
Empirical Software Engineering (2021) 26: 74
https://doi.org/10.1007/s10664-021-09955-7

Lessons Learnt on Reproducibility in Machine Learning
Based Android Malware Detection

Nadia Daoudi1 ·Kevin Allix1 · Tegawendé F. Bissyandé1 · Jacques Klein1

Accepted: 26 February 2021
© The Author(s) 2021

Abstract
A well-known curse of computer security research is that it often produces systems that,
while technically sound, fail operationally. To overcome this curse, the community gener-
ally seeks to assess proposed systems under a variety of settings in order to make explicit
every potential bias. In this respect, recently, research achievements on machine learning
based malware detection are being considered for thorough evaluation by the community.
Such an effort of comprehensive evaluation supposes first and foremost the possibility to
perform an independent reproduction study in order to sharpen evaluations presented by
approaches’ authors. The question Can published approaches actually be reproduced? thus
becomes paramount despite the little interest such mundane and practical aspects seem to
attract in the malware detection field. In this paper, we attempt a complete reproduction
of five Android Malware Detectors from the literature and discuss to what extent they are
“reproducible”. Notably, we provide insights on the implications around the guesswork that
may be required to finalise a working implementation. Finally, we discuss how barriers
to reproduction could be lifted, and how the malware detection field would benefit from
stronger reproducibility standards—like many various fields already have.

Keywords Android malware dection · Machine learning · Reproducibility · Replicability

Communicated by: Meiyappan Nagappan

� Nadia Daoudi
nadia.daoudi@uni.lu

Kevin Allix
kevin.allix@uni.lu

Tegawendé F. Bissyandé
tegawende.bissyande@uni.lu

Jacques Klein
jacques.klein@uni.lu

1 Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, 29,
Avenue J.F Kennedy, L-1855, Luxembourg, Luxembourg

/ Published online: 24 May 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-09955-7&domain=pdf
http://orcid.org/0000-0002-1437-667X
mailto: nadia.daoudi@uni.lu
mailto: kevin.allix@uni.lu
mailto: tegawende.bissyande@uni.lu
mailto: jacques.klein@uni.lu

Empir Software Eng (2021) 26: 74

I shall require that [the] logical form [of a scientific system] shall be such that it can
be singled out, by means of empirical tests, in a negative sense: it must be possible
for an empirical scientific system to be refuted by experience.
—Karl Popper, The Logic of Scientific Discovery, 1959 (Popper 2002, p19)

1 Introduction

Mobile malware is now established as a serious threat. Its volume has increased steadily
in recent years, in particular within the Android ecosystem whose popularity has attracted
significant interest from malware writers. Security reports by Google, the Android platform
maintainer, as well as by antivirus vendors even indicate that mobile malware is increas-
ingly sophisticated and evolves fast, which suggests that organised criminal groups are
heavily invested in producing and distributing malware at scale. To overcome this threat,
the research community has quickly turned to machine learning techniques (Arp et al. 2014;
Mariconti et al. 2017; Avdiienko et al. 2015; Garcia et al. 2018; Gascon et al. 2013; Jerome
et al. 2014; Narayanan et al. 2017) as a potential panacea for identifying malware at scale
within market apps and on users’ devices. Approaches proposed in the literature have been
reported to successfully identify a great deal of malware samples with little analysis effort
(e.g., sometimes just enumerating requested permissions as learning features) and without
any prior knowledge on the actual malicious behaviour to identify.

Recently, however, a number of studies have started to explicitly cast doubts on the perfor-
mance achievements that are claimed in the literature. Notably, researchers have raised some
concerns about the variety of evaluation biases that many works carry. For example, Allix
et al. (2015) and Allix et al. (2016a) then (Pendlebury et al. 2019) have experimentally
shown that the performance of malware detectors that are described in the literature is
actually highly dependent on experimental parameters, such as dataset construction or eval-
uation methodology. Evaluation is indeed often biased towards reaching high performance
while overlooking a general threat to validity in the fact that the machine learning paradigm
itself brings its own share of variability in performance (Islam et al. 2017; Hutson 2018).

Evaluating the performance of a Security system is challenging (Van der Kouwe et al.
2019). Yet, to advance research on malware detectors, the community needs to ensure that
evaluations of the approaches are comprehensive and reliable. Traditionally, research com-
munities in various domains rely on independent reproduction to either adjust the level of trust
in published results, and to uncover potential biases or limitations not considered in the original
publication (Duvendack et al. 2015; Fokkens et al. 2013; Gundersen and Kjensmo 2018).

Reproducibility is an important criterion for acknowledging a research contribution. It is
highly related to the concepts of repeatability and replicability. The exact meaning of these
terms (i.e., Repeatability, Reproducibility, and Replicability) can however vary over time
and across research fields (Plesser 2018). In the remainder of this paper we will refer to the
Terminology section of ACM’s Artefact Review and Badging policy (Association for Com-
puter Machinery 2020)1. The concepts differ mainly on who re-performs the experiments
and/or whether the experimental setup is changed from the original one:

– Repeatability: “Same team, same experimental setup”;
– Reproducibility: “Different team, same experimental setup”;
– Replicability: “Different team, different experimental setup”.

1https://www.acm.org/publications/policies/artifact-review-and-badging-current, We note that this defini-
tion changed in 2020. In this paper we refer to the updated definition.

74 Page 2 of 53

https://www.acm.org/publications/policies/artifact-review-and-badging-current

Empir Software Eng (2021) 26: 74

Given that the community must validate the assessment results provided by specific research
groups in the literature, reproducibility appears to be the key concern.

Although there is a consensus on the benefits brought by reproduction, its conditions and
practical barriers have so far received little attention in the field of Android malware detec-
tion. In recent years, the concerns have culminated to the extent that many major venues
encourage the review of research artefacts in parallel to the submitted papers.

This paper We consider the possibility to reproduce machine learning based malware
detection approaches by focusing on potentially influential research results presented at
major venues. After applying filtering criteria (which are developed in Sect. 3.1), we have
identified five approaches that are relevant for our empirical analysis on reproducibil-
ity of machine learning based Android malware detection approaches. Notably, our study
investigates the following research questions:

– Can android malware detection approaches be reproduced and/or replicated?
– What is the amount of guesswork needed to reproduce these?
– What are the barriers to reproducibility?

To answer these questions, we embark on a complete reproduction attempt of the five
identified literature approaches that rely on machine learning techniques to perform

binary classification and family identification of Android apps:

– DREBIN, which was presented by Arp et al. (2014) at the NDSS symposium in 2014.
With over a thousand citations, this work is regarded as a first breakthrough in this
research direction.

– MaMaDroid, which was presented2 by Mariconti et al. (2017) again at the NDSS sym-
posium in 2017. This state of the art has also rapidly collected over a hundred citations.

– RevealDroid, which was published by Garcia et al. (2018) in the TOSEM journal in
2018. This work has been also presented at ICSE in the same year and has collected
more than 50 citations.

– DroidCat, which was published in the TIFS journal in 2019 by Cai et al. (2019) and
has collected more than 30 citations.

– MalScan, the most recent identified approach, which has been presented at ASE in
2019 by Wu et al. (2019).

Overall, our experiments have resulted in: (1) successfully reproducing MalScan
approach; (2) successfully replicating DREBIN, MaMaDroid, and RevealDroid; (3) and
failure to reproduce and replicate DroidCat

The paper reports on our following contributions:

– We discuss the implications of the practical obstacles that must be overcome when
attempting to reproduce state-of-the-art approaches from the literature;

– We present a detailed explanation of why the reproduction attempts eventually turn into
replication studies in machine learning based malware detection;

– We discuss how other scientific fields, when faced with similar questions, are trying to
outgrow from what is often called the Reproduction Crisis;

2Note that an earlier version (Mariconti et al. 2016) of the research paper was published in 2016

Page 3 of 53 74

Empir Software Eng (2021) 26: 74

Features Extrac�on Vector Embedding

Feature1

Feature3

Classifica�on
Malware

Goodware

Dataset

. ...

.

.. .

.-Permissions

-Network addresses

-API calls

-Hardware
components

-…

Machine

Learning

Feature2

Fig. 1 Traditional machine learning building blocks

– We detail the consequences of non-reproducibility for the field of Android Malware
Detection research.

2 Ingredients for Building aMachine Learning basedMalware Detector

We revisit in this section the typical building blocks of an ML-based malware detector.
The general workflow requires labelled datasets for training and testing ML models, a
well-defined feature engineering procedure (features extraction + embedding) as well as
a selection of supervised learning algorithms for classification. Figure 1 illustrates the
various building blocks which are further detailed as follows.

2.1 Datasets

The first step in conducting a machine learning experiment is to collect a dataset. Such
a dataset must be relevant to the prediction task (e.g., a dataset of apps with labels on
maliciousness state is necessary to classify an android app as malware or goodware) and
complete (e.g., the dataset must contain both malware and goodware). For the case of
Android, labelled datasets can be collected from different sources:

– Curated malware datasets, such as Genome (Zhou and Jiang 2012) and DREBIN (Arp
et al. 2014).

– Android app markets such as the official Google Play Store, and alternative markets
like Amazon Appstore and AppChina.

– AndroZoo (Allix et al. 2016b), which is a growing collection of over 13 million Android
apps regularly crawled from app markets.

For practicality reasons, in order to label app samples in a large scale manner, researchers
rely on antivirus engines or online services such as VirusTotal3 to determine if an app
sample is malware or goodware. Depending on the level of consensus among different
antivirus decisions, malware datasets may be more or less noised. For example, while many
evaluation scenarios consider an app to be malicious as long as it is flagged by any antivirus,
some researchers define a threshold of n (with n > 1) antivirus agreements for considering
a sample as malware.

2.2 Feature Extraction

Once datasets are collected, researchers proceed to identify app features that must be
extracted to build representations of each sample. Such feature engineering is focused

3https://www.virustotal.com hosts several antivirus products and other tools that regularly scan files to flag
malicious samples

74 Page 4 of 53

https://www.virustotal.com

Empir Software Eng (2021) 26: 74

on making explicit the characteristics that can help discriminate malware from goodware
samples. There is a variety of features that can be extracted from the APK files4. The
most common ones in the literature are permissions, App components, intents, API calls,
and network addresses. Various tools are then leveraged to perform feature extraction,
including AAPT2 (Android Asset Packaging Tool)5, AndroData (Khatter and Malik 2015),
AppExtractor (Zhao et al. 2015), and AndroParse (Schmicker et al. 2019).

2.3 Embedding

Machine learning algorithms take as input numerical vectors that are amenable to computing
in a vector space. Such vectors are constructed based on details of the extracted features.
The idea of embedding is to create a vector space that translates the information contained
in the features (e.g., a vector space that has the value 1 if the dimension (the feature) is
present in the app, and 0 otherwise)

2.4 Classification

Once feature vectors are extracted for the samples in the dataset, learning algorithms can be
applied to build classifiers. There are two types of classification:

– Binary classification, which is most prevalent, consists in predicting whether a sample
belongs to the malware class or the goowdware class.

– Multi-class classification which promotes a finer-grained prediction, mainly to the level
of which malware family the sample is associated to.

To evaluate classification approaches, a labelled dataset is required where each sample
is known to be malware or goodware. Then, the dataset is split into:

– A training set, which is leveraged by the learning algorithms such as Support Vector
Machines (Hearst et al. 1998) and Random Forests (Breiman 2001) to uncover the
relationships between the input feature vectors, and the output class. Generally, the
learning algorithm tries to discover the discrimination thresholds between classes in the
vector space.

– A test set, which is separate from the training set, but drawn from the same distribution,
is used to assess the performance of the trained classifier. Performance metrics are
computed by comparing the predictions of the classifier on each test sample against the
ground truth class of the sample.

Besides the datasets, which may impact the performance of the classifiers, some hyper-
parameters tuning for the learning algorithms may significantly impact the resulting classifier.

Reproduction challenge. To perform reproduction experiments for a given litera-
ture approach, the aforementioned building blocks of the detector evaluation must be
clearly described with sufficient details that leave no room to ambiguity. A lack of
information in the description of any of the building blocks may deeply impact the
reproducibility of the entire approach.

4APK (Android PacKage) if the file format used for Android applications
5https://developer.android.com/studio/command-line/aapt2

Page 5 of 53 74

https://developer.android.com/studio/command-line/aapt2

Empir Software Eng (2021) 26: 74

3 Reproduction

We now describe our journey to reproduce five approaches identified from the litera-
ture. First, we present the selection criteria, which eventually led to the identification of
DREBIN (Arp et al. 2014), MaMaDroid (Mariconti et al. 2017), RevealDroid (Garcia et al.
2018), DroidCat (Cai et al. 2019), and MalScan (Wu et al. 2019). Then, for each repro-
duction subject, we (1) introduce the approach, (2) describe how we reproduce the building
blocks of the machine learning approach, and (3) quantitatively compare the results obtained
based on our reproduction against the results presented in the original publication. We note
that we have contacted the original authors in order to ask them for some artefacts, and some
problems encountered during the reproduction process.

Our reproduction is a contribution to the community effort for advancing the field of
malware detection. It should not be viewed as a criticism of the reproduced approaches,
nor as casting doubts on our community. This work has even been possible because
original authors tried their best to help us with original dataset and even clarify code.

3.1 Reproduction Subject Selection

To select our candidate approaches, we have relied on the following methodology: First, we con-
sider 16 major venues in Software Engineering, Security, andMachine Learning (EMSE, TIFS,
TOSEM, TSE, FSE, ASE, ICSE, NDSS, S&P, Usenix Security, CCS, AsiaCCS, SIGKDD,
NIPS, ICML, and IJCAI) that are consensually6 tagged as the top venues in their respective
domains.

Papers presented at these top conferences/journals in the last ten years (i.e., from 2009-
2019) are then listed as the subject population. Then, we selected candidate papers that have
{malware or malicious} and {classification or detection or android or mobile} in their title.
Note that we have used these six keywords in order to maximise the chance to find the papers
that deal with Androidmalware detection. Table 1 summarises the statistics of relevant subjects.

We then examined each of the 82 candidate papers individually and applied our first
selection criteria as follows: (1) the paper must propose an approach (i.e., not about empir-
ical analysis or surveys); (2) the paper must deal specifically with malware detection. 58
papers out of 82 have not satisfied these criteria, and then could not pass to the second round
of selection.

Table 18 in Appendix includes justifications for the rejection of these 58 candidate papers
based on the enumerated criteria.

The 24 remaining papers indeed matched our topic, and then passed to the second round
of selection. At this stage, we examined again each paper individually, and we applied our
second selection criteria as follows: (3) the paper must provide some artefacts to build on;
(4) the paper must provide enough details about how to perform the experiments. Unfortu-
nately, 19 papers out of 24 do not provide enough information about the dataset used in their
experiments (or provide information only about a subset of the apps) and (or) do not share
their artefacts (or provide enough details about their experiments) which makes it impossi-
ble to reproduce the approach. We present in Table 2 the details about the availability of the
artefacts for these 19 papers.

6Influential papers - https://www.sec.cs.tu-bs.de/∼konrieck/topnotch/; System security circus - http://s3.
eurecom.fr/∼balzarot/notes/top4 2019/; CORE ranking: http://portal.core.edu.au/conf-ranks/;

74 Page 6 of 53

https://www.sec.cs.tu-bs.de/~konrieck/topnotch/
http://s3.eurecom.fr/~balzarot/notes/top4_2019/
http://s3.eurecom.fr/~balzarot/notes/top4_2019/
http://portal.core.edu.au/conf-ranks/

Empir Software Eng (2021) 26: 74

Table 1 Number of listed and candidate papers from the 16 venues

Number of papers

Name of the venue listed candidate

EMSE 645 2

TIFS 1906 20

ACM TOSEM 246 1

TSE 708 1

FSE 838 2

ASE 884 2

ICSE 1281 5

NDSS 583 10

IEEE S&P 533 2

USENIX Security Symposium 684 10

ACM SIGSAC CCS 1185 4

ACM Asia CCS 648 12

ACM SIGKDD 1890 7

NIPS 6089 1

ICML 3728 0

IJCAI 4958 3

TOTAL 26 806 82

In the end, six papers (out of 82) have satisfied the minimum criteria for the reproduction
attempt. Our paper (Allix et al. 2016a) indeed matches our selection criteria, but we can not
attempt its reproduction based on ACM terminology.

We present in Table 2 the details about the availability of the artefacts for the 24 papers
that match our topic, including the 5 selected papers that are highlighted in yellow.

3.2 DREBIN

In 2014, Arp et al. (2014) have proposed an approach that performs a broad static analysis of
Android apps to collect a large number of features for learning to discriminate malware from
goodware. The analysis concerned both the disassembled bytecode as well as metadata from
the Manifest file. Overall, their DREBIN approach uses 8 types of features: Hardware com-
ponents, Requested permissions, App components, Filtered intents, Restricted API calls,
Used permissions, Suspicious API calls, and Network addresses.

3.2.1 Dataset

To reproduce DREBIN’s experiments, we obtained from the authors their original dataset
of 5560 malware APK files, which represents 4.3% of the total number of apps used in their
original publication. Unfortunately, the goodware dataset of 123 453 apks is not provided.
Instead, the authors release the list of the apks’ SHA256 hashes. For our reproduction effort,
we have leveraged AndroZoo (Allix et al. 2016b), which is to the best of our knowledge
the largest collection of Android apps, to build up again the original goodware set. Unfortu-
nately, after searching through the 10 millions of samples available at the time of the study
in AndroZoo, we have managed to retrieve only a subset of 57 307 applications (i.e., only

Page 7 of 53 74

Empir Software Eng (2021) 26: 74

Ta
bl
e
2

Sh
or
tl
is
te
d
Pa
pe
rs
.Y

el
lo
w
co
lo
ur

hi
gh
lig

ht
s
th
e
se
le
ct
ed

pa
pe
rs

74 Page 8 of 53

Empir Software Eng (2021) 26: 74

Ta
bl
e
2

(c
on
tin

ue
d)

p
=
pa
rt
ia
lly

*
=
R
ef
er

to
ou
r
pa
ra
gr
ap
h
on

se
le
ct
io
n
cr
ite
ri
a
in

Se
ct
io
n
3.
1

Page 9 of 53 74

Empir Software Eng (2021) 26: 74

Table 3 DREBIN dataset

APK files Malware Goodware

Original Paper 5560 123 453

Provided by authors 5560 0

Obtained using SHA256 lists 0 57 307

Our completed dataset 0 66 153

After features extraction 5479 123 453

46.42% of the dataset used for the original experiments). Therefore, in order to keep the
reproduction experiment as close as possible to the original experimental setup, we opted
to complement the goodware dataset by selecting goodware samples in AndroZoo from the
same period as indicated in the DREBIN publication (i.e., August 2010 - October 2012).
Overall, Table 3 provides a summary of our collected dataset.

