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Abstract
Software defect prediction models are classifiers often built by setting a threshold t on a
defect proneness model, i.e., a scoring function. For instance, they classify a software mod-
ule non-faulty if its defect proneness is below t and positive otherwise. Different values of
t may lead to different defect prediction models, possibly with very different performance
levels. Receiver Operating Characteristic (ROC) curves provide an overall assessment of a
defect proneness model, by taking into account all possible values of t and thus all defect
prediction models that can be built based on it. However, using a defect proneness model
with a value of t is sensible only if the resulting defect prediction model has a performance
that is at least as good as some minimal performance level that depends on practitioners’
and researchers’ goals and needs. We introduce a new approach and a new performance
metric (the Ratio of Relevant Areas) for assessing a defect proneness model by taking into
account only the parts of a ROC curve corresponding to values of t for which defect prone-
ness models have higher performance than some reference value. We provide the practical
motivations and theoretical underpinnings for our approach, by: 1) showing how it addresses
the shortcomings of existing performance metrics like the Area Under the Curve and Gini’s
coefficient; 2) deriving reference values based on random defect prediction policies, in addi-
tion to deterministic ones; 3) showing how the approach works with several performance
metrics (e.g., Precision and Recall) and their combinations; 4) studying misclassification
costs and providing a general upper bound for the cost related to the use of any defect prone-
ness model; 5) showing the relationships between misclassification costs and performance
metrics. We also carried out a comprehensive empirical study on real-life data from the
SEACRAFT repository, to show the differences between our metric and the existing ones
and how more reliable and less misleading our metric can be.
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1 Introduction

Accurate estimation of which modules are faulty in a software system can be very useful to
software practitioners and researchers. Practitioners can efficiently allocate scarce resources
if they can predict which modules may need to undergo more extensive Verification and Val-
idation than others. Researchers need to use quantitative, accurate module defect prediction
techniques so they can assess and subsequently improve software development methods. In
this paper, by the term “module,” we denote any piece of software (e.g., routine, method,
class, package, subsystem, system).

Several techniques have been proposed and applied in the literature for estimating
whether a module is faulty (Beecham et al. 2010a; b; Hall et al. 2012; Malhotra 2015; Rad-
jenović et al. 2013). We focus on those techniques that define defect prediction models
(i.e., binary classifiers (Fawcett 2006)) by setting a threshold t on a defect proneness model
(Huang et al. 2019), i.e., a scoring classifier that uses a set of independent variables. For
instance, if the defect proneness model computes the probability that a module is faulty, a
defect prediction model estimates a module faulty if its probability of being faulty is above
or equal to t . The issue of defining the value of t has been addressed by several approaches
in the literature (for instance, Alves et al. (2010), Erni and Lewerentz (1996), Morasca and
Lavazza (2017), Schneidewind (2001), Shatnawi (2010), and Tosun and Bener (2009)).

The selection of t may greatly influence the estimates and the performance of the result-
ing defect prediction model. Thus, to evaluate a defect proneness model, one should evaluate
the performance of the entire set of defect prediction models obtained with all possible val-
ues of t . Receiver Operating Characteristic (ROC) curves (see Section 4) have long been
used to this end.

However, it is unlikely that all possible threshold values are used in practice. Suppose
you have a defect proneness model for critical applications. It is unlikely that any sensible
stakeholder selects a value of t corresponding to a high risk (e.g., to a 0.8 probability)
of releasing a faulty module. Also, practitioners may not be able to confidently choose a
“sharp” t value, corresponding to an exact probability value like 0.1. Instead, they may have
enough information to know that the value of t should correspond to a risk level around
0.1, e.g., between 0.05 and 0.15. So, the evaluation should be restricted only to those defect
prediction models that may be really used, depending on the goals and needs of individual
practitioners.

In addition, some values of t are not useful because of two general reasons that do not
depend on any specific practitioners’ or researchers’ goals and needs, hence they hold for
every evaluation of defect prediction models.

First, suppose that a defect prediction model based on a set of independent variables and
built with a given t does not perform better than a basic, reference defect prediction model
that does not use any information from independent variables. Then, the defect prediction
model should not be used, because one would be better off by using the simpler reference
model. In other words, t is not an adequate threshold value for the defect proneness model.

Second, the prediction models obtained as t varies have different performance, but one
should use in practice only those that perform well enough, based on some definition of
performance and its minimum acceptable level.

So, in general, it may be ineffective and even misleading to evaluate the defect prediction
models built with all possible values of t .

The goal of this paper is to propose an approach to assessing a given defect prone-
ness model. We show how to use ROC curves and reference models to identify the defect
prediction models that are worth using because they perform well enough for practical use
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and outperform reference ones according to (1) standard performance metrics and (2) cost.
Thus, we identify the values of t for which it is worthwhile to build and use defect predic-
tion models. Our empirical validation shows the extent of the differences in the assessment
of defect prediction models between our method and the traditional one.

Our approach helps practitioners compare defect prediction models and select those
useful for their goals and needs. It allows researchers to assess software development tech-
niques based only on those defect prediction models that should be used in practice, and not
on irrelevant ones that may bias the results and lead to misleading conclusions.

Here are the main contributions of our proposal.

– We introduce a new performance metric, the Ratio of Relevant Areas (RRA). RRA
can take into account only those parts of the ROC curve corresponding to thresholds
for which it is worthwhile to build defect prediction models, i.e., the defect predic-
tion models perform well enough according to some specified notion of performance.
We also show how RRA can be customized to address the specific needs of different
practitioners.

– We show that the Area Under the Curve (AUC) and Gini’s coefficient (G) (Gini 1912)
and other proposals are special cases of RRA, which, however, account for parts of the
ROC curve corresponding to thresholds for which it is not worthwhile to build defect
prediction models.

– We show how cost can be taken into account. We also provide an inequality that should
be satisfied by all defect prediction models, regardless of the way they are built and of
the specific misclassification costs.

– We show that choosing a performance metric (like Precision, Recall, etc.) for the assess-
ment of defect prediction models is not simply a theoretical decision, but it equates to
choosing a specific cost model.

We would like to clarify upfront that, in this paper, we are not interested in building the
best performing models possible. Metrics like AUC, G, and RRA are used to assess exist-
ing, given models. We build models simply because we need them to demonstrate how our
proposal works. To this end, we use 67 datasets from the SEACRAFT repository (https://
zenodo.org/communities/seacraft). These datasets contain data about a number of measures
and the faultiness of the modules belonging to real-life projects. At any rate, in the empir-
ical validation illustrated in Section 10, we build defect proneness models that use all of
the available measures so as to maximize the use of the available information about the
modules’ characteristics and possibly model performance as well.

The remainder of this paper is organized as follows. Section 2 recalls basic concepts
of Software Defect Prediction along with the performance metrics that we use. Section 3
introduces the reference policies against which defect prediction models are evaluated.
Sections 4 and 5 summarize the fundamental concepts underlying ROC curves and a few
relevant issues. We show how to delimit the values of t that should be in general taken into
account and we introduce RRA in Section 6. We show how RRA can be used based on several
performance metrics in Section 7 and based on cost in Section 8. Section 9 compares RRA
to AUC and G. We empirically demonstrate our approach on datasets from real-life appli-
cations in Section 10 and also highlight the insights that RRA can provide and traditional
metrics can not. Section 11 illustrates the usefulness of our approach in Software Engi-
neering practice. Threats to the validity of the empirical study are discussed in Section 12.
Section 13 discusses related work. The conclusions and an outline for future research are
in Section 14. Appendices A–F contain further details on some mathematical aspects of the
paper.
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Table 1 A confusion matrix

Actual

Negative Positive

Estimated

Negative TN FN EN = TN + FN

(True Negatives) (False Negatives) (Estimated Negatives)

Positive FP TP EP = FP + TP

(False Positives) (True Positives) (Estimated Positives)

AN = TN + FP AP = FN + TP n = AN + AP

(Actual Negatives) (Actual Positives) = EN + EP

2 Software Defect Prediction

The investigation of software defect prediction is carried out by first learning a defect pre-
diction model (i.e., a binary classifier (Fawcett 2006)) on a set of data called the training set,
and then evaluating its performance on a set of previously unseen data, called the test set.
By borrowing from other disciplines, we use the labels “positive” for “faulty module” and
“negative” for “non-faulty module”. We denote by z = 〈z1, z2, . . .〉 the set of independent
variables (i.e., features) used by a defect prediction model. Also, m will denote a module
and we write ‘m’ for short, instead of writing “a module” or “a module m”.

We use defect prediction models fn(z,t) built by setting a threshold t on a defect prone-
ness model fp(z), so that fn(z,t) = positive ⇔ t ≤ fp(z) and fn(z,t) = negative ⇔
fp(z)< t . For instance, we can use a Binary Logistic Regression (BLR) (Hardin and M
2002; Hosmer et al. 2013) model, which gives the probability that m is positive, to build a
defect prediction model by setting a probability threshold t . Different values of t may lead
to different classifiers, with different performance.

The performance of a defect prediction model can be assessed based on a confusion
matrix, whose schema is shown in Table 1.

Table 2 shows the performance metrics we use in this paper. They include some of the
most used ones and provide a comprehensive idea about the performance of a defect pre-
diction model. The first three columns of Table 2 provide the name, the definition formula,
and a concise explanation of the purpose of a metric. The other two columns are explained
in Section 3.1.

