
https://doi.org/10.1007/s10664-021-10063-9

Enjoy your observability: an industrial survey
of microservice tracing and analysis

Bowen Li1,2 ·Xin Peng1,2 ·Qilin Xiang1,2 ·Hanzhang Wang3 · Tao Xie4,5 · Jun Sun6 ·
Xuanzhe Liu4,5

Accepted: 11 August 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Microservice systems are often deployed in complex cloud-based environments and may
involve a large number of service instances being dynamically created and destroyed. It
is thus essential to ensure observability to understand these microservice systems’ behav-
iors and troubleshoot their problems. As an important means to achieve the observability,
distributed tracing and analysis is known to be challenging. While many companies have
started implementing distributed tracing and analysis for microservice systems, it is not clear
whether existing approaches fulfill the required observability. In this article, we present our
industrial survey on microservice tracing and analysis through interviewing developers and
operation engineers of microservice systems from ten companies. Our survey results offer
a number of findings. For example, large microservice systems commonly adopt a tracing
and analysis pipeline, and the implementations of the pipeline in different companies reflect
different tradeoffs among a variety of concerns. Visualization and statistic-based metrics are
the most common means for trace analysis, while more advanced analysis techniques such
as machine learning and data mining are seldom used. Microservice tracing and analysis
is a new big data problem for software engineering, and its practices breed new challenges
and opportunities.

Keywords Microservice · Logging · Tracing · Industrial survey

Communicated by: Antonia Bertolino

� Xin Peng
pengxin@fudan.edu.cn

1 School of Computer Science, Fudan University, Shanghai, China
2 Shanghai Key Laboratory of Data Science, Fudan University, Shanghai, China
3 eBay Inc., San Jose, CA, USA
4 Peking University, Beijing, China
5 Key Laboratory of High Confidence Software Technologies, (Peking University), Ministry

of Education, Beijing, China
6 Singapore Management University, Singapore, Singapore

Published online: 30 November 2021

Empirical Software Engineering (2022) 27: 25

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10063-9&domain=pdf
mailto: pengxin@fudan.edu.cn

1 Introduction

Microservice architecture has been defined in multiple different ways (Francesco et al.
2017). Some regard it as an architectural style in which a single application is imple-
mented as a suite of small services, each running in its own process and communicating
via lightweight mechanisms (often an HTTP resource API) (Lewis and Fowler 2020).
Others believe that it is a new implementation approach to Service-Oriented Architecture
(SOA) (Newman 2015). Microservice has been the mainstream for cloud native appli-
cations. Industrial microservice systems may include hundreds to thousands of services
running in a complicated cloud infrastructure and with a large number of service instances
created and destroyed dynamically. Understanding and diagnosing problems (e.g., failed
requests and high latency) in a microservice architecture is highly complicated as there
may be a lot of services involved (Richardson 2019). It is further complicated by the com-
plex cloud-based runtime environment consisting of physical machines, virtual machines,
and containers. Therefore, observability has been regarded as an essential requirement for
microservice systems.

Widely accepted and practiced in industry, distributed tracing is an important means to
achieve observability in microservice architecture, by tracing requests as they flow between
services (Richardson 2019). Its implementation usually follows a tracing and analysis
pipeline as shown in Fig. 1, which includes the logging of service invocations, collection
of generated logs, preprocessing of the collected logs, storage of trace data, and analysis of
restored traces.

– Logging: A logger is accompanied with each service instance. It produces a span log
for each service invocation, recording information such as trace ID, span ID, parent
span ID, timestamp, and duration.

– Collection: A centralized collector collects span logs from service instances to enable
data preprocessing and trace analysis.

– Preprocessing: The collected span logs are preprocessed before persisted in storage for
trace analysis. The preprocessing usually includes formatting log data and aggregating
various metrics.

– Storage: The preprocessed trace data is persisted in various forms for further analysis.
– Analysis: Operation engineers and developers analyze trace data in different ways for

various purposes such as service dependency analysis, anomaly detection, and problem
diagnosis.

Google and Facebook have developed their own distributed tracing infrastructures
namely Dapper (Sigelman et al. 2010) and Canopy (Kaldor et al. 2017). The OpenTracing
project (2020) provides a language-neutral data model for distributed tracing, defining basic
concepts such as span and trace. The project also defines an API specification and provides

Logging

Service

Instance
Collection Preprocessing AnalysisStorage

Fig. 1 Microservice Tracing and Analysis Pipeline

25 Page 2 of 28 Empir Software Eng (2022) 27: 25

frameworks and libraries that have implemented the specification. There have been open-
source implementations following the OpenTracing framework, e.g., Skywalking (2020),
Zipkin (2020), and Jaeger (2020). Based on the collected traces, various real-time and non-
real-time analyses can be conducted for different purposes such as understanding service
dependencies and runtime architecture, and troubleshooting failed requests and high latency.

While many companies have started implementing distributed tracing and analysis for
microservice systems, it is not clear whether existing approaches fulfill the required observ-
ability, given that distributed tracing and analysis is challenging due to two main factors.
First, distributed tracing involves implementing logging in a large number of services devel-
oped in different languages, and collecting and processing a huge number of logs generated
continuously. A large microservice system may produce up to millions of traces per second
and each trace may involve a complex invocation chain spanning dozens of services and
even multiple data centers. Second, the subsequent trace analysis needs to meet different
purposes such as anomaly detection, fault analysis, and debugging (Pham et al. 2017; Zhou
et al. 2018, 2019), while being complicated by the huge volume of data and the complexity
of microservice system behaviors. The behaviors of a microservice system are influenced
by the underlying complex cloud infrastructure including computing and storage systems,
and networks. The problems of a microservice system may be rooted from a variety of fac-
tors such as environmental configurations, deployment structures, service interactions, and
service implementations (Zhou et al. 2021).

To investigate whether existing approaches fulfill the required observability in industrial
practices, in this article, we present our industrial survey on microservice tracing and analy-
sis through interviewing developers and operation engineers of microservice systems from
ten companies. Except two very small systems, all the surveyed microservice systems have
established practices of distributed tracing and analysis. For each of these systems, we inves-
tigate the practices used for logging, collection, and preprocessing of trace data, the reasons
for the chosen solutions and their pros and cons, different trace analysis applications, and the
used data/techniques. We also investigate the faced challenges and expectations for better
techniques and solutions.

Our survey results show findings on the pipeline of tracing and analysis along with pur-
poses and techniques of trace analysis. First, large microservice systems commonly adopt a
tracing and analysis pipeline as shown in Fig. 1, which includes logging, collection, prepro-
cessing, storage, and analysis. The implementations of the pipeline in different companies
reflect different tradeoffs among a series of concerns such as easy-to-implement, flexibility,
effort, overhead, and completeness. Second, trace analysis has been widely used for var-
ious purposes such as understanding the runtime architectures and service dependencies,
and discovering and locating functional or non-functional faults. Trace analysis applications
used in the surveyed systems include timeline analysis, service dependency analysis, aggre-
gation analysis, root cause analysis, and anomaly detection. Third, intelligent trace analysis
is still in its infancy. Visualization and statistic-based metrics are the most common means
for trace analysis, while more advanced analysis techniques such as machine learning and
data mining are seldom used.

Our survey results indicate that microservice tracing and analysis is a new big data prob-
lem for software engineering, and its practices breed new challenges and opportunities.
Example future directions include adaptive log sampling, data fusion for trace analysis,
more intelligent trace analysis, and business intelligence by trace analysis. Traditional soft-
ware engineering techniques such as program analysis, reverse engineering, and debugging
need to be further developed and combined with latest advances in cloud computing and
data science to facilitate microservice tracing and analysis.

Page 3 of 28 25Empir Software Eng (2022) 27: 25

The rest of the article is organized as follows. Section 2 introduces the background
knowledge for distributed tracing and observability. Section 3 presents the methodology of
our industrial survey. Section 4 summarizes the results of the survey. Section 5 discusses
the challenges and opportunities of microservice tracing and analysis. Section 6 introduces
some related work and compares it with ours. Section 7 concludes the article and outlines
future work.

2 Background

In a computing system, log files record events occurred or messages generated during
system operations or software executions. Logging is the act of keeping a log (2020).
Traditional logs are generally divided into two categories:

– Application logs record application-specific events such as exceptions manually (e.g.,
issuing a statement such as System.out.print()) or using a logging framework (e.g.,
Log4j 2020; Logback 2020).

– System logs record events that are logged by operating system components. The
operating system itself often predetermines the events to be logged.

These logs are often used to help software developers or operation engineers to conduct
anomaly detection, root cause analysis, process mining, or performance optimization for a
single service or component.

For modern distributed systems, it is crucial to trace the service invocation chain (i.e.,
a series of service invocations) for each request. The records of service invocation chains
enable the understanding of runtime service dependencies and the analysis of the execution
process of each request through different services and nodes. This requirement leads to the
appearance of distributed tracing (OpenTracing 2020), which is an approach used to profile
and monitor distributed systems, especially those built using a microservices architecture.
A trace represents a series of causally related distributed events that encode the end-to-
end request workflow through a distributed system (Sridharan 2018). Distributed tracing
relies on the logging of service invocations by each service instance. The logged service
invocations can then be restored to traces.