3.2.2 Feature Extraction

The feature set is presented by DREBIN’s authors as a key contribution in their publication.
They provide artefacts where different files already record the extracted features for their
dataset apps. Given that we undertake to reproduce the entire approach, including the feature
extraction process, we must re-run feature extractors on the collected dataset.

DREBIN uses four sets of features (hardware components, requested permissions, app
components (names attributed by the developer to activities, services, content providers and
broadcast receivers components), filtered intents) that are extracted from the manifest file,
using the Android Asset Packaging Tool, and four other sets of features (restricted API calls,
used permissions, suspicious API calls, network addresses) that are extracted from the disas-
sembled code. Since the feature extraction scripts were not made available by the DREBIN
authors, we relied on externally re-implemented extractors7 (Narayanan et al. 2017). It is
noteworthy that we opted to port the code from python2.7—which is now considered End
of Life—to python3, and to use up-to-date libraries, in particular AndroGuard (Desnos and
Gueguen 2011) that performs most of the APK processing. We have made sure that the port-
ing has no impact on the output of the implemented code, and while not strictly required
for the purpose of this reproduction, this software update will allow our own reproduction
to outlive the already started phasing out of Python2.7.

After extracting the features, the size of the usable dataset is reduced, and passed from
5560 to 5479 apps for the malware, and from 57 307 to 57 300 apps for the goodware. This
reduction is mainly due to the presence of invalid APK files. The goodware apps used to
complete the goodware dataset are incrementally collected in order to have, after the features
extraction, the total number of goodware samples that is used in the original publication.
Our final completed dataset is then composed of 5479 malware applications, and 123 453
goodware samples as presented in Table 3

3.2.3 Feature Embedding

The extracted features are combined together to create vectors that are mapped into a n-
dimensional vector space where n is the total number of the extracted features. Typically,

7https://github.com/MLDroid/drebin

74 Page 10 of 53

https://github.com/MLDroid/drebin

Empir Software Eng (2021) 26: 74

given the n features extracted, if a feature exists in a sample apk, the vector associated to
the apk will have the value 1 at the index corresponding to the feature. Otherwise, the value
will be 0.

Although the original code to embed the extracted features into a vector-space amenable
for machine learning is not available, the embedding process was adequately docu-
mented, hence the embedding component was readily re-implemented in previous work by
Narayanan et al. (2017). Nevertheless, for practical reasons, we could only re-use the feature
extraction scripts provided by Narayanan et al.. Indeed, Narayanan et al. re-used the feature
set of DREBIN, but with a different experimental setup and the feature embedding step was
too tightly coupled with their own setup to be re-used in the context of a full reproduction
attempt.

3.2.4 Classification

DREBIN relies on Support Vector Machines (SVM) to predict the class (malware or
goodware) of a given app. Like most machine learning algorithms, SVM has various
options referred to as hyper-parameters. The relevance of these parameters is indirectly
acknowledged in the original paper through the statement

“The detection model and respective parameters of DREBIN are determined on the
known partition [. . .]”(Arp et al. 2014)

No further mention is made about the actual hyper-parameter tuning that was performed.
In particular, neither the values that were set nor the methods that were used to determine
those values are documented. To work around this issue, Narayanan et al. had to come
up with their own method of selecting C—the most important parameter of SVM—that
may or may not be equivalent to what was done in the original work. We adopt our own
strategy: after preliminary testing on more than 200 values of C, we noticed that C had
in this case negligible impact for values of C comprised between 0.01 and 100. Thus, we
opted to set C = 1, which is the default value implemented in scikit-learn8, the popular
Machine-Learning framework that we used for our reproduction experiments.

DREBIN authors indicate that 66% of their dataset has been used as a training set, and
33% as a test set. This procedure has been repeated 10 times and the results are averaged.
The dataset partitioning and the way the performance metrics are computed is adequately
documented, and we faced no difficulty when re-implementing this part.

The original publication was not accompanied with code artefacts on the classification part
either, and did not provide a precise description of the implementation. We have imple-
mented it ourselves, as part of the reproduction effort, using the scikit-learn framework.

3.2.5 Results

The results of our experiments show that DREBIN’s approach reaches a recall score of
0.92. In the original publication, the model was reported to detect 94% of the malware. We
provide in Fig. 2 the ROC curve extracted from DREBIN’s publication, which represents
the plot of the true-positive rate against the false positive rate. Our experiments lead to a
slightly different ROC curve presented in Fig. 3. The reproduced model slightly outperforms
the original one, but the overall performance is similar.

8https://scikit-learn.org

Page 11 of 53 74

https://scikit-learn.org

Empir Software Eng (2021) 26: 74

Fig. 2 ROC curve from DREBIN publication

3.3 MaMaDroid

In 2017, Mariconti et al. (2017) presented at the NDSS conference the MaMaDroid malware
detection system, which attempts to characterise the application behaviour (Mariconti et al.
2017). An extended version (Onwuzurike et al. 2019) has even been recently published in
the ACM Transactions on Privacy and Security. MaMadroid leverages the sequence of API
calls that are performed by each app. In order to extract the sequence of API calls, a call
graph is statically generated using the Soot (Vallée-Rai et al. 1999; Lam et al. 2011) static

Fig. 3 ROC curve from reproduction experiments

74 Page 12 of 53

Empir Software Eng (2021) 26: 74

analysis framework and FlowDroid (Arzt et al. 2014) for flow and context preservation.
Concretely, extracted API calls are abstracted to either:

– package: the package name of the callee. E.g., java.lang
– or family: the first component of the package name of the callee. E.g., java, android,

google

MaMaDroid then models the transitions between the abstracted API calls as Markov
chains and uses a representation of those Markov chains as features for the machine learning
prediction task.

3.3.1 Dataset

Experiments in the MaMaDroid publications are performed with a dataset consisting of
8447 goodware samples and 35 493 malware samples. The publication precisely describes
the origin of the goodware set:

– 5879 apps are collected from PlayDrone (Viennot et al. 2014) in the period between
April and November 2013. They form a subset referred to as oldbenign;

– 2568 apps are retrieved from the Google Play Store9. They are selected by considering
“the top 100 apps in each of the 29 categories [. . .] as of March 7, 2016” (Mariconti
et al. 2017). This subset is referred to as newbenign.

The malware dataset is split into five groups:

– 5560 malware apps coming from the DREBIN’s paper (August 2010 - October 2012),
denoted as drebin;

– 2013: 6228 apps obtained from VirusShare10;
– 2014: 15 417 apps obtained from VirusShare;
– 2015: 5314 apps obtained from VirusShare;
– 2016: 2974 apps obtained from VirusShare.

Since the APK files are not directly provided by original authors, we have based our
search on the lists of SHA256 hashes and the identified sources in order to retrieve the
original apps. We provide in Table 16 in Appendix a detailed explanation of our dataset
collection process.

Table 4 summarises the number of applications described in the original paper, the
one provided in the lists of hashes, and the apps we have been able to download for
oldbenign, newbenign, drebin, 2013, 2014, 2015, and 2016 datasets.

3.3.2 Feature Extraction

MaMaDroid’s authors make available the records of the extracted features from their exper-
iments. Nevertheless, as for reproduction experiments of DREBIN, our goal is to achieve a
full reproduction of MaMaDroid, including the feature extraction process. We thus discard
the pre-computed features, and undertake to re-compute all features from the raw APKs.

Due to the presence of invalid APK files (Plain text, HTML, MS Word, ...), and analysis
failures in Soot (as summarised in Table 5) during the process of extracting the features, the

9https://play.google.com/store
10https://virusshare.com is a repository of malware samples. It is maintained by one volunteer on his spare
time

Page 13 of 53 74

https://play.google.com/store
https://virusshare.com

Empir Software Eng (2021) 26: 74

Table 4 MaMaDroid’s dataset

Number of Applications Paper List of hashes Available After features extraction

oldbenign 5879 5879 5879 5410 (92.02%)

newbenign 2568 2555 1761 1446 (56.30%)

drebin 5560 5560 5560 5445 (97.93%)

2013 6228 11 080 11 080 6089 (97.76%)

2014 15 417 24 317 24 317 13 961 (90.55%)

2015 5314 5314 5216 4294 (80.80%)

2016 2974 2974 2974 2317 (77.90%)

static analyser could produce call graphs for only 5410, 1446, 5445, 6089, 13 961, 4294,
and 2317 apps, for oldbenign, newbenign, drebin, 2013, 2014, 2015, and 2016
respectively as described in Table 4.

Due to the low number of samples that could be considered after features extraction for
newbenign (i.e., 56.30%), we decided to complete the dataset with apps from AndroZoo.
Following the information in MaMaDroid, we select only apps until 7 March 2016.

The code to extract the features was made available by original authors. However, we
noticed a potential problem with the way call graphs are processed by the provided code.
This specific issue will be detailed in the discussion in Section 4, as we consider it to be a
good illustration of the complexity that may arise from seemingly mundane details.

We had to adapt parts of the code so that it could run on a different directory structure
than that of the original authors. We have also decided to port the code from python2 to
python3, for the same reasons mentioned before. We believe that porting the code is not
needed in order to perform our reproduction, but it will make it useful for other researchers
that want to use DREBIN or MaMaDroid.

3.3.3 Feature Embedding

As described by its authors, MaMaDroid operates in two modes:

– In package mode (i.e., when API calls are abstracted to package names). A list of known
packages provided by the Android Operating System is used to map API calls to their
package name. Calls to code defined in an app (i.e., not part of the Android Frame-
work) are abstracted to self-defined, while obfuscated code are mapped to
obfuscated.

– In family mode, there are 11 possible families, i.e., developer-defined,
obfuscated, android, google, java, javax , xml, apache, junit,
json, dom. The last 9 families refer to android.*, com.google.*,
java.*, javax.*, org.xml.*, org.apache.*, junit.*, org.json, and
org.w3c.dom.* packages.

The code for the feature embedding is provided by authors. However, we noticed discrep-
ancies between the provided code and the paper. While both the original paper (Mariconti

Table 5 Number of invalid APKs and number of failed feature extractions

Number of Applications Invalid Failed in feature extraction

MaMaDroid 200 17 825

74 Page 14 of 53

Empir Software Eng (2021) 26: 74

et al. 2017) and its newer, extended version (Onwuzurike et al. 2019) explicitly state that
the Android API version level considered is 24, the code instead uses level 28, or 26 in an
older version of the code repository. The version considered has an impact on the list of
packages, and potentially on families, known to the feature extractor program, and hence
actually extracted. Since none of the two versions available to us matched the paper, we
opted to use the latest version of the code that considers level 28.

Additionally, the extracted features as provided by original authors correspond to a fil-
tering step that is described in Section 4.A of their paper (Mariconti et al. 2017), but the
provided code does not perform this filtering. We therefore had to adapt this filtering step
so that it matches the experiment described in the original paper.

Markov chains are built using the abstracted calls as the states, and the probabilities
of moving from one state to another as the transitions. For each app, the feature vector is
created using the probabilities of the transitions. States that are not present in a chain take
the value of 0 in the feature vector. In family mode, each call is abstracted to one of the
11 families. Thus, there are 121 features representing the possible transitions in the markov
chain. In package mode, the total number of the features stated in the paper is 115 600 and
it represents the transitions between 340 states.

Principal Component Analysis (PCA) has also been used in several of MaMaDroid’s
experiments. It is a dimension-reduction tool, used to transform a large set of variables to
a small set. The transformed set still contains most of the amount of information, and it is
made of components that are linear combinations of the large set. Thus, PCA reduces the
huge amount of memory needed to train the model and to perform the classification. The
results of the experiments are reported using Precision, Recall, and f1 scores. In the paper,
PCA is used with 10 selected components.

We note that the CSV files generated with authors’ script do not match the expected out-
put. In particular, when abstracting to family mode, all the feature vectors of the generated
files are set to 0, and when abstracting to package mode, they are all set to 0 except the
ones that represent transitions between obfuscated and selfdefined states. We have therefore
examined the code of the authors, and we have made the necessary modifications so the calls
are abstracted to the correct family/package. We note that we had also to modify the list of
families provided in the code. In particular, we have changed xml., apache., dom., and
json. to org.xml., org.apache., org.w3c.dom., and org.json. so the calls
can be abstracted to the corresponding families, using the correct name of the package.

3.3.4 Classification

The Random Forests ensemble learning algorithm is leveraged in MaMaDroid for mal-
ware classification. In the original publication, the authors have explicitly discussed the
values of the hyper-parameters. In family mode, MaMaDroid uses 51 trees with maximum
depth of 8, while in package mode, they use 101 trees of maximum depth of 64. We note
that MaMaDroid has actually been tested with 4 classification algorithms, namely Ran-
dom Forests, 1-Nearest Neighbor (1-NN), 3-Nearest Neighbor (3-NN), and Support Vector
Machines (SVM). However, since the best detection performances were achieved with Ran-
dom Forests, the publication reports detailed performance metrics only for the Random
Forest case. Therefore, our reproduction attempt is focused on the Random Forests-based
classification.

The original NDSS publication also mentions that the 10-fold cross-validation technique
has been used to provide the performance results of the prediction over different samples.
Although the scripts for performing classification experiments were not made available by

Page 15 of 53 74

Empir Software Eng (2021) 26: 74

Table 6 Performance of our reproduction attempt of MaMaDroid

Dataset

Mode
[Precision, Recall, F-measure]

Family Family (PCA) Package Package (PCA)

drebin, oldbenign 0.80 0.96 0.87 0.83 0.94 0.88 0.88 0.98 0.93 0.90 0.93 0.91

2013, oldbenign 0.87 0.94 0.90 0.91 0.92 0.91 0.96 0.96 0.96 0.94 0.93 0.93

2014, oldbenign 0.86 0.96 0.91 0.87 0.94 0.90 0.89 0.98 0.93 0.91 0.95 0.93

2014, newbenign 0.95 0.99 0.97 0.95 0.98 0.96 0.96 1.00 0.98 0.96 0.99 0.98

2015, newbenign 0.85 0.93 0.89 0.83 0.90 0.86 0.88 0.96 0.92 0.88 0.93 0.90

2016, newbenign 0.81 0.90 0.85 0.80 0.83 0.82 0.84 0.93 0.88 0.84 0.87 0.85

the authors, the publication contained enough information—including hyper-parameters—
that allowed us to re-implement the necessary code.

3.3.5 Results

We have reproduced all 24 experiments from MaMaDroid where authors provided detailed
performance metrics. These experiments correspond to the section IV.B of reference (Mari-
conti et al. 2017), and evaluate the approach when the training set and the test set come from
the same period. We did not attempt to reproduce the other experiments of MaMaDroid
since they are either focusing on a specific point (sensitivity to the number of years separat-
ing the training set from the test set) or comparing to another approach. The 24 reproduced
experiments correspond to the evaluation of the approach over 6 different combinations of
training and test sets and 4 different modes (namely, Family mode without PCA; Family
mode with PCA, Package mode without PCA, and Package mode with PCA).

Performance results are presented in terms of Precision, Recall, and F-measure scores.
We opt to present the results of the 24 experiments in a table that has the same design
of the original paper. We thus provide the metrics’ scores for our reproduced experiments
in Table 6, and the scores provided by the original authors in Table 7. The first column
of the tables represents the pairs of datasets (malware and goodware) trained and tested
using 10-fold cross-validation technique. From the two Tables, we can notice that the Pre-
cision of original paper for all the experiments (with and without PCA) is higher in 23 out

Table 7 Performance of MaMaDroid, as reported by original authors: (Onwuzurike et al. 2019)

Dataset

Mode
[Precision, Recall, F-measure]

Family Family(PCA) Package Package (PCA)

drebin, oldbenign 0.82 0.95 0.88 0.84 0.92 0.88 0.95 0.97 0.96 0.94 0.95 0.94

2013, oldbenign 0.91 0.93 0.92 0.93 0.90 0.92 0.98 0.95 0.97 0.97 0.95 0.96

2014, oldbenign 0.88 0.96 0.92 0.87 0.94 0.90 0.93 0.97 0.95 0.92 0.96 0.94

2014, newbenign 0.97 0.99 0.98 0.96 0.99 0.97 0.98 1.00 0.99 0.97 1.00 0.99

2015, newbenign 0.89 0.93 0.91 0.87 0.93 0.90 0.93 0.98 0.95 0.91 0.97 0.94

2016, newbenign 0.87 0.91 0.89 0.86 0.88 0.87 0.92 0.92 0.92 0.88 0.89 0.89

74 Page 16 of 53

Empir Software Eng (2021) 26: 74

Table 8 RevealDroid’s dataset

APK files Goodware Drebin VirusShare VirusTotal

Original Paper 24 679 5538 22 592 2152

Downloaded 24 999 5559 22 436 269

After the features extraction 23 897 5544 22 211 189

of 24 experiments (with a largest difference of 0.08, i.e., up to 8 percentage points), and
equal to our results in 1 experiment. The Recall of original paper is higher in 11 out of 24
experiments (with a largest difference of 0.05, i.e., up to 5 percentage points), smaller in 8
experiments (with a largest difference of 0.02), and equal to our Recall in 5 experiments. As
for F-measure of the paper, it is higher in 22 out of 24 experiments (with a largest difference
of 0.05, i.e., up to 5 percentage points), and equal to our results in 2 experiments.

3.4 RevealDroid

RevealDroid is a machine-learning-based Android malware detection and family identi-
fication approach that was published in 2018 in the TOSEM journal. The authors also
presented their approach at the ICSE conference in the same year as a journal first paper.
Overall, RevealDroid extracts features that belong to three categories: Android-API Usage,
Reflective Feature, and Native Calls.

3.4.1 Dataset

RevealDroid is evaluated using benign apps collected from AndroZoo, and malicious apps
collected from the following 4 sets: Genome project, DREBIN’s dataset, VirusShare, and
VirusTotal. To collect their dataset, we have downloaded the compressed file provided by
the authors in the RevealDroid dedicated webpage11. However, the provided file does not
contain the raw APK files needed for our reproduction. Instead, it contains 1065 files that
are mainly related to the extracted features.

Fortunately, we discover in the RevealDroid code repositories 1213 files containing lists
of hashes of the apps used in the original RevealDroid paper. We present in Table 8 the
number of apps used in the original paper, as well as the number of apps we were able
to collect for the four sets (we do not present the Genome dataset in the table since it is
already included in Drebin dataset). A detailed explanation of the dataset collection process
is provided in Table 9.