Specifically, Precision, Recall, and FM (i.e., the F-measure or F-score (van Rijsber-
gen 1979)) assess performance with respect to the positive class, while Negative Predictive
Value (NPV), Specificity, and a new metric that we call “Negative-F-measure” (NM), which
mirrors FM, assess performance with respect to the negative class. Youden’s J (Youden
1950) (also known as “Informedness”), Markedness (Powers 2012), and φ (also known as
Matthews Correlation Coefficient (Matthews 1975)), which is the geometric mean of J and
Markedness, are overall performance metrics.

Other metrics can be used as well. At any rate, using different metrics does not affect the
way our approach works.
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Table 2 Performance metrics for confusion matrices

Metric Definition Purpose uni Pop

proportion of estimated

Precision T P
EP

positives that are 1
1+k

1
1+k

actual positives

proportion of actual

Recall T P
AP

positives that are p 1
1+k

estimated positive

FM 2
1

Precision
+ 1

Recall

overall evaluation 2p
p(1+k)+1

1
1+k

for positives

proportion of estimated

NPV T N
EN

negatives that are k
1+k

k
1+k

actual negatives

proportion of actual

Specificity T N
AN

negatives that are 1 − p k
1+k

estimated negative

NM 2
1

NPV
+ 1

Specif icity

overall evaluation 2(1−p)k
(1+k)(1−p)+k

k
1+k

for negatives

J T P
AP

− FP
AN

overall evaluation 0 0

for estimated positives

Markedness T P
EP

− FN
EN

overall evaluation 0 0

for actual positives

φ T P ·T N−FP ·FN√
EN ·EP ·AN ·AP

overall evaluation for 0 0

Positives and negatives

3 Defining Reference Performance Values

The performance of the application of a defect prediction model on a dataset can be assessed
by comparing the values obtained for one or more metrics against specified reference values,
which set minimal performance standards. Classifiers not meeting these minimal standards
should be discarded.

We use two methods to set reference values of performance metrics for defect prediction
models: (1) methods based on random policies (see Section 3.1) and (2) deterministic ones
(see Section 3.2). In both cases, our goal is to define reference values whose computation
does not use any information about the individual modules.

3.1 Methods Based on Random Software Defect Prediction Policies

A random software defect prediction policy associates module m with a probability p(m)

that m is estimated positive. Thus, a random policy does not define a single defect prediction
model, which deterministically labels each m. Rather, we have a set of defect prediction
models, each of which is the result of “tossing a set of coins,” each with probability p(m)

for each m.
The performance of a random policy can be evaluated based on the values of TP, TN,

FP, and FN that can be expected, i.e., via an expected confusion matrix in which each cell
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contains the expected value of the metric in the cell. These expected confusion matrices
have already been introduced in Morasca (2014) for estimating the number of faults in a set
of modules. The same metrics of Table 2 can be defined for random policies, by using the
cells of the expected confusion matrix, e.g., Precision for a random policy is computed as
E[T P ]
E[EP ] , where E[T P ] and E[EP ] are the expected values of T P and EP , respectively..

Our goal is to define random policies that use no information about m. Lacking any
information about the specific characteristics of m, all modules must be treated alike. Thus,
each m must be given the same probability p to be estimated positive, i.e., a uniform random
policy must be used.

We use uniform random policies as references (see Sections 6 and 7) against which
to evaluate the performance of defect prediction models. A classifier that performs worse
than what can be expected of a uniform random policy should not be used. Our proposal
for reference policies is along the lines of Langdon et al. (2016), Lavazza and Morasca
(2017), and Shepperd and MacDonell (2012), where a random approach is used for defining
reference effort estimation models. Also, completely randomized classifiers were used as
reference models for defect prediction in the empirical studies of (Herbold et al. 2018) and in
the application examples of Khoshgoftaar et al. (2001), though the performance of random
classifiers was not taken into account in the definition of any performance metric. In what
follows, we use “uni” to denote the uniform random policy for some specified value of p.

The expected confusion matrix for random policies depends on p. We use the value of
p that sets the hardest challenge for models using variables, i.e., its Maximum Likelihood
estimate p = AP

n
. This special case of uni, which we call “pop” (as in “proportion of

positives”), is one of the reference policies used in the empirical study of Section 10.
Table 3 shows the values of the cells of an expected confusion matrix for uni and pop

policies.
In what follows, we write k = AN

AP
(following Flach 2003) to summarize properties of

the underlying dataset. For instance, instead of AP
n

, we write 1
1+k

.
Note that φuni = φpop = 0 (and Juni = Jpop = Markednessuni = Markednesspop =

0), so uni and pop are never associated with the defectiveness of modules in any dataset.
Thus, uni, and especially pop, can be used as reference policies in the evaluation of defect
prediction models.

3.2 Deterministic Methods

We set a deterministic reference value for φ, which is the best known of the three overall
performance metrics of Table 2, i.e., J, Markedness, and φ. The reference value of φ for the
uni and pop policies is zero, which sets too low a standard against which to compare the φ

Table 3 Expected confusion matrix for uni and pop policies

Actual

Negative Positive Est. Totals

uni pop uni pop uni pop

Estimated
Negative (1 − p)AN AN2

n
(1 − p)AP AP ·AN

n
(1 − p)n AN

Positive p · AN AP ·AN
n

p · AP AP 2

n
p · n AP

Act. Totals AN AP n
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values of defect prediction models. Any model that provides a positive association between
a defect prediction model and actual labels of modules, no matter how small, would be
considered better than the standard. In our empirical study, we select φ = 0.4 as a reference
value for φ for medium/strong association, as it is halfway between the medium (φ = 0.3)
and strong (φ = 0.5) values indicated in Cohen (1988).

We do not select deterministic reference values for the first six metrics in Table 2 because
we can already set reference values based on the pop policy.

4 ROC: Basic Definitions and Properties

A Receiver Operating Characteristic (ROC) curve (Fawcett 2006) is a graphical plot that
illustrates the diagnostic ability of a binary classifier fn(z,t) with a scoring function fp(z) as
its discrimination threshold t varies.

A ROC curve—which we denote as a function ROC(x) —plots the values of y = Recall
= T P

AP
against the values of x = Fall-out = FP

AN
= 1–Specificity computed on a test set for

all the defect prediction models fn(z,t) obtained by using all possible threshold values t .
Examples of ROC curves are in Fig. 1.

The [0, 1]×[0, 1] square to which a ROC curve belongs is called the ROC space (Fawcett
2006). Given a dataset, each point (x, y) of the ROC space corresponds to a defect predic-
tion model’s confusion matrix, since the values of x and y allow the direct computation of
TP and FP and the indirect computation of TN and FN, since AP and AN are known.

The two variables x and y are related to t in a (non-strictly) monotonically decreasing
way. Hence, a ROC curve ROC(x) is a non-strictly monotonically increasing function of x.

We now introduce the definition of Upper-left Rectangle of a point (x, y) of the ROC
space, which will be used in the remainder of the paper.

Definition 1 Upper-left Rectangle (ULR) of a Point.
The Upper-left Rectangle ULR(x,y) of a Point (x,y) is the closed rectangle composed of
those points (x’,y’) of the ROC space such that x′ ≤ x ∧ y′ ≥ y.

Fig. 1 ROC curves of defect proneness models from the berek dataset
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Fig. 2 ROC curve with straight lines y = Recallpop = 1
1+k

and x = Fall−outpop = 1
1+k

. The highlighted

rectangle is ULR( 1
1+k

, 1
1+k

)

An example of ULR is represented by the highlighted rectangle in Fig. 2, which shows
ULR( 1

1+k
, 1

1+k
).

All of the points of ULR(x,y) are not worse than (x,y) itself for any sensible performance
metric. They correspond to defect prediction models with no more false negatives nor more
false positives than the defect prediction model corresponding to (x,y). Point (0, 1) has no
other point in its ULR(0,1), so it corresponds to the best classifier, which provides perfect
estimation.

ROC curves have long been used in Software Defect Prediction (Arisholm et al. 2007;
Beecham et al. 2010b; Catal 2012; Catal and Diri 2009; Singh et al. 2010), typically to have
an overall evaluation of the performance of the defect prediction models learned based on z

with all possible values of t .
The evaluation of fn(z,t) for all values of t , i.e., the overall evaluation of fp(z), is typically

carried out by computing the Area Under the Curve.

Definition 2 Area Under the Curve (AUC).
The Area Under the Curve is the area below ROC(x) in the ROC space.

Table 4 Evaluation of AUC and G

AUC range G range Evaluation

AUC = 0.5 G = 0 Totally random, as good as tossing a coin

0.5 < AUC < 0.7 0 < G < 0.4 Poor, not much better than a coin toss

0.7 ≤ AUC < 0.8 0.4 ≤ G < 0.6 Acceptable

0.8 ≤ AUC < 0.9 0.6 ≤ G < 0.8 Excellent

0.9 ≤ AUC 0.8 ≤ G Outstanding
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The longer ROC(x) lingers close to the left and top sides of the ROC space, the larger
AUC. Since the total area of the ROC space is 1, the closer AUC is to 1, the better.
Hosmer et al. (2013) propose the intervals in Table 4 as interpretation guidelines for AUC as
a measure of how well fn(z,t) discriminates between positives and negatives for all values
of t .

When comparing defect proneness models, fp1(z1) (associated with AUC1) is preferred
to fp2(z2) (associated with AUC2) if and only if AUC1 > AUC2 (Hanley and McNeil
1982).