According to the OpenTracing specification, a trace is the description of a transaction
(i.e., the execution process of a request) as it moves through a distributed system (OpenTrac-
ing 2020). A trace has a tree structure consisting of service invocations as shown in Fig. 2a.
When a request arrives, a unique trace ID (which is also called correlation ID (Brown 2021))
is generated and assigned, and then carried and propagated throughout the request workflow.
As shown in Fig. 2b, each hop along the request workflow is represented as a span, which is
a named and timed operation (i.e., service invocation) representing a piece of the workflow.
A span also has a unique ID, called span ID. A span context represents trace information
that accompanies the distributed transaction, including when it passes the service to service
over the network or through a message bus. The span context contains the trace ID, span ID,
and any other data that the tracing system needs to propagate to the downstream services. In
addition, each service instance can record (for each span) zero or more fine-grained, struc-
tured key-value tags, which are called span tags. The span tags are usually used to record
the services that generate the span, the database statement, and any other data required for
log or trace analysis.

When an instrumentation point is triggered at a service instance, a record is generated
as a span log. Span logs are usually asynchronously persisted before being submitted to a

25 Page 4 of 28 Empir Software Eng (2022) 27: 25

Service A

Unique ID → {SpanContext}

Service B

Service C

Service E

Service D

{SpanContext} {SpanContext}

{SpanContext} {SpanContext}

Service A

Service B

Service C

Service D

Service E

Time

Trace

Fig. 2 Traces and Spans in Distributed Tracing

collector, and then get restored to a trace based on the different logs emitted by different
services (Sridharan 2018). An example of span log is shown in Fig. 3. It records the trace
ID (Line 2), the span ID (Line 3), the ID of the parent span (Line 4), the timestamp (Line 5)
and duration (Line 6) of the invocation (with both units being microsecond), and the service
names and addresses of the caller (Lines 7-10) and callee (Lines 11-14). The annotations in

Fig. 3 An Example of Span Log

Page 5 of 28 25Empir Software Eng (2022) 27: 25

the span log record the timestamps of the client sending the request (Lines 16-17), the client
receiving the response (Lines 19-20), the server receiving the request (Lines 22-23), and the
server sending the response (Lines 25-26), respectively.

There are a growing number of industry implementations of distributed tracing systems,
including (AWS’s X-Ray 2020; Google’s Dapper 2020; Alibaba’s ARMS 2020; Dyna-
trace 2020; Splunk 2020). Furthermore, many open-source projects are available to the
community: Skywalking (2020), HTrace (2020), Zipkin (2020), and Jaeger (2020). They
are often used together with message bus such as Apache Kafka (2020) and storage such as
ElasticSearch (2020).

Logs, traces, and metrics are often known as the three pillars of observability and serve
their own unique purpose and are complementary (Sridharan 2018). For a microservice
system, the logs include application logs, system logs, and also span logs; the traces are
produced by the distributed tracing system and restored from span logs; the metrics include
both system metrics (e.g., CPU/memory consumption rate) and application metrics (e.g.,
latency and error rate of service invocations).

3 Methodology

We conduct our study with a duration of four months using interview, being a common qual-
itative research approach (Kvale 2008). The overall procedure is illustrated in Figure 4. We
divide the procedure into three parts: interview planning, interview process, and interview
result analysis.

3.1 Interview Planning

At the planning stage, all authors of this article study critical procedures in distributed
tracing, brainstorm for research questions, search for appropriate interviewees, and draft
interview templates.

First, we search for appropriate interviewees. This study is designed to gain broad and
in-depth knowledge of distributed tracing in the real-world context of software industry.
Therefore, the interview candidates must be carefully selected. In particular, the candidates

Interview Transcripts

(39732 words)

3. Background

Inquiry and Selection

Interview Planning

Meeting

Interview

Candidates

(38)

1. Interviewee

Search

2. Interview

Template Drafting

Interviewees (25)

4. Pilot

Interview

Interview

Template

Drafts

Interview Templates

5. Interview Template

Improvement

6. Interview Completion

Interview Process Interview Result Analysis

7. Data Collection

Recordings

Notes

8. Data

Transformation

9. Coding

About 0.5 month About 2.5 months About 1 month

Interview

Results

10. Proofread

G1 G2 G3
13. New Topic

Summarization

11. Interview

Followup

12. Expected Topic

Determination

Fig. 4 Research Procedure of Interview

25 Page 6 of 28 Empir Software Eng (2022) 27: 25

must have hand-on experiences with distributed tracing systems and are currently work-
ing on microservice systems as various roles (e.g., application or infrastructure developers,
operation engineers).

We identify interview candidates from three sources: technical summits, technical
forums, and industrial research partners. Two authors of this paper have previously
acquainted with multiple industry partners at conferences (e.g., KubeCon 2019, ASE 2019),
and these industry partners are invited as interviewees. An author of this paper owns a soft-
ware engineering technical forum, and we invite relevant industry partners from the forum.
Besides, two interviewed companies are in active partnership with our lab on tracing related
research. In total, we invite 38 candidates who are interested in and familiar with distributed
tracing in microservice systems.

Then all authors of this article brainstorm and draft the interview templates. We design
the interview templates such that interview would take around 30-80 minutes. To partition
interviewees into different groups, we create a background interview template to get some
necessary information about the interviewees, their company, and their microservice system.
The background interview template is as follows.

T1. Background Interview Topics

– Experience and Background: Interviewee’s working
experience, job title, familiarity with distributed tracing
and other general information.

– Company Overview: Company type, and company size.
– Microservice System Overview: Microservice system

introduction, the number of services, deployment environ-
ment.

With the background interview template, we make the background inquiry with the 38
interview candidates. For experiences, we require the interviewees to be knowledgeable
about distributed tracing practices and engineering. For systems, we require the systems
that the interviewees work on to adopt microservice architecture. The interviewees from
the companies with tracing capabilities are required to have hand-on tracing development
experience or use the tracing application for their core job functionality. This information is
also later used to split the candidates into groups. We also select the diversified interviewees
to work for different sizes and types of company, as well as the microservice system types or
tracing capabilities. We finally select 25 interviewees from ten companies. These companies
cover five different domains (i.e., E-commerce, entertainment, finance, manufacture, and
ERP), and thus can well represent the general practices of industrial microservice systems.

3.2 Interview Process

In this stage, we split interviewees into groups, conduct pilot interview to improve the
quality, complete full interviews, and collect results.

Based on the background inquires, we partition the interviewees into three groups, i.e.,
(G1) six interviewees working on microservice systems that do not have distributed trac-
ing capabilities for now. Still, they are familiar with distributed tracing and work in related
domains (e.g., monitoring, site reliability engineering); (G2) ten interviewees who are trac-
ing system developers or operation engineers who develop or maintain the tracing systems

Page 7 of 28 25Empir Software Eng (2022) 27: 25

in their companies; (G3) nine interviewees who are application developers in their compa-
nies and use the data or applications of distributed tracing. We design different interview
templates for different groups.

For G1, we explore the reasons why the interviewees do not use distributed tracing in
their microservice systems and whether they plan to implement distributed tracing sys-
tems in the future. For G2, we focus on the practices that the interviewees have explored
and adopted to implement the distributed tracing pipeline, i.e., logging, collection, prepro-
cessing, storage, and analysis. For G3, we explore what kind of analysis the interviewees
perform with the distributed tracing systems. Besides, we design the interviews to be semi-
structured: we have question sections to be covered comprehensively; still, we allow the
interview conversation to go into depth when the interviewee mentions related experience
or pain points. During the deep dives, we discover practices and challenges.

In this way, we design the three interview templates as follows (note that all questions
are designed to be open-ended so that interviewees can elaborate with details).

T2. Interview template for G1: the interviewees who work on
microservice systems without tracing capability

– Why not equip the microservice systems with distributed
tracing?

– What are the challenges of implementing distributed trac-
ing?

– Is there any plan to implement distributed tracing in the
future?

T3. Interview template for G2: the interviewees who imple-
ment and maintain distributed tracing

– How is the trace logging designed and implemented?What
are the pros, cons, and challenges?

– How is the trace collection designed and implemented?
What are the pros, cons, and challenges?

– How is the trace preprocessing designed and imple-
mented? What are the pros, cons, and challenges?

– How is the trace storage designed and implemented?What
are the pros, cons, and challenges?

– How is the trace application designed and implemented?
What are the pros, cons and challenges?

– What are the future work and expectations for the tracing
systems?

T4. Interview template for G3: the interviewees who consume
tracing data or use its application

– What are the applications of distributed tracing?
– How do these applications benefit or support your work?
– What are the expectations or opportunities to improve the

current practice?

25 Page 8 of 28 Empir Software Eng (2022) 27: 25

After we draft the interview templates, we conduct pilot interviews with three expe-
rienced engineers (one from each group). During the interviews, we take notes of their
comments and suggestions. Then according to their feedback, we improve the interview
templates and adjust the wording to make sure that the interview questions are unambiguous
and meaningful.