3.4.2 Feature Extraction

RevealDroid uses three sets of features:

– Android API-Usage: the features considered are: (1) the number of Android API
method invocations, noted MAPI, (2) the number of API invocations for specific

11https://seal.ics.uci.edu/projects/revealdroid/
12https://bitbucket.org/joshuaga/revealdroid/src/master/
13https://bitbucket.org/joshuaga/android-reflection-analysis/src/master

Page 17 of 53 74

https://seal.ics.uci.edu/projects/revealdroid/
https://bitbucket.org/joshuaga/revealdroid/src/master/
https://bitbucket.org/joshuaga/android-reflection-analysis/src/master

Empir Software Eng (2021) 26: 74

Table 9 RevealDroid’s dataset collection process

Dataset Description

Benign The authors have used 24 679 benign apks, but when searching in the code repositories of
RevealDroid a, we have found two potential benign lists of hashes that contain 24 996 and
24 999 entries respectively. Since none of these lists matched the number of apps cited in
RevealDroid’s paper, we have decided to use the list that contain 24 999 hashes, in order to
ensure that we have enough benign apps if some of them failed in the features extraction
process. We have then leveraged AndroZoo to retrieved these apps as pointed out by the
authors in the paper, and we have successfully downloaded all the 24 999 APKs.

VirusShare For VirusShare dataset, we have found again two lists of VirusShare hashes with 23 131 and
22 592 apps respectively. Luckily the number of apps in the second list matched exactly the
number of apps used in the paper (22 592). To collect these apps, we have contacted the
authors to advise us on the exact VirusShare torrents that contain the apps used in their exper-
iments. However, we did find only a subset of the apps in the named torrents (we suppose that
VirusShare has changed the content of their torrents after the original authors have retrieved
the apps). Thus we had to search over all the torrents and we have successfully downloaded
the needed apps that are distributed over 65 torrents. We note that during the process of our
reproduction, we have found that 156 apps from VirusShare (identified with md5) are dupli-
cated in Drebin’s dataset (identified with sha256). We have thus removed these apps from
VirusShare set.

VirusTotal For VirusTotal apps, unfortunately we were unable to identify the exact list of hashes even
with the advise of the original authors. As a workaround, we have found a list of hashes
with their family labels that helped us identify the missing hashes after excluding DREBIN’s
and VirusShare’s. The list contains 30 868 hashes, 554 of them are duplicated entries. After
excluding the known apps and the duplicated ones, we ended up with 1723 md5 and 429
sha256 that are potentially the apps used in VirusTotal set. Again, during our experiments, we
have found that 2 apps identified with md5 fromVirusTotal are actually DREBIN’s apps, and 8
apps identified with sha256 from VirusTotal are actually VirusShare’s apps. Using AndroZoo,
we have been able to collect only 269 (out of 2151) APK files.

drebin We note that for this dataset, the authors use 5538 apps of the original collection (5560). In
order to identify the needed apps, we have found two potential files that contain 5560 and 5654
hashes respectively. Since none of them matched the exact number used, we have decided to
use the apps that are included in the list of families that helped us identify VirusTotal apps
(5559 apps).

Genome It is included in DREBIN’s dataset

ahttps://bitbucket.org/joshuaga/revealdroid/src/master/ and https://bitbucket.org/joshuaga/android-reflection-
analysis/src/master

Android API packages, noted PAPI. These features are extracted using Dexpler (Bartel
et al. 2012) and Soot (Vallée-Rai et al. 1999);

– Reflective Feature: RevealDroid extracts information about dynamic class loading that
is represented by: the full or partial method names invoked; the number of times the full
or partial method name is invoked; and the total number of reflective invocations. Note
that full method names are defined by the original authors as the methods that have
both the reflectively invoked method and class names statically determined, and the
partial method names are the ones that have only the invoked method name statically
determined. These features are also extracted using Dexpler and Soot.

– Native Call: These features are represented by the external calls of every binary in
the app, and the number of invocations of each external call. Native Call features are
extracted based on the Android ABI toolchain14.

14https://developer.android.com/ndk/guides/abis

74 Page 18 of 53

https://bitbucket.org/joshuaga/revealdroid/src/master/
https://bitbucket.org/joshuaga/android-reflection-analysis/src/master
https://bitbucket.org/joshuaga/android-reflection-analysis/src/master
https://developer.android.com/ndk/guides/abis

Empir Software Eng (2021) 26: 74

The source code of the features extractor is made available by the authors of RevealDroid.
However, we have faced some issues compiling their tool due to the mismatch between the
version of some libraries present in the repository with the version required by the code.
Also, we were not sure about the exact script that extracts Android API-Usage features.
The documentation of the repository shows two potential scripts that are used to extract
sensitive API features and package API features respectively. Confused about sensitive API
features extractor (if it needs to be used) and if the script that extracts MAPI features is
missing, we have decided to contact original authors. With their help, we have made sure
that the package API features extractor is all what we need to use. We have also validated
with original authors the relevant output of this extractor since it generates two outputs.

We note that we were not able to extract the features for all the apps in our collection,
because Soot has crashed on some apps. We present in Table 8 the number of apps we have
ended up with after extracting the features.

3.4.3 Feature Embedding

The three sets of features presented in the previous section with their values are used to con-
struct a feature vector for each app. The code for the feature embedding was to some extent
difficult to identify among the variety of scripts the authors provide. However, searching
over the entire two repositories helped us to find some useful scripts that served as a base
for our vector embedding script. Specifically, we have noticed that the classification’s code
requires as input either a CSV or an HDF file that stores the features matrix. Thus we have
written the script in a way to generate an HDF file output for each dataset so they can be
concatenated later (using a script provided by original authors) and thus used as input in
the classification task. However, after running our script for the benign dataset, we have
encountered some problems related to the storage space needed to generate the HDF file
(more than 200GB for the benign dataset only). Hence, we have re-written another script
that does not store the matrix but uses it directly to perform the classification.

3.4.4 Classification

As we have mentioned previously, RevealDroid is a malware detector but also a family
identifier. In the following, we present each of the working modes separately.

Malware detection In this mode, RevealDroid is evaluated for its ability to distinguish
malware and benign apps using linear SVM and 10-fold cross-validation setting. We note
that the hyper-parameters of the classifier are not mentioned in the paper. However, thanks
to the code made available by the authors, we were able to know that RevealDroid does
not use the default hyper-parameters for C, penalty, and dual, that are set to 0.01, l1, and
False respectively. We have thus combined the authors’ code (and ported it from python2
to python3) with our script of the previous step in order to avoid the storage issues. We
have also noticed that the matrix used in the cross-validation does not involve any shuffling.
Since the authors’ script takes as input an HDF file (that we do not know how exactly it has
been generated), we are not sure if the matrix stored in that file is already shuffled or not.
Thus we have added this step to the script since we know that our matrix is not shuffled.

Family detection RevealDroid is able to identify the family label of malware apps using a
Classification and Regression Trees (CART) classifier. The evaluation is made using 10-fold
cross-validation and the classifier is used with its default hyper-parameters. The number of

Page 19 of 53 74

Empir Software Eng (2021) 26: 74

Table 10 Performance of RevealDroid in malware detection

Original results Our results

Precision Recall F1 Precision Recall F1

Benign 98% 97% 98% 95% 86% 90%

Malicious 98% 98% 98% 89% 96% 92%

Average 98% 98% 98% 92% 91% 91%

labels in this mode of operation is determined by the number of malware families contained
in the training set. Similarly to malware detection, we had to write our own script to perform
the classification.

Searching over the code repository, we have identified a file that contains 30 868 hashes
with their respective family labels. Thus, we have used this file in order to map each malware
in our collected dataset to its family label.

3.4.5 Results

We have reproduced the experiments that assess how accurate RevealDroid is for both the
malware detection task and the family identification task. We did not attempt to reproduce
the other experiments for the same reasons mentioned for MaMaDroid’s reproduction.

Malware detection The entire dataset has been used to evaluate RevealDroid in a time
agnostic scenario where the age of the apps is not taken into consideration when determining
the training and testing sets. Original authors have reported their results with Precision,
Recall, and F1 score. We present in Table 10 our results compared to original authors results.

Fig. 4 Precision Recall Curve from RevealDroid’s publication

74 Page 20 of 53

Empir Software Eng (2021) 26: 74

We notice that the metrics reported in RevealDroid’s paper are all higher than the ones
we have obtained, with a largest difference of 11 percentage points for benign identification,
and a largest difference of 9 percentage points for malware detection.

RevealDroid’s authors also provide the precision-recall (PR) curve of their approach.
This curve represents the precision and recall values for different probability thresholds. We
provide in Fig. 4 the precision-recall curve extracted from RevealDroid’s publication. Our
experiments show again a different PR curve presented in Fig. 5. Our PR curve that has an
area under the curve (AUC) of .96 is not as good as the one reported by original authors
which has an AUC of .98

Family detection The original publication evaluates RevealDroid performance for family
detection using two experiments that involve two datasets:

– The first evaluation is performed on the Genome dataset. The publication reports only
the number of family labels found in this dataset (48 malware families) but not the
exact number of apps selected to perform this experiment. Our genome dataset (col-
lected based on the list of hashes from RevealDroid’s repository) contains 1232 apps
with 41 malware family labels. The authors report that their model has 95% correct
classification rate. Our reproduction results show a correct classification rate of 91%.

– The second evaluation involves malware apps from DREBIN, VirusShare, and Virus-
Total datasets. In this experiment, original authors have used 27 979 malware samples
with 447 family labels. Our collected dataset contains 26 084 malware apps with 388
families. Original results show a correct classification rate of 84%. Our reproduction
reports a correct classification rate of 85%.

3.5 DroidCat

DroidCat is a malware detection and categorisation approach that has been published on
2019 in the TIFS journal. DroidCat is based on dynamic analysis along with machine learn-
ing techniques. The tool uses 70 features that are related to the structure of apps executions,
Inter-Component Communication (ICC), and security sensitive accesses. These features

Fig. 5 Precision Recall Curve from reproduction experiments

Page 21 of 53 74

Empir Software Eng (2021) 26: 74

Table 11 DroidCat dataset

Benign Malware

Dataset Period source original lists collected source original lists collected

D1617 2016-2017 GP,AZ 5346 2982 2724 VS,AZ 3450 3653 3653

D1415 2014-2015 GP,AZ 6545 4131 4131 VS,AZ 3190 2788 2788

D1213 2012-2013 GP,AZ 5035 3413 3413 VS,AZ,DB,MG 9084 3084 3084

D0911 2009-2011 AZ 439 3101 3101 VS,AZ,DB,MG 1254 4308 4308

have been selected based on a benchmark suit that involved 122 features belonging to the
same mentioned categories.

3.5.1 Dataset

DroidCat’s experiments involve android apps from different sources covering the period
from 2009 to 2017. The malware dataset is collected from AndroZoo (AZ), VirusShare
(VS), Drebin (DB), and Genome dataset (MG). The benign apps are downloaded from
AndroZoo and Google Play (GP). The authors provide the lists of hashes on their website15,
and state that the apps can be downloaded from AndroZoo. In total, we need to collect eight
datasets: four collections for malware and four for goodware. While examining the lists of
the hashes, we have noticed that the numbers of apps do not match the ones reported in
DroidCat publication. Specifically, we had missing apps in five out of eight datasets, and
more apps in the three remaining sets. We have thus contacted the authors to advise us on
how to obtain the missing hashes and what are the apps that should be discarded in order
to have the same exact experimental setup. Unfortunately, we did not get a response to our
email. Thus, we decided to build the dataset based on the available lists of hashes, even if
several apps from the original paper are missing. We have successfully downloaded almost
all the apps from AndroZoo, except for 2017 benign dataset that we have retrieved from
Google Play. We present in Table 11 a summary of the original and our collected dataset.

3.5.2 Feature Extraction and Embedding

DroidCat is based on dynamic analysis and machine learning techniques to detect android
malware apps and their families. To extract the features, DroidCat instruments an app using
Soot (Vallée-Rai et al. 1999) in order to collect its execution traces when run in an Android
emulator. The execution traces include method calls and ICCs. DroidCat’s authors leverage
Monkey’s16 randomly generated inputs in order to automatically collect these traces.

After collecting the traces, DroidCat extracts 70 features that belong to three categories:

– Structure: It contains 32 features that describe the distribution (i.e., percentage and
frequency) of method calls, their declaring classes, and caller-callee links.

– ICC: It contains 5 features to describe the ICC distributions. For instance: the
percentage of external explicit ICCs.

15https://chapering.github.io/droidcat/
16https://developer.android.com/studio/test/monkey

74 Page 22 of 53

https://chapering.github.io/droidcat/
https://developer.android.com/studio/test/monkey

Empir Software Eng (2021) 26: 74

– Security: It includes 33 features that describe the distribution of sources and sinks, as
well as the reachability between them.

These features computation is implemented on top of the authors’ Android App Dynamic
Characterisation Toolkit DroidFax17, and their Android data-flow analysis and instrumen-
tation library duafdroid18, which is based on the Soot framework. The code for features
extraction is made available by DroidCat’s authors, but still we have faced some issues with
Soot that crashes either during the apps instrumentation or the features computation. We
had thus to solve the issues by using a more recent android jar file (API level 30) than the
one used by the authors (API level 19). We also had to handle the exceptions that occurred
for some methods, which prevented DroidCat to compute the features. DroidCat features
extractor generates, for each app, a vector that contains the package name of the app, and
the values of the computed features.

3.5.3 Classification

DroidCat trains a Random Forest classifier with 128 trees, for both malware detection and
family identification. DroidCat is evaluated on each of the four datasets separately. For
each dataset, the apps of each class are sorted by their age (first-seen date obtained from
VirusTotal) and are split at 70 percentile. The performance of DroidCat is thus evaluated on
the 30% newest apps, the remaining 70% apps being used for the training.

The code for the classification part is also made available by the authors. However, we
have found a variety of scripts that perform the classification differently (random split,
cross-validation, ...). We have thus selected randomly one of the scripts that split the dataset
by their first-seen date (we note these scripts date-scripts), and we have ported it from
Python2 to Python3. But again, we have noticed that the date-scripts extract the date from
the features vectors themselves. We were puzzled by this information since the features
vectors generated in the last step contain only the name of the package and the features’
values. While searching again in the repository, we have found a script that adds the date to
the features vectors of each app, but this script assumes that the feature vectors are identified
with their sha256 hashes and not with their package name (so it can find the first-seen date
in other files found in the same repository). Since the package name does not enable to
uniquely identify the apps, we have decided to re-compute the features and modify the code
of the authors so it generates the correct output.

For family classification we have used the labels files that map directly malware hashes
to their families, which is available in DroidCat’s repository as well as the script that loads
family labels from these files. The other scripts select the family label from VirusTotal
reports, which we could not find in the repository. However, we have noticed some issues
with the selected script: (1) Apps for which it could not find a label are attributed the MALI-
CIOUS label. (2) Some samples have “none” as their family label, and the script does not
exclude them. (3) It removes the families that have less than 20 apps. Since these details
are not mentioned in the paper, and are not found in the other date-scripts either, we have
removed the apps that are mapped to MALICIOUS and “none” labels and we have kept all
the apps we were able to identify families for.

17http://chapering.github.io/droidfax/
18https://bitbucket.org/haipeng cai/duaf/src/master/duafdroid/

Page 23 of 53 74

http://chapering.github.io/droidfax/
https://bitbucket.org/haipeng_cai/duaf/src/master/duafdroid/

Empir Software Eng (2021) 26: 74

Ta
bl
e
12

Pe
rf
or
m
an
ce

of
D
ro
id
C
at
fo
r
m
al
w
ar
e
de
te
ct
io
n
an
d
fa
m
ily

id
en
tif
ic
at
io
n

M
al
w
ar
e
de
te
ct
io
n

Fa
m
ily

id
en
tif
ic
at
io
n

O
ri
gi
na
lr
es
ul
ts

O
ur

re
su
lts

O
ri
gi
na
lr
es
ul
ts

O
ur

re
su
lts

P
R

F1
P

R
F1

P
R

F1
P

R
F1

D
16
17

99
.3
1%

99
.2
7%

99
.2
8%

86
.2
7%

79
.3
2%

81
.2
3%

94
.7
9%

94
.7
4%

94
.5
4%

51
.2
1%

49
.1
9%

47
.2
3%

D
14
15

97
.2
6%

97
.0
9%

97
.1
6%

79
.4
7%

80
.2
2%

79
.0
0%

97
.8
4%

97
.7
5%

97
.7
0%

27
.3
4%

32
.0
2%

27
.7
8%

D
12
13

96
.3
8%

96
.0
4%

96
.1
2%

80
.9
0%

79
.5
6%

79
.6
5%

99
.7
3%

99
.7
1%

99
.7
0%

52
.9
5%

51
.8
1%

50
.3
8%

D
09
11

97
.1
9%

96
.9
6%

97
.0
0%

79
.1
3%

78
.9
8%

79
.0
5%

99
.4
8%

99
.4
3%

99
.4
4%

39
.9
4%

52
.4
3%

42
.9
3%

m
ea
n

97
.5
3%

97
.3
4%

97
.3
9%

81
.4
4%

79
.5
2%

79
.7
3%

97
.9
6%

97
.9
1%

97
.8
4%

42
.8
6%

46
.3
6%

42
.0
8%

st
de
v

1.
25
%

1.
37
%

1.
34
%

3.
31
%

0.
52
%

1.
04
%

2.
27
%

2.
28
%

2.
38
%

11
.8
4%

9.
66
%

10
.0
1%

74 Page 24 of 53

Empir Software Eng (2021) 26: 74

Fig. 6 ROC curve for malware detection from DroidCat publication

Fig. 7 ROC curve for malware detection from our reproduction

Page 25 of 53 74

Empir Software Eng (2021) 26: 74

Fig. 8 ROC curve for family detection from DroidCat publication

3.5.4 Results

We have reproduced the experiments that evaluate DroidCat’s performance for malware
detection as well as malware categorisation. DroidCat’s publication reports the results for
its two working modes in terms of the weighted average of Precision, Recall, and F1. The
ROC curves of the technique is also provided for the four datasets.

Malware detection We present in Table 12 our results compared to original authors results.
We notice that our scores for the reproduction experiments are not as good as the scores
reported by the DroidCat’s publication. Table 12 shows a difference of 16.09 percentage
points for mean precision, 17.82 percentage points for mean recall, and 17.66 percentage
points for mean F1 (Fig. 6).

The ROC curve of our reproduction is presented in Fig. 7. When compared to the orig-
inal ROC curve presented in Fig. 6, the two figures enable to draw similar conclusion
being unable to reach the same detection performance reported in the DroidCat publication
(Fig. 8).

Family identification Our results for family detection compared to DroidCat’s publication
are presented in Table 12. The reproduction scores are remarkably lower than the original
scores on the four datasets. The same observation is made for our ROC curve provided in
Fig. 9 when it is compared to DroidCat’s family detection ROC curve presented in Fig. 8.

