gall HC (2018) Becloma: Augmenting stack
traces with user review information. In: 2018 IEEE 25th international conference on software analysis,
evolution and reengineering (SANER). pp 522-526

Peng Z, Wang J, He K, Tang M (2016) An approach of extracting feature requests from app reviews.
In: Collaborate computing: networking, applications and worksharing - 12th international conference,
CollaborateCom 2016, Beijing, China, November 10-11, 2016, Proceedings. pp 312-323

Phetrungnapha K, Senivongse T (2019) Classification of mobile application user reviews for generating
tickets on issue tracking system. In: 2019 12th international conference on information communication
technology and system (ICTS). pp 229-234

Puspaningrum A, Siahaan D, Fatichah C (2018) Mobile app review labeling using 1da similarity and term
frequency-inverse cluster frequency (tf-icf). In: 2018 10th international conference on information
technology and electrical engineering (ICITEE). pp 365-370

Pustejovsky J, Stubbs A (2012) Natural language annotation for machine learning - a guide to corpus-building
for applications. O’Reilly, Newton

Ralph P, Baltes S, Bianculli D, Dittrich Y, Felderer M, Feldt R, Filieri A, Furia CA, Graziotin D, He P,
Hoda R, Juristo N, Kitchenham BA, Robbes R, Méndez D, Molleri J, Spinellis D, Staron M, Stol K,
Tamburri D, Torchiano M, Treude C, Turhan B, Vegas S (2020) ACM SIGSOFT empirical standards.
arXiv:2010.03525

Sanger M, Leser U, Kemmerer S, Adolphs P, Klinger R (2016) SCARE - the sentiment corpus of app
reviews with fine-grained annotations in German. In: Proceedings of the tenth international conference
on language resources and evaluation (LREC’16)

Sanger M, Leser U, Klinger R (2017) Fine-grained opinion mining from mobile app reviews with word
embedding features. In: Natural language processing and information systems - 22nd international con-
ference on applications of natural language to information systems, NLDB 2017, Liege, Belgium, June
21-23, 2017, Proceedings. pp 3-14

Scalabrino S, Bavota G, Russo B, Penta MD, Oliveto R (2019) Listening to the crowd for the release planning
of mobile apps. IEEE Trans Softw Eng 45(1):68-86

Scoccia GL, Ruberto S, Malavolta I, Autili M, Inverardi P (2018) An investigation into android run-time
permissions from the end users’ perspective. In: Proceedings of the Sth international conference on
mobile software engineering and systems, MOBILESoft *18. ACM, New York, pp 45-55

Shah FA, Sabanin Y, Pfahl D (2016) Feature-based evaluation of competing apps. In: Proceedings of the
international workshop on app market analytics, WAMA 2016. ACM, New York, pp 15-21

Shah FA, Sirts K, Pfahl D (2018) Simplifying the classification of app reviews using only lexical features.
In: Software Technologies - 13th International Conference, ICSOFT 2018, Porto, Portugal, July 26-28,
2018, Revised Selected Papers. pp 173-193

Shah FA, Sirts K, Pfahl D (2019a) Is the SAFE approach too simple for app feature extraction? A replication
study. In: Requirements Engineering: Foundation for Software Quality - 25th International Working
Conference, REFSQ 2019, Essen, Germany, March 18-21, 2019, Proceedings. pp 21-36

Shah FA, Sirts K, Pfahl D (2019b) Simulating the impact of annotation guidelines and annotated data on
extracting app features from app reviews. International Conference on Software Technologies (ICSOFT,
In

Shah FA, Sirts K, Pfahl D (2019¢) Using app reviews for competitive analysis: Tool support. In: Proceedings
of the 3rd ACM SIGSOFT international workshop on app market analytics, WAMA 2019. ACM, New
York, pp 40-46