Next, we conduct the official interviews. The face-to-face meetings are conducted and
later switch to remote video calls due to the coronavirus pandemic. We spend about two
months on carrying out all interview sessions. Each session involves at least two researchers
as the interviewers. During the interview, one researcher is primarily engaged in asking
questions and driving the discussion. The others are mainly responsible for taking notes
and asking supplementary questions. Meanwhile, to assure the correctness of our study, we
record all of the interview sessions with the interviewee permission. The recordings are
done by using a digital voice or screen recorder.

3.3 Interview Result Analysis

We collect the recordings and notes from the interview process, and study them to conclude
and sum up the key findings of this study. We convert over 700 minutes’ interview record-
ings into text documents with the aid of a speech recognition application. Then we combine
our notes with the text documents into complete interview transcripts (with 39,732 words).

Next, two students code the interview transcripts following the open coding man-
ual (Strauss and Corbin 1990). They gradually discuss and refine the codes and organizing
them by hierarchy. During the coding process, the transcripts are cross-validated and cor-
rected with meeting notes. Each interview’s outcome is also presented and discussed in
our research group. During the discussion, we sum up the discoveries and plan follow-up
interviews. We have follow-up interviews with the interviewees of S1-S8 to learn about
some missing details and the later discovered practices or applications (such as analysis
application).

To learn from the interview results, we determine the expected topics such as tracing
implementation and classic usage of tracing. We focus on commonly applied tracing prac-
tices, i.e., how to implement the distributed tracing pipeline, as shown in Section 4. We also
discover a lot of new knowledge along the way, such as novel trace analysis applications,
as shown in Section 4.5. For discoveries, we sum up new topics by discussing and horizon-
tally comparing the findings from different companies. Section 5 presents many discovered
tracing practices and applications.

4 Results

Our survey covers ten microservice systems from ten different companies. An overview
of these systems is shown in Table 1. The ten companies belong to different industries,
including five Internet companies, three finance companies, one manufacturing company,
and one IT company. Among these companies, C1, C2, C3, and C6 are Fortune 500 compa-
nies. The ten subject systems belong to different business domains, including e-commerce,
finance, manufacture, entertainment, and ERP. These systems have different sizes, ranging
from 10+ to 100,000+ services and 5K+ to 100K+ lines of code per service. S1 is a huge
ecosystem across multiple sub-domains of e-commerce, and thus includes a large number
of services. These systems adopt different deployment environments: S1, S2, and S5 use
physical machines, virtual machines, and containers at the same time; S6 uses both physical

Page 9 of 28 25Empir Software Eng (2022) 27: 25

Table 1 Overview of companies

Sys. Company Domain #Service Service Size (KLOC) Deployment

S1 C1 (Internet) E-commerce 10,000+ 50+ PM, VM, CT

S2 C2 (Internet) E-commerce 3,000+ 50+ PM, VM, CT

S3 C3 (Internet) E-commerce 1,000+ 50+ VM, CT

S4 C4 (Internet) Entertainment 700+ 30+ VM

S5 C5 (Finance) Finance 200+ 100+ PM, VM, CT

S6 C6 (Manufacture) Manufacture 100+ 50+ PM, VM

S7 C7 (Finance) Finance 50+ 80+ VM

S8 C8 (Finance) Finance 40+ 20+ VM

S9 C9 (Internet) E-commerce 40+ 5+ VM

S10 C10 (IT) ERP 10+ 20+ VM, CT

PM: Physical Machine; VM: Virtual Machine; CT: Container

machines and virtual machines; S3 and S10 use both virtual machines and containers; S4,
S7, S8, and S9 use only virtual machines.

All the ten systems except S9 and S10 (which the interviewees in G1 are working on)
have established the practices of distributed tracing and analysis. For S9, the interviewees
mention that the company has planned to establish such infrastructures in the near future.
For S10, the interviewees say that considering the return on investment they do not plan to
introduce tracing into their microservice system as it is small and the traces are very short
(e.g., involving two to three services). In contrast, for all the other microservice systems,
distributed tracing has been an important part of their microservice infrastructures and sup-
ports a variety of development and operation tasks (see the applications in Section 4.5).
From the survey, we can see that distributed tracing is less necessary for small microservice
systems where the number of services is small and service invocation chains are short. For
these small systems, the developers usually can easily understand service interactions and
locate individual faulty services and thus do not rely on traces.

The eight systems with distributed tracing (i.e., S1-S8) commonly implement the tracing
and analysis pipeline as shown in Fig. 1, which includes five parts, i.e., logging, collec-
tion, preprocessing, storage, and analysis. Despite sharing the same logical structure, the
implementations of the pipeline in different companies differ in its architecture and con-
stituent components. For example, the pipeline implemented for S1, S2, S3, S4, S5, and
S6 uses a message bus to increase the reliability of log transmission and collection (S1
and S3 use their own message buses and the others use Kafka 2020); the pipeline imple-
mented for S1, S2, S3, S4, and S6 uses a stream computing engine to achieve real-time
processing of trace data (S1 uses their own stream computing engine and the others use
Flink 2021). Some companies (e.g., the companies of S1, S2, S3, S4, and S6) choose to
develop their own distributed tracing systems from scratch to implement the pipeline and
make it a part of their microservice infrastructures. These companies, especially those large
Internet companies, usually have a devoted team to maintain and manage the infrastructures.
The pipeline for S5 and S8 is implemented based on the ELK stack, i.e., Logstash (2020)
for log collection, ElasticSearch (2020) for log indexing and retrieval, and Kibana (2020)
for visualization. The pipeline for S7 uses the all-in-one solution provided by SkyWalk-
ing (2020), which implements distributed tracing, service mesh telemetry analysis, metric

25 Page 10 of 28 Empir Software Eng (2022) 27: 25

aggregation, and visualization. These smaller companies have only several engineers who
maintain and manage the infrastructures.

The results presented in the remaining of this section are all based on the eight systems
with distributed tracing (i.e., S1-S8).

4.1 Logging

The logging practices of the surveyed microservice systems can be summarized from three
aspects: logger implementation, i.e., how to implement the span logger and integrate it with
service instances; content and format, i.e., what content is recorded in the span logs and
in what format; sampling, i.e., how to choose the service invocations to be logged. The
results are shown in Table 2, including the implementation techniques, supported languages,
coverage of services, log format, and sampling strategy.

4.1.1 Logger Implementation

The surveyed microservice systems adopt the following three logger implementation
techniques.

– Manual Coding: Service developers manually implement logging in their code follow-
ing relevant standards and using given Software Development Kits (SDKs). Usually the
developers need to initiate a tracer when a service starts and call the tracer before and
after a service invocation to produce a span log.

– Tracing Framework: The microservice system to be logged deploys a tracing frame-
work in its runtime infrastructure. Service developers need to only implement service
invocations as specified by the framework, e.g., using specific APIs for service invo-
cations. The developers do not need to implement additional logging functionalities in
their code. For example, when using the Spring Boot framework, the developers need
to use a set of predefined APIs (e.g., RestTemplate) for service invocation, and the
framework implicitly records the span logs.

– Dynamic Binary Instrumentation: The microservice system to be logged uses
a runtime agent to dynamically inject instrumentation code into service instances.
The instrumentation code implements the required logging functionalities. Service
developers do not need to do anything extra for logging.

Table 2 Logging practices of the surveyed systems

System Technique Supported language Coverage Format Sampling

S1 T-MC, T-TF Java, Go, Node.js 90% Customized
√

S2 T-MC, T-TF Java, C++, Node.js 98% OpenTracing
√

S3 T-MC, T-DBI Java 90% Customized
√

S4 T-TF Java, C++, Node.js 90% Customized
√

S5 T-TF Java 90% Customized ×
S6 T-TF Java, C++ 98% Customized ×
S7 T-DBI Java 100% Customized ×
S8 T-TF Java, C++, Go 98% OpenTracing ×

Page 11 of 28 25Empir Software Eng (2022) 27: 25

The characteristics of these techniques, including advantages and disadvantages, are
summarized in Table 3. The technique of manual coding is intrusive and requires additional
effort, but easy to implement. The developers can flexibly decide the logging position and
log content. This technique is error prone, as the developers may make mistakes, e.g.,
passing a wrong parameter to the logger. The technique of tracing framework is weakly
intrusive, as the developers need to load the framework into the development environment
and implement service invocations as specified by the framework. This technique requires
a little additional effort and is less error prone, but requires a heavy-overhead framework
and is inflexible in logging positions and content. The technique of dynamic binary instru-
mentation is non-intrusive and less error prone, and requires no additional effort. But this
technique is language-dependent, as the service to be logged needs to be implemented by a
language that supports dynamic instrumentation (e.g., Java). Also this technique is inflexible
in logging positions and content.

From Table 2, it can be seen that six out of eight microservice systems use the tech-
nique of tracing framework for logging implementation; the other two microservice systems
use the technique of dynamic binary instrumentation. It can be seen that the technique of
tracing framework is more preferred, as it makes a good tradeoff between intrusive and non-
intrusive logging. The technique of manual coding is used in the three largest microservice
systems (i.e., S1-S3) as a complementary technique for two reasons. First, large microser-
vice systems often include legacy services that are developed using outdated techniques,
and the technique of tracing framework or dynamic binary instrumentation may not work
for these services. Second, these microservice systems many need to add application spe-
cific information (e.g., order ID) to the logs to support more sophisticated trace analysis. All
of the eight microservice systems support Java for logging and some systems also support
Go, Node.js, and C++. In all these microservice systems, the coverage of service logging is
above 90%. The reasons for the services that are not covered are usually that these services
are not core business services and there is no need to involve them in trace analysis; they
are legacy services and it is hard to implement logging for them.