The Gini coefficient G = 2 AUC–1 is a related metric also used for the same pur-
poses (Gini 1912). G takes values in the [0, 1] range and was defined in such a way as to be
applied only to ROC curves that are never below the diagonal y = x. As there is a one-to-
one functional correspondence between them, AUC and G provide the same information.
Column “G range” in Table 4 shows how Hosmer at al.’s guidelines for AUC (Hosmer et al.
2013) can be rephrased in terms of G.

Other metrics have been defined in addition to AUC and G. We concisely review some
of them in Section 13.1.

5 Evaluation Issues

ROC curves have been widely studied and used in several fields, and a few issues have been
pointed out about their definition and evaluation. We concisely review them in Section 13.
Here, we focus on two issues about the use of AUC as a sensible way for providing
(1) an evaluation of a defect proneness model and (2) a comparison between two defect
proneness models.

5.1 Evaluation of a Defect Proneness Model: The Diagonal

The diagonal of the ROC space represents the expected performance of random policies.
Table 3 shows that, given a value of p, E[FP ] = p · AN and E[T P ] = p · AP , so E[x] =
E[FP ]
AN

= p and E[y] = E[T P ]
AP

= p. Thus, E[x] = E[y] = p, i.e., the diagonal y = x is the
expected ROC curve under a random policy, for each possible value of p. Since the points
in ULR(x, y) are not worse than (x, y), the upper-left triangle of the ROC space delimited
by the diagonal is also the set of points corresponding to defect prediction models whose
performance is not worse than the expected performance of random policies. In practice,
the upper-left triangle is the truly interesting part of the ROC space when building useful
defect prediction models. It is well-known (Fawcett 2006) that, if a classifier corresponds
to a point in the lower-right triangle, a better classifier can be obtained simply by inverting
its estimates.

However, AUC is computed by also taking into account the lower-right triangle of the
ROC space. Notice that AUC is the area between ROC(x) and the reference ROC curve
y = 0, which corresponds to a defect prediction model that estimates TP = 0 for all values
of t . In other words, AUC quantifies how different a ROC curve is from this extremely badly
performing classifier—even worse than what is expected of any random policy. In practice,
instead, AUC is to be compared to random policies, as Table 4 shows.

Using random policies, characterized by y = x, as the reference instead of y = 0 appears
more adequate. Instead of the area under the curve in the entire ROC space, one can use the
area under the curve in the upper-left triangle, and normalize it by the area of the triangle,
i.e., 1/2. This is actually the value of the Gini coefficient G, when ROC(x) is entirely
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above the diagonal. If that is not the case, one can define a modified ROC curve ROC’(x)
that coincides with ROC(x) when ROC(x) is above the diagonal, and coincides with the
diagonal otherwise. Practically, this corresponds to using the defect prediction models for
all of those values of t in which one obtains better performance than random policies, and
random policies otherwise, which are an inexpensive backup estimation technique one can
always fall back on.

However, even this modified version of G may not be satisfactory for practitioners’ and
researchers’ goals, which may require that one or more performance metrics of a defect
prediction model be higher than some specified minimum reference values, and not simply
better than a random classifier. The approach proposed in this paper (see Section 6) extends
the idea of comparing the performance of models with respect to random policies by taking
into account specific performance metrics, and compares their values when they are com-
puted with the defect prediction models obtained based on a defect proneness model and all
possible thresholds.

5.2 Comparison of Defect Proneness Models with AUC: Deceiving Cases

Suppose we have two defect proneness models fp1(z) and fp2(z). Figure 1a shows that the
ROC curve of fp2(z) is always above the ROC curve of fp1(z), i.e., the Recall and Fall-out
of fp2(z) are never worse than those of fp1(z). Accordingly, the AUC of fp2(z) is greater
than the AUC of fp1(z). fp2(z) is at least as good as fp1(z) for all choices of t , but we do
not need AUC to decide which defect proneness model is better.

Figure 1b instead shows two intersecting ROC curves. It is not straightforward to decide
which defect proneness model is better by simply looking at the ROC curves, since neither
curve dominates the other. Using AUC would have us conclude that fp1(z) is not worse
than fp3(z), since the AUC of fp1(z)is greater than the AUC of fp3(z). However, Fig. 1b
also shows that the AUC of fp1(z) is greater than that of fp3(z) mainly because the ROC
curve of fp1(z) is above the ROC curve of fp3(z) when FP/AN> 0.6, i.e., when Fall-out
is quite high and the defect prediction models obtained with both defect proneness models
provide quite bad estimates.

Thus, just because the AUC of a defect proneness model is greater than that of another
does not automatically mean that the former defect proneness model is preferable. Instead,
we should restrict the comparison to the zone (i.e., the threshold range) where the defect
prediction models obtained behave “acceptably”.

In the following sections, we propose methods to “purge” AUC from the noise originated
by defect prediction models that do not perform well enough. The resulting indications are
expected to be more reliable, hence more useful in practice and also more correct from a
theoretical point of view.

6 Evaluation Based on Relevant Areas

Suppose we select a performance metric PFM and a random or deterministic method MTD
for selecting a reference value to evaluate the acceptability of a defect prediction model. Let
us denote by PFMMT D the reference performance value of MTD when evaluated via PFM.
For instance, if we take FM as PFM and pop as MTD, we have FMpop = 1

1+k
, as shown in

Table 2.
Among the defect prediction models that can be generated with fn(z,t), the ones that

should be considered performing sufficiently well are those that provide a better value of
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PFM than the reference value, e.g., better than what can be expected of a random policy.
These are the practically useful defect prediction models, hence the ones that should be
taken into account when evaluating the overall performance of fp(z) . For instance, if we
decide to assess the performance of fn(z,t) based on PFM1 = Recall and MTD1 = pop, we
should only take into account those values of t in which fn(z,t) has Recall > Recallpop =

1
1+k

.
Note that there are always values of t that are so small or so large to make estimates’

performance according to some PFM similar or even worse than the performance with a
reference policy. Hence, it does not make sense to evaluate fn(z,t) for all the values of t .
Instead, we take into account the points (x, y) of a ROC curve that satisfy inequality y >

Recallpop = 1
1+k

(see Table 2), i.e., the points above the horizontal straight line y = 1
1+k

.
Recall captures one aspect of performance, mainly based on true positives, but other

aspects can be of interest. Suppose we decide to assess the performance of fn(z,t) based on
PFM2 = Fall-out, which captures performance by taking into account the false positives,
and MTD2 = pop. We should only take into account the values of t in which fn(z,t) has
Fall-out < Fall-outpop = 1−Specificitypop = 1

1+k
. We are thus interested only in the points

satisfying inequality x < 1
1+k

, i.e., left of the vertical straight line x = 1
1+k

.
If we are interested in the points of the ROC curve that are better than pop for both Recall

and Fall-out, then both inequalities must be satisfied, and the evaluation must consider only
the points of the ROC curve in ULR( 1

1+k
, 1

1+k
), i.e., the highlighted rectangle in Fig. 2.

It is up to the practitioners and researchers to decide which metrics are of interest for their
goals. For instance, they can use FM as PFM1 and NM as PFM2 and pop as both MT D1
and MT D2, to consider defect prediction models that perform better than pop for both FM
and NM. The points of the ROC curve to take into account are represented in Fig. 3a, above
and to the left of the two oblique straight lines with equations y = k

2k+1x + 1
2k+1 for FM

and y = (k + 2)x − 1 for NM, as we show in Table 5.
More generally, other metrics and reference policies may be defined and used well

beyond the ones illustrated in this paper. Different choices of metrics and reference policies
may lead to delimiting any subset of the ROC space. Clearly, if one is interested in using
several metrics and several corresponding reference policies, the subset of the ROC space
is the intersection of the single subsets, each of which is built by means of a metric and a
reference policy.

However, not all ROC space subsets are useful or sensible. We introduce the notion of
“Region of Interest,” to define which ones should be used.

Table 5 Borders for performance metrics for random policies

Metric Formula Border uni pop

Precision y
kx+y

y = c
1−c

kx y = x y = x

Recall y y = c y = p y = 1
1+k

F-measure 2y
kx+y+1 y = c

2−c
kx + c

2−c
y = p

pk+1 kx + p
pk+1 y = k

2k+1 x + 1
2k+1

NPV k(1−x)
k(1−x)+1−y

y = 1−c
c

k(x − 1) + 1 y = x y = x

Specificity 1 − x x = 1 − c x = p x = 1
1+k

NM 2k(1−x)
k(1−x)+(1−y)+k

y = 2−c
c

kx − 2 1−c
c

k + 1 y = 1−p+k
1−p

x − p
1−p

k y = (k + 2)x − 1
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Definition 3 Region of Interest (RoI).
A subset of the ROC space is said to be a Region of Interest (RoI) if and only if it contains
the upper-left rectangles of all of its points, i.e.,

∀ x, y(x, y) ∈ RoI ⇒ ULR(x, y) ⊆ RoI (1)

The border of a RoI is the part of the boundary of the RoI in the interior of the ROC
space, i.e., it is the boundary of the RoI without its parts that also belong to the ROC space
perimeter. The border of the RoI is the part of its boundary that really provides information
on how the RoI is delimited, since the perimeter of the ROC space can be taken for granted
as a delimitation.

The union of the light blue and grey regions in Fig. 3a is an example of a RoI, in which
FM ≥ FMpop∧ NM ≥ NMpop (see Section 7.1). An example of a subset of the ROC space
that is not a RoI is in Fig. 3b.

RoIs have a few properties, which we prove in Appendix A.