3.6 MalScan

In 2019, MalScan has been presented at ASE as a graph-based static analysis approach that
detect Android malware. MalScan considers function call graphs extracted from the apps
as social networks and perform centrality analysis to represent the semantic features of the

74 Page 26 of 53

Empir Software Eng (2021) 26: 74

Fig. 9 ROC curve for family detection from our reproduction

graphs. The approach considers six different centrality measures: degree, katz, closeness,
harmonic, average, and concatenate.

3.6.1 Dataset

MalScan’s dataset contains a total of 30 715 samples that include 15 285 benign apps and
15 430 malicious apps collected from AndroZoo. These apps cover the period from 2011 to
2018, and their hashes are provided by original authors. Based on these lists, we were able
to collect all the apps from AndroZoo. We present in Table 13 a summary of this dataset.

3.6.2 Feature Extraction and Embedding

To extract its features, MalScan uses AndroGuard (Desnos and Gueguen 2011) to generate
the function call graph that it considers as a social network. The functions and their call
relationships in the function call graph are regarded as actors and social interactions in the
social network.

Table 13 MalScan dataset

2011 2012 2013 2014 2015 2016 2017 2018

Benign 1920 1875 1896 1826 1811 2015 1884 2058

Malicious 1916 2000 2000 1982 1839 1940 1834 1919

Page 27 of 53 74

Empir Software Eng (2021) 26: 74

The social network is used to compute the centrality of sensitive API calls based on
PScout’s results (Au et al. 2012). As the centrality enables to measure how important a
node is within the network, MalScan calculates four centrality measures, each one of them
is considered as a set of features. These centrality measures are: degree centrality (Freeman
1978), katz centrality (Katz 1953), closeness centrality (Freeman 1978), and harmonic cen-
trality (Marchiori and Latora 2000). The authors have also constructed two other centrality
measures which are: average centrality (the average of the four former centrality measures),
and concatenate centrality (the concatenation of the four centrality measures).

The dimension of the feature vectors generated with degree, katz, closeness, harmonic,
and average centrality measures is the total number of sensitive API calls from PScout’s
results which is 21 986 (Au et al. 2012). As for concatenate centrality, the dimension of its
feature vectors is 87 944.

The code for the features extraction and vectors embedding is made available by origi-
nal authors. Using their code, we were able to generate the feature vectors for degree, katz,
closeness, and harmonic centrality measures. As of average and concatenate centrality fea-
ture vectors, they are not implemented in the code. We had thus to write this part of the code
so our reproduction is complete.

3.6.3 Classification

MalScan’s authors mention in their paper that they select three algorithms to perform
the classification: 1-Nearest Neighbors, 3-Nearest Neighbors, and Random Forest. The
evaluation of the approach is based on 10-fold cross-validation, and Random Forest is
implemented with its default parameters as cited by the authors. The code for this part is
also provided by the authors and it enables to compute F1 score and Accuracy for the three
ML algorithms.

As we reproduced the experiments that assess the detection effectiveness of MalScan, we
were unable to decide about the exact ML algorithm used to report the results presented in
Section IV-B Table V of the original MalScan paper. The authors do not explicitly name the
algorithm they have chosen for the detection effectiveness. As a workaround, we have used
1-Nearest Neighbor to compare with their results. We base our choice on the affirmation of
the authors in section IV-D which assesses the Robustness of MalScan against Adversarial
Attacks. In this same section, the authors affirm that they select 1-NN for this experiment
since it provides better effectiveness on malware detection. Nonetheless, we are not sure
whether it is the algorithm used to report the results in section IV-B Table V.

3.6.4 Results

As mentioned in the previous section, we have reproduced the experiments that evaluate the
detection effectiveness of MalScan. The results are reported in terms of Accuracy and F1
for the eight datasets using the six sets of features. In total, 48 experiments are reproduced.
We report our metrics in Table 14 and the original results in Table 15.

From the two Tables, we can notice that both F1 score and Accuracy of the original
paper are higher in 30 out of 48 experiments (with a largest difference of 1.5 percentage
points), smaller in 12 experiments, and equal to our results in 6 experiment. Overall, our
reproduction results are very similar to the results reported in the original publication.

74 Page 28 of 53

Empir Software Eng (2021) 26: 74

Ta
bl
e
14

D
et
ec
tio

n
ef
fe
ct
iv
en
es
s
of

M
al
Sc
an

fr
om

ou
r
re
pr
od
uc
tio

n

D
at
as
et

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

M
et
ri
cs

F1
A

F1
A

F1
A

F1
A

F1
A

F1
A

F1
A

F1
A

D
eg
re
e

94
.7

94
.6

96
.4

96
.2

96
.4

96
.2

95
.6

95
.4

98
.2

98
.2

98
.4

98
.5

96
.7

96
.7

97
.6

97
.7

C
lo
se
ne
ss

96
.1

96
.0

96
.9

96
.7

96
.5

96
.4

96
.8

96
.6

97
.7

97
.6

97
.5

97
.5

97
.4

97
.4

98
.3

98
.4

H
ar
m
on
ic

97
.1

97
.1

97
.9

97
.9

97
.1

97
.0

96
.5

96
.3

96
.0

96
.0

97
.4

97
.4

97
.0

97
.1

97
.6

97
.7

K
at
z

96
.0

95
.9

96
.4

96
.2

97
.1

97
.0

96
.8

96
.7

97
.2

97
.2

97
.4

97
.5

98
.2

98
.2

98
.0

98
.1

A
ve
ra
ge

97
.0

97
.0

98
.0

97
.9

97
.1

97
.0

96
.5

96
.3

95
.8

95
.8

97
.4

97
.4

97
.1

97
.1

97
.9

97
.9

C
on
ca
te
na
te

97
.1

97
.1

97
.9

97
.9

97
.1

97
.0

96
.5

96
.3

96
.1

96
.1

97
.4

97
.4

97
.0

97
.0

97
.8

97
.9

Page 29 of 53 74

Empir Software Eng (2021) 26: 74

Ta
bl
e
15

D
et
ec
tio

n
ef
fe
ct
iv
en
es
s
of

M
al
Sc
an

fr
om

th
e
or
ig
in
al
pu
bl
ic
at
io
n

D
at
as
et

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

M
et
ri
cs

F1
A

F1
A

F1
A

F1
A

F1
A

F1
A

F1
A

F1
A

D
eg
re
e

95
.5

95
.4

96
.7

96
.5

96
.4

96
.2

95
.6

96
.4

98
.1

98
.1

98
.5

98
.5

97
.0

97
.0

97
.9

98
.0

C
lo
se
ne
ss

96
.2

96
.1

96
.5

96
.3

96
.7

96
.5

96
.7

96
.5

97
.6

97
.6

97
.3

97
.3

97
.7

97
.7

98
.8

98
.8

H
ar
m
on
ic

96
.9

96
.8

98
.0

97
.9

97
.2

97
.1

96
.8

96
.6

96
.0

96
.1

97
.2

97
.3

96
.8

96
.8

97
.9

98
.0

K
at
z

96
.0

95
.8

96
.4

96
.1

96
.9

96
.8

96
.6

96
.5

97
.4

97
.4

98
.0

98
.0

98
.4

98
.4

98
.0

98
.1

A
ve
ra
ge

97
.2

97
.2

97
.9

97
.9

97
.2

97
.1

96
.6

96
.5

96
.7

96
.7

97
.7

97
.7

96
.9

97
.0

98
.3

98
.3

C
on
ca
te
na
te

97
.5

97
.5

98
.1

98
.0

97
.5

97
.4

97
.7

97
.6

97
.6

97
.6

97
.7

97
.7

97
.1

97
.1

98
.4

98
.5

74 Page 30 of 53

Empir Software Eng (2021) 26: 74

4 Lessons Learnt

Reproducing the experimental setups, and hence results, from the reproduced approaches
takes a significant effort. In Section 3, while describing the reproduction steps, we enu-
merated the challenges that we face to pinpoint all relevant information, and detailed the
guesswork that was necessary to pursue the reproduction attempts. In Section 4,

(1) we present the outcomes of our reproduction attempt and, in order to allow readers to
fully grasp the realities of those often overlooked aspects; (2) we offer illustrations of concrete
difficulties that we faced; (3) we conclude on the divergence of reproduction results.

4.1 Outcome of our Reproduction Attempts

After putting extensive effort to reproduce DREBIN, MaMaDroid, RevealDroid, DroidCat,
andMalScan, and based on the experimental results that we compare against the performance
presented by the authors in their publications, we formulate the following question:

Can our reproduction attempt be considered as successful?

For DREBIN, MaMaDroid, RevealDroid, and DroidCat, our reproduction attempt
could not achieve 100% identical experimental setup. Missing data, software artefacts
and/or details resulted in deviations from the original setups—the causes and consequences
of those deviations are discussed below. Following the precise terminology defined in
Introduction, we come to the conclusion that we have failed to reproduce DREBIN,
MaMaDroid, RevealDroid, and DroidCat.

As for MalScan we have been able to report similar results using the same exact exper-
imental setup provided by original authors. Following the same ACM terminology, we can
conclude that we have succeeded in reproducing the MalScan approach.

Finding 1: One out of five approaches can be reproduced.

For DREBIN, MaMaDroid, and RevealDroid, We have nonetheless achieved a replication
that we strove to keep as close as possible to the original approaches (e.g., by replacingmissing
dataset samples with samples from the same sources and from the same period of collection).

The three replications yielded similar results to the original approaches. The performance
differences could very well be explained by the deviations of our experimental setups.
Hence, we have to conclude that the replication of DREBINMaMaDroid, and RevealDroid
is successful, i.e., we were able to achieve performance that is very close to what original
authors reported. However, an important (if not huge) engineering effort has been required
to obtain a fair replicability of these approaches.

Finding 2: Three out of four approaches can be replicated, but with deviations to
the original works.

Finding 3: Replicating an approach requires a significant effort from other
researchers.

Page 31 of 53 74

Empir Software Eng (2021) 26: 74

As for DroidCat, we have failed both to reproduce and to replicate the approach. The results
of our experiments are not even fairly similar to original results. Our failure can be explained
by the difference of our dataset. The effect of this difference is more significant on the
familial classification, since the labels are determined based on malware apps of our dataset.
Moreover, we were not sure if some of the scripts we have used are the same scripts used to
report original results. Consequently, we have ended up with a different experimental setup.

Finding 4: One out of five approaches could neither be reproduced nor replicated

4.2 Insights from our Reproduction Journey

4.2.1 Dataset Re-acquisition is Hard

The first category of problems that we have identified are barriers to re-acquire the dataset
used to yield published results.

While we were able to obtain the full dataset for our MalScan reproduction attempt, for
DREBIN, MaMaDroid, RevealDroid, and DroidCat approaches, we were unable to obtain
100% identical datasets. When it was possible, We resorted to retrieve dataset samples that
are as similar as possible to the original datasets. Even so, this task proved to require a
significant amount of work and time.

– DREBIN: As mentioned before, we have succeeded to collect only 46,42% of the same
original goodware APKs. Completing the goodware dataset has turned out to be nec-
essary to simulate the original experimental setup. Our goodware dataset is composed
of samples selected from the same time period as DREBIN original goodware dataset.
However, these samples do not present the same exact APK files.

– MaMaDroid: The authors do not directly provide the APK files but the list of hashes,
although they indicated the original source of the apps (DREBIN, PlayDrone and
VirusShare). We have been able to collect from VirusShare almost all necessary apps.
We present in Table 17 in Appendix, an illustration of a problem encountered during
the collection of the dataset.

– RevealDroid: The authors do not provide the APK files. We had to search in their code
repositories for the potential lists of hashes that have been used to report their results.
For VirusShare dataset, we have been able to collect the exact same number of apps
used in original experiments. As for the other datasets, we have failed to identify and
collect the exact same apps. We provide in Table 9 a detailed explanation of the process
of collection as well as the problems we have encountered.

– DroidCat: The authors do not provide the APK files, but the lists of the hashes. However, we
have noticed a significantmismatch between the number of apps in the original publication
and the number in the lists. We have again failed to reproduce the exact same dataset.

Finding 5: Obtaining datasets is challenging. Unless original authors ensure their
dataset is available, Reproduction is doomed to failure.

74 Page 32 of 53

Empir Software Eng (2021) 26: 74

4.2.2 Feature Extraction Process can be Puzzling

Once a raw dataset is collected, the next step is to extract features. For MalScan, this process
has been straightforward using original code. As for the other approaches, this extraction
has brought its own barriers to reproduction.

• DREBIN: Authors do not provide the code for extracting the features. Thus, we have
used a re-implementation of DREBIN’s code that is made publicly available by other
authors19 (Narayanan et al. 2017).

• MaMaDroid: The code is made publicly available by original authors. However, we have
faced problems to generate the call graphs fromwhich features are extracted. In particular:

– We noticed that none of the provided versions of the software exactly matched
the description of any of the three versions of the paper. Similarly, the code
depends on data files for FlowDroid that users are expected to obtain from the
FlowDroid repository, but no mention is made of the exact version of those
files.

– A specific directory structure is supposed to be respected for the process to
succeed. Nonetheless, neither this structure nor the expected output are doc-
umented in the code. We note that if this directory structure is not respected,
an intermediate output file can still be generated, but it does not represent the
expected call graph that can be used to create the vectors space.

In Table 17 in Appendix, we provide an illustration of some of the
encountered problems.

• RevealDroid: The authors provide their code, but still we were somehow confused
about the exact script we need to use to extract API usage features and their outputs.

• DroidCat: The code is made available by original authors. However, the features
extractor crashed on several apps due to Soot not being able to instrument the apps.

Finding 6: Even when the code is provided, Reproduction and/or Replication can
require massive guesswork.

4.2.3 Vector Embedding Codemay be Buggy

After overcoming several challenges related to feature extraction, embedding the extracted
features into a vector space comes with its share of problems.

– DREBIN: Original code is not available. However, the process appeared to be well docu-
mented in the publication to enable reproduction of the feature embedding procedure.

– MaMaDroid: Authors make their code publicly available. However, the API version
level of the list of the known packages provided in the code (28 or 26) differs from
the version stated in the original paper (24). This mismatch has made a successful
reproduction task even more difficult. An illustration of the encountered problems is
presented in Table 17 in Appendix. This case raises another important question in the
context of a reproduction: Should the code be run “as is”, even though it demonstrably
differs from the explanation provided in the original paper?

19https://github.com/MLDroid/drebin

Page 33 of 53 74

https://github.com/MLDroid/drebin

Empir Software Eng (2021) 26: 74

– RevealDroid: The authors make their code repositories publicly available. However,
since the vector embedding part is not included in their repositories’ documentation, we
were unable to identify the script that is supposed to create the features vectors among
the variety of files they provide.

– DroidCat: With the original code provided, we have faced some issues in computing
the features. These issues are caused by the author’s tool duafdroid that has failed to
compute the features on several apps.

– MalScan: The authors share their code that generates the features vectors of four out of
six sets of features. For the missing vectors, we had to write our own implementation
based on the details provided in the original publication.

Finding 7: Even when the code is provided,Reproduction and/or Replication can
involve significant code rework

4.2.4 Classification Procedure may Require Clarifications

– DREBIN: The code again is not available. We have then relied on externally re-
implemented code20 (Narayanan et al. 2017), and still, we had to recover ourselves
several undisclosed, though crucial, hyper-parameters such as C. Original authors have
not documented the value used to perform the experiment. We have then decided to use
the default value C = 1 of scikit-learn framework we use for our experiment. We note
that the exact implementation used in original work is also not specified in the paper.

– MaMaDroid: Unlike Features Extraction and Vector Embedding steps, the code that
performs the classification is not made available by authors. However, the configuration
of Random Forest algorithms is well detailed, and authors provide hyper-parameters
values for both family and package modes. We note that the Random Forest implemen-
tation used in original work is also not specified in the paper. Thus, we have used the
same framework scikit-learn for both reproduced approaches.

– RevealDroid: The code is made available by original authors. But since it requires as
input an HDF file, we have combined it with our script that creates the features vectors
to avoid storage issues as we have mentioned previously.

– DroidCat: Original authors share their classification scripts. However, we were unable
to identify the exact file that has been used to generate original results as mentioned
previously. We have also faced problems related to the incompatibility of the vectors
space and the input of the classification selected script.

– MalScan: The code is made available by original authors and it calculates the perfor-
mance metrics of three ML algorithms. However, we were confused about the exact
algorithm that is used to report original results since it is not explicitly stated in the
paper.

4.3 Conclusions on the Divergence of Reproduction Results

Our reproduction efforts allowed us to obtain performance metrics, that we reported in the
same way as in the original works, i.e., mainly (1) a table for MaMaDroid, RevealDroid,
DroidCat, and MalScan; (2) a ROC curve for both DREBIN and DroidCat; (3) a PR curve

20https://github.com/MLDroid/drebin, that we had to update

74 Page 34 of 53

https://github.com/MLDroid/drebin

Empir Software Eng (2021) 26: 74

for RevealDroid. While there exist methods to average several ROC curves into one single
summary ROC curve (Chen and Samuelson 2014), it is unclear whether DREBIN’s ROC
curve is the result of such a process, or the standalone ROC curve of one specific experiment.
As for DroidCat’s ROC curves and RevealDroid’s PR curves, they are generated using orig-
inal authors’ scripts. For MaMaDroid, RevealDroid, and MalScan, the results provided are
averaged over the 10-fold cross-validation splits. None of the five reproduced approaches
provided a complete distribution of results, that would enable us to perform a statistical
comparison between their results and ours. As a consequence, we have to conclude whether
our results confirm those of the original authors based on single data points comparison. For
instance, we had to compare DroidCat’s Figs. 6 and 7 and decide, somewhat subjectively
whetherwe consider them to be “similar enough”. Similarly, when comparing the F-measure
for MaMaDroid’s experiment using Package mode (PCA) and 2016, newbenign and
our replication, we were left to our own judgment to decide whether 0.85 is “similar enough”
to 0.89.

To the best of our knowledge, there is no universally accepted method to objectively
decide when a single data point difference must be considered abnormal.

Conclusion 1: There is no systematic and definitive method for deciding the success
or failure of a Reproduction and/or Replication attempt.

This problem is exacerbated by the differences of our reproduction attempts against the
original works. Indeed, in order for experimenters to be able to conclude that a replication
reasonably proves that the claims of the original paper are wrong, it would be necessary to
prove that the performance mismatch cannot possibly be explained by the differences of the
reproduction.

Conclusion 2: In practice, unless they are fully reproducible, machine learning
based Android Malware detection approaches are unfalsifiable (i.e., they do not leave
room for refutability checks).