Shams RA, Hussain W, Oliver G, Nurwidyantoro A, Perera H, Whittle J (2020) Society-oriented appli-
cations development: Investigating users’ values from bangladeshi agriculture mobile applications.
In: Proceedings of the ACM/IEEE 42nd international conference on software engineering: software
engineering in society, ICSE-SEIS ’20. Association for Computing Machinery, New York, pp 53-62.
https://doi.org/10.1145/3377815.3381382

Sharma T, Bashir MN (2020) Privacy apps for smartphones: An assessment of users’ preferences and limi-
tations. In: Moallem A (ed) HCI for cybersecurity, privacy and trust - second international conference,
HCI-CPT 2020, Held as Part of the 22nd HCI International Conference, HCII 2020, Copenhagen, Den-
mark, July 19-24, 2020, Proceedings, Springer, Lecture Notes in Computer Science, vol 12210. pp
533-546. https://doi.org/10.1007/978-3-030-50309-3_35

Simmons A, Hoon L (2016) Agree to disagree: on labelling helpful app reviews. In: Proceedings of the 28th
Australian conference on computer-human interaction, OzCHI *16. ACM, New York. pp 416-420

@ Springer

http://arxiv.org/abs/2010.03525
https://doi.org/10.1145/3377815.3381382
https://doi.org/10.1007/978-3-030-50309-3_35

43 Page 60 of 63 Empir Software Eng (2022) 27: 43

Singh V (2021) South Asian University - Department of Computer Science. http://www.sau.int/
research-themes/text-analytics.html, Accessed: 2021-06-01

Software T (2021) What is text analytics? http://www.tibco.com/reference-center/what-is-text-analytics,
Accessed: 2021-06-01

Song R, Li T, Ding Z (2020) Automatically identifying requirements-oriented reviews using a top-down
feature extraction approach. In: 2020 27th Asia-Pacific software engineering conference (APSEC). pp
450-454. https://doi.org/10.1109/APSEC51365.2020.00054

Srisopha K, Alfayez R (2018) Software quality through the eyes of the end-user and static analysis tools: A
study on android oss applications. In: Proceedings of the 1st international workshop on software qualities
and their dependencies, SQUADE ’18. ACM, New York, pp 14

Srisopha K, Phonsom C, Lin K, Boehm B (2019) Same app, different countries: A preliminary user reviews
study on most downloaded ios apps. In: 2019 IEEE international conference on software maintenance
and evolution (ICSME). pp 76-80

Srisopha K, Link D, Swami D, Boehm B (2020a) Learning features that predict developer responses for
ios app store reviews. In: Proceedings of the 14th ACM / IEEE international symposium on empirical
software engineering and measurement (ESEM), ESEM ’20. Association for Computing Machinery,
New York. https://doi.org/10.1145/3382494.3410686

Srisopha K, Phonsom C, Li M, Link D, Boehm B (2020b) On building an automatic identification of country-
specific feature requests in mobile app reviews: Possibilities and challenges. In: Proceedings of the
IEEE/ACM 42nd international conference on software engineering workshops, ICSEW’20. Association
for Computing Machinery, New York, pp 494-498. https://doi.org/10.1145/3387940.3391492

Srisopha K, Swami D, Link D, Boehm B (2020c) How features in ios app store reviews can predict developer
responses. In: Proceedings of the evaluation and assessment in software engineering, EASE *20. Asso-
ciation for Computing Machinery, New York, pp 336-341. https://doi.org/10.1145/3383219.3383258

Stanik C, Haering M, Maalej W (2019) Classifying multilingual user feedback using traditional machine
learning and deep learning. In: 2019 IEEE 27th international requirements engineering conference
workshops (REW). pp 220-226

Sun D, Peng R (2015) A scenario model aggregation approach for mobile app requirements evolution based
on user comments. In: Requirements engineering in the big data era, vol 558. Springer, Berlin, pp 75-91

Sun Z, Ji Z, Zhang P, Chen C, Qian X, Du X, Wan Q (2017) Automatic labeling of mobile apps by the type
of psychological needs they satisfy. Telematics Inform 34(5):767-778