– The intersection of any number of RoIs is a RoI.
– The intersection of any number of RoIs is nonempty.
– A RoI is connected.
– The smallest RoI to which a point (x, y) belongs is ULR(x, y).
– A RoI always contains point (0, 1).
– The border of a RoI is a (non necessarily monotonically) increasing function. Thus,

graphically, a RoI is above and to the left of its border.

With a reference value derived from a random policy, the points on the border of a RoI
correspond to unacceptable defect prediction models, as their performance is as good as
what can be expected of a random policy. If, instead, the reference value is selected deter-
ministically, all points on the boundary correspond to acceptable classifiers, e.g., one takes
φ = 0.4 as minimum φ value for an acceptable defect prediction model.

Fig. 3 A ROC and the RoI in which FM ≥ FMpop∧ NM ≥ NMpop (a) and a subset of the ROC space that is
not a RoI (b)
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In what follows, we implicitly assume that the points on the border of a RoI are included
or not in the RoI depending on whether a reference value has been selected via a random
policy or deterministically.

6.1 The Ratio of Relevant Areas

We propose to assess a fault-proneness model fp(z) via the Ratio of the Relevant Areas
(RRA), which takes into account only the RoI selected by a practitioner or researcher.

Definition 4 Ratio of the Relevant Areas (RRA).
The Ratio of the Relevant Areas of a ROC curve ROC(x) in a RoI is the ratio of the area of
the RoI that is below ROC(x) to the total area of the RoI.

In Fig. 3a, the RoI is the union of the light blue and grey regions, in which the light blue
region is the part of the RoI below ROC(x). RRA is the ratio of the area of the light blue
region to the area of the RoI.

AUC and G are special cases of RRA, obtained, respectively, when the RoI is the whole
ROC space and the upper-left triangle. From a conceptual point of view, it is sounder to
consider the area under the portion of the ROC curve in the RoI than to consider the areas
under the entire ROC curve taken into account by AUC and G: RoI represents the part of
the ROC space in which defect prediction models perform sufficiently well to be used.

Take, for instance, the case in which we use reference random policies of interest along
with a set of performance metrics of interest to build a RoI. By considering the parts of
ROC(x) outside the RoI, one would also take into account values of t that make f n(z, t)

worse than a random estimation method. When we know that a given defect prediction
model is worse than a random policy for a set of performance metrics, it is hardly interesting
to know precisely how well it performs. However, this is what AUC and G do.

Note that Definition 4 is quite general, as it allows the use of different reference policies
for different performance metrics even when they are used together. For instance, one may
be interested in the points of a ROC curve that are better than FMpop and, at the same time,
better than the NM value obtained with uni with p = 0.7. In what follows, however, we
assume that the same reference policy is used for all of the performance metrics selected.

7 RoIs for Specific PerformanceMetrics and Reference Values

The requirement that a defect prediction model satisfy a minimum acceptable level c for
a performance metric PFM corresponds to a RoI in the ROC space. We here show the
equations of the borders of the RoIs corresponding to the metrics in Table 2. Appendix B
shows how the equations for these borders were obtained, by explaining how these metrics,
defined in terms of the cells of the confusion matrix, can be expressed in terms of x and
y. These borders are akin to the “iso-performance lines” or “isometrics” proposed in Flach
(2003), Provost and Fawcett (2001), and Vilalta and Oblinger (2000).

7.1 RoIs for PerformanceMetrics with Respect to the Positive and Negative Classes

Table 5 summarizes the formulas about the borders of the RoIs for the performance metrics
with respect to the positive and the negative classes of Table 2 with the uni and pop reference
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policies, for completeness. At any rate, we only use pop in the examples and in the empirical
study of Section 10.

– Column “Formula” provides the definition of the performance metric in each row in
terms of x and y. For instance, Precision = y

kx+y
.

– Column “Border” shows the equation of the general straight line that represents the
border of the RoI obtained when the performance metric corresponding to the row
is given a constant value c. For instance, line y = c

1−c
kx includes the points where

Precision=c. For practical usage, when we select a specific metric PFM and a reference
method MTD, we replace the generic parameter c by the specific PFMMT D chosen.

– Column “uni” shows the equation of the border when c is replaced by PFMuni with
probability p, where PFM is the metric in the corresponding row. This is the border of
the RoI where defect prediction models have greater value of PFM than expected of the
uni policy with probability p.

– Likewise, column “pop” shows the equation of the border when c is replaced by
PFMpop , where PFM is the metric in the corresponding row.

It can be shown that each equation in the “uni” column in Table 5 describes a pencil of
straight lines (Cremona 2005) through point (p, p), i.e., ( 1

1+k
, 1

1+k
) with pop.

Figure 4 shows the ROC curve already shown in Fig. 2, along with all the lines corre-
sponding to the borders mentioned in Table 5 for pop. The portion of ROC above and to the
left of the borders of all performance metrics (ULR( 1

1+k
, 1

1+k
), in this case) is quite small,

compared to the entire ROC curve. Thus, there is a relatively small range where t pro-
vides f n(z, t) defect prediction models that perform better than pop, according to multiple
metrics.

The borders in Table 5 follow expected change patterns when k, c, and p change. Higher
values of c are associated with stricter constraints, e.g., the slope of the Precision straight

Fig. 4 ROC curve of fp(WMC) for the berek dataset with multiple pop constraints
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Table 6 Borders for overall performance metrics

Metric Formula Border

J y − x y = x + c

Markedness k(y−x)
(y+kx)(k(1−x)+(1−y))

ck2x2 + 2ckxy + cy2+
−(ck2 + ck + k)x − (ck − k + c)y = 0

φ
√

k(y−x)√
(y+kx)(k(1−x)+(1−y))

(k + c2k2)x2 + 2(c2k − k)xy + (c2 + k)y2+
−c2(k2 + k)x − c2(k + 1)y = 0

line y = c
1−c

kx increases with c. Appendix C details how these borders behave for each
metric when k, c, and p change.

We use the pop policy in the empirical validation of Section 10. For notational con-
venience, we denote by RoI(PFM1, PFM2, . . . ) the RoI defined by constraint PFM1 >

PFM1,pop∧ PFM2 > PFM2,pop∧. . .), and by RRA(PFM1, PFM2, . . . ) the value of RRA for
RoI(PFM1, PFM2, . . . ). For instance, RRA(FM, NM) denotes the value of RRA for RoI(FM,
NM), i.e., the RoI with FM > FMpop ∧ NM > NMpop , e.g., the union of the light blue and
grey regions in Fig. 3a.

7.2 RoIs for Overall Metrics

Table 6 shows the formula and the border obtained for each of the three overall performance
metrics PFM in Table 2 when one sets a minimum acceptable value c for it, i.e., one requires
PFM ≥ c. Unlike Tables 5, and 6 does not contain columns “uni” and “pop,” because we
showed in Table 2 that J , Markedness, and φ are all equal to 0 under random policies.
Therefore, a RoI is defined by means of a deterministically chosen value of c.

The lines for constant Youden’s J are straight lines parallel to the diagonal. As for
Markedness, it can be shown that the constant lines are parabolas, with symmetry axis
y = −kx + 1+k

2 + k(k−1)

2c(1+k2)
. The details are in Appendix D.

φ has received the most attention among these three metrics in the past. It can be shown
that the border for φ = c is an ellipse that goes through points (0, 0) and (1, 1) for all values

Fig. 5 ROC curve of defect proneness vs. WMC fp(WMC)for berek dataset with constraints on φ
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of c and k and intercepts the perimeter of the ROC space in four points (except for very
special values of c and k). Appendix D shows the details of the analytic results we obtained.

Figure 5a shows the ellipse for the berek dataset (from the SEACRAFT repository)
with c = 0.4, a value that represents medium/strong association between a defect prediction
model and actual faultiness (Cohen 1988). Note that there are two unconnected parts of the
ROC space in which φ ≥ c, delimited by the dashed part of the ellipse and the solid part of
the ellipse. Based on Definition 3, only the upper-left part above the dotted arc of the ellipse
is a legitimate RoI.

Figure 5b shows the borders of the RoIs associated with φ=0.4 (the lowest line), 0.6,
and 0.8 (the highest line). By comparing Figs. 5 and 4, it is easy to see that the points of the
ROC curve that satisfy the constraints mentioned in Table 5 also satisfy constraint φ ≥ 0.4.
However, only a few points of the ROC curve (corresponding to a few selected values of t)
satisfy constraint φ ≥ 0.6. No point of the ROC curve satisfies constraint φ ≥ 0.8.

8 Taking Cost into Account

We have so far considered the evaluation of defect prediction models with respect to the
performance of estimates. Though the notion of performance is important, practitioners are
usually also interested in other characteristics of estimates, such as the cost of misclassifying
a faulty module as not faulty, or vice versa. As we show in Section 8.1, there is a clear
relationship between the choice of a performance metric and the cost of misclassification.

We first show how to derive the border of a RoI based on the misclassification cost. Like
most of the literature, we assume that each false negative (resp., positive) has the same cost
cFN (resp., cFP ), so total cost TC is Hand (2009)

T C = cFNFN + cFP FP (2)

TC can be computed in terms of x and y of the ROC space as follows

T C = cFNAP(1 − y) + cFP AN · x = n

(
cFN

AP

n
(1 − y) + cFP

AN

n
x

)
(3)

By setting λ = cFN

cFN+cFP
and dividing T C by n(cFN + cFP ) (which is independent of

the defect prediction model used), we can focus on Normalized Cost NC = T C
n(cFN+cFP )

(Khoshgoftaar and Allen 1998)

NC = λ
AP

n
(1 − y) + (1 − λ)

AN

n
x = λ

1

1 + k
(1 − y) + (1 − λ)

k

1 + k
x (4)

NC is related to Unitary Cost UC = T C
n

= (cFN + cFP )NC, so constraints on UC get
immediately translated into constraints on NC and vice versa.