5 Reproduction in the Bigger Picture

Our first intention for this work was to perform a complete reproduction of the five
approaches. The availability of the artefacts and the similarity of our results to original pub-
lication has made us conclude that we have successfully reproduced MalScan approach.
However, some missing artefacts and description details have made the reproduction of the
four other approaches impossible, and our attempt has thus turned into a replication exercise.
The results reported with Drebin, MaMaDroid, and RevealDroid reproduction/replication
attempt can confirm that we have fairly similar results as those stated in the original publi-
cations after investing a substantial amount of effort to re-engineer the process and fill the
datasets so that they are as close as possible to the literature experiments. As for DroidCat,
the huge difference between our reproduction/replication results and original publication
has made us conclude that we have failed both to reproduce and to replicate the approach.

Page 35 of 53 74

Empir Software Eng (2021) 26: 74

We described all the difficulties that we have faced, starting from the missing APK files,
to identifying and fixing bugs in the partial code that was released by authors. Our repro-
duction/replication of some approaches has put us in puzzling situations namely when the
information in the code did not match what is stated in the paper. This mismatch was explicit
for differences between the API version levels of MaMaDroid approach for instance.

The mismatch was however harder to detect for the case where the code was buggy. In
this second case we have discovered some parts of the code that do not perform what is
described in the papers.

We understand, through our own experience, that releasing a reproducible approach is
not a straightforward exercise. It is however, still, very necessary to advance the research.
With the MalScan approach, we can learn that releasing a reproducible approach is possible.
Reproduction works are essential as they enable, on the one hand, to validate the approach,
and on the other hand, to leverage existing work, and to build on it to advance the research
domain. The difficulty of reproduction has also been addressed in other research fields and
has shown that researchers may not just fail to reproduce other researchers’ works, but also
to reproduce their own results. The repeated unsuccessful reproduction attempts has led to
what is called the Reproduction Crisis.

Maturity of the research field The use of Machine learning for malware detection has been
investigated for many years in the Android research community. Several approaches have
indeed been presented at second tier venues. Nevertheless, our study about the subjects
selection has showed that in the last ten years, 24 out of 26 806 papers published at 16
top venues deal with android malware detection. On the one hand, the scarcity of research
results at top-tier venues questions the significance of the achievements made so far by the
community. On the other hand, literature approaches continuously report high performance
scores with different approaches.

Our failed reproduction attempts for four out of five approaches now stresses on the
following question that the community should answer:

“Is machine learning based Android malware detection a mature research field?”

With TESSERACT (Pendlebury et al. 2019), the authors have recently raised concerns
of limitations and blind spots in experimental evaluations, following up on previous studies
by Allix et al. (2016a) and Allix et al. (2015). These studies however did not consider the
deeper question of reproducibility. Thus, despite 10 years of tentative approaches and pub-
lished record performance measurements, it remains unclear in which direction the research
field is moving. In short, one wonders:

“What does the community know now on the success ofmachine learning-basedmalware
detection that we did not know with the early works?”

In practice, no comparison seems to be actually feasible among the state of the art. The target
working scenario/context of each approach is virtually never defined, due to imprecisions in
approach design, non-detailed descriptions of experimental protocols, lack of agreed upon
Benchmarks, lack of artefacts, and, more generally, non-reproducibility of experiments.

74 Page 36 of 53

Empir Software Eng (2021) 26: 74

Theoretical foundations State-of-the-art machine learning based approaches for malware
detection such as MaMaDroid and Drebin are presented as a careful orchestration of design
choices leading to a performance feat that deserves publication. Unfortunately, the eval-
uation of such approaches generally eludes an assessment of the added value. Typically,
it is unclear which steps in the learning pipeline is the key differentiator in the Drebin
and MaMaDroid approaches in terms of performance impact. One could question indeed
whether the feature set or the ML algorithm, among many other parameters, could be, for
example, the main contributors to the performance. Overall, a concern that can be raised
is the lack of justification to the different parameter choices (including not only learning
hyper-parameters, but also algorithm choice and feature engineering). In short the published
content often overlooks a large part of the story behind the approach development and pro-
pose whole new approach instead of leveraging previous advances. Reproducibility of the
experiments, however, could have resolved such issues by allowing other researchers to sys-
tematically experiment and introduce variations in the different steps. This, furthermore,
might have resulted in an overall move forward of the field where new approaches build on
previous ones, instead of the plethora of seemingly unconnected approaches the domain has
seen. To summarise, the failed reproducibility attempts raise the following questions:

“Has the literature offered any hindsight on what works? Has the field grown any
wisdom, or any testable hypothesis on what might work?”

On theneed for a transparent experimental framework During our reproduction journey,
we have stumbled upon several obstacles, which other research fields dealing with the use
of machine learning are also facing. A recurrent challenge is that the experimental pipelines
implemented in current research papers are heavily ad-hoc. A solution to the reproduction
problem could be to enforce the use of standardised machine learning pipeline manage-
ment tooling, with a strong separation of concerns. Ideally, a new proposed approach would
be fully characterised by a configuration file describing all the technical parameters. This
would eliminate uncertainty, guarantee reproducibility, and allow researchers to investigate
the effect of each parameter and to rigorously compare different approaches.

Industry is facing similar problems in the management of the full lifecycle of Machine-
Learning systems. While it is unrealistic to expect researchers to deliver production-grade
systems, the tooling developed to address production issues, such as TensorFlow Extended21

or Metaflow22 could also be used by researchers to make their approaches more re-usable.

6 RelatedWork

Our work is related to various research directions in the literature. With respect to our repro-
duction subjects, a number of research works have attempted to compare against them (cf.
Section 6.1). Other researchers have already presented investigation results on the biases
in the machine learning-based malware detection field (cf. Section 6.2). We also discuss
how reproduction is viewed in the scientific literature beyond the research community

21https://www.tensorflow.org/tfx
22https://metaflow.org/

Page 37 of 53 74

https://www.tensorflow.org/tfx
https://metaflow.org/

Empir Software Eng (2021) 26: 74

(cf. Section 6.3). Finally, we enumerate a few strategies proposed in other fields towards
ensuring reproducibility (cf. Section 6.4).

6.1 Comparison Against the Reproduced Approaches in the Litterature

DREBIN has been published in 2014, and it is considered as a state of the art approach in
android malware detection. Thus, it has rapidly become the center of many related works.
To demonstrate the capability of their CASANDRA online learning based framework for
malware detection, (Narayanan et al. 2017) have provided an experimental comparison with
the DREBIN (as well as with the work of (Allix et al. 2016a)). As part of their experimental
setup, they have used DREBIN’s malware dataset with 5000 randomly chosen goodware
apps from the same period of DREBIN.While they used the same malware dataset, the same
features, and the same algorithm as DREBIN, they did not attempt to reproduce DREBIN.
Thus, they developed their own experimental setup for comparison.

This process is performed over and over in the literature (Abaid et al. 2017; Demontis
et al. 2019; Jordaney et al. 2016; Chen et al. 2019) where authors attempt to obtain the
training datasets and implement feature extraction of DREBIN based on the descriptions in
the paper. Although authors consider these as reproductions, comparing the obtained results
with the original works, which may have different parameters, is not sound.

DREBIN and MaMaDroid are also often reused to perform approach assessments and
comparisons. For example, Skovoroda and Gamayunov (2017) have proposed a heuristic
approach to static analysis of Android applications using 2 collections of malware datasets:
DREBIN and ISCX (Abdul Kadir et al. 2015). Chen et al. (2018) have presented KUA-
FUDET which is a learning enhancing defense system with adversarial detection, and they
have applied their poisoning attack to DREBIN, MaMaDroid, and DroidAPIMiner (Aafer
et al. 2013). (Smutz and Stavrou 2016) have proposed a method to identify the observa-
tions on which the performance of an ensemble classifier is low. They have evaluated their
method using PDFrate, which is a PDF malware detector, and they have replicated DREBIN
experimental datasets using 100 000 benign and 5000 malicious applications.

Regarding the two recent approaches RevealDroid and DroidCat, they have also been
used by researchers to perform comparison. For instance, Scalas et al. (2019) have compared
System API-based strategies with RevealDroid and three other approaches. Cai (2020) have
also compared the sustainability of their tool DroidSpan against RevealDroid as well as four
other systems from the literature. (Pei et al. 2020) have evaluated their approach against
eight state of the art techniques that include DREBIN, MaMaDroid, and DroidCat. Also,
(Gong et al. 2020) have compared their tool APICHECKER with DREBIN, DroidCat, and
nine other approaches from the literature.

It is worth noting that some of the reproduced approaches are evaluated against each
other. For example, RevealDroid’s authors have compared against re-implementation of
DREBIN by selecting subset of features, and MalScan’s effectiveness is compared against
DREBIN and MaMaDroid approaches.

6.2 Biases in Machine Learning basedMalware Detection

In malware research, Rossow et al. (2012) have conducted a survey on 36 malware exe-
cution’s papers from 2006-2011 to assess the methodological rigour and prudence, and
they have highlighted some deficiencies such as the experimental setup which is often not
adequately described in the papers.

74 Page 38 of 53

Empir Software Eng (2021) 26: 74

In 2015, Allix et al. (2015) showed the significant impact of time coherence in the con-
struction of datasets for Android malware detection. They discovered that not ensuring that
the training set contains only apps anterior to the test set led to artificially high reported
performance of malware detectors.

Allix et al. (2016a) presented an experimental study demonstrating that a popular evalu-
ation methodology (10-fold cross-validation) could also bring seemingly high performance,
despite poor performance in a real world scenario.

Pendlebury et al. (2019) published a study measuring how DREBIN and MaMaDroid
were affected by the two biases described in both Allix et al. papers introduced above.
They built and released TESSERACT, a tool to automatically evaluate those biases in
any machine learning-based Android malware detector. TESSERACT requires a trained
machine-learning model. This point highlights the need for relevant research approaches to
either provide such a trained model, and/or to allow other researchers to build their own.
The latter can only be achieved if the approach is reproducible, or at least replicable.

6.3 Reproduction in Research

In a survey published in Nature in 2016 and conducted over a pool of 1576 researchers, it
has been shown that more than 70% of the respondents had not succeeded in reproducing
experiments of another scientist, and more than 50% have been unable to reproduce their
own experiments (Baker 2016).

The bombastic number of researches that are published every year and reporting very
good results, has raised the question of quality and reproducibility of the research, and has
drawn the attention of researchers in the other scientific fields.

Nuijten (2019) has addressed this problem in the field of psychology. They have affirmed
that publication bias and human biases are among the main causes of the reproducibility
crisis that is triggered by repeated failures of reproduction.

In medical research, a survey has been carried out on faculty members and trainees at
MD Anderson Cancer Center and has revealed that 50% of the participants have failed at
least one time to reproduce published data (Mobley et al. 2013).

In economics, McCullough et al. (2006) have examined the reproducibility of articles
from the online archive “the Journal of Money, Credit, and Banking”, which requires the
authors to provide the code and the data to make their research reproducible. The results of
this work reported that fewer than 15 of over 150 empirical articles could be reproduced.

King (1995) has affirmed that sufficient information for reproduction is usually unavail-
able in political science, which makes the reproduction often impossible even with the help
of the authors.

Reaves et al. (2016) have categorised papers about android application analysis tools from
more than 17 top venues based on, among others, the availability of the tools. After evaluation
on a representative sample, they have concluded that tools suffer from important issues.

6.4 Improving Reproducibility

To ensure the healthy development of research, the need of reproduction is becoming cru-
cial. Reproduction helps to verify the correctness of the results as well as to improve them.
This has motivated researcher to propose solution to improve Reproducibility.

Nuijten (2019) has proposed strategies to be adopted by researchers in order to increase
reproducibility in psychology. They have identified four key factors: Improving statistical
inference, Pre-registration, Multisite collaborations, and transparency.

Page 39 of 53 74

Empir Software Eng (2021) 26: 74

In political science, King (1995) has presented Reproduction Standards, which requires
the existence of sufficient information to understand, evaluate, and build upon prior work
without the help of the authors. To encourage adherence to the reproduction standards, they
have proposed solutions to be implemented by authors, Tenure and Promotion Review Com-
mittees, Editors and Reviewers of Books and Journals, as well as the implementation of
Graduate Programs.

In 2015, an openly-peer-reviewed journal “ReScience” was created 23. It aims to publish
explicit reproductions of research under the condition that they have to be open-source and
reproducible (Rougier et al. 2017).

The journal Public Finance Review has called for papers that reproduce previous research
whether the result of reproduction is positive or negative (Burman et al. 2010).

In malware research, Rossow et al. (2012) have defined guidelines that are crucial for
prudent malware experiments. These guidelines are inspired from 4 goals: transparency,
realism, correctness, and safety.

Several Computer Science conferences now offer a way for research artefacts to be
evaluated. Among such conferences are Usenix Security24, ICSE25, POPL26, ACSAC27,

7 Conclusion

In this paper, we discuss the findings of a reproduction attempt that we made for five
approaches on machine learning based malware detection which have had a large influence
on the research line. With this work, we make an urgent call to android malware detection
researchers to take lessons from our reproduction experience, and to make their approaches
and experiments reproducible to avoid, in the near future, a setback due to a Reproduction
Crisis in our field. We also invite other researchers to invest in reproduction studies, and
publishers to encourage and promote this kind of publications.

Our investigation of the related work also revealed that the reproduction problem is not
specific to the Computer Science domain. Instead, it seems every branch of scientific inquiry
faces its very own reproduction crisis. Fortunately, all fields seem equally eager to outgrow
this crisis, albeit there are fields that acknowledged the issue and started their correcting
efforts long before others.

Our reproduction attempt has been successful for one out of five approaches. As for the
other detectors, our reproduction has turned to be a replication study. Somewhat worry-
ing is that our reproduced/replicated approaches are not exactly equivalent to the original
approaches. We had to guess several elements, hence introducing potential differences.
We also had to modify the artefacts provided by original authors, therefore introducing
actual differences. Combined, those differences make it almost impossible to use repro-
duced/replicated approaches to draw any conclusion on the original approaches. Whatever

23https://github.com/ReScience/
24https://www.usenix.org/conference/usenixsecurity20/artifact-evaluation-information
25https://2019.icse-conferences.org/track/icse-2019-Artifact-Evaluation
26https://popl19.sigplan.org/track/POPL-2019-Artifact-Evaluation
27https://www.acsac.org/2019/submissions/papers/artifacts/

74 Page 40 of 53

https://github.com/ReScience/
https://www.usenix.org/conference/usenixsecurity20/artifact-evaluation-information
https://2019.icse-conferences.org/track/icse-2019-Artifact-Evaluation
https://popl19.sigplan.org/track/POPL-2019-Artifact-Evaluation
https://www.acsac.org/2019/submissions/papers/artifacts/

Empir Software Eng (2021) 26: 74

the findings, experimenters would rightly wonder: Given that the reproduced system is
different from the original one, would this finding also hold for the original system?.

Even comparing the performance of a new approach against a reproduction comes with
the same question: Does it perform better than RevealDroid, or does it perform better than
a reproduced RevealDroid?.

Our work conclusions call for a large and systematic community effort to tackle head-
on the reproduction crisis in the Machine Learning-based malware detection field. We have
proposed some next step in this direction with the need for implementing a transparent
framework to manage experimental setups.

Appendix

Table 16 MaMaDroid’s dataset collection process

Dataset Description

oldbenign It is the easiest set to retrieve; It was originally collected as part of the PlayDrone dataset
created by Viennot et al. in 2014, and has since been added to The Internet Archive
projecta . MaMaDroid authors provide a direct link to the ZIP file that contains the
5879 applications. While we were able to download this file in June 2019, we note that
the whole PlayDrone dataset, including this file, is not available anymore at the time of
writing (November 2019)b

newbenign For the newbenign dataset, the number described in the paper is 2568 apps, but the
number provided in the list of hashes is 2555 apps. 1761 apps out of those 2555 were
available on AndroZoo (Allix et al. 2016b). We do not have access to any other sources
where we could request APKs by their SHA256 hashes, and therefore we were unable to
obtain the remaining 794 apps. Hence we had to complete this dataset with applications
from AndroZoo, selecting only apps that date back to 7 March 2016, as described in
MaMaDroid

drebin drebin dataset is the malware collection used in DREBIN’s work, and has been
provided by DREBIN’s authors as mentioned previously

2013 For 2013, we were able to obtain the 11 080 files of the list of hashes from VirusShare

2014 For 2014, we were able to obtain the 24 317 files of the list of hashes from VirusShare

2015 For 2015, we were able to obtain only 5216 out of the 5314 APKs of the list of hashes
from VirusShare. The 98 missing apps were not present in the VirusShare malware col-
lections indicated by authors, nor in any other VirusShare malware collections we had
access to

2016 For 2016, we were able to obtain the 2974 APKs of the list of hashes from VirusShare.

ahttps://archive.org/
bThe Internet Archive website now displays a message “This item is no longer available. Items may be taken
down for various reasons, including by decision of the uploader or due to a violation of our Terms of Use.”
when accessing the link https://archive.org/details/playdrone-apk-e8

Page 41 of 53 74

https://archive.org/
https://archive.org/details/playdrone-apk-e8

Empir Software Eng (2021) 26: 74

Table 17 Problems illustration

Step Problem illustration

Dataset VirusShare collects malware of all sorts and for all platforms, hence we had to download
461GiB of data, only 119GiB of which were involved in MaMaDroid’s experiments. We
note that we had to contact VirusShare maintainer to be able to download old malware
sets, which were hosted on a crashed server. Overall, collecting the required files from
VirusShare took more than one month. As for PlayDrone, as noted above, this dataset is
not available anymore at the time of writinga .

Features
extraction

While analysing MaMaDroid code, we were puzzled by one detail
of the feature extraction process. Once a call graph is obtained,
it is represented as a number of strings following the format:
caller full name => [’callee1 full name(param1 type)’,
’callee2 full name(param1 type, param2 type)’, [...]] The way
each string representing the list of callees (i.e. the part after “=>”) is converted from one
string into a list of callees is by spliting the string over the character ’,’. However, while
callees are indeed separated by ’,’, so are parameters for callees that take more than one
parameter. As a consequence, the above example would result in a list of three callees:

– callee1 full name(param1 type)

– callee2 full name(param1 type

– param2 type)

This made us unclear about MaMaDroid authors original intentions.

–Case 1Authors intentionally want to consider both methods and their parameters. How-
ever the rest of the code will discard everything after a ’(’, and hence will fail
to consider the first parameter;

–Case 2Authors do not want to consider the parameters. However, the code will consider
all parameters besides the first one.

For both scenario, the code contains at least one bug. More importantly, it raises a difficult
question: In the context of a reproduction, should the code be run “as is”, or should
identified bugs be fixed?