Talia D (2019) A view of programming scalable data analysis: from clouds to exascale. J Cloud Comput
8(1):4

Tao C, Guo H, Huang Z (2020) Identifying security issues for mobile applications based on user review sum-
marization. Inform Softw Technol 122:106290. https://doi.org/10.1016/j.infsof.2020.106290. https://
www.sciencedirect.com/science/article/pii/S0950584920300409

Tavakoli M, Zhao L, Heydari A, Nenadi¢ G (2018) Extracting useful software development information
from mobile application reviews: A survey of intelligent mining techniques and tools. Expert Syst Appl
113:186-199

Tizard J, Rietz T, Blincoe K (2020) Voice of the users: A demographic study of software feedback behaviour.
In: Breaux TD, Zisman A, Fricker S, Glinz M (eds) 28th IEEE international requirements engineer-
ing conference, RE 2020, Zurich, Switzerland, August 31 - September 4, 2020. IEEE, pp 55-65.
https://doi.org/10.1109/RE48521.2020.00018

Tong G, Guo B, Yi O, Zhiwen Y (2018) Mining and analyzing user feedback from app reviews: An econo-
metric approach. In: 2018 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted
Computing, Scalable Computing Communications, Cloud big Data Computing, Internet of People and
Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp 841-848

Uddin MDK, He Q, Han J, Chua C (2020) App competition matters: How to identify your competitor apps?
In: 2020 IEEE International Conference on Services Computing, SCC 2020, Beijing, China, November
7-11, 2020. IEEE, pp 370-377. https://doi.org/10.1109/SCC49832.2020.00055

Vasa R, Hoon L, Mouzakis K, Noguchi A (2012) A preliminary analysis of mobile app user reviews. In:
Proceedings of the 24th Australian Computer-Human Interaction Conference, ACM. pp 241-244

Viera AJ, Garrett JM (2005) Understanding interobserver agreement: the kappa statistic. Fam Med
37(5):360-3

Villarroel L, Bavota G, Russo B, Oliveto R, Di PentaM (2016) Release planning of mobile apps based on user
reviews. In: 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE). pp 14-24

van Vliet M, Groen EC, Dalpiaz F, Brinkkemper S (2020) Identifying and classifying user requirements in
online feedback via crowdsourcing. In: Madhavji NH, Pasquale L, Ferrari A, Gnesi S (eds) Requirements
engineering: foundation for software quality - 26th International Working Conference, REFSQ 2020,

@ Springer

http://www.sau.int/research-themes/text-analytics.html
http://www.sau.int/research-themes/text-analytics.html
http://www.tibco.com/reference-center/what-is-text-analytics
https://doi.org/10.1109/APSEC51365.2020.00054
https://doi.org/10.1145/3382494.3410686
https://doi.org/10.1145/3387940.3391492
https://doi.org/10.1145/3383219.3383258
https://doi.org/10.1016/j.infsof.2020.106290
https://www.sciencedirect.com/science/article/pii/S0950584920300409
https://www.sciencedirect.com/science/article/pii/S0950584920300409
https://doi.org/10.1109/RE48521.2020.00018
https://doi.org/10.1109/SCC49832.2020.00055

Empir Software Eng (2022) 27: 43 Page 61 0f 63 43

Pisa, Italy, March 24-27, 2020, Proceedings [REFSQ 2020 was postponed], Springer, Lecture Notes in
Computer Science, vol 12045. pp 143—-159. https://doi.org/10.1007/978-3-030-44429-7_11

VuPM, Nguyen TT, Pham HV, Nguyen TT (2015a) Mining user opinions in mobile app reviews: A keyword-
based approach. In: Proceedings of the 30th IEEE/ACM International Conference on Automated
Software Engineering, ASE 15. IEEE Press, pp 749—459

Vu PM, Pham HV, Nguyen TT, Nguyen TT (2015b) Tool support for analyzing mobile app reviews. In: 30th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2015, Lincoln, NE,
USA, November 9-13, 2015, pp 789-794