Usually, cFN is much greater than cFP , as false negatives have more serious conse-
quences than false positives, financially and otherwise. Accordingly, λ is usually much
closer to 1 than to 1/2 (value 1/2 corresponds to cFN = cFP ).

8.1 Borders Based on Random Policies

For any random policy, thanks to basic properties of expected values, we have

E[NC] = λ
AP

n
E[(1 − y)] + (1 − λ)

AN

n
E[x] (5)
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and for the uni and pop policies we have, based on Table 3

E[NCuni] = λ
AP

n
− p

(
λ − AN

n

)
(6)

E[NCpop] = AP · AN

n2
= k

(1 + k)2
(7)

Thus, one should use only those defect prediction models whose NC is less than the
expected normalized cost of a random policy, i.e., NC < AP ·AN

n2 .
Since E[NCpop] is independent of the specific cost per false negative or positive, For-

mula (7) provides a general result that applies to all defect prediction models, and regardless
of the way they have been built, e.g., with or without using techniques based on defect
proneness models and thresholds.

The value of E[NCpop] = AP ·AN

n2 = AP
n

− AP 2

n2 depends on the intrinsic characteristics
of the dataset. As a function of AP , it describes a parabola with minimum (E[NCpop] = 0)
when AP = 0 or AP = n and maximum (E[NCpop] = 1

4 ) when AP = n
2 . Thus, NC <

AP ·AN

n2 is easier to satisfy when AP ≈ AN , i.e., for balanced datasets, and more difficult
when this is not the case. As we show in Section 8.2, lower values of NC call for better
performing defect prediction models.

Via mathematical transformations, it can be shown that the borders of the RoIs that satisfy
inequality NC < k

(1+k)2 for different values of λ are represented by the following pencil of

straight lines, with center in ( 1
1+k

, 1
1+k

)

y = 1 − λ

λ
kx + 1 − k

λ(1 + k)
(8)

It can be shown that the slope of the border decreases as λ varies from 0 to 1. Thus, the
border rotates around center point ( 1

1+k
, 1

1+k
) in a clockwise fashion from vertical straight

line x = 1
1+k

to horizontal straight line y = 1
1+k

. A special case occurs when λ = k
1+k

,
since the line is the diagonal y = x.

Recall that all of the straight lines for all of the performance metrics in Table 5 go through
center point ( 1

1+k
, 1

1+k
) too. Thus, they are special cases of the straight lines described

in Formula (8), for specific values of λ. Specifically, we have, in increasing order of the
value of λ: for Fall-out, λ = 0; for NM, λ = k

2(1+k)
= AN

2n
; for Precision and for NPV,

λ = k
1+k

= AN
n

; for FM, λ = 2k+1
2k+2 = 1

2 + AN
2n

; and for Recall, λ = 1.
Thus, the selection of any of these metrics is not simply an abstract choice on how to

assess the performance of defect prediction models, but implies the choice of a specific cost
model with a specific λ = cFN

cFN+cFP
, which implies a specific ratio cFN

cFP
.

Based on observations of past projects’ faults and fault removal costs, one could estimate
a likely value ke for the ratio AN /AP and a likely range [λl , λu] for λ, to evaluate a given
fp(z, t) classifier based on the RoI identified by

y ≥ 1 − λl

λl

kex + 1 − ke

λl(1 + ke)
∧ y ≥ 1 − λu

λu

kex + 1 − ke

λu(1 + ke)
(9)

8.2 Cost-reduction RoIs

Practically useful RoIs should represent strict constraints for defect prediction models. For
instance, take λ = 0.9, i.e., suppose that a false negative is 9 times as expensive as a false
positive. The corresponding line described in Formula (8) for the ROC curve in Fig. 4 is
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Fig. 6 ROC curve for fp(WMC) for the berek dataset with multiple constraints on normalized cost (λ = 0.9)

the lowest one in Fig. 6, which does not appear to set a strict constraint and may be of little
practical interest.

To obtain a more useful constraint, a software manager may set a maximum acceptable
value for the unitary cost, which translates into a maximum value NCmax for NC. NCmax

can be expressed as a fraction μ of E[NCpop], i.e., NCmax = μ k

(1+k)2 . Constraint NC <

NCmax defines a RoI with border

y = 1 − λ

λ
kx + 1 − μ

k

λ(1 + k)
(10)

The border depends on parameters k, λ, and μ. We describe in Appendix F the effect of
having different values of k, which happens with different datasets. We here investigate the
effect of selecting different values of μ, possibly in combination with different values of λ.

Formula (10) shows that μ only influences the intercept of the border. For given values
of k and λ, the smaller μ (i.e., the smaller NCmax), the higher the border line. Figure 6
shows the borders for the berek dataset (which has k = 27/16) when λ = 0.9, for μ = 1,
μ = 0.75, and μ = 0.5. Formula (8) is a special case of Formula (10) with μ = 1 and it can
be easily shown that, for any given value of μ, Formula (10) describes a pencil of straight
lines, one for each value of λ, with center in (μ 1

1+k
, 1 − μ k

1+k
). Thus, for any given value

of μ, different values of λ have the same effect as we described in Section 8.1.
As μ varies, the center point (μ 1

1+k
, 1 −μ k

1+k
) moves on the straight line y = −kx + 1.

It moves upwards and to the left as μ decreases, as expected, since the constraint becomes
stricter. When μ tends to 0, then the center point tends to (0, 1), which represents perfect
classification.

We denote as RRA(λ = cλ, μ = cμ) the value of RRA obtained for the RoI whose border
is identified by using λ = cλ and choosing μ = cμ.

The value of μ is related to the performance of defect prediction models quantified by
any metric. For instance, take Precision and suppose that a technique for defect prediction
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models guarantees a minimum value of Precision=c. The border corresponding to Preci-
sion=c is y = c

1−c
kx (see Table 5). This straight line intersects line y = −kx + 1 at point

( 1−c
k

, c), which corresponds to μ = (1−c)(1+k)
k

. This is the cost reduction proportion that
can be obtained with a technique that improves the value of Precision from Precisionpop to
c.

Conversely, suppose we focus on Precision and we plan to achieve a μ cost reduction.
The required improvement in Precision is c = 1 − kμ

1+k
.

Similar computations can be carried out for all other performance metrics. The results
are in Appendix E.

9 Evaluating RRA

RRA is clearly related to AUC and Gini’s G, so one may wonder if RRA is better than AUC
or G, and, if so, to what extent.

First, the main difference between RRA, on one side, and AUC and G, on the other side,
is that RRA assesses a defect proneness model only based on the points of a ROC curve
corresponding to defect prediction models that are worth evaluating, while AUC and G use
all of the points of a ROC curve.

We here assess the extent to which our approach restricts the area of the portion of the
ROC space that is taken into account as compared to AUC and G, by computing the areas
of two types of RoIs that we have already used in the previous sections and that we also use
in the empirical study of Section 10. The area of RoI(Recall, Fall-out) is equal to k

(k+1)2 .

As a function of k, this area has maximum value 1
4 , attained for k = 1, i.e., AP = AN .

Thus, the computation of RRA(Recall, Fall-out) takes into account at most only one-fourth
of the portion of the ROC space taken into account by AUC (whose area is 1), and one-half
of the portion taken into account by G (whose area is 0.5). The more k tends to 0 or infinity,
the more the area of the RoI shrinks. For instance, for k = AN

AP
= 4, the area of the RoI is

4
25 = 0.16, which corresponds to 16% of the area considered for AUC and 32% of the area
considered by G.

The same phenomenon occurs for the area of RoI(FM, NM), which is equal to
3k

(k+2)(2k+1)
, with maximum value 1

3 when k = 1. For k = 4, the value is 2
9 � 0.22, i.e.,

22% of the area considered for AUC and 44% of the area considered by G.
Thus, these two RoIs take into account a rather reduced proportion of the ROC space

if compared to AUC or even G. In practice, by considering irrelevant regions, AUC and G

incorporate a large “noise” that is higher for projects with a relatively small (or large) defect
density. Section 10 shows some results we obtained for these areas in our empirical study,
along with results about the proportion of classifiers of ROC curves that fall into our RoIs.

Second, in two cases, the relationships between the values of RRA and of the performance
metrics AUC and G are necessarily strong only for models that are either exceptionally
good or exceptionally bad. Suppose that a model is so good as to have AUC = 1, then the
entire ROC space is under the ROC curve, and both G and RRA are therefore equal to 1. The
converse is also true. If RRA = 1, then the ROC curve is above the entire RoIs chosen. Since
any RoI includes the perfect estimation (0, 1) point, then the ROC curve goes through it, and
AUC = 1 and G = 1. For continuity, exceptionally good models that achieve near-perfect
estimation are very likely to have values of AUC, G, and RRA close to 1. The empirical
study in Section 10 provides some evidence on the values of AUC for which this relationship
exists between RRA and the existing metrics AUC and G even in approximate form.
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When it comes to bad models, the implication is unidirectional, in general. Suppose that
a model is so bad as to have AUC = 0.5 and therefore G = 0, then the ROC curve coincides
with the diagonal, which implies that RRA= 0 for all kinds of RRA. However, RRA= 0 does
not imply AUC = 0 and G = 0. As a first example, take the ROC curve in Fig. 5b. We have
RRA(φ = 0.8) = 0, while AUC > 0. As a second example, suppose that the ROC curve
goes through point ( 1

1+k
, 1

1+k
). Suppose that the value of AUC is greater than 0—which

is true except if the ROC curve entirely coincides with the diagonal. We have RRA(Recall,
Fall-out)=0. This happens because the ROC curve never enters the region of interest. Thus,
for bad models and, as we see in Section 10, for models that are not exceptionally good,
RRA can provide a different perspective and evaluation than AUC and G.