Vectors
embedding

After running MaMaDroid’s code, we noticed that the CSV files containing the output
of the embedding step, i.e., the feature vectors, have some issues. Almost all the feature
vectors have their values set to 0. After examining some applications manually, we effec-
tively noticed that the extracted features were improperly embedded. To understand this
issue, we have further examined the code, and we have figured out 2 problems:

– For both modes of operation (family and package), authors provide a txt file
that contains the possible family/package to which the method calls can be abstracted
(except obfuscated and self-defined). For family mode, the txt file is a list of the
following families: com.google., xml., apache., javax., java., android.,
dom., json., and dalvik.. The overall idea of the abstraction in the code is to
check if a call starts with one of these families. Let us consider this call as an exam-
ple: org.apache.http.conn.ssl.AllowAll HostnameVerifier: void
<init>(), which should be abstracted to apache family. However, the script of the
authors checks first if this call starts with a family from the previous list, otherwise, it
will match it to obfuscated or self defined families. Since the call starts with
org.apache, it will not be matched to apache family from the list. In order to actually
match a call to the apache framework, apache needs to be replaced with org.apache
in the txt file that lists the families. A similar issue is noticed with xml., dom., and
json. families, and we have then replaced them with org.xml., org.w3c.dom.,
and org.json. in the txt file of families.

74 Page 42 of 53

Empir Software Eng (2021) 26: 74

Table 17 (continued)

Step Problem illustration

– Besides the issue of the family names that are not complete, we have also noticed
that the matching process itself is not performed correctly. In other words, in family
mode, the matching script does not properly compare a given call to each element in
the txt file listing the family names. As a result, in both cases, i.e., either with
a list com.google., org.apache., etc. or with a list with short names google,
apache, etc., the abstraction is not performed correctly. A similar issue is noticed with
package mode.

To overcome these issues, we have first modified the family/package lists in the txt
files by considering the complete names. Second, we have modified the comparison
scripts for both family and package modes of abstraction.

aWe will share this dataset upon request

Table 18 Papers that do not match the topic

Paper Explanation

Meng et al. (2019):Securing Android App Markets via Mod-
eling and PredictingMalware Spread Between Markets, TIFS

It predicts the spread of Android
malware between markets

(Sen et al. 2018):Coevolution of Mobile Malware and Anti-
Malware, TIFS

It investigates the use of coevolu-
tionary techniques

(Du et al. 2018):Statistical Estimation of Malware Detection
Metrics in the Absence of Ground Truth, TIFS

Not about android

(Nissim et al. 2017):ALDOCX: Detection of Unknown Mali-
cious Microsoft Office Documents Using Designated Active
Learning Methods Based on New Structural Feature Extrac-
tion Methodology, TIFS

Not about android

Li et al. (2017):Understanding Android App Piggybacking: A
Systematic Study of Malicious Code Grafting, TIFS

An investigation of Android Piggy-
backed Apps

Xue et al. (2017):Auditing AntiMalware Tools by Evolving
Android Malware and Dynamic Loading Technique, TIFS

A malware generation system

Das et al. (2016):Semantics-Based Online Malware Detec-
tion: Towards Efficient Real-Time Protection Against Mal-
ware, TIFS

Not about android

Caviglione et al. (2016):Seeing the Unseen: RevealingMobile
Malware Hidden Communications via Energy Consumption
and Artificial Intelligence, TIFS

It is about malware exploiting a
covert channel

Naval et al. (2015):Employing Program Semantics for Mal-
ware Detection, TIFS

Not about android

Rastogi et al. (2014):Catch Me If You Can: Evaluating
AndroidAntiMalwareAgainst Transformation Attacks, TIFS

An evaluation of anti-malware
products

Ma et al. (2014):DNSRadar: Outsourcing Malicious Domain
Detection Based on Distributed Cache-Footprints, TIFS

Not about android

O’Kane et al. (2013):SVM Training Phase Reduction Using
Dataset Feature Filtering forMalware Detection, TIFS

Not about android

Wei et al. (2011):Malicious Circuitry Detection Using Ther-
mal Conditioning, TIFS

Not about android

Feng et al. (2014): Apposcopy: semantics-based detection of
Android malware through static analysis , FSE

A static analysis approach

Page 43 of 53 74

Empir Software Eng (2021) 26: 74

Table 18 (continued)

Paper Explanation

Song and Touili (2013): PoMMaDe: pushdown model-
checking for malware detection , FSE

Not about android

Chandramohan et al. (2013): A scalable approach formalware
detection through bounded feature space behavior modeling,
ASE

Not about android

Hammad et al. (2018): A large-scale empirical study on
the effects of code obfuscations on Android apps and anti-
malware products, ICSE

Evaluation of AV against obfusca-
tion

Rasthofer et al. (2017): Making Malory Behave Maliciously:
Targeted Fuzzing of Android Execution Environments, ICSE

A framework that generates android
execution environment

Tam et al. (2015): CopperDroid: Automatic Reconstruction of
Android Malware Behaviors, NDSS

It reconstructs behaviors of android
malware

Wong and Lie (2016): IntelliDroid: A Targeted Input Genera-
tor for the Dynamic Analysis of Android Malware, NDSS

It is an android input generator
that produces inputs specific to a
dynamic analysis tool

Zhou and Jiang (2012): Dissecting Android Malware: Char-
acterization and Evolution, S&P

It characterizes Android malware
Genome dataset

Xing et al. (2014): Upgrading Your Android, Elevating My
Malware: Privilege Escalation through Mobile OS Updating,
S&P

It is a service that detects Pileup
vulnerabilities

Yan and Yin (2012): DroidScope: Seamlessly Reconstructing
the OS and Dalvik Semantic Views for Dynamic Android
Malware Analysis, Usenix Security

It is a dynamic binary instrumenta-
tion tool for Android

Xue et al. (2017): Malton: Towards On-Device Non-Invasive
Mobile Malware Analysis for ART, Usenix Security

It is a dynamic analysis tool

Neupane et al. (2015): A Multi-Modal Neuro-Physiological
Study of Phishing Detection and Malware Warnings, CCS

Not about android (1 “Android” in
ref)

Kolbitsch et al. (2011): The power of procrastination: detec-
tion and mitigation of execution-stalling malicious code, ,
CCS

“Android” not in pdf text

Xu et al. (2019): BadBluetooth: Breaking Android Security
Mechanisms viaMalicious Bluetooth Peripherals, NDSS

A systematic study over the Blue-
tooth profiles and a Bluetooth vali-
dation mechanism

Nappa et al. (2014): CyberProbe: Towards Internet-Scale
Active Detection ofMalicious Servers, NDSS

“Android” not in pdf text

Poeplau et al. (2014): Execute This! Analyzing Unsafe and
Malicious Dynamic Code Loading in Android Applications,
NDSS

A static analysis tool

Srndic and Laskov (2013): Detection of Malicious PDF Files
Based on Hierarchical Document Structure, NDSS

“Android” not in pdf text

Balzarotti et al. (2010): Efficient Detection of Split Personal-
ities in Malware, NDSS

“Android” not in pdf text

Pendlebury et al. (2019): TESSERACT: Eliminating Exper-
imental Bias in Malware Classification across Space and
Time, Usenix Security

Identifying temporal and spatial
bias in the Android malware exper-
iments

Jordaney et al. (2017): Transcend: Detecting Concept Drift in
Malware Classification Models, Usenix Security

Identifying concept drift in mal-
ware classification experiments

Bayens et al. (2017): See No Evil, Hear No Evil, Feel No Evil,
Print No Evil? Malicious Fill Patterns Detection in Additive
Manufacturing, Usenix Security

“Android” not in pdf text

74 Page 44 of 53

Empir Software Eng (2021) 26: 74

Table 18 (continued)

Paper Explanation

Wang et al. (2014): Man vs. Machine: Practical Adversar-
ial Detection of Malicious Crowdsourcing Workers, Usenix
Security

An empirical study of adversarial
attacks

Kirat et al. (2014): BareCloud: Bare-metal Analysis-based
EvasiveMalware Detection, Usenix Security

“Android” not in pdf text

Kapravelos et al. (2013): Revolver: An Automated Approach
to the Detection of Evasive Web-based Malware, Usenix
Security

“Android” not in pdf text

Curtsinger et al. (2011): ZOZZLE: Fast and Precise In-
Browser JavaScriptMalware Detection, Usenix Security

“Android” not in pdf text

Kolbitsch et al. (2009): Effective and Efficient Malware
Detection at the End Host, Usenix Security

“Android” not in pdf text

Mirzaei et al. (2019): AndrEnsemble: Leveraging API Ensem-
bles to Characterize Android Malware Families, ACM Asia
CCS

It is about android malware family
characterisation

Gao et al. (2018): Software-Defined Firewall: Enabling Mal-
ware Traffic Detection and Programmable Security Control,
ACM Asia CCS

Not about android

Meng et al. (2016): Mystique: Evolving Android Malware
for Auditing Anti-Malware Tools, ACM Asia CCS

A framework that generates mal-
ware with specific features

Rahbarinia et al. (2016): Real-Time Detection of Malware
Downloads via Large-Scale URL->File->Machine Graph
Mining, ACM Asia CCS

It is specific to malware download
events

Wang et al. (2015): JSDC: A Hybrid Approach for JavaScript
Malware Detection and Classification, ACM Asia CCS

It is about JavaScript malware

Yan (2015): Be Sensitive to Your Errors: Chaining Neyman-
Pearson Criteria for Automated Malware Classification,
ACM Asia CCS

Not about android

Zhang et al. (2014a): Detection of stealthy malware activ-
ities with traffic causality and scalable triggering relation
discovery, ACM Asia CCS

Not about android

Wüchner et al. (2014): Malware detection with quantitative
data flow graphs, ACM Asia CCS

Not about android

Maiorca et al. (2013): Looking at the bag is not enough to find
the bomb: an evasion of structural methods formalicious PDF
files detection, ACM Asia CCS

Not about android

Rastogi et al. (2013): DroidChameleon: evaluating Android
antimalware against transformation attacks, ACM Asia CCS

Evaluation of anti-malware prod-
ucts

Zhongyang et al. (2013): DroidAlarm: an all-sided static anal-
ysis tool for Android privilege-escalation malware, ACM
Asia CCS

It is about capability leaks identifi-
cation

Xia et al. (2019): Characterizing and Detecting Malicious
Accounts in Privacy-CentricMobile Social Networks: A Case
Study, SIGKDD

Not about android

Fan et al. (2018): Gotcha - Sly Malware!: Scorpion A Meta-
graph2vec BasedMalware Detection System, SIGKDD

Not about android

Tamersoy et al. (2014): Guilt by association: large scale
malware detection by mining file-relation graphs, SIGKDD

Not about android

Page 45 of 53 74

Empir Software Eng (2021) 26: 74

Table 18 (continued)

Paper Explanation

Kong and Yan (2013): Discriminant malware distance learn-
ing on structural information for automated malware classifi-
cation, SIGKDD

Not about android

Ye et al. (2011): Combining file content and file relations for
cloud basedmalware detection, SIGKDD

Not about android

Ye et al. (2009): Intelligent file scoring system for malware
detection from the gray list, SIGKDD

Not about android

Pang et al. (2018): UnorganizedMalicious AttacksDetection,
NIPS

Not about android

Wang et al. (2019): Heterogeneous Graph Matching Networks
for Unknown Malware Detection, IJCAI

Not about android

Artefacts Availability We make all artefacts produced in this work publicly available to the community in
order to facilitate future work. https://github.com/Trustworthy-Software/Reproduction-of-Android-Malware-
detection-approaches

Acknowledgement This work was partially supported (a) by the Fonds National de la Recherche (FNR),
Luxembourg, under project CHARACTERIZE C17/IS/11693861, (b) by the University of Luxembourg
under the HitDroid grant, (c) by the SPARTA project, which has received funding from the European Union’s
Horizon 2020 research and innovation program under grant agreement No 830892, and (d) by the Luxem-
bourg Ministry of Foreign and European Affairs through their Digital4Development (D4D) portfolio under
project LuxWAyS.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aafer Y, Du W, Yin H (2013) Droidapiminer: Mining api-level features for robust malware detection in
android. In: Zia T, Zomaya A, Varadharajan V, Mao M (eds) Security and privacy in communication
networks. Springer International Publishing, Cham, pp 86–103

Abaid Z, Kaafar MA, Jha S (2017) Quantifying the impact of adversarial evasion attacks on machine learning
based android malware classifiers. In: 2017 IEEE 16th international symposium on network computing
and applications (NCA), pp 1–10. https://doi.org/10.1109/NCA.2017.8171381

Abdul Kadir AF, Stakhanova N, Ghorbani AA (2015) Android botnets: What urls are telling us. In: Qiu M,
Xu S, Yung M, Zhang H (eds) Network and system security. Springer International Publishing, Cham,
pp 78–91

Allix K, Bissyandé TF, Klein J, Le Traon Y (2015) Are your training datasets yet relevant? In: Piessens
F, Caballero J, Bielova N (eds) Engineering Secure Software and Systems. Springer International
Publishing, Cham, pp 51–67. https://doi.org/10.1007/978-3-319-15618-7 5

Allix K, Bissyandé TF, Jérome Q, Klein J, State R, Le Traon Y (2016a) Empirical assessment
of machine learning-based malware detectors for android. Empir Softw Eng 21(1):183–211.
https://doi.org/10.1007/s10664-014-9352-6

74 Page 46 of 53

https://github.com/Trustworthy-Software/Reproduction-of-Android-Malwaredetection-approaches
https://github.com/Trustworthy-Software/Reproduction-of-Android-Malwaredetection-approaches
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/NCA.2017.8171381
https://doi.org/10.1007/978-3-319-15618-7_5
https://doi.org/10.1007/s10664-014-9352-6

Empir Software Eng (2021) 26: 74

Allix K, Bissyandé TF, Klein J, Le Traon Y (2016b) Androzoo: Collecting millions of android apps for the
research community. In: Proceedings of the 13th international conference on mining software reposito-
ries, ACM, New York, NY, USA, MSR ’16, pp 468–471. https://doi.org/10.1145/2901739.2903508

Arp D, Spreitzenbarth M, Hübner M, Gascon H, Rieck K (2014) Drebin: Efficient and explainable detection
of android malware in your pocket. In: Proceedings of the ISOC network and distributed system security
symposium (NDSS), San Diego, CA

Arzt S, Rasthofer S, Fritz C, Bodden E, Bartel A, Klein J, Le Traon Y, Octeau D, McDaniel P (2014)
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps. Acm Sigplan Notices 49(6):259–269

Association for Computer Machinery (2020) Artifact review and badging. https://www.acm.org/publications/
policies/artifact-review-and-badging-current, Accessed 30 Oct 2020

Au KWY, Zhou YF, Huang Z, Lie D (2012) Pscout: Analyzing the android permission spec-
ification. In: Proceedings of the 2012 ACM conference on computer and communications
security, association for computing machinery, New York, NY, USA, CCS ’12, pp 217–228.
https://doi.org/10.1145/2382196.2382222

Avdiienko V, Kuznetsov K, Gorla A, Zeller A, Arzt S, Rasthofer S, Bodden E (2015) Mining apps for
abnormal usage of sensitive data. In: 2015 IEEE/ACM 37th IEEE international conference on software
engineering, vol 1, pp 426–436. https://doi.org/10.1109/ICSE.2015.61

Baker M (2016) 1,500 scientists lift the lid on reproducibility. Nature 533:452–454
Balzarotti D, Cova M, Karlberger C, Kirda E, Kruegel C, Vigna G (2010) Efficient detection of split person-

alities in malware. In: Proceedings of the Network and Distributed System Security Symposium, NDSS
2010, San Diego, California, USA, 28th February - 3rd March 2010, The Internet Society. https://www.
ndss-symposium.org/ndss2010/efficient-detection-split-personalities-malware

Bartel A, Klein J, Le Traon Y, Monperrus M (2012) Dexpler: Converting android dalvik bytecode to jimple
for static analysis with soot. In: Proceedings of the ACM SIGPLAN international workshop on state of
the art in java program analysis, association for computing machinery, New York, NY, USA, SOAP ’12,
pp 27–38. https://doi.org/10.1145/2259051.2259056

Bayens C, Le T, Garcia L, Beyah R, Javanmard M, Zonouz S (2017) See no evil, hear no evil, feel no evil,
print no evil? malicious fill pattern detection in additive manufacturing. In: Proceedings of the 26th
USENIX Conference on Security Symposium, USENIX Association, USA, SEC’17, pp 1181–1198

Breiman L (2001) Random forests. Mach Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324
Burman LE, Reed WR, Alm J (2010) A call for replication studies. Public Finance Rev 38(6):787–793
Cai H (2020) Assessing and improving malware detection sustainability through app evolution studies. ACM

Trans Softw Eng Methodol 29(2) https://doi.org/10.1145/3371924
Cai H, Meng N, Ryder B, Yao D (2019) Droidcat: Effective android malware detection and categorization

via app-level profiling. IEEE Trans Inform Forens Secur 14(6):1455–1470
Canfora G, Martinelli F, Mercaldo F, Nardone V, Santone A, Visaggio CA (2019) Leila: Formal tool for

identifying mobile malicious behaviour. IEEE Trans Softw Eng 45(12):1230–1252
Caviglione L, GaggeroM, Lalande J, MazurczykW, Urbański M (2016) Seeing the unseen: Revealing mobile

malware hidden communications via energy consumption and artificial intelligence. IEEE Trans Inform
Forens Secur 11(4):799–810

Chandramohan M, Tan HBK, Briand LC, Shar LK, Padmanabhuni BM (2013) A scalable approach
for malware detection through bounded feature space behavior modeling. In: 2013 28th IEEE/ACM
international conference on automated software engineering (ASE), pp 312–322

Chen S, Xue M, Tang Z, Xu L, Zhu H (2016) Stormdroid: A streaminglized machine learning-based
system for detecting android malware. In: Proceedings of the 11th ACM on Asia conference on
computer and communications security, ACM, New York, NY, USA, ASIA CCS ’16, pp 377–388.
https://doi.org/10.1145/2897845.2897860

Chen S, Xue M, Fan L, Hao S, Xu L, Zhu H, Li B (2018) Automated poisoning attacks and
defenses in malware detection systems: An adversarial machine learning approach. Comput Secur
73:326–344. https://doi.org/10.1016/j.cose.2017.11.007. http://www.sciencedirect.com/science/article/
pii/S0167404817302444

Chen S, Xue M, Fan L, Ma L, Liu Y, Xu L (2019) How can we craft large-scale android malware? an auto-
mated poisoning attack. In: 2019 IEEE 1st international workshop on artificial intelligence for mobile
(AI4Mobile), pp 21–24. https://doi.org/10.1109/AI4Mobile.2019.8672691

Chen W, Samuelson FW (2014) The average receiver operating characteristic curve in multireader multicase
imaging studies. British J Radiol 87(1040):20140016. https://doi.org/10.1259/bjr.20140016