4.1.2 Content and Format

Nearly all the surveyed microservice systems include in their span logs basic information
that is necessary for restoring and analyzing a trace. This information includes trace ID, span
ID, invoked service name, timestamp, duration, and error tag. These microservice systems
also record additional information in the span logs to facilitate fault diagnosis, e.g., order
ID for business faults and data center name for infrastructure related faults.

Table 3 Logger implementation techniques

Technique Intrusion Advantage Disadvantage

T-MC: Manual Coding Intrusive easy to
implement,
flexible

additional effort, error prone

T-TF: Tracing Framework Weakly Intrusive a little effort, less
error prone

heavy-overhead
framework,
inflexible

T-DBI:
Dynamic Binary
Instrumentation

Non-Intrusive no additional
effort, less error
prone

language dependent, inflexible

25 Page 12 of 28 Empir Software Eng (2022) 27: 25

S2 and S7 follow the log formats suggested by the OpenTracing specification, which
defines a series of fields for spans, e.g., operation name, start time, end time, tags, and span
contexts. S2 used customized log formats at first. When OpenTracing became popular in
2017, the company decided to shift to OpenTracing because the company thought that it
could benefit from the development of the active OpenTracing community. S7 uses the all-
in-one solution provided by SkyWalking, so it naturally follows OpenTracing. The other
microservice systems use their own formats for the following respective reasons. S3 believes
that OpenTracing cannot meet its customized requirements, e.g., the special format of span
ID for indicating the relationships between spans; S4 and S6 develop their own specifica-
tions before OpenTracing and think that it is unnecessary to migrate to OpenTracing. S8
believes that OpenTracing is too complicated for S8, and it requires much effort to adapt to
OpenTracing based on S8’s existing ELK stack. These customized formats define similar
concepts that can be mapped to the OpenTracing specification. However, two microservice
systems (S1, S5) are planning to migrate to OpenTracing, as it has an active open-source
community that provides various tools.

From the preceding analysis, it can be seen that OpenTracing specification should be
the first choice for microservice systems considering its active open-source community that
provides various tools.

4.1.3 Sampling

Logging brings extra overhead to services and log storage. Therefore, when the service traf-
fic is heavy, log sampling is necessary for the tracing system. As the sampling occurs before
the trace is restored, it is called head-based sampling. Among the eight surveyed microser-
vice systems, the four bigger microservice systems (i.e., S1-S4) use head-based sampling.
All of them combine two sampling strategies, i.e., fixed probability sampling and adaptive
sampling. The former records logs for service invocations with a fixed probability, while
the latter dynamically adjusts the probability to ensure that the number of logs produced in
a period of time keeps stable. S4 implements an alarm-based adaptive sampling: when an
alarm associated with a service instance is raised, the logger changes to log all the service
invocations. For the other four microservice systems, which do not use head-based sam-
pling, the explanation is that the logging overhead is neglectable due to the system scale and
traffic.

A problem with head-based sampling is that it cannot consider the features of traces such
as error state and latency. Therefore, it is usually combined with tail-based sampling, which
samples traces in preprocessing.

We discuss tail-based sampling in Section 4.3.

4.2 Collection

Span logs generated by service instances are continuously collected by a centralized col-
lector. The collection mechanism at the service instance side is usually implemented in the
following two techniques.

– Agent-based Log Collection: An accompanying agent collects the logs of a service
instance and pushes them to the collector, as shown in Fig. 5a.

– Agent-less Log Collection: A service instance itself sends the logs produced by it to
the collector, as shown in Fig. 5b.

Page 13 of 28 25Empir Software Eng (2022) 27: 25

Host or Container

Log

File

Write logs

Pull logs

Push logs

Service Instance

Agent

Collector

Log

File

Log

File

Host or Container

Log

File

Write logs

Pull logs

Service Instance

Agent

Log

File

Log

File

Host or Container

Log

File

Write logs

Pull logs

Service Instance

Agent

Log

File

Log

File

Host or Container

Push logs

Service

Instance

Collector

Collection

Implementation

Host or Container

Service

Instance

Collection

Implementation

Host or Container

Service

Instance

Collection

Implementation

Fig. 5 Agent-based and Agent-less Log Collection

Using agent-based log collection, the developers do not need to consider log collection.
Moreover, the agent can perform some local preprocessing, e.g., filtering and formatting
logs, and flexibly adjust its collection strategy, e.g., pausing pushing logs when the available
system resources are insufficient. The disadvantage of this technique lies in its complex-
ity and the requirements of infrastructure support: each node in the cluster has to install
the agent and there are requirements of additional efforts for assuring the operation of the
agents. Agent-less log collection is easy to implement and has no requirement of infrastruc-
ture support, but requires the developers to embed the collection implementation in their
code. Among our surveyed microservice systems, the six bigger systems (i.e., S1-S6) use
agent-based log collection as they can afford the additional infrastructure support for the
agents, while the other two use agent-less log collection.

4.3 Preprocessing

Preprocessing usually includes data formatting, metric aggregation, and tail-based sampling.
Data formatting transforms the logs produced by different services into the same format.

Among the surveyed systems, S1 and S2 involve data formatting, as they include services
using different technology stacks and their log formats are slightly different.

Metric aggregation computes aggregated metrics of traces from different dimensions.
Among the surveyed microservice systems, S1, S2, S3, S4, and S7 perform metric aggrega-
tion in log preprocessing. They aggregate the traces from different dimensions such as URL,
service name, and data center, and produce aggregated metrics such as Queries Per Second
(QPS), average response time, and error rate. Note that the metrics that can be aggregated are
those that are bounded to service requests and can be calculated from trace logs. Other met-
rics such as CPU usage and memory usage are collected in a way independent of distributed
tracing and how to incorporate these metrics into trace analysis is still a challenge.

Tail-based sampling occurs in log preprocessing when all the information (e.g., spans
and metrics) of a trace have been available. Therefore, tail-based sampling can make sam-
pling decisions based on the error states and metrics of the traces. Among the surveyed
microservice systems, S1, S2, and S4 perform tail-based sampling. For example, S1 selects
traces with error tags or incomplete traces (where the traces may be broken by exceptions)
in tail-based sampling.

4.4 Storage

After preprocessing, the trace data is persisted in storage for further analysis. Our study
shows that it is common to combine multiple different strategies for trace data storage.

25 Page 14 of 28 Empir Software Eng (2022) 27: 25

S1 uses a self-developed column-oriented database to store the traces and a distributed
non-relational database (HBase) to store aggregated metrics and reports generated by pre-
processing. S2 uses an open-source column-oriented database (Clickhouse) to store traces
and a graph database (Neo4j) to store the topologies of traces. S3 uses HBase to store
traces and a self-developed in-memory database to store aggregated metrics generated by
preprocessing. Other systems (S4-S8) use ElasticSearch as the backend storage. But the
interviewees of S4 say that they are considering to use HBase to store historical traces due
to the increasing volume of trace data.

From the results, we can see that for large microservice systems efficient and scalable
trace data storage is essential, while for small microservice systems a general search and
analytics engine such as ElasticSearch is sufficient.

4.5 Analysis

An overview of the trace analysis applications is shown in Table 4. Operation engineers
and developers rely on trace analysis for different purposes such as system understand-
ing, anomaly detection, and problem diagnosis. They use various trace analysis applications
provided by open-source tools (e.g., SkyWalking 2020; Zipkin 2020; Jaeger 2020) or cus-
tomized tools developed by themselves. These applications combine span logs, application
logs, and system metrics, and use different analysis techniques including visualization,
statistics (i.e., statistical calculation of related metrics), and rule-based decision.

Timeline Analysis Timeline analysis visualizes the execution process and time consump-
tion of a single trace. It uses a Gantt chart to show the nested service invocations (spans) and
the duration of each invocation. The timeline analysis interface provided by Jaeger 2020 is

Table 4 Trace analysis application overview

Application Purpose Data Technique Applied in

Timeline Analy-
sis

visualize the execution
process and time con-
sumption of a single
trace for performance
analysis

span log visualization S1, S2, S3, S4,
S5, S6, S7, S8

Service
Dependency
Analysis

provide an overview of
service dependencies at
runtime by visualization

span log statistics, visual-
ization

S1, S2, S3, S4,
S5, S6, S7

Aggregation
Analysis

group traces from dif-
ferent dimensions and
aggregate related metrics
to provide an abstract
view for traces

span log, applica-
tion log, system
metrics

statistics, visual-
ization

S1, S2, S3, S4, S7

Root Cause Anal-
ysis

use trace analysis to
locate the root causes of
various kinds of faults

span log, applica-
tion log, system
metrics

statistics, visual-
ization

S1, S2, S3, S4,
S5, S6, S7, S8

Anomaly Detec-
tion

detect possible anoma-
lies of service execu-
tion and generate timely
alerts

span log rule-based
decision,
visualization

S1, S2, S3, S4, S7

Page 15 of 28 25Empir Software Eng (2022) 27: 25

Fig. 6 Timeline Analysis in Jaeger

shown in Fig. 6, which depicts the trace data of TrainTicket1 (Zhou et al. 2021), an open-
source microservice benchmark. It describes the spans of a trace according to the order of
invocation. Each span is depicted as a bar indicating its duration of time and is nested in its
parent span. Some companies use additional visual information to better support the analy-
sis. For example, the timeline analysis in S4 uses the darkness of the span color to indicate
the time duration. The data used for timeline analysis includes trace spans and span dura-
tion. The used technique is visualization. Timeline analysis is usually used to narrow down
the range of troubleshooting for time-related problems such as service invocation latency
and timeout.