Third, RRA is customizable, since it allows practitioners and researchers to define the set
of points of a ROC curve they are interested in, i.e., those in a RoI built by selecting specific
performance metrics and reference policies, while this is not possible with AUC and G.

Fourth, the assessment of whether RRA is better than AUC or G requires defining what
“better” actually means in this case. RRA, AUC, and G all provide an overall evaluation of
the performance of the defect prediction models fn(z,t) for all values of t . As such, RRA,
AUC, and G are aggregate functions of these models. Thus, to assess them, we would need
another aggregate function that provides the “ideal” figure of merit against which we can
compare the performance of RRA, AUC, and G. Unfortunately, such “ideal” function does
not exist or is not known. Total Cost TC would be a suitable “ideal” figure of merit, but it is
unknown. That is why metrics like AUC and G were introduced and used in the first place:
they would not have been introduced if TC were known. At any rate, RRA can take into
account different cost models via parameter λ and different cost requirements via parameter
μ in ways that AUC and G can not.

Therefore, the empirical study we present in Section 10 does not and cannot have the
goal of showing whether RRA is “better” than AUC and G, or any other metric, for that
matter. Rather, we want to show the differences in the assessment of defect proneness mod-
els between RRA and the existing ones, and show that RRA can be more reliable and less
misleading.

10 Empirical Study

We analyzed 67 datasets for a total of 87,185 modules from the SEACRAFT reposi-
tory (https://zenodo.org/communities/seacraft). These data were collected by Jureczko and
Madeyski (2010) from real-life projects of different types, and have been used in several
defect prediction studies (e.g., (Bowes et al. 2018; Zhang et al. 2017)). The number of mod-
ules in the datasets ranges between 20 and 23,014 with an average of 1,300, a standard
deviation of 3,934, and a median of 241.

For each module (a Java class, in this case), all datasets report data on the same 20
independent variables.1 In addition, the datasets provide the number of defects found in
each class, which we used to label modules as actually negative and positive. The datasets
are fairly different in terms of AP/n ratio, which ranges from 2% to 98.8%. The histogram
in Fig. 8 shows the frequency distribution of the proportion of defective modules in the
datasets. Though there is a majority of small values in the distributions of n, AP/n, and

1Definitions can be found at http://gromit.iiar.pwr.wroc.pl/p inf/ckjm/metric.html.Cyclomatic Complexity
appears in the datasets as both the average and the maximum value across the methods of a class.
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Table 7 Values of AUC and RRA for AUC ranges for BLR models

AUC AUC RRA(Recall,Fall-out) RRA(φ=0.4)

Rank n Median Range Median Range Median

Acceptable 13 0.74 [0.03, 0.26] 0.18 [0.00, 0.00] 0.00

Excellent 29 0.86 [0.27, 0.65] 0.45 [0.00, 0.50] 0.19

Outstanding 25 1.00 [0.35, 1.00] 1.00 [0.02, 1.00] 1.00

LOC—as is for software projects in general—fairly large values are well represented (e.g.,
half of the projects are larger than 59,000 LOC).

For each dataset, we built a BLR model and a Naive Bayes (NB) model using all available
measures as independent variables.

Here are the Research Questions that we address in our empirical study.

RQ1 To evaluate defect proneness models in practice, to what extent are the regions of
the ROC space used by RRA more adequate than the regions used by AUC and G?

With RQ1, we investigate if, in real-life projects, it is possible to have substan-
tial differences between RRA and the existing performance metrics AUC and G, as
these performance metrics take into account different regions of the ROC space and
therefore different defect prediction models.

RQ2 How frequently are there substantial differences between RRA and traditional
performance metrics AUC and G in using more adequate regions of the ROC space?

By answering RQ2, we check whether RRA is truly useful only in corner cases
for extreme projects, or for a large share of the population of projects.

10.1 RQ1: Extent of Adequacy of ROC Space Regions Used

For each of the 67 datasets, the BLR model we obtained had a higher AUC value than
the NB model, with only one exception, for the xalan 2.7 project. In what follows, we
present the results for the 67 BLR models and also discuss the results for the NB model for
the xalan 2.7 project.

To answer RQ1, we consider the interpretation of AUC proposed by Hosmer et al. (2013)
and illustrated in Table 4. Accordingly, we split the BLR models we obtained into three
classes: acceptable, excellent, and outstanding. Note that we obtained only one BLR model
with AUC< 0.7, specifically, with AUC= 0.69. As this value is very close to the 0.7 lower
boundary of the acceptable AUC category, we include it here in the acceptable AUC category
of models, instead of analyzing it by itself in a separate category. Then, we computed the
values of RRA(Recall, Fall-out) and RRA(φ = 0.4): Table 7 provides a summary of RRA
values for each AUC category.

The NB model obtained for the xalan 2.7 has AUC=0.95, RRA(Recall, Fall-out)=0
and RRA(φ=0.4)=0.01, while the corresponding BLR model has AUC = 0.69 RRA(Recall,
Fall-out)= 0.03 and RRA(φ = 0.4)= 0. Note that the values of RRA are very low for both
models, even though the two models greatly differ in the values of AUC. Moreover, RRA
shows that the apparently outstanding NB model is actually not acceptably accurate.
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Table 8 Values of AUC and RRA for BLR models and AP/n ranges

AUC AUC RRA(Recall,Fall-out) RRA(φ=0.4)

Range n AP/n median Range Median Range Median

(0.8, 0.87] 6 l/h 0.86 [0.29, 0.45] 0.39 [0.00, 0.14] 0.07

(0.8, 0.87] 12 mid 0.84 [0.27, 0.52] 0.45 [0.06, 0.32] 0.20

(0.87, 0.9] 5 l/h 0.90 [0.34, 0.54] 0.42 [0.08, 0.30] 0.13

(0.87, 0.9] 6 mid 0.88 [0.51, 0.65] 0.56 [0.29, 0.50] 0.37

(0.9, 1) 9 any 0.92 [0.35, 0.99] 0.74 [0.02, 0.99] 0.55

[1, 1] 16 any 1.00 [1.00, 1.00] 1.00 [1.00, 1.00] 1.00

Let us examine the results of Table 7 for the three categories of AUC values. First, models
in the acceptable RRA category should be rejected: they all have RRA(φ=0.4)=0, and quite
low RRA(Recall, Fall-out). Second, models classified as excellent according to AUC have
a quite large variability of RRA. Third, models classified as outstanding according to AUC
generally have very high values of RRA, although exceptions are possible: the model for
jedit 4.3 has AUC = 0.9, but also RRA(Recall, Fall-out)=0.35 and RRA(φ=0.4)=0.02
(noticeably, jedit 4.3’s dataset is characterized by AP/n=0.02) and the NB model for
xalan 2.7 even more extreme values.

To better understand the relationship between AUC and RRA, we split the excellent
AUC range into two sub-ranges, and also split the resulting model sets according to AP/n.
Specifically, we split the model set with excellent AUC into those having AUC ∈ (0.8, 0.87]
and those having AUC ∈ (0.87, 0.9]; threshold 0.87 was chosen to have enough models
in each subset. As for the 25 models with outstanding AUC, 16 were perfect prediction
classifiers, with AUC = 1. We put them in a separate category from those with AUC
∈ (0.9, 1).

The results are in Table 8, where “mid” indicates values between 0.2 and 0.8 of AP/n,
i.e., in the middle part of the [0, 1] interval of AP/n and “l/h” indicates values of AP/n

that are either in the low or high range, i.e., less than 0.2 or greater than 0.8. By “any,” we
indicate that we did not split the models based on AP/n.

Table 8 shows that BLR models with AUC in the (0.8,0.87] range and “l/h” values for
AP/n mostly have low values of RRA: e.g., the median RRA(φ =0.4) is just 0.07 for these
models. Models with AUC in the (0.87,0.9] range and mid values of AP/n have instead
higher values of RRA. The other models are characterized by variable RRA, hence they
should be evaluated individually.

As for models with outstanding AUC values, Table 8 obviously confirms that, as noted
in Section 9, models with AUC=1 also have RRA=1. The models with AUC∈ (0.9, 1)

have generally high RRA(Recall, Fall-out) and RRA(φ=0.4), even though the median of
RRA(φ=0.4)=0.55 is a bit over half the value of RRA(φ=0.4) of the models with AUC=1.
There are two important exceptions, as noted above, i.e., the BLR model for jedit 4.3
with outstanding AUC= 0.9 and extremely poor RRA(φ=0.4)= 0.02 and the NB model for
xalan 2.7 with outstanding AUC=0.95 and extremely poor RRA(φ=0.4)=0.01.

To provide additional evidence, Fig. 7 shows the values of AUC and RRA(φ=0.4) for the
models obtained from datasets with AP/n ≤ 0.2 or AP/n ≥ 0.8.