Curtsinger C, Livshits B, Zorn BG, Seifert C (2011) ZOZZLE: fast and precise in-browser javascript mal-
ware detection. In: 20th USENIX security symposium, San Francisco, CA, USA, August 8-12, 2011,
Proceedings, USENIX Association. http://static.usenix.org/events/sec11/tech/full papers/Curtsinger.pdf

Page 47 of 53 74

https://doi.org/10.1145/2901739.2903508
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/2382196.2382222
https://doi.org/10.1109/ICSE.2015.61
https://www.ndss-symposium.org/ndss2010/efficient-detection-s plit-personalities-malware
https://www.ndss-symposium.org/ndss2010/efficient-detection-s plit-personalities-malware
https://doi.org/10.1145/2259051.2259056
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/3371924
https://doi.org/10.1145/2897845.2897860
https://doi.org/10.1016/j.cose.2017.11.007
http://www.sciencedirect.com/science/article/pii/S0167404817302444
http://www.sciencedirect.com/science/article/pii/S0167404817302444
https://doi.org/10.1109/AI4Mobile.2019.8672691
https://doi.org/10.1259/bjr.20140016
http://static.usenix.org/events/sec11/tech/full_papers/Curtsinger.pdf

Empir Software Eng (2021) 26: 74

Das S, Liu Y, Zhang W, Chandramohan M (2016) Semantics-based online malware detection: Towards
efficient real-time protection against malware. IEEE Trans Inform Forens Secur 11(2):289–302

Demontis A, Melis M, Biggio B, Maiorca D, Arp D, Rieck K, Corona I, Giacinto G, Roli F (2019)
Yes, machine learning can be more secure! a case study on android malware detection. IEEE Trans
Dependable Secure Comput 16(4):711–724. https://doi.org/10.1109/TDSC.2017.2700270

Desnos A, Gueguen G (2011) Android: From reversing to decompilation. Black Hat Abu
Dhabi https://media.blackhat.com/bh-ad-11/Desnos/bh-ad-11-DesnosGueguen-Andriod-Reversing to
Decompilation WP.pdf

Du P, Sun Z, Chen H, Cho J, Xu S (2018) Statistical estimation of malware detection metrics in the absence
of ground truth. IEEE Trans Inform Forens Secur 13(12):2965–2980

Duvendack M, Palmer-Jones RW, Reed WR et al (2015) Replications in economics: A progress report. Econ
Journal Watch 12(2):164–191

Fan M, Liu J, Luo X, Chen K, Tian Z, Zheng Q, Liu T (2018) Android malware familial classification
and representative sample selection via frequent subgraph analysis. IEEE Trans Inform Forens Secur
13(8):1890–1905

Fan M, Luo X, Liu J, Wang M, Nong C, Zheng Q, Liu T (2019) Graph embedding based familial analysis
of android malware using unsupervised learning. In: Proceedings of the 41st international conference on
software engineering, IEEE Press, ICSE ’19, pp 771–782. https://doi.org/10.1109/ICSE.2019.00085

Fan Y, Hou S, Zhang Y, Ye Y, Abdulhayoglu M (2018) Gotcha - sly malware! scorpion a metagraph2vec
based malware detection system. In: Proceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining, association for computing machinery, New York, NY, USA, KDD
’18, pp 253–262. https://doi.org/10.1145/3219819.3219862

Feng Y, Anand S, Dillig I, Aiken A (2014) Apposcopy: Semantics-based detection of android malware
through static analysis. In: Proceedings of the 22nd ACM SIGSOFT international symposium on foun-
dations of software engineering, association for computing machinery, New York, NY, USA, FSE,
vol 2014, pp 576–587. https://doi.org/10.1145/2635868.2635869

Fokkens A, van ErpM, Postma M, Pedersen T, Vossen P, Freire N (2013) Offspring from reproduction prob-
lems: What replication failure teaches us. In: Proceedings of the 51st annual meeting of the association
for computational linguistics (vol 1: Long Papers), Association for Computational Linguistics, Sofia,
Bulgaria, pp 1691–1701. https://www.aclweb.org/anthology/P13-1166

Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Netw 1(3):215–239
Gao S, Li Z, Yao Y, Xiao B, Guo S, Yang Y (2018) Software-defined firewall: Enabling malware traf-

fic detection and programmable security control. In: Proceedings of the 2018 on asia conference on
computer and communications security, association for computing machinery, New York, NY, USA,
ASIACCS ’18, pp 413–424. https://doi.org/10.1145/3196494.3196519

Garcia J, Hammad M, Malek S (2018) Lightweight, obfuscation-resilient detection and family identification
of android malware. ACM Trans Softw Eng Methodol 26(3) https://doi.org/10.1145/3162625

Gascon H, Yamaguchi F, Arp D, Rieck K (2013) Structural detection of android malware using embedded
call graphs. In: Proceedings of the 2013 ACM workshop on artificial intelligence and security, ACM,
New York, NY, USA, AISec ’13, pp 45–54. https://doi.org/10.1145/2517312.2517315

Gong L, Li Z, Qian F, Zhang Z, Chen QA, Qian Z, Lin H, Liu Y (2020) Experiences of landing machine
learning onto market-scale mobile malware detection. In: Proceedings of the Fifteenth european confer-
ence on computer systems, association for computing machinery, New York, NY, USA, EuroSys ’20.
https://doi.org/10.1145/3342195.3387530

Gundersen OE, Kjensmo S (2018) State of the art: Reproducibility in artificial intelligence. In: McIlraith
S, Weinberger K (eds) Proceedings of the 32nd AAAI conference on artificial intelligence (AAAI-18),
association for the advancement of artificial intelligence

Hammad M, Garcia J, Malek S (2018) A large-scale empirical study on the effects of code obfuscations
on android apps and anti-malware products. In: Proceedings of the 40th international conference on
software engineering, association for computing machinery, New York, NY, USA, ICSE ’18, pp 421–
431. https://doi.org/10.1145/3180155.3180228

Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B (1998) Support vector machines. IEEE Intell Syst
Appl 13(4):18–28. https://doi.org/10.1109/5254.708428

Hou S, Ye Y, Song Y, Abdulhayoglu M (2017) Hindroid: An intelligent android malware detection system
based on structured heterogeneous information network. In: Proceedings of the 23rd ACM SIGKDD
international conference on knowledge discovery and data mining, association for computing machinery,
New York, NY, USA, KDD ’17, pp 1507–1515. https://doi.org/10.1145/3097983.3098026

74 Page 48 of 53

https://doi.org/10.1109/TDSC.2017.2700270
https://media.blackhat.com/bh-ad-11/Desnos/bh-ad-11-DesnosGue guen-Andriod-Reversing_to_Decompilation_WP.pdf
https://doi.org/10.1109/ICSE.2019.00085
https://doi.org/10.1145/3219819.3219862
https://doi.org/10.1145/2635868.2635869
https://www.aclweb.org/anthology/P13-1166
https://doi.org/10.1145/3196494.3196519
https://doi.org/10.1145/3162625
https://doi.org/10.1145/2517312.2517315
https://doi.org/10.1145/3342195.3387530
https://doi.org/10.1145/3180155.3180228
https://doi.org/10.1109/5254.708428
https://doi.org/10.1145/3097983.3098026

Empir Software Eng (2021) 26: 74

Hou S, Ye Y, Song Y, Abdulhayoglu M (2018) Make evasion harder: An intelligent android malware
detection system. In: Proceedings of the twenty-seventh international joint conference on artificial intel-
ligence, IJCAI-18, International joint conferences on artificial intelligence organization, pp 5279–5283.
https://doi.org/10.24963/ijcai.2018/737

Hutson M (2018) Artificial intelligence faces reproducibility crisis. Science 359(6377):725–726.
https://doi.org/10.1126/science.359.6377.725, https://science.sciencemag.org/content/359/6377/725

Islam R, Henderson P, Gomrokchi M, Precup D (2017) Reproducibility of benchmarked deep reinforce-
ment learning tasks for continuous control. In: Reproducibility in machine learning workshop (ICML).
arXiv:1708.04133.pdf

Jerome Q, Allix K, State R, Engel T (2014) Using opcode-sequences to detect malicious android
applications. In: 2014 IEEE international conference on communications (ICC), pp 914–919
https://doi.org/10.1109/ICC.2014.6883436

Jordaney R, Wang Z, Papini D, Nouretdinov I, Cavallaro L (2016) Misleading metrics: On evaluating
machine learning for malware with confidence

Jordaney R, Sharad K, Dash SK, Wang Z, Papini D, Nouretdinov I, Cavallaro L (2017) Transcend: Detecting
concept drift in malware classification models. In: Proceedings of the 26th USENIX conference on
security symposium, USENIX Association, USA, SEC’17, pp 625–642

Kapravelos A, Shoshitaishvili Y, Cova M, Kruegel C, Vigna G (2013) Revolver: An automated approach to
the detection of evasive web-based malware. In: King ST (ed) Proceedings of the 22th USENIX Security
Symposium, Washington, DC, USA, August 14-16, 2013, USENIX Association, pp 637–652. https://
www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/kapravelos

Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18(1):39–43
Khatter K, Malik S (2015) Androdata: a tool for static & dynamic feature extraction of android apps. Int J

Appl Eng Res 10:98–102
Kim T, Kang B, Rho M, Sezer S, Im EG (2019) A multimodal deep learning method for android malware

detection using various features. IEEE Trans Inform Forens Secur 14(3):773–788
King G (1995) Replication, replication. PS: Polit Sci Polit 28(3):444–452. https://doi.org/10.2307/420301
Kirat D, Vigna G, Kruegel C (2014) Barecloud: Bare-metal analysis-based evasive malware detection.

In: Proceedings of the 23rd USENIX conference on security symposium, USENIX association, USA,
SEC’14, pp 287–301

Kolbitsch C, Comparetti PM, Kruegel C, Kirda E, Zhou X, Wang X (2009) 18th USENIX security sympo-
sium, Montreal, Canada, August 10-14, 2009, Proceedings, USENIX Association. In: Monrose F (ed),
pp 351–366. http://www.usenix.org/events/sec09/tech/full papers/kolbitsch.pdf

Kolbitsch C, Kirda E, Kruegel C (2011) The power of procrastination: Detection and mitigation of
execution-stalling malicious code. In: Proceedings of the 18th ACM conference on computer and com-
munications security, association for computing machinery, New York, NY, USA, CCS ’11, pp 285–296.
https://doi.org/10.1145/2046707.2046740

Kong D, Yan G (2013) Discriminant malware distance learning on structural information for automated
malware classification. In: Proceedings of the 19th ACM SIGKDD international conference on knowl-
edge discovery and data mining, association for computing machinery, New York, NY, USA, KDD ’13,
pp 1357–1365. https://doi.org/10.1145/2487575.2488219

Van der Kouwe E, Heiser G, Andriesse D, Bos H, Giuffrida C (2019) Sok: Benchmarking flaws in systems
security. In: European Conference on Security and Privacy (EuroS&P). IEEE, Stockholm

Lam P, Bodden E, Lhoták O, Hendren L (2011) The Soot framework for Java program analysis: A
retrospective. In: Cetus Users and Compiler Infrastructure Workshop, Galveston Island, TX

Li L, Li D, Bissyandé TF, Klein J, Le Traon Y, Lo D, Cavallaro L (2017) Understanding android
app piggybacking: A systematic study of malicious code grafting. IEEE Trans Inform Forens Secur
12(6):1269–1284

Ma X, Zhang J, Tao J, Li J, Tian J, Guan X (2014) Dnsradar: Outsourcing malicious domain detection based
on distributed cache-footprints. IEEE Trans Inform Forens Secur 9(11):1906–1921

Maiorca D, Corona I, Giacinto G (2013) Looking at the bag is not enough to find the bomb: An evasion
of structural methods for malicious pdf files detection. In: Proceedings of the 8th ACM SIGSAC sym-
posium on information, computer and communications security, association for computing machinery,
New York, NY, USA, ASIA CCS ’13, pp 119–130. https://doi.org/10.1145/2484313.2484327

Marchiori M, Latora V (2000) Harmony in the small-world. Physica A: Stat Mechan Appl 285(3-4):539–546
Mariconti E, Onwuzurike L, Andriotis P, De Cristofaro E, Ross G, Stringhini G (2016) Mamadroid:

Detecting android malware by building markov chains of behavioral models. arXiv:161204433
Mariconti E, Onwuzurike L, Andriotis P, De Cristofaro E, Ross G, Stringhini G (2017) Mamadroid: Detect-

ing android malware by buildin markov chains of behavioral models. In: ISOC Network and Distributed
Systems Security Symposiym (NDSS), San Diego, CA

Page 49 of 53 74

https://doi.org/10.24963/ijcai.2018/737
https://doi.org/10.1126/science.359.6377.725
https://science.sciencemag.org/content/359/6377/725
http://arxiv.org/abs/1708.04133.pdf
https://doi.org/10.1109/ICC.2014.6883436
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/kapravelos
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/kapravelos
https://doi.org/10.2307/420301
http://www.usenix.org/events/sec09/tech/full_papers/kolbitsch.pdf
https://doi.org/10.1145/2046707.2046740
https://doi.org/10.1145/2487575.2488219
https://doi.org/10.1145/2484313.2484327
http://arxiv.org/abs/161204433

Empir Software Eng (2021) 26: 74

McCullough BD, McGeary KA, Harrison TD (2006) Lessons from the jmcb archive. J Money Credit Bank
38(4):1093–1107

Meng G, Xue Y, Mahinthan C, Narayanan A, Liu Y, Zhang J, Chen T (2016) Mystique: Evolving android
malware for auditing anti-malware tools. In: Proceedings of the 11th ACM on asia conference on com-
puter and communications security, association for computing machinery, New York, NY, USA, ASIA
CCS ’16, pp 365–376. https://doi.org/10.1145/2897845.2897856

Meng G, Patrick M, Xue Y, Liu Y, Zhang J (2019) Securing android app markets via modeling and predicting
malware spread between markets. IEEE Trans Inform Forens Secur 14(7):1944–1959

Mirzaei O, Suarez-Tangil G, de FuentesJM, Tapiador J, Stringhini G (2019). In: Andrensemble: Leveraging
api ensembles to characterize android malware families. In: Proceedings of the 2019 ACM asia confer-
ence on computer and communications security, association for computing machinery, New York, NY,
USA, Asia CCS ’19, pp 307–314. https://doi.org/10.1145/3321705.3329854

Mobley A, Linder SK, Braeuer R, Ellis LM, Zwelling L (2013) A survey on data reproducibility in cancer
research provides insights into our limited ability to translate findings from the laboratory to the clinic.
Plos One 8(5):1–4. https://doi.org/10.1371/journal.pone.0063221

Nappa A, Xu Z, Rafique MZ, Caballero J, Gu G (2014) Cyberprobe: Towards internet-scale active detection
of malicious servers. In: 21st annual network and distributed system security symposium, NDSS 2014,
San Diego, California, USA, February 23-26, 2014, The Internet Society. https://www.ndss-symposium.
org/ndss2014/cyberprobe-towards-internet-scale-active-detection-malicious-servers

Narayanan A, Chandramohan M, Chen L, Liu Y (2017) Context-aware, adaptive, and scalable android
malware detection through online learning. IEEE Trans Emerg Topics Comput Intell 1(3):157–175.
https://doi.org/10.1109/TETCI.2017.2699220

Narayanan A, Chandramohan M, Chen L, Liu Y (2018) A multi-view context-aware approach to
android malware detection and malicious code localization. Empirical Softw Engg 23(3):1222–1274.
https://doi.org/10.1007/s10664-017-9539-8

Naval S, Laxmi V, Rajarajan M, Gaur MS, Conti M (2015) Employing program semantics for malware
detection. IEEE Trans Inform Forens Secur 10(12):2591–2604

Neupane A, Rahman ML, Saxena N, Hirshfield L (2015) A multi-modal neuro-physiological study of phish-
ing detection and malware warnings. In: Proceedings of the 22nd ACMSIGSAC conference on computer
and communications security, association for computing machinery, New York, NY, USA, CCS ’15,
pp 479–491. https://doi.org/10.1145/2810103.2813660

Nissim N, Cohen A, Elovici Y (2017) Aldocx: Detection of unknown malicious microsoft office documents
using designated active learning methods based on new structural feature extraction methodology. IEEE
Trans Inform Forens Secur 12(3):631–646

Nuijten MB (2019) Practical tools and strategies for researchers to increase replicability. Development Med
Child Neurol 61(5):535–539. https://doi.org/10.1111/dmcn.14054

O’Kane P, Sezer S, McLaughlin K, Im EG (2013) Svm training phase reduction using dataset feature filtering
for malware detection. IEEE Trans Inform Forens Secur 8(3):500–509

Onwuzurike L, Mariconti E, Andriotis P, Cristofaro ED, Ross G, Stringhini G (2019) Mamadroid: Detecting
android malware by building markov chains of behavioral models (extended version). ACM Trans Priv
Secur 22(2):14:1–14:34. https://doi.org/10.1145/3313391

Pang M, Gao W, Tao M, Zhou ZH (2018) Unorganized malicious attacks detection. In: Proceedings of the
32nd international conference on neural information processing systems, Curran Associates Inc., Red
Hook, NY, USA, NIPS’18, pp 6976–6985

Pei X, Yu L, Tian S (2020) Amalnet: A deep learning framework based on graph convolutional networks for
malware detection. Comput Secur 93:101792. https://doi.org/10.1016/j.cose.2020.101792. http://www.
sciencedirect.com/science/article/pii/S0167404820300778

Pendlebury F, Pierazzi F, Jordaney R, Kinder J, Cavallaro L (2019) TESSERACT: Eliminating experimental
bias in malware classification across space and time. In: 28th USENIX security symposium (USENIX
Security 19), USENIX Association, Santa Clara, CA, pp 729–746. https://www.usenix.org/conference/
usenixsecurity19/presentation/pendlebury

Plesser HE (2018) Reproducibility vs. replicability: A brief history of a confused terminology. Front
Neuroinformat 11:76. https://doi.org/10.3389/fninf.2017.00076

Poeplau S, Fratantonio Y, Bianchi A, Kruegel C, Vigna G (2014) Execute this! analyz-
ing unsafe and malicious dynamic code loading in android applications. In: 21st annual
network and distributed system security symposium, NDSS 2014, San Diego, California,
USA, February 23-26, 2014, The Internet Society, https://www.ndss-symposium.org/ndss2014/
execute-analyzing-unsafe-and-malicious-dynamic-code-loading-android-applications

Popper KR (2002) The logic of scientific discovery, 2nd edn. Routledge, London. first published in 1959