Vu PM, Pham HV, Nguyen TT, Nguyen TT (2016) Phrase-based extraction of user opinions in mobile
app reviews. In: Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, Singapore, September 3-7, 2016, pp 726-731

Vu PM, Nguyen TT, Nguyen TT (2019) Why do app reviews get responded: A preliminary study of the
relationship between reviews and responses in mobile apps. In: Proceedings of the 2019 ACM Southeast
Conference, ACM SE *19. ACM, New York, pp 237-240

Wang C, Zhang F, Liang P, Daneva M, van Sinderen M (2018) Can app changelogs improve requirements
classification from app reviews? an exploratory study. In: Proceedings of the 12th ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement, ESEM ’18. ACM, New
York

Wang H, Wang L, Wang H (2020a) Market-level analysis of government-backed covid-19 contact trac-
ing apps. In: Proceedings of the 35th IEEE/ACM International Conference on Automated Software
Engineering Workshops, ASE °20. Association for Computing Machinery, New York, pp 79-84.
https://doi.org/10.1145/3417113.3422186

Wang S, Wang Z, Xu X, Sheng QZ (2017) App update patterns: How developers act on user reviews in mobile
app stores. In: Service-oriented computing - 15th International Conference, ICSOC 2017, Malaga, Spain,
November 13-16, 2017, Proceedings. pp 125-141

Wang T, Liang P, Lu M (2018) What aspects do non-functional requirements in app user reviews describe?
an exploratory and comparative study. In: 2018 25th Asia-Pacific Software Engineering Conference
(APSEC). pp 494-503

Wang Y, Wang H, Fang H (2017) Extracting user-reported mobile application defects from online reviews.
In: 2017 IEEE International Conference on Data Mining Workshops (ICDMW). pp 422429

Wang Y, Zheng L, Li N (2020b) Rom: A requirement opinions mining method preliminary try based on soft-
ware review data. In: Proceedings of the 2020 4th International Conference on Management Engineering,
Software Engineering and Service Sciences, ICMSS 2020. Association for Computing Machinery, New
York, pp 26-33. https://doi.org/10.1145/3380625.3380665

Wei L, Liu Y, Cheung SC (2017) Oasis: Prioritizing static analysis warnings for android apps based on app
user reviews. In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017. ACM, New York, pp 672-682

Weichbroth P, Baj-Rogowska A (2019) Do online reviews reveal mobile application usability and user expe-
rience? the case of whatsapp. In: 2019 Federated Conference on Computer Science and Information
Systems (FedCSIS). pp 747-754

Wen P, Chen M (2020) A new analysis method for user reviews of mobile fitness apps. In: Kurosu
M (ed) Human-computer interaction. human values and quality of life - thematic Area, HCI 2020,
Held as Part of the 22nd International Conference, HCII 2020, Copenhagen, Denmark, July 19-24,
2020, Proceedings, Part III, Springer, Lecture Notes in Computer Science, vol 12183. pp 188-199.
https://doi.org/10.1007/978-3-030-49065-2_14

Williams G, Mahmoud A (2018) Modeling user concerns in the app store: A case study on the rise and fall
of yik yak. In: 2018 IEEE 26th international requirements engineering conference (rE). pp 64-75

Williams G, Tushev M, Ebrahimi F, Mahmoud A (2020) Modeling user concerns in sharing economy:
the case of food delivery apps. Autom Softw Eng 27(3):229-263. https://doi.org/10.1007/s10515-020-
00274-7

Wohlin C (2014) Guidelines for snowballing in systematic literature studies and a replication in software
engineering. In: Proceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering, EASE ’14, ACM, New York

Xiao J (2019) Ospaci: Online sentiment-preference analysis of user reviews for continues app improvement.
In: Yangui S, Bouguettaya A, Xue X, Faci N, Gaaloul W, Yu Q, Zhou Z, Hernandez N, Nakagawa
EY (eds) Service-oriented computing - ICSOC 2019 workshops - WESOACS, ASOCA, ISYCC, TBCE,
and STRAPS, Toulouse, France, October 28-31, 2019, Revised Selected Papers, Springer, Lecture Notes
in Computer Science, vol 12019. pp 273-279. https://doi.org/10.1007/978-3-030-45989-5_23