Service Dependency Analysis Service dependency analysis provides an overview of the
service dependencies at runtime using flow-graph-based visualization.

The service dependency analysis interface provided by Jaeger (2020) is shown in Fig. 7,
which depicts the service dependencies of TrainTicket. The interface describes the depen-
dencies between services, and the numbers of service invocations are labeled on the edges.
Some companies use additional visual information to highlight important metrics. For
example, the service dependency analysis in S1, S3, and S4 uses the thickness of service
dependency edges to indicate the frequency of service invocations (calculated by counting
the number of invocations between two services in a given time period); the analysis in S4
uses the darkness of the service color to indicate the degree that other services depend on the
current service (calculated by counting the number of invocations to a service in a given time
period). In S1, S2, S3, S5, and S7, the service dependency analysis is extended to include
various infrastructure services such as message queue, distributed cache, and database (e.g.,
MySQL and Mongo).

Service dependency analysis is usually used to understand the runtime architecture and
service dependencies. As it highlights the upstream and downstream relationships among
services, it can also be used to analyze error propagation chains. In some systems (e.g., S1),
service dependency analysis is further used in runtime change impact analysis. Operation

1https://github.com/FudanSELab/train-ticket

25 Page 16 of 28 Empir Software Eng (2022) 27: 25

https://github.com/FudanSELab/train-ticket

Fig. 7 Service Dependency Analysis in Jaeger

engineers compare the service dependencies before and after a release at runtime to under-
stand the change impact and determine the minimal range of rollback in case of failure. In
other systems (e.g., S7), service dependency analysis is used to observe the status of canary
release, e.g., to examine the traffic of the new service versions.

Aggregation Analysis Aggregation analysis groups traces from different dimensions and
computes aggregated metrics to provide an abstract view for traces. The traces with exactly
the same set of services and the same invocation orders can be grouped into a path. The
paths belonging to the same business scenario can be further grouped into a business flow.
Along with the trace grouping, relevant metrics are aggregated. These metrics include not
only service invocation metrics obtained from span logs (e.g., service invocation count and
error rate), but also system metrics (e.g., CPU/memory consumption rate) obtained from
system monitoring tools (e.g., Prometheus 2020) and application events (e.g., numbers of
different types of exceptions) obtained from application logs. Besides general application
events such as raised exceptions, application-specific events are collected and aggregated.
For example, E-commerce systems (S1-S3) aggregate core business events such as suc-
cessful payment; S4 aggregates VIP subscription events; S7 aggregates important financial
events such as deposit changes. The system metrics are usually associated with traces based
on timestamps. To associate application events with traces, microservice systems usually
choose to embed trace IDs in application logs. The results of aggregation analysis can be
visualized for developers and operation engineers to understand the business flows and
architecture and discover potential problems.

Root Cause Analysis Root cause analysis uses trace analysis to locate the root causes
of various kinds of faults such as functional failures and performance issues. Basic root
cause analysis can be analyzing a single trace to learn the upstream and downstream rela-
tionships between services and identify error propagation chains. One can also compare

Page 17 of 28 25Empir Software Eng (2022) 27: 25

different traces of the same type to understand the differences between failing and success-
ful traces (Zhou et al. 2021). Advanced root cause analysis queries traces within a given
time range and meeting certain conditions (e.g., involving invocations of specific services)
and analyzes various aggregated metrics (e.g., error rate, average latency, and CPU con-
sumption) to locate root causes. This analysis allows the analysis of various metrics in the
context of service interactions. It requires efficient queries of trace data and the associa-
tion of various internal or external metrics with traces. For example, S1, S2, S3, and S4
provide trace visualization that associates traces with various applications and system met-
rics such as different kinds of exceptions, and CPU and memory consumption in a given
time range. This analysis can help developers and operation engineers to narrow down the
range of troubleshooting, e.g., by determining whether the root cause lies in code defects or
infrastructure failures.

Anomaly Detection Anomaly detection detects possible anomalies of service execution
and generates timely alerts. It continuously analyzes trace metrics (e.g., latency) to identify
possible anomalies according to predefined rules, e.g., jitter or exceeding the threshold.
Moreover, it can report abnormal traces as the context for further troubleshooting. Based on
the traces, one can check the upstream and downstream services of the anomaly location. For
example, S4 provides anomaly detection for API availability and supports the corresponding
trace context analysis.

From Table 4 and the preceding analysis, it can be seen that timeline analysis, ser-
vice dependency analysis, and root cause analysis are basic analysis applications equipped
by nearly all the companies using distributed tracing. This result can be explained from
two aspects. First, these applications provide the basic capabilities required to diagnose
functional and non-functional faults and understand the runtime behaviors of microservice
systems. Second, these applications are provided by open-source tools such as Jaeger and
thus are easy to equip.

In contrast, aggregation analysis and anomaly detection are often used in large microser-
vice systems (e.g., S1-S4) for two main reasons. First, these systems are large and complex,
and it is thus more difficult for the developers to achieve timely fault diagnosis using the
basic analysis applications. Second, this analysis requires more advanced data processing
and analysis such as stream data analysis, data mining, and machine leaning, which can be
afforded by only large companies. Note that although root cause analysis is necessary for
all the companies, it is implemented in different ways. Large companies often implement
semi-automatic root cause analysis that uses more advanced techniques (e.g., data mining,
machine learning) and incorporates logs and metrics into trace data analysis, while small
companies often use basic analysis capabilities such as trace and dependency visualization
and rely more on human expertise.

In somemicroservice systems, different applications are combined for a specific purpose.
For example, S2 combines service dependency analysis with aggregation analysis for root
cause analysis. It aggregates traces into paths and business flows, and then incorporates
aggregated metrics such as error rate to identify possible error propagation chains. S1 and
S3 combine anomaly detection with root cause analysis to automatically suggest candidate
root causes for the detected anomalies.

4.6 Summary

Our survey indicates that industrial microservice tracing and analysis has widely followed
the distributed tracing practices and developed various trace analysis applications for different

25 Page 18 of 28 Empir Software Eng (2022) 27: 25

purposes. Their tracing and analysis pipelines have a similar structure, which includes log-
ging, collection, preprocessing, storage, and analysis. Large companies, especially Internet
companies whose businesses are run as online services, may choose to develop and main-
tain their own distributed tracing systems due to the following two considerations. First,
their large-scale microservice systems often have strict requirements on the reliability and
performance of trace data processing, typically not satisfied by open-source solutions. Sec-
ond, their large-scale microservice systems have a high demand on various customized trace
analysis applications, typically not provided by open-source solutions. In contrast, small
companies often choose to use the all-in-one solutions provided by open-source projects
such as SkyWalking (2020), as they cannot afford a dedicated team for the development and
maintenance of distributed tracing systems.

The implementations of the pipeline in different companies reflect the considerations of
legacy services and the tradeoffs between a series of concerns. Large microservice systems
often have a long history of evolution and include legacy services developed using outdated
techniques. Therefore, a unified framework (e.g., tracing framework) may not work for all
the services, and complementary techniques such as manual coding for logger implementa-
tion may be used. The tradeoff between the convenience for developers and infrastructure
investment influences multiple design decisions. More advanced solutions such as tracing-
framework-based logging and agent-based log collection relieve the developers from the
implementation of distributed tracing, but require the investment on microservice infras-
tructures. Large companies usually choose to build the required infrastructures to improve
efficiency and quality, while small companies usually choose to adopt simpler solutions
to avoid building and maintaining additional infrastructures. Moreover, container-based
deployment facilitates the application of more advanced solutions, as their components (e.g.,
agent, collector, preprocessor) can be deployed in containers and orchestrated and managed
together with service instances by platforms such as Kubernetes.

The design decisions for logging include logger implementation, content and format,
and sampling. Logger implementation focuses on the tradeoff between intrusive and non-
intrusive implementation techniques. Tracing framework is more preferred, as it makes
a good tradeoff between intrusive and non-intrusive logging. Manual coding is used as
a complementary technique in large microservice systems to support legacy services and
include application specific information in logs. The companies widely follow the log con-
tent and format defined by the OpenTracing specification. Although some companies use
customized formats, their customized formats are based on similar concepts that can be
mapped to the OpenTracing specification. Moreover, there is a trend of migrating to the
OpenTracing specification to benefit from its active open-source community. The sampling
strategies for logging (and also preprocessing) focus on the tradeoff between overhead and
completeness. Sampling can alleviate the overhead to services and log storage while losing
important traces for trace analysis tasks such as root cause analysis.