Together, Table 8 and Fig. 7 indicate that the strong relationship between the values of
AUC and RRA we described in Section 9 only holds when AUC is extremely close to 1, but
no longer exists for values of AUC that are considered excellent or even outstanding.
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Fig. 7 AUC—red continuous line—and RRA(φ = 0.4)—blue dashed line—for projects with AP
n

≤ 0.2 or
AP
n

≥ 0.8

Thus, in response to RQ1, we can observe that RRA appears to take into account a
more useful region of the ROC space than AUC and G in the evaluation of a defect pre-
diction model. As a consequence, RRA provides more realistic evaluations than traditional
performance metrics, which provide unreliable evaluations, under some conditions.

10.2 RQ2: Frequency of Usingmore Adequate Regions

To answer RQ2, we need to check whether low or high values of defect density AP/n are
frequent or rare. Figure 8 shows the distribution of defect density values (rounded to the
first decimal) of the projects we considered. Quite a large share (31 projects out of 67) have
AP/n ≤ 0.2, i.e., a fairly small defect density, while 2 out of 67 have AP/n ≥ 0.8, i.e., a
very high defect density.

Fig. 8 Distribution of defect density in the datasets by Jureczko and Madeyski
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Fig. 9 Comparison of the distributions of AUC, G, RRA(Recall, Fall-out) and RRA(φ=0.4)

Thus, at least for the considered datasets, for about one half of the models, traditional
indicators are bound to provide responses based on very large portions of ROC curves where
predictions are worse than random.

Also, notice that the range of “l/h” values of AP/n is 40% of the entire AP/n range
(i.e., [0,1]), but accounts for 49% of datasets, i.e., projects are more concentrated in these
subintervals of AP/n, for which larger portions of AUC are meaningless.

To obtain additional quantitative insights, we performed some additional analysis. We
computed the areas of RoI(Recall, Fall-out) for the analyzed datasets. We found that the
mean area of RoI(Recall, Fall-out) is 0.164, while the median is 0.173, and the standard
deviation is 0.067. 49% of datasets have RoI(Recall, Fall-out) whose area is ≤ 0.16, i.e.,
more than 84% of the ROC space used to compute AUC and 68% of the area above the
diagonal considered to compute G are in the region representing classifiers that are random
or worse than random.

Similarly, we computed the areas of RoI(FM, NM): the mean area is 0.22, the median
is 0.24, and the standard deviation is 0.09. 49% of datasets have RoI(FM,NM) ≤ 0.242,
i.e., more than 75% of the ROC space used to compute AUC and 52% of the area above the
diagonal considered to compute G are in the region representing classifiers that are random
or worse than random (0.242 is the area or RoI(FM, NM) when AP/n is 0.2 or 0.8).

In conclusion, for a large share of datasets, evaluations based on AUC or G are largely
based on regions of the ROC space that should not be considered.

However, one may suppose that the classifiers represented by a ROC curve may be con-
centrated mostly in RoIs such as RoI(Recall, Fall-out). If this is the case, then some of the
issues related to using defect prediction models that have performance worse than random
policies may be alleviated. Thus, we investigated how many points in the ROC curves we
found are outside RoI(Recall, Fall-out). We found that all the models have over 50% of the
classifiers out of the RoI, and 64% of the models have over 2/3 of the classifiers out of the
RoI.

Finally, Fig. 9 shows boxplots comparing the distributions of AUC, G, RRA(Recall, Fall-
out) and RRA(φ=0.4). Figure 9a concerns all the models: it can be seen that AUC provides
quite optimistic evaluations: except for just one case, AUC is greater than 0.7, with mean
and median well above 0.8. On the contrary, the values of RRA(Recall, Fall-out) are more
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widely spread, indicating that RRA(Recall, Fall-out) discriminates models more severely
and realistically. Values of RRA(φ=0.4) are even more widely spread, with lower mean and
median. Figure 9b provides the same comparison, considering only the models of the 33 out
of 67 datasets having “l/h” AP/n. It is noticeable that the distribution of AUC changes only
marginally, with respect to Fig. 9a; on the contrary, the distributions of RRA(Recall, Fall-
out) and RRA(φ =0.4) center on lower values, showing that the indications by AUC are far
too optimistic.

Based on the collected evidence, we can answer RQ2 by stating that RRA indicators are
useful quite frequently. On the contrary, it appears that AUC indications are seldom reliable.

11 The Software Engineering Perspective

The meaning of RRA is the same as the meaning of AUC and G, at a high level: all these indi-
cators provide an evaluation of the performance of a defect proneness model. Accordingly,
RRA can be applied just like AUC and G. However, as discussed in Section 7, RRA can be
adapted to specific needs and goals. For instance, performance evaluation can be based on
φ or on FM and NM. Accordingly, the meaning of RRA is more specific than the meaning
of AUC or G. We now outline how our proposal can be used during software development.

11.1 Defect PredictionModel Selection

Suppose that the software manager of a software project, e.g., ivy 2.0, needs to use
a defect prediction model based on several measures. The considered model appears rea-
sonably good, since it has AUC=0.87, RRA(FM,NM)=0.42, RRA(Recall, Fall-out)=0.39,
RRA(λ=0.9, μ=0.5)=0.22, RRA(φ=0.4)=0.10.

Fig. 10 ROC curve and RoI(Recall, Fall-out) of the LOC-based model for ivy 2.0
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Figure 10 shows the corresponding ROC curve and RoI(Recall, Fall-out). When it comes
to choosing a defect proneness threshold to build a defect prediction model, the software
manager realizes that

1. by selecting the models corresponding to points close to (0,1), i.e., those on the dotted
curve in Fig. 10, as is often suggested, one obtains a model with Fall-out worse than
random estimations;

2. by selecting the model corresponding to the tangent point on the highest isocost line
that touches the curve, i.e., those touched by the dashed line in Fig. 10, (as suggested
in Powers (2011), for instance), one chooses a model whose Fall-out is worse than
random estimations.

Thus, conventional wisdom concerning the position of the best fault prediction model
in the ROC space is not always reliable. On the contrary, the RoI highlighted in Fig. 10
suggests where useful thresholds should be chosen from.

11.2 Defect Proneness Model Selection

Suppose that a software manager has two defect proneness models (for instance, built with
different modeling techniques) and needs to decide which one to use. AUC provides a spu-
rious assessment of the performance of the defect proneness models, because it is based
even on parts of the ROC space that are not of interest for the software manager. As Fig. 1b
shows, two ROC curves ROC1(x) and ROC2(x) can intersect each other in such a way that
the final selection is based mostly on parts of the ROC space that should not be considered.

However, by focusing only on the RoI, the software manager may find that ROC1(x) is
predominantly (or even always) above ROC2(x) in the RoI, so the defect proneness model
corresponding to ROC1(x) should be preferred to the one corresponding to ROC2(x) when
building a defect prediction model. Thus, the software manager can make a better informed
(and even easier) decision as to which defect proneness model to use.

11.3 Assessing Costs and Benefits of Additional Measures

Suppose a software manager is in charge of a software project in which no real systematic
code measurement process is in place, but only data on modules’ size (expressed in LOC)
and defectiveness are currently available. The software manager builds a LOC-based defect
proneness model fp(LOC) and uses AUC to decide whether the model’s performance is good
enough. For instance, suppose this was the case of the xerces 1.4 project. The value of
AUC for fp(LOC) is 0.75, which is right in the middle of the acceptable range. However, if
the project manager also checks performance with the RRA metrics, the values RRA(Recall,
Fall-out) = 0.2 and RRA(φ = 0.4) = 0.0006 show that fp(LOC) actually has much poorer
performance that AUC would indicate.

Thus, the project manager may decide that more measures are needed to build better per-
forming models and start a systematic code measurement collection process and finally get
a fp model based on multiple code measures. Suppose that the total set of measures obtained
after implanting the new measurement process is the one in the datasets by Jureczko and
Madeyski. The BLR model that uses all of them has very high RRA(Recall, Fall-out)=0.77
and RRA(φ=0.4)=0.73. Thus, this model has much better performance than the LOC-based
model and therefore higher trustworthiness.

However, there may be costs associated with establishing a systematic measurement pro-
gram, which need to be weighed against the benefits of having better performing models.
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For instance, if additional measures can be had by building or buying an automated tool
that analyzes software code, the software manager incurs a one-time cost. If, instead, the
collection itself of the measures requires the use of resources, then there is a cost asso-
ciated with every execution of the measurement program. As an example, suppose that a
well-performing model requires the knowledge of the Function Points associated with the
software system. Counting Function Points can be quite expensive (Jones 2008; Total Met-
rics 2007). Thus, by using RRA -based metrics, the software manager can have a better
assessment of the costs and benefits due to an expanded measurement program.

11.4 Adaptability to Goals

Unlike with AUC and G, software managers can “customize” RRA for their projects and
goals. The value of λ to be used in RRA(λ, μ) is derived from the unit costs cFN and cFP .
Thus, RRA(λ, μ) depends on the characteristics of a project, as different projects have dif-
ferent values of cFN and cFP and therefore of λ. So, RRA(λ, μ) takes into account costs
more precisely than AUC and G can for a specific project.

Parameter μ is related to the project goals, since it is the desired proportion of unitary
cost reduction that determines the maximum unitary cost (see Section 8.2). Using RRA(λ, μ)
allows software managers to restrict the selection of a defect prediction model only among
those defect proneness models for which RRA(λ, μ) > 0. This kind of selection cannot be
carried out by using AUC and G, which may actually be misleading, as shown in Section 10.