Xiao J, Chen S, He Q, Wu H, Feng Z, Xue X (2020) Detecting user significant intention via sentiment-
preference correlation analysis for continuous app improvement. In: Kafeza E, Benatallah B, Martinelli

@ Springer

https://doi.org/10.1007/978-3-030-44429-7_11
https://doi.org/10.1145/3417113.3422186
https://doi.org/10.1145/3380625.3380665
https://doi.org/10.1007/978-3-030-49065-2_14
https://doi.org/10.1007/s10515-020-00274-7
https://doi.org/10.1007/s10515-020-00274-7
https://doi.org/10.1007/978-3-030-45989-5_23

43 Page 62 of 63 Empir Software Eng (2022) 27: 43

F, Hacid H, Bouguettaya A, Motahari H (eds) Service-oriented computing - 18th International Confer-
ence, ICSOC 2020, Dubai, United Arab Emirates, December 14-17, 2020, Proceedings, Springer, Lec-
ture Notes in Computer Science, vol 12571. pp 386—400. https://doi.org/10.1007/978-3-030-65310-1_27

Yadav A, Fard FH (2020) Semantic analysis of issues on google play and twitter. In: 2020 IEEE/ACM
42nd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion).
pp 308-309

Yadav A, Sharma R, Fard FH (2020) A semantic-based framework for analyzing app users’ feedback. In:
Kontogiannis K, Khomh F, Chatzigeorgiou A, Fokaefs M, Zhou M (eds) 27th IEEE International Confer-
ence on Software Analysis, Evolution and Reengineering, SANER 2020, London, ON, Canada, February
18-21, 2020. IEEE, pp 572-576. https://doi.org/10.1109/SANER48275.2020.9054843

Yang H, Liang P (2015) Identification and classification of requirements from app user reviews. In: The 27th
International Conference on Software Engineering and Knowledge Engineering, SEKE 2015, Wyndham
Pittsburgh University Center, Pittsburgh, PA, USA, July 6-8, 2015, pp 7-12

Zhang J, Wang Y, Xie T (2019) Software feature refinement prioritization based on online user review
mining. Inf Softw Technol 108:30-34

Zhang L, Huang X, Jiang J, Hu Y (2017) Cslabel: An approach for labelling mobile app reviews. J Comput
Sci Technol 32(6):1076-1089

Zhou Y, Su Y, Chen T, Huang Z, Gall HC, Panichella S (2020) User review-based change file localization
for mobile applications. IEEE Trans Softw Eng :1-1. https://doi.org/10.1109/TSE.2020.2967383

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Jacek Dabrowski is a Doctoral Researcher in Software Engineer-
ing in a joint program between University College London, UK
and Fondazione Bruno Kessler, Italy. His thesis is about mining
online user feedback to support software engineering. He received
his MSc and BSc in Electrical Engineering from Warsaw Univer-
sity of Technology, Poland. During his MSc he worked as a Junior
Researcher at Aalto University, Finland where he completed his mas-
ter thesis in Robotics. Before his doctoral studies, he worked in
Accenture as a Technology Consulting Analyst where he was respon-
sible for requirement engineering, software system design and digital
transformation. His current research interests concern requirement
engineering, mining software repositories and software analytics.

Emmanuel Letier is an Associate Professor in the Department of
Computer Science at University College London where he teaches
and research systems requirements engineering and software archi-
tecture.