The design decisions for log collection focus on the tradeoff between agent-based and
agent-less techniques. Agent-based log collection relieves the developers from the con-
sideration of log collection and supports flexible customization of log collection strategy.
Therefore, companies often choose to use agent-based log collection if they can afford the
additional infrastructure support for the agents.

Preprocessing usually includes data formatting, metric aggregation, and tail-based sam-
pling. Large microservice systems are more likely to include such preprocessing as they
may have more complex technology stacks causing differences in log formats and a larger
volume of trace data requiring more efficient data analysis.

Page 19 of 28 25Empir Software Eng (2022) 27: 25

Trace data storage is more challenging for large microservice systems, which have a
large volume of trace data. They often combine different storage strategies such as relational
database, column-oriented database, graph database, distributed non-relational database,
and in-memory database to support a variety of highly efficient trace analysis.

Trace analysis has been widely used for understanding the runtime architectures and
dependencies of microservice systems, and discovering and locating functional or non-
functional faults. Visualization and statistic-based metrics are the most common means for
trace analysis, while more advanced analysis techniques such as machine learning and data
mining are seldom used. Some companies have tried to incorporate application logs and
system metrics into trace analysis to provide a more comprehensive view for developers
and operation engineers. However, the alignment between different monitoring data is dif-
ficult. The huge amount of trace data has been the main challenge for trace analysis. To
mitigate the challenge, some companies have tried to provide flexible filtering and aggre-
gation of trace data. In summary, most companies have established practices of preliminary
trace analysis, but the application of intelligent analysis techniques is still in its infancy.

Service mesh has been regarded as an emerging solution for microservice tracing. It
is a dedicated infrastructure layer for facilitating service-to-service communications, often
using a sidecar proxy (Sidecar 2020). Service mesh manages traffic flows between services.
Thus service developers do not need to care about the implementation of distributed trac-
ing. However, none of our surveyed systems use service mesh for tracing, and the reasons
include three aspects. First, the service mesh is still new, and the technology accumulation
is insufficient. Second, service mesh has a high demand for the infrastructure. For example,
service mesh implementations such as Istio (2020) require that the services are deployed
on Kubernetes (2020). Third, the cost of migrating from the current tracing framework to
service mesh is high.

5 Discussion

Distributed tracing is essential for a microservice system to acquire the required observabil-
ity. Our survey indicates that microservice tracing and analysis is a new big data problem
for software engineering. We have seen challenges and opportunities, which call for further
research on the topics, as supported by our findings from different systems (see Table 5).

Adaptive Log Sampling The basic problem for log sampling strategy is how to keep a low
overhead while ensuring that the required span logs are available for trace analysis. Anoma-
lies and faults are rare, but at the same time, anomaly detection and root cause analysis are
sensitive to the availability of relevant traces. Therefore, adaptive sampling is necessary to
satisfy the requirements of anomaly detection and root cause analysis. The current adaptive
sampling practices revealed by our study use only simple rules to adjust the sampling rate in

Table 5 Overview of challenges
and opportunities Challenges and opportunities Supporting systems

Adaptive Log Sampling S1, S2, S3, S4

Data Fusion for Trace Analysis S1, S2, S3, S4, S5, S7

More Intelligent Trace Analysis S1, S2, S3, S4

Business Intelligence by Trace Analysis S1, S2

25 Page 20 of 28 Empir Software Eng (2022) 27: 25

logging dynamically, and thus cannot ensure the capturing of valuable traces. Considering
the nature of log generation and processing, it may be crucial to perform trace examination
in preprocessing and build a feedback control loop between logging and preprocessing. In
this way, preprocessing can continuously analyze the restored traces and estimate various
properties such as likelihood of anomaly, relevance to root cause analysis, and coverage
of different dimensions (e.g., business scenarios and data centers). These results are then
fed back to the loggers of relevant service instances to enable them to adjust the sampling
strategies accordingly.

Data Fusion for TraceAnalysis Microservice faults may be rooted in environmental config-
urations, deployment, service interactions, and service implementation (Zhou et al. 2021).
Incidents of systems and cloud infrastructure may also influence the traces of services.
Therefore, trace analysis for anomaly detection and root cause analysis requires to combine
other data such as environmental configurations, system metrics, and application logs. The
data fusion is challenging as different types of data are specified from various dimensions
and generated at different frequencies. For example, resource metrics (e.g., CPU/memory
consumption rates) are generated at fixed intervals (e.g., every one minute). Thus we can
only roughly associate a trace with the metrics with the closest timestamps. Moreover,
the combined analysis of different types of data is also challenging, as there are compli-
cated confounding effects of environmental factors (e.g., environmental configurations and
resource consumptions) in anomaly detection and root cause analysis.

More Intelligent Trace Analysis We notice that some companies have established suc-
cessful practices of AIOps (artificial intelligence for IT operations) at the system and
infrastructure level, enabling them to predict incidents of networks and servers. These inci-
dents have relatively limited types (e.g., disk damage, bad memory, network latency) and
involve limited nodes, and thus are easier to simulate and predict. In contrast, intelligent
trace analysis is more difficult, as microservice faults can be rooted in many different
sources. Moreover, microservice traces may involve a lot of services and even multiple data
centers, and there is a huge number of traces produced every second. These characteristics
make microservice trace analysis more challenging. Our study reveals some additional diffi-
culties in practice. First, the quality of the trace data is low and problems such as incomplete
or erroneous traces are popular. This difficulty often occurs in large systems that include a
large number of services developed by different teams, in different time periods, and using
different technology stacks. Second, trace data annotation is often expensive and challeng-
ing. The feedback in our survey indicates that the annotation is challenging as it is hard to
define the classification of faults and identify problematic traces for annotation. Moreover,
trace data annotation is greatly influenced by the ever-changing architecture of a microser-
vice system. It is desired that traditional debugging techniques can be further developed and
applied in microservice trace analysis to facilitate anomaly detection and root cause analy-
sis. In addition, unsupervised, semi-supervised, and weakly supervised learning techniques
may be important due to the lack of trace data annotation.

Business Intelligence by Trace Analysis The feedback in our survey prompts us to think
about trace analysis from a broader and newer perspective of value delivery. Trace analysis
can implement business intelligence and deliver value to a broader range of stakeholders.
A trace records the execution process of a request through a number of services, nodes,
and even data centers. Thus it can associate the execution records of different levels such
as resource consumptions and business transactions to enable the dig of value for different

Page 21 of 28 25Empir Software Eng (2022) 27: 25

stakeholders. For example, we can analyze the contributions of different nodes and data
centers that are involved in business transactions to analyze the return on investment of
cloud infrastructure. Therefore, it may be a promising direction that distributed tracing and
trace analysis are used to associate execution records of different levels to deliver value to
different stakeholders.

6 RelatedWork

More than ten years back, distributed tracing systems (e.g., Magpie (Barham et al. 2003) and
XTrace (Fonseca et al. 2007)) are proposed and focused on performance analysis of physical
machines and operating systems in detail. However, these systems do not apply to modern
complicated distributed systems, such as microservice systems. In 2010, Google proposed
Dapper (Sigelman et al. 2010), a production tracing infrastructure for distributed systems.
Dapper first adopts some design choices such as the use of sampling and restrictive instru-
mentation to make it applicable to complicated distributed systems consisting of thousands
of machines. Ever since, many other industrial companies (e.g., eBay 2020; Netflix 2020)
have built their own distributed tracing systems.

Distributed tracing is also a hot topic in the open-source community. Nowadays, there are
many active projects for distributed tracing implementation, e.g., Pinpoint (2020), Zipkin
(2020), Jaeger 2020, SkyWalking (2020). As distributed tracing becomes widespread in
complicated distributed systems, specifications such as OpenTracing (2020), OpenCensus
(2020), and OpenTelemetry (2020) have emerged. They allow developers to instrument their
application code without locking them into any one particular framework.

Distributed tracing is widely used on anomaly detection (Zhou et al. 2019; Barham et al.
2004; Chen et al. 2004; Mace et al. 2015), diagnosis of steady-state problems (Chen et al.
2004; Fonseca et al. 2010; Fonseca et al. 2007; Reynolds et al. 2006; Sambasivan et al.
2011; Sigelman et al. 2010), profiling (Chanda et al. 2007; Sigelman et al. 2010), resource-
usage attribution (Fonseca et al. 2008; Thereska et al. 2006), and evaluation of microservice
architecture (Engel et al. 2018; Bogner et al. 2019). Mace et al. (2015) launched a project
called Pivot Tracing to help diagnose unanticipated problems in distributed applications
on the fly. Pham et al. (2017) introduced an approach to automating failure diagnosis in
distributed systems by reconstructing and comparing execution traces. Zhou et al. (2021)
proposed a visualization analysis to compare two different traces for service- and state-level
debugging. Zhou et al. (2019) proposed an approach to predicting latent error and localiz-
ing fault for microservice applications by learning from system trace logs. Lenarduzzi and
Panichella (2021) used distributed tracing to debug serverless-based microservices. Engel
et al. (2018) proposed an evaluation approach for microservice architectures using trace
data. While the preceding previous research focused on specific aspects of trace analysis,
our research provides a comprehensive and detailed introduction to trace analysis in the
industry, and summarizes the challenges and problems that still exist.