74 Page 50 of 53

https://doi.org/10.1145/2897845.2897856
https://doi.org/10.1145/3321705.3329854
https://doi.org/10.1371/journal.pone.0063221
https://www.ndss-symposium.org/ndss2014/cyberprobe-towards-internet-scale-active-detection-malicious-servers
https://www.ndss-symposium.org/ndss2014/cyberprobe-towards-internet-scale-active-detection-malicious-servers
https://doi.org/10.1109/TETCI.2017.2699220
https://doi.org/10.1007/s10664-017-9539-8
https://doi.org/10.1145/2810103.2813660
https://doi.org/10.1111/dmcn.14054
https://doi.org/10.1145/3313391
https://doi.org/10.1016/j.cose.2020.101792
http://www.sciencedirect.com/science/article/pii/S0167404820300778
http://www.sciencedirect.com/science/article/pii/S0167404820300778
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://doi.org/10.3389/fninf.2017.00076
https://www.ndss-symposium.org/ndss2014/execute-analyzing-uns afe-and-malicious-dynamic-code-loading-android-applications
https://www.ndss-symposium.org/ndss2014/execute-analyzing-uns afe-and-malicious-dynamic-code-loading-android-applications

Empir Software Eng (2021) 26: 74

Rahbarinia B, Balduzzi M, Perdisci R (2016) Real-time detection of malware downloads via large-scale url-
¿file-¿machine graph mining. In: Proceedings of the 11th ACM on asia conference on computer and
communications security, association for computing machinery, New York, NY, USA, ASIA CCS ’16,
pp 783–794. https://doi.org/10.1145/2897845.2897918

Rasthofer S, Arzt S, Triller S, Pradel M (2017) Making malory behave maliciously: Targeted fuzzing
of android execution environments. In: 2017 IEEE/ACM 39th international conference on software
engineering (ICSE), pp 300–311

Rastogi V, Chen Y, Jiang X (2013) Droidchameleon: Evaluating android anti-malware against transfor-
mation attacks. In: Proceedings of the 8th ACM SIGSAC symposium on information, computer and
communications security, association for computing machinery, New York, NY, USA, ASIA CCS ’13,
pp 329–334. https://doi.org/10.1145/2484313.2484355

Rastogi V, Chen Y, Jiang X (2014) Catch me if you can: Evaluating android anti-malware against
transformation attacks. IEEE Trans Inform Forens Secur 9(1):99–108

Reaves B, Bowers J, Gorski SA III, Anise O, Bobhate R, Cho R, Das H, Hussain S, Karachiwala H, Scaife N,
Wright B, Butler K, EnckW, Traynor P (2016) *droid: Assessment and evaluation of android application
analysis tools. ACM Comput Surv 49(3):55:1–55:30. https://doi.org/10.1145/2996358

Rossow C, Dietrich CJ, Grier C, Kreibich C, Paxson V, Pohlmann N, Bos H, v Steen M (2012) Prudent
practices for designing malware experiments: Status quo and outlook. In: 2012 IEEE symposium on
security and privacy, pp 65–79. https://doi.org/10.1109/SP.2012.14

Rougier NP, Hinsen K, Alexandre F, Arildsen T, Barba LA, Benureau FC, Brown CT, De Buyl P, Caglayan
O, Davison AP et al (2017) Sustainable computational science: The rescience initiative. PeerJ Computer
Science 3:e142

Scalas M, Maiorca D, Mercaldo F, Visaggio CA, Martinelli F, Giacinto G (2019) On the effectiveness of
system api-related information for android ransomware detection. Comput Secur 86:168–182

Schmicker R, Breitinger F, Baggili I (2019) Androparse - an android feature extraction framework and
dataset. In: Breitinger F, Baggili I (eds) Digital forensics and cyber crime. Springer International
Publishing, Cham, pp 66–88

Sen S, Aydogan E, Aysan AI (2018) Coevolution of mobile malware and anti-malware. IEEE Trans Inform
Forens Secur 13(10):2563–2574

Skovoroda A, Gamayunov D (2017) Automated static analysis and classification of android malware using
permission and api calls models. In: 2017 15th annual conference on privacy, security and trust (PST),
pp 243–24309. https://doi.org/10.1109/PST.2017.00036

Smutz C, Stavrou A (2016) When a tree falls: Using diversity in ensemble classifiers to
identify evasion in malware detectors. In: 23rd annual network and distributed system
security symposium, NDSS 2016, San Diego, California, USA, February 21-24, 2016,
The Internet Society. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/
when-tree-falls-using-diversity-ensemble-classifiers-identify-evasion-malware-detectors.pdf

Song F, Touili T (2013) Pommade: Pushdown model-checking for malware detection. In: Proceedings of the
2013 9th joint meeting on foundations of software engineering, association for computing machinery,
New York, NY, USA, ESEC/FSE, vol 2013, pp 607–610. https://doi.org/10.1145/2491411.2494599

Srndic N, Laskov P (2013) Detection of malicious PDF files based on hierarchical document structure.
In: 20th annual network and distributed system security symposium, NDSS 2013, San Diego, Cali-
fornia, USA, February 24-27, 2013, The Internet Society. https://www.ndss-symposium.org/ndss2013/
detection-malicious-pdf-files-based-hierarchical-document-structure

Sun M, Li X, Lui JCS, Ma RTB, Liang Z (2017) Monet: A user-oriented behavior-based malware variants
detection system for android. IEEE Trans Inform Forens Secur 12(5):1103–1112

Tam K, Khan SJ, Fattori A, Cavallaro L (2015) Copperdroid: Automatic reconstruction of android mal-
ware behaviors. In: 22nd annual network and distributed system security symposium, NDSS 2015, San
Diego, California, USA, February 8-11, 2015, The Internet Society. https://www.ndss-symposium.org/
ndss2015/copperdroid-automatic-reconstruction-android-malware-behaviors

Tamersoy A, Roundy K, Chau DH (2014) Guilt by association: Large scale malware detection by mining
file-relation graphs. In: Proceedings of the 20th ACM SIGKDD international conference on knowl-
edge discovery and data mining, association for computing machinery, New York, NY, USA, KDD ’14,
pp 1524–1533. https://doi.org/10.1145/2623330.2623342

Vallée-Rai R, Co P, Gagnon E, Hendren L, Lam P, Sundaresan V (1999) Soot - a java bytecode optimization
framework. In: Proceedings of the 1999 conference of the centre for advanced studies on collaborative
research, IBM Press, CASCON ’99, p 13. http://dl.acm.org/citation.cfm?id=781995.782008

Viennot N, Garcia E, Nieh J (2014) A measurement study of google play. In: ACM SIGMETRICS
Performance evaluation review, ACM, vol 42, pp 221–233

Page 51 of 53 74

https://doi.org/10.1145/2897845.2897918
https://doi.org/10.1145/2484313.2484355
https://doi.org/10.1145/2996358
https://doi.org/10.1109/SP.2012.14
https://doi.org/10.1109/PST.2017.00036
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/when-tree-falls-using-diversity-ensemble-classifiers-identify-evasio n-malware-detectors.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/when-tree-falls-using-diversity-ensemble-classifiers-identify-evasio n-malware-detectors.pdf
https://doi.org/10.1145/2491411.2494599
https://www.ndss-symposium.org/ndss2013/detection-malicious-p df-files-based-hierarchical-document-structure
https://www.ndss-symposium.org/ndss2013/detection-malicious-p df-files-based-hierarchical-document-structure
https://www.ndss-symposium.org/ndss2015/copperdroid-automatic-reconstruction-android-malware-behaviors
https://www.ndss-symposium.org/ndss2015/copperdroid-automatic-reconstruction-android-malware-behaviors
https://doi.org/10.1145/2623330.2623342
http://dl.acm.org/citation.cfm?id=781995.782008

Empir Software Eng (2021) 26: 74

Wang G, Wang T, Zhang H, Zhao BY (2014) Man vs. machine: Practical adversarial detection of mali-
cious crowdsourcing workers. In: Proceedings of the 23rd USENIX conference on security symposium,
USENIX Association, USA, SEC’14, pp 239–254

Wang J, Xue Y, Liu Y, Tan TH (2015) Jsdc: A hybrid approach for javascript malware detection and clas-
sification. In: Proceedings of the 10th ACM symposium on information, computer and communications
security, association for computing machinery, New York, NY, USA, ASIA CCS ’15, pp 109–120.
https://doi.org/10.1145/2714576.2714620

Wang S, Yan Q, Chen Z, Yang B, Zhao C, Conti M (2018) Detecting android malware leveraging text
semantics of network flows. IEEE Trans Inform Forens Secur 13(5):1096–1109

Wang S, Chen Z, Yu X, Li D, Ni J, Tang LA, Gui J, Li Z, Chen H, Yu PS (2019) Heterogeneous graph match-
ing networks for unknown malware detection. In: Proceedings of the Twenty-Eighth international joint
conference on artificial intelligence, IJCAI-19, International Joint Conferences on Artificial Intelligence
Organization, pp 3762–3770. https://doi.org/10.24963/ijcai.2019/522

Wang W, Wang X, Feng D, Liu J, Han Z, Zhang X (2014) Exploring permission-induced risk in android
applications for malicious application detection. IEEE Trans Inform Forens Secur 9(11):1869–1882

Wei S, Meguerdichian S, Potkonjak M (2011) Malicious circuitry detection using thermal conditioning. IEEE
Trans Inform Forens Secur 6(3):1136–1145

WongMY, Lie D (2016) Intellidroid: A targeted input generator for the dynamic analysis of android malware.
In: 23rd annual network and distributed system security symposium, NDSS 2016, San Diego, Califor-
nia, USA, February 21-24, 2016, The Internet Society. http://wp.internetsociety.org/ndss/wp-content/
uploads/sites/25/2017/09/intellidroid-targeted-input-generator-dynamic-analysis-android-malware.pdf

Wu Y, Li X, Zou D, Yang W, Zhang X, Jin H (2019) Malscan: Fast market-wide mobile malware scanning
by social-network centrality analysis. In: 2019 34th IEEE/ACM international conference on automated
software engineering (ASE), pp 139–150

Wüchner T, Ochoa M, Pretschner A (2014) Malware detection with quantitative data flow graphs.
In: Proceedings of the 9th ACM symposium on information, computer and communications secu-
rity, association for computing machinery, New York, NY, USA, ASIA CCS ’14, pp 271–282.
https://doi.org/10.1145/2590296.2590319

Xia Z, Liu C, Gong NZ, Li Q, Cui Y, Song D (2019) Characterizing and detecting malicious accounts
in privacy-centric mobile social networks: A case study. In: Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining, association for computing machinery,
New York, NY, USA, KDD ’19, pp 2012–2022. https://doi.org/10.1145/3292500.3330702

Xing L, Pan X, Wang R, Yuan K, Wang X (2014) Upgrading your android, elevating my malware: Privilege
escalation through mobile os updating. In: 2014 IEEE symposium on security and privacy, pp 393–408.
https://doi.org/10.1109/SP.2014.32

Xu F, Diao W, Li Z, Chen J, Zhang K (2019) Badbluetooth: Breaking android security mechanisms via
malicious bluetooth peripherals. https://doi.org/10.14722/ndss.2019.23482

Xu K, Li Y, Deng RH (2016) Iccdetector: Icc-based malware detection on android. IEEE Trans Inform Forens
Secur 11(6):1252–1264

Xue L, Zhou Y, Chen T, Luo X, Gu G (2017) Malton: Towards on-device non-invasive mobile malware
analysis for ART. In: Kirda E, Ristenpart T (eds) 26th USENIX Security Symposium, USENIX Security
2017, Vancouver, BC, Canada, August 16-18, 2017, USENIX Association, pp 289–306. https://www.
usenix.org/conference/usenixsecurity17/technical-sessions/presentation/xue

Xue Y, Meng G, Liu Y, Tan TH, Chen H, Sun J, Zhang J (2017) Auditing anti-malware tools by evolving
android malware and dynamic loading technique. IEEE Trans Inform Forens Secur 12(7):1529–1544

Yan G (2015) Be sensitive to your errors: Chaining neyman-pearson criteria for automated malware classi-
fication. In: Proceedings of the 10th ACM symposium on information, computer and communications
security, association for computing machinery, New York, NY, USA, ASIA CCS ’15, pp 121–132.
https://doi.org/10.1145/2714576.2714578

Yan L, Yin H (2012) Droidscope: Seamlessly reconstructing the OS and dalvik semantic views for dynamic
android malware analysis. In: Kohno T (ed) Proceedings of the 21th USENIX security symposium,
Bellevue, WA, USA, August 8-10, 2012, USENIX Association, pp 569–584. https://www.usenix.org/
conference/usenixsecurity12/technical-sessions/presentation/yan

Yang W, Xiao X, Andow B, Li S, Xie T, Enck W (2015) Appcontext: Differentiating malicious and
benign mobile app behaviors using context. In: 2015 IEEE/ACM 37th IEEE international conference on
software engineering, vol 1, pp 303–313

Yang W, Prasad M, Xie T (2018) Enmobile: Entity-based characterization and analysis of mobile malware.
In: 2018 IEEE/ACM 40th international conference on software engineering (ICSE), pp 384–394

Ye Y, Li T, Jiang Q, Han Z, Wan L (2009) Intelligent file scoring system for malware detection from the
gray list. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery

74 Page 52 of 53

https://doi.org/10.1145/2714576.2714620
https://doi.org/10.24963/ijcai.2019/522
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/intellidroid-targeted-input-generator-dynamic-analysis-android-malwa re.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/intellidroid-targeted-input-generator-dynamic-analysis-android-malwa re.pdf
https://doi.org/10.1145/2590296.2590319
https://doi.org/10.1145/3292500.3330702
https://doi.org/10.1109/SP.2014.32
https://doi.org/10.14722/ndss.2019.23482
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/xue
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/xue
https://doi.org/10.1145/2714576.2714578
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/yan
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/yan

Empir Software Eng (2021) 26: 74

and data mining, association for computing machinery, New York, NY, USA, KDD ’09, pp 1385–1394.
https://doi.org/10.1145/1557019.1557167

Ye Y, Li T, Zhu S, Zhuang W, Tas E, Gupta U, Abdulhayoglu M (2011) Combining file content and file
relations for cloud based malware detection. In: Proceedings of the 17th ACM SIGKDD international
conference on knowledge discovery and data mining, association for computing machinery, New York,
NY, USA, KDD ’11, pp 222–230. https://doi.org/10.1145/2020408.2020448

Ye Y, Hou S, Chen L, Lei J, Wan W, Wang J, Xiong Q, Shao F (2019) Out-of-sample node representation
learning for heterogeneous graph in real-time android malware detection. In: Proceedings of the twenty-
eighth international joint conference on artificial intelligence, IJCAI-19, International Joint Conferences
on Artificial Intelligence Organization, pp 4150–4156. https://doi.org/10.24963/ijcai.2019/576

Zhang H, Yao DD, Ramakrishnan N (2014a) Detection of stealthy malware activities with traffic causality
and scalable triggering relation discovery. In: Proceedings of the 9th ACM symposium on information,
computer and communications security, association for computing machinery, New York, NY, USA,
ASIA CCS ’14, pp 39–50. https://doi.org/10.1145/2590296.2590309

Zhang M, Duan Y, Yin H, Zhao Z (2014b) Semantics-aware android malware classification using weighted
contextual API dependency graphs. In: Ahn G, Yung M, Li N (eds) Proceedings of the 2014 ACM
SIGSAC conference on computer and communications security, Scottsdale, AZ, USA, November 3-7,
2014, ACM, pp 1105–1116. https://doi.org/10.1145/2660267.2660359

Zhao K, Zhang D, Su X, Li W (2015) Fest: A feature extraction and selection tool for android mal-
ware detection. In: 2015 IEEE symposium on computers and communication (ISCC), pp 714–720.
https://doi.org/10.1109/ISCC.2015.7405598

Zhongyang Y, Xin Z, Mao B, Xie L (2013) Droidalarm: An all-sided static analysis tool for android privilege-
escalation malware. In: Proceedings of the 8th ACM SIGSAC symposium on information, computer and
communications security, association for computing machinery, New York, NY, USA, ASIA CCS ’13,
pp 353–358. https://doi.org/10.1145/2484313.2484359

Zhou Y, Jiang X (2012) Dissecting android malware: Characterization and evolution. In: 2012 IEEE
symposium on security and privacy, pp 95–109. https://doi.org/10.1109/SP.2012.16

Zhou Y, Wang Z, Zhou W, Jiang X (2012) Hey, you, get off of my market: Detecting malicious apps in
official and alternative android markets. In: Proceedings of the 19th Network and Distributed System
Security Symposium NDSS, p 2012

Zhu Z, Dumitraundefined T (2016) Featuresmith: Automatically engineering features for malware detection
by mining the security literature. In: Proceedings of the 2016 ACM SIGSAC conference on computer
and communications security, association for computing machinery, New York, NY, USA, CCS ’16,
pp 767–778. https://doi.org/10.1145/2976749.2978304

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Page 53 of 53 74

https://doi.org/10.1145/1557019.1557167
https://doi.org/10.1145/2020408.2020448
https://doi.org/10.24963/ijcai.2019/576
https://doi.org/10.1145/2590296.2590309
https://doi.org/10.1145/2660267.2660359
https://doi.org/10.1109/ISCC.2015.7405598
https://doi.org/10.1145/2484313.2484359
https://doi.org/10.1109/SP.2012.16
https://doi.org/10.1145/2976749.2978304

	Lessons Learnt on Reproducibility in Machine Learning Based Android Malware Detection
	Abstract
	Introduction
	This paper

	Ingredients for Building a Machine Learning based Malware Detector
	Datasets
	Feature Extraction
	Embedding
	Classification

	Reproduction
	Reproduction Subject Selection
	DREBIN
	Dataset
	Feature Extraction
	Feature Embedding
	Classification
	Results

	MaMaDroid
	Dataset
	Feature Extraction
	Feature Embedding
	Classification
	Results

	RevealDroid
	Dataset
	Feature Extraction
	Feature Embedding
	Classification
	Malware detection
	Family detection

	Results
	Malware detection
	Family detection

	DroidCat
	Dataset
	Feature Extraction and Embedding
	Classification
	Results
	Malware detection
	Family identification

	MalScan
	Dataset
	Feature Extraction and Embedding
	Classification
	Results

	Lessons Learnt
	Outcome of our Reproduction Attempts
	Insights from our Reproduction Journey
	Dataset Re-acquisition is Hard
	Feature Extraction Process can be Puzzling
	Vector Embedding Code may be Buggy
	Classification Procedure may Require Clarifications

	Conclusions on the Divergence of Reproduction Results

	Reproduction in the Bigger Picture
	Maturity of the research field
	Theoretical foundations
	On the need for a transparent experimental framework

	Related Work
	Comparison Against the Reproduced Approaches in the Litterature
	Biases in Machine Learning based Malware Detection
	Reproduction in Research
	Improving Reproducibility

	Conclusion
	Appendix A
	References