@ Springer

https://doi.org/10.1007/978-3-030-65310-1_27
https://doi.org/10.1109/SANER48275.2020.9054843
https://doi.org/10.1109/TSE.2020.2967383

Empir Software Eng (2022) 27: 43

Page 63 of 63 43

Anna Perini is FBK Distinguished Fellow, former senior researcher
at the Software Engineering research unit of Fondazione Bruno
Kessler, Trento (Italy). Anna Perini teaches Requirements Engineer-
ing at the University of Trento, MSc degree in Computer Science. Her
research interests include requirements engineering, agent-oriented
software development methodologies, conceptual modelling, deci-
sion making in requirements engineering, and empirical studies.
H-Index 43 (Google Scholar October 2021). Anna Perini is serving
as program co-chair of RCIS 2021 served as program co-chair of
IEEE RE’19, REFSQ 2017, and of STAIRS 2006. She is member of
the Steering Committee of the IEEE RE Int. conference and chair of
the Steering Committee of the REFSQ conference. Moreover, she has
served as program committee member of several Int. Conferences,
(e.g., ICSE, RE, CAIiSE), and international workshops, and regularly
reviews papers for top journals in the Software Engineering area.

Angelo Susi is a research scientist in the Software Engineering unit
at Fondazione Bruno Kessler in Trento, Italy. His research interests
are in the areas of requirements engineering, goal-oriented soft-
ware engineering, formal methods for requirements validation, and
search-based software engineering. He published more than 100 ref-
ereed papers in journals and international conferences such as TSE,
TOSEM, IST, SoSyM, FSE, ICSE, RE. He participated in the organi-
zation committee of several conferences, such as SSBSE’12 (General
Chair), REFSQ (workshop and industry chair), RE (Financial chair)
and in program committees of international conferences and work-
shops (such as ICSE, RE, REFSQ, CAiSE and SSBSE). He also
served as reviewer for several Journals such as TSE, REJ, IST, JSS.
He has been the scientific manager of the EU FP7 project RISCOSS.

@ Springer

	Analysing app reviews for software engineering: A SLR
	Abstract
	Introduction
	Research Method
	Research Questions
	Literature Search and Selection
	Data Extraction
	Data Synthesis

	Result Analysis
	Demographics
	RQ1: App Review Analysis
	Information Extraction
	Classification
	Clustering
	Search and Information Retrieval
	Sentiment Analysis
	Content Analysis
	Recommendation
	Summarization
	Visualization

	RQ2: Mining Techniques
	Manual Analysis
	Natural Language Processing
	Machine Learning
	Statistical Analysis

	RQ3: Supporting Software Engineering
	Requirements
	Requirements Elicitation
	Requirements Classification
	Requirements Prioritization
	Requirements Specification

	Design
	User Interface Design
	Design Rationale Capture

	Testing
	Validation by Users
	Test Documentation
	Test Design
	Test Prioritization

	Maintenance
	Problem and Modification Analysis
	Requested Modification Prioritization
	Help Desk
	Impact Analysis

	RQ4: Empirical Evaluation
	Effectiveness Evaluation
	Availability of Dataset and Tool
	Evaluation Objective
	Annotation Procedure
	Characteristics of Dataset
	Effectiveness Quantification

	User Study
	Evaluation Subjects
	Assessment Criteria
	Study Participants
	Evaluation Procedure

	RQ5: Empirical Results
	Effectiveness Evaluation Results
	Information Extraction
	Classification
	Clustering
	Search and Information Retrieval
	Sentiment Analysis
	Recommendation
	Summarization

	User Study Results
	Information Extraction
	Classification
	Clustering
	Searching and Information Retrieval
	Sentiment Analysis
	Recommendation
	Summarization
	Visualization

	Discussion
	Mining App Reviews Is a Growing Research Area
	Software Engineering Goals and Use Cases
	Need Of Reference Model For Review Mining Tools
	Small Size Of Evaluation Datasets
	Replication Packages
	Impacts On Software Engineering Practice
	Practitioners' Requirements For App Review Mining Tools
	Verifying the Industrial Needs for App Review Analysis
	Pay Attention to Efficiency and Scalability of Mining Tools
	The Problem of Training ML Techniques

	Threats to Validity
	Related Work
	Conclusion
	References