Quite a few industry surveys were conducted for microservice architecture. Di Francesco
et al. (2018) performed an empirical study on migration practices toward the adoption of
microservices in industry. Haselböck et al. (2018) investigated the importance of different
areas of microservice design. Ten microservice experts were interviewed to understand the
importance and relevance of the microservices design areas. Justus et al. (Bogner et al.
2019) contributed a qualitative study with insights into industry adoption and implementa-
tion of microservices by analyzing 14 service-based systems during 17 interviews. Zhang

25 Page 22 of 28 Empir Software Eng (2022) 27: 25

et al. (2019) carried out a series of industrial interviews with 13 different types of compa-
nies to investigate the gap between the ideal visions and real industrial practices along with
the benefits of microservices from the industrial experiences. Zhou et al. (2021) conducted
an industry survey on microservices, reporting on the visualization practices of distributed
tracing in the industry. The preceding previous research comprehensively investigated the
practice of microservice systems in the industry but did not discuss distributed tracing in
depth. Our research comprehensively introduces the practices and applications of distributed
tracing in industrial microservice systems in detail, and summarizes the existing challenges
and problems. There were some surveys for studying logging practices for large systems,
e.g., Yuan et al. (2012). To the best of our knowledge, our research is the very first empirical
study on distributed tracing.

Dynamic tracing is also used in the analysis of a single monolithic system. Previous
related research (Chen et al. 2017; Taibi and Systä 2019) used dynamic tracing to collect
and mine the execution processes of a single monolithic system to help the decisions of
microservice decomposition and migration.

7 Conclusion

In this article, we have presented an industrial survey on microservice tracing and analysis
through interviewing developers and operation engineers of microservice systems from ten
companies. Our survey indicates that distributed tracing and analysis has been an impor-
tant part of the infrastructure for industrial microservice systems, commonly equipped with
a tracing and analysis pipeline (which includes logging, collection, preprocessing, storage,
and analysis). However, the implementations of the pipeline in different companies dif-
fer in its architecture and constituent components. Large companies tend to develop and
maintain their own distributed tracing systems, while small companies often choose to use
the all-in-one solutions provided by open-source projects. The implementations reflect the
considerations of legacy services and the tradeoffs between a series of concerns.

Our survey also indicates that microservice tracing and analysis is a new big data problem
for software engineering, and its practices breed new challenges and opportunities, includ-
ing adaptive log sampling, data fusion for trace analysis, more intelligent trace analysis, and
business intelligence by trace analysis. In particular, most companies have established prac-
tices of preliminary trace analysis, but the application of intelligent analysis techniques is
still in its infancy. The quality of the trace data, the lack of trace data annotation, and the
ever-changing nature of microservice architecture are the main difficulties.

In future work, we plan to adapt traditional software engineering techniques such as
program analysis, reverse engineering, and debugging to facilitate microservice tracing and
analysis.

Acknowledgements This work was supported by the National Key Research and Development Program of
China under Grant No. 2018YFB1004803.

References

Alibabacloud.Com: Alibabacloud (2020). https://www.alibabacloud.com/help/doc-detail/42781.htm?
spm=a2c63.l28256.b99.2.7def74893VnsEp

Aws.Amazon.Com: AWS (2020). https://aws.amazon.com/xray/

Page 23 of 28 25Empir Software Eng (2022) 27: 25

https://www.alibabacloud.com/help/doc-detail/42781.htm?spm=a2 c63.l28256.b99.2.7def74893VnsEp
https://www.alibabacloud.com/help/doc-detail/42781.htm?spm=a2 c63.l28256.b99.2.7def74893VnsEp
https://aws.amazon.com/xray/

Barham P., Donnelly A., Isaacs R., Mortier R. (2004) Using Magpie for request extraction and workload
modelling. In: 6Th USENIX symposium on operating systems design and implementation (OSDI), pp
259–272

Barham P., Isaacs R., Mortier R., Narayanan D. (2003) Magpie: Online modelling and performance-aware
systems. In: 9Th workshop on hot topics in operating systems (hotOS), pp 85–90

Bogner J., Fritzsch J., Wagner S., Zimmermann A. (2019) Microservices in industry: Insights into technolo-
gies, characteristics, and software quality. In: IEEE International conference on software architecture
companion (ICSA-c), pp 187–195

Bogner J., Schlinger S., Wagner S., Zimmermann A. (2019) A modular approach to calculate service-
based maintainability metrics from runtime data of microservices. In: 20Th international conference on
product-focused software process improvement (PROFES), pp 489–496

Brown K (2021) Cloud adoption patterns. https://kgb1001001.github.io/cloudadoptionpatterns/
Cloud-Native-DevOps/Correlation-ID/

Chanda A., Cox A. L., Zwaenepoel W. (2007) Whodunit: Transactional profiling for multi-tier applications.
In: 2Nd ACM SIGOPS/eurosys european conference on computer systems (eurosys), pp 17–30

Chen M. Y., Accardi A. J., Kiciman E., Patterson D. A., Fox A., Brewer E. A. (2004) Path-based failure and
evolution management. In: 1St symposium on networked systems design and implementation (NSDI),
pp 309–322

Chen R., Li S., Li Z. (2017) From monolith to microservices: A dataflow-driven approach. In: 24Th asia-
pacific software engineering conference (APSEC), pp 466–475

Developer.Ebay.Com: Ebay developers program (2020). https://developer.ebay.com/
Di Francesco P., Lago P., Malavolta I. (2018) Migrating towards microservice architectures: an industrial

survey. In: IEEE International conference on software architecture (ICSA), pp 29–39
Dynatrace.Cn: Dynatrace (2020). https://www.dynatrace.cn/
Elasticsearch.Com: Elasticsearch (2020). https://www.elastic.co/products/elasticsearch
Engel T., Langermeier M., Bauer B., Hofmann A. (2018) Evaluation of microservice architectures: a metric

and tool-based approach. In: Information systems in the big data era, pp 74–89
Flink.com: Apache flink (2021). https://flink.apache.org/
Fonseca R., Dutta P., Levis P., Stoica I. (2008) Quanto: Tracking energy in networked embedded systems. In:

8Th USENIX symposium on operating systems design and implementation (OSDI), pp 323–338
Fonseca R., Freedman M., Porter G. (2010) Experiences with tracing causality in networked services. In: 1St

internet network management workshop/workshop on research on enterprise monitoring
Fonseca R., Porter G., Katz R. H., Shenker S., Stoica I. (2007) X-trace: A pervasive network tracing

framework. In: 4Th symposium on networked systems design and implementation (NSDI), pp 271–284
Francesco P. D., Malavolta I., Lago P. (2017) Research on architecting microservices: trends, focus, and

potential for industrial adoption. In: IEEE International conference on software architecture (ICSA), pp
21–30

Haselböck S., Weinreich R., Buchgeher G. (2018) An expert interview study on areas of microservice design.
In: 11Th IEEE conference on service-oriented computing and applications (SOCA), pp 137–144

Htrace.Org: Htrace (2020). http://htrace.org/
Istio.Io: Istio (2020). https://istio.io/
Istio.Io: Sidecar (2020). https://istio.io/docs/reference/config/networking/sidecar/
Jaegertracing.Io: Jaegertracing (2020). https://www.jaegertracing.io/
Kafka.Com: Apache Kafka (2021). http://kafka.apache.org/
Kaldor J., Mace J., Bejda M., Gao E., Kuropatwa W., O’Neill J., Ong K. W., Schaller B., Shan P., Viscomi

B., Venkataraman V., Veeraraghavan K., Song Y. J. (2017) Canopy: an end-to-end performance tracing
and analysis system. In: 26Th symposium on operating systems principles (SOSP), pp 34–50

Kibana.Com: Kibana (2020). https://www.elastic.co/products/kibana
Kubernetes.Io: Kubernetes (2020). https://kubernetes.io/
Kvale S. (2008) Doing interviews. Sage
Lenarduzzi V., Panichella A. (2021) Serverless testing: Tool vendors’ and experts’ points of view. IEEE

Softw 38(1):54–60
Lewis J, Fowler M (2020) Microservices. https://martinfowler.com/articles/microservices.html
Logging.Apache.Org: Apache (2020). https://logging.apache.org/log4j/2.x/
Logstash.Com: Logstash (2020). https://www.elastic.co/products/logstash
Mace J., Roelke R., Fonseca R. (2015) Pivot tracing: Dynamic causal monitoring for distributed systems. In:

25Th symposium on operating systems principles (SOSP), pp 378–393
Naver.Github.Io: Dynatrace (2020). http://naver.github.io/pinpoint/
Netflix.Com: Netflix (2014). https://www.netflix.com/
Newman S. (2015) Building microservices - designing fine-grained systems, 1st edn. O’Reilly

25 Page 24 of 28 Empir Software Eng (2022) 27: 25

https://kgb1001001.github.io/cloudadoptionpatterns/Cloud-Nati ve-DevOps/Correlation-ID/
https://kgb1001001.github.io/cloudadoptionpatterns/Cloud-Nati ve-DevOps/Correlation-ID/
https://developer.ebay.com/
https://www.dynatrace.cn/
https://www.elastic.co/products/elasticsearch
https://flink.apache.org/
http://htrace.org/
https://istio.io/
https://istio.io/docs/reference/config/networking/sidecar/
https://www.jaegertracing.io/
http://kafka.apache.org/
https://www.elastic.co/products/kibana
https://kubernetes.io/
https://martinfowler.com/articles/microservices.html
https://logging.apache.org/log4j/2.x/
https://www.elastic.co/products/logstash
http://naver.github.io/pinpoint/
https://www.netflix.com/

Opencensus.Io: Opencensus (2020). https://opencensus.io/
Opentelemetry.Io: Opentelemetry (2020). https://opentelemetry.io/
Opentracing.Io: Opentracing (2020). https://opentracing.io/
Pham C., Wang L., Tak B., Baset S., Tang C., Kalbarczyk Z. T., Iyer R. K. (2017) Failure diagnosis for

distributed systems using targeted fault injection. IEEE Trans Parallel Distrib Syst (TPDS) 28(2):503–
516

Prometheus.Io: Prometheus (2020). https://prometheus.io/
Qos.ch: Qos (2020). http://logback.qos.ch/
Reynolds P., Killian C., Wiener J., Mogul J., Shah M., Vahdat A. (2006) Pip: Detecting the unexpected in

distributed systems. In: 3Rd symposium on networked systems design and implementation (NSDI), pp
115–128

Richardson C. (2019) Microservices patterns: With examples in java. Manning Publications Co
Sambasivan R. R., Zheng A. X., Rosa M. D., Krevat E., Whitman S., Stroucken M., Wang W., Xu L., Ganger

G. R. (2011) Diagnosing performance changes by comparing request flows. In: 8Th symposium on
networked systems design and implementation (NSDI)

Sigelman B. H., Barroso L. A., Burrows M., Stephenson P., Plakal M., Beaver D., Jaspan S., Shanbhag C.
(2010) Dapper a large-scale distributed systems tracing infrastructure

Skywalking.Org: Apache Skywalking (2020). https://skywalking.apache.org/
Splunk.Com: Splunk observability (2021). https://www.splunk.com/
Sridharan C. (2018) Distributed systems observability: a guide to building robust systems. O’Reilly Media,

Inc
Strauss A., Corbin J. (1990) Open coding. In: Strauss A, Corbin J (eds) Basics of qualitative research:

Grounded theory procedures and techniques. Sage Publications, London, pp 101-121
Taibi D., Systä K (2019) From monolithic systems to microservices: A decomposition framework based on

process mining. In: 9Th international conference on cloud computing and services science (CLOSER),
pp 153–164

Thereska E., Salmon B., Strunk J. D., Wachs M., Abd-el-malek M, Hernandez J. L, Ganger G. R (2006)
Stardust: tracking activity in a distributed storage system. In: ACM SIGMETRICS Joint international
conference on measurement and modeling of computer systems (SIGMETRICS), pp 3–14

Wikipedia.Org: Wikipedia (2020). https://en.wikipedia.org/wiki/Log file
Yuan D., Park S., Zhou Y. (2012) Characterizing logging practices in open-source software. In: 34Th

international conference on software engineering (ICSE), pp 102–112
Zhang H., Li S., Jia Z., Zhong C., Zhang C. (2019) Microservice architecture in reality: an industrial inquiry.

In: IEEE International conference on software architecture (ICSA), pp 51–60
Zhou X., Peng X., Xie T., Sun J., Ji C., Li W., Ding D. (2021) Fault analysis and debugging of microser-

vice systems: Industrial survey, benchmark system, and empirical study. IEEE Trans Softw Eng (TSE)
47(2):243–260

Zhou X., Peng X., Xie T., Sun J., Ji C., Liu D., Xiang Q., He C. (2019) Latent error prediction and fault local-
ization for microservice applications by learning from system trace logs. In: 27Th ACM joint meeting on
european software engineering conference and symposium on the foundations of software engineering
(ESEC/SIGSOFT FSE), pp 683–694

Zhou X., Peng X., Xie T., Sun J., Li W., Ji C., Ding D. (2018) Delta debugging microservice systems. In:
33Rd ACM/IEEE international conference on automated software engineering (ASE), pp 802–807

Zipkin.Io: Zipkin (2020). https://zipkin.io/

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Page 25 of 28 25Empir Software Eng (2022) 27: 25

https://opencensus.io/
https://opentelemetry.io/
https://opentracing.io/
https://prometheus.io/
http://logback.qos.ch/
https://skywalking.apache.org/
https://www.splunk.com/
https://en.wikipedia.org/wiki/Log_file
https://zipkin.io/

Bowen Li is a master student of the School of Computer Science,
Fudan University, China. He received his bachelor’s degree from
Nanjing University in 2019. His research interests include cloud-
native software and AIOps.

Xin Peng received the bachelor’s and PhD degrees in computer sci-
ence from Fudan University, in 2001 and 2006, respectively. He is
a professor of the School of Computer Science, Fudan University,
China. His research interests include data-driven intelligent software
development, cloud-native software and AIOps, software engineering
for AI and cyber-physical-social Systems. His work won the ICSM
2011 Best Paper Award, the ACM SIGSOFT Distinguished Paper
Award at ASE 2018, the IEEE TCSE Distinguished Paper Awards
at ICSME 2018/2019/2020, and the IEEE Transactions on Software
Engineering 2018 Best Paper Award.

Qilin Xiang is a master student of the School of Computer Science,
Fudan University, China. He received his bachelor’s degree from Uni-
versity of Electronic Science and Technology of China in 2018. His
research interests include cloud-native software and AIOps.

25 Page 26 of 28 Empir Software Eng (2022) 27: 25

Hanzhang Wang is an applied researcher at eBay. He is leading a
team of developers and researchers working on AIOps and AI4SE
solutions. His recent research interests include intelligent observ-
ability, AIOps, RCA, SE, ML and graph algorithms. He has multi-
ple publications in top venues, including FSE, ASE, VLDB, TSC,
CIKM, etc. The research outcomes have been transferred into mul-
tiple production products for anomaly detection, root cause analysis,
developer velocity, etc. Hanzhang also serves as the company-wide
university parentship program manager. He received Ph.D. degree in
computing science from University of Michigan and joined eBay in
2018.

Tao Xie is a Chair Professor in the Department of Computer Sci-
ence and Technology at Peking University, Beijing, China, and Vice
Director of Key Lab of High Confidence Software Technologies
(PKU), Ministry of Education. He received an NSF CAREER Award,
ACM SIGSOFT Distinguished Service Award, IEEE CS TCSE Dis-
tinguished Service Award, ASE 2021 Most Influential Paper Award,
and various industrial faculty awards and distinguished/best paper
awards. He is a co-Editor-in-Chief of the Wiley journal of Software
Testing, Verification and Reliability (STVR). He served as the ISSTA
2015 Program Chair, Tapia 2017/2018 Program/General Chair, and
an ICSE 2021 Program Co-Chair. He was selected by Lero as a David
Lorge Parnas Fellow in 2019. He was selected as an ACM Distin-
guished Scientist in 2015, an IEEE Fellow in 2018, and an AAAS
Fellow in 2019.

Jun Sun is currently an associate professor at Singapore Management
University (SMU). He received Bachelor and PhD degrees in comput-
ing science fromNational University of Singapore (NUS) in 2002 and
2006. In 2007, he received the prestigious LEEKUANYEWpostdoc-
toral fellowship. He has been a faculty member since 2010 and was
a visiting scholar at MIT from 2011-2012. Jun’s research interests
include software engineering, cyber-security and formal methods.

Page 27 of 28 25Empir Software Eng (2022) 27: 25

Xuanzhe Liu is now an associate professor in Peking University.
His recent interests include distributed systems, software engineering,
machine learning, etc. He has published over 70 referred papers in
prestigious conferences like WWW, ICSE, FSE MobiCom, MobiSys,
etc., and journals like ACM TOSEM/TOIS and IEEE TSE/TMC, etc.
He received various Best Paper Awards from WWW 2019, ICSS
2010, CyberC 2009, etc. He was recognized as the Young Scientist
Award that was co-awarded by China Computer Federation (CCF)
and IEEE Computer Society and the Rising Star Award of IEEE
Technical Committee on Services Computing.

25 Page 28 of 28 Empir Software Eng (2022) 27: 25

	Enjoy your observability: an industrial survey of microservice tracing and analysis
	Abstract
	Introduction
	Background
	Methodology
	Interview Planning
	Interview Process
	Interview Result Analysis

	Results
	Logging
	Logger Implementation
	Content and Format
	Sampling

	Collection
	Preprocessing
	Storage
	Analysis
	Timeline Analysis
	Service Dependency Analysis
	Aggregation Analysis
	Root Cause Analysis
	Anomaly Detection

	Summary

	Discussion
	Adaptive Log Sampling
	Data Fusion for Trace Analysis
	More Intelligent Trace Analysis
	Business Intelligence by Trace Analysis

	Related Work
	Conclusion
	References