In addition, in Section 8.2, we showed that there is a relationship between performance
metrics and the cost reduction proportion μ that can be achieved. Poorly performing models
imply low levels of cost reduction and, conversely, high levels of cost reduction imply the
need for well-performing models. This may call for building better models, as shown, for
instance, in Section 11.3.

Software Defect Prediction researchers can use our proposal to have a more precise
assessment of the quality of defect prediction models. Like software managers, they can
also customize RRA for their goals. For instance, they can use RRA(φ) to have a general
assessment of models or focus on specific performance metrics by using RRA(FM,NM), for
instance, or any other ones. The variety of ways in which RRA can be defined and used
goes beyond what has already been defined and used to delimit the part of the ROC curve
to consider in other fields such as medical and biological disciplines (see the review of the
literature in Section 13.1).

12 Threats to Validity of the Empirical Study

We here address possible threats to the validity of our empirical study, which we used to
demonstrate our proposal and provide further evidence about it.

Some external validity threats are mitigated by the number of real-life datasets and the
variety in their characteristics such as application domains, AP

n
ratio, number of modules,

and size, as indicated in Section 10.
The values of AUC and G are computed, according to common practice, based on the

training set used to build defect prediction models; similarly, to compute RRA, we took the
training set as the test set too. Using a different test set than the training set may change
the value of AP

n
. This concept drift would affect the RoIs to be taken into account (e.g.,

RoI(Recall, Fall-out)), and, therefore, the value of RRA (e.g., RRA(Recall, Fall-out)). Thus,
we may have obtained different results with different test sets than the training sets.

Empirical Software Engineering (2020) 25:3977–4019 4003



As for the construct validity of RRA, based on Sections 5—8, Section 9 shows that RRA
specifically addresses some of the construct validity issues related to AUC and G, which are
widely used in Software Defect Prediction and several other disciplines.

Construct validity may be threatened by the performance metrics used. For instance,
FM has been widely used in the literature, but it also has been largely criticized (Shepperd
et al. 2014). We also used Precision, Recall, Specificity, NPV, NM, and φ, to have a more
comprehensive picture and set of constraints based on different perspectives. At any rate,
our approach is not limited to any fixed set of performance metrics, and any other may be
used as well, as long as it is based on confusion matrices.

Also, we used BLR and NB because of the reasons explained in Section 10. Other tech-
niques may be used, but the building of models is not the goal of this paper: we simply
needed models for demonstrative purposes.

13 RelatedWork

Given the importance of defect prediction in Software Engineering, many studies have
addressed the definition of defect proneness models. They are too many to mention here.
ROC curves have been often used to evaluate defect proneness models, as reported by sys-
tematic literature reviews on defect prediction approaches and their performance (Arisholm
et al. 2010; Beecham et al. 2010a; Hall et al. 2012).

There has been an increasing interest in ROC curves in the Software Defect Prediction
and, more generally, Empirical Software Engineering literature in the last few years. For
instance, 82 papers using ROC curves appeared in in the 2007-2018 period in three major
Software Engineering publication venues, namely, “IEEE Transactions on Software Engi-
neering,” “Empirical Software Engineering: an International Journal,” and the “International
Symposium on Empirical Software Engineering and Measurement,” while no papers using
ROC curves appeared before 2007.

We here first describe and discuss proposals for performance metrics that have appeared
in the general literature on ROC curves analysis, to address some of the issues related to the
adoption of AUC (Section 13.1).

Then, we review a few of the related works published in the Empirical Software Engi-
neering literature, to provide an idea of what kind of work has been done with ROC curves
(Section 13.2).

Also, we show in Section 13.3 how cost modeling can be addressed by our approach
even with different cost models than the one we use in Section 8.

13.1 ROC Curve PerformanceMetrics

A few proposals define performance metrics that take into account only portions of a ROC.
These approaches define various forms of a partial AUC metric (pAUC), which has also
been implemented in the R package pROC, available at https://web.expasy.org/
pROC/ (Robin et al. 2011).

McClish (1989) computes pAUC as the area under ROC(x) in an interval [x1, x2] between
two specified values of x. To compare the performance of digital and analog mammography
tests, Baker and Pinsky (2001) compare the partial AUCs for the two different ROC curves
in an interval between two small x values. For mammography-related applications too, Jiang
et al. (1996) propose a different version of partial AUC, in which they only take into account
the high-recall portion of the ROC space, in which y > ȳ, where ȳ is a specified value of
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y. They define a metric as the ratio of the area under ROC(x) and above y = ȳ to the area
above y = ȳ, i.e., 1 − ȳ. Dodd and Pepe (2003) introduce a nonparametric estimator for
partial AUC, computed based on an interval of x, like in McClish (1989), or based on an
interval of y. All four papers carry out further statistical investigations (e.g., the definition
of statistical tests for comparing the areas under different ROC curves), based on statistical
assumptions.

McClish also defines a “standardized” version of pAUC that takes into account only
the part of the vertical slice in the [x1, x2] interval that is also above the diagonal, i.e., the
trapezoid delimited by the diagonal y = x, the vertical lines x = x1 and x = x2, and the
horizontal line y = 1. Specifically, the standardized metric is based on the ratio (which
we call here pG) between, on one hand, the area under the curve and above the diagonal
and, on the other hand, the area of the trapezoid. The standardized metric is then defined as
1
2 (1 + pG). Note that pG coincides with the partial Gini index that was defined along the
same lines in Pundir and Seshadri (2012), by computing the normalized value of Gini’s G

in an interval [x1, x2], and was used in Lessmann et al. (2015) with x in the interval [0, 0.4].
Like between AUC and G, there is a relationship between pAUC and pG. It can be easily
shown analytically that pAUC = pG (1 − x̄) + x̄, where x̄ = x1+x2

2 is the midpoint of the
[x1, x2] interval.

These approaches and ours share the idea that the evaluation of ROC(x) can be of interest
with respect to portions of the curve. However, the portion of the ROC space taken into
account is either a vertical slice or trapezoid or a horizontal slice of the ROC space, and does
not take different forms, like the ones that are possible with our approach, e.g., the ones
depicted in Figs. 3a and 5. Also, these portions of the ROC space are not necessarily RoIs
according to Definition 3. Thus, there are some RoIs that are not taken into account by these
approaches, and vice versa. The reason lies in the goals of these proposals and ours. Our
goal is to identify the classifiers whose performance is better than some reference values.
The other approaches aim to limit the set of interesting values of either Recall or Fall-
out. So, they may take into account classifiers whose performance is worse than reference
values, e.g., those obtained via random classifiers.

The meaning of AUC has also been investigated by Hand (2009), who finds that com-
puting AUC is equivalent to computing an average minimum misclassification cost with
variable weights. Specifically, Hand finds that the expected minimum misclassification cost
is equal to 2 AP ·AN

n2 (1-AUC) when the values of cFN and cFP are not constant, but depend
on the classifier used. This poses a conceptual problem, since cFN and cFP should instead
depend on the software process costs and the costs related to delivering software modules
with defects, and not on the classifier used. Our proposal partially alleviates Hand’s issue,
by delimiting and reducing the set of classifiers taken into account, so the variability of
the values of cFN and cFP is reduced. Hand also defines an alternative metric, H , which,
however, relies on two assumptions: (1) cFN + cFP and λ = cFN

cFN+cFP
are statistically inde-

pendent; (2) the probability density function of λ used for the computation of E[T C] is a
Beta distribution with specified parameters. As for the second assumption, Hand discards
the use of a uniform distribution because it would treat extreme and more central values
of λ as likely. Hand also advocates the use of different functions that can be more closely
related to practitioners’ and researchers’ goals, if available. Hand shows how H can be esti-
mated. Given the correspondence between straight lines and cost models, the identification
of a RoI with our proposal may help delimit the set of the values of λ to take into account.

Other performance metrics for ROC curves are described in Swets and Pickett (1982).
These metrics are all based on a binormal ROC space, in which the abscissa and the ordinate
represent the normal deviates obtained from x and y. One of the recommended metrics is
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Az, which is the area under the curve of a transformed ROC curve in the binormal ROC
space. Since a border can be transformed into a line in the binormal ROC space, our RoIs
can help take into account only the portion of the transformed ROC curve that is relevant,
and compute only the area under that portion. Other metrics are d ′, d ′

e, and �m, which
are generalized by da , which represents the distance of a transformed ROC curve from the
origin of the binormal ROC space. Also, Swets and Pickett (1982) mention metric β, which
can be computed based on costs and benefits of positive and negative observations, which
can only be subjectively assessed.

Papers (Flach 2003; Provost and Fawcett 2001; Vilalta and Oblinger 2000) define “iso-
performance lines” or “isometrics,” i.e., those ROC space lines composed of classifiers with
the same value for some specified performance metric. Our proposal uses those lines as
borders for RoIs and shows how to derive them starting from random policies, to delimit
RoIs.

13.2 ROC Curves and AUC in Empirical Software Engineering

ROC curves have been used in Empirical Software Engineering for the assessment of
models for several external software attributes (Fenton and Bieman ; Morasca 2009).

Here are just a few recent examples of the variety of ways in which ROC curves have
been used to assess defect prediction models: Di Nucci et al. (Nucci et al. 2018) use ROC
curves and AUC for models based on information about human-related factors; McIntosh
and Kamei (2018) for change-level defect prediction models; Nam et al. (2018) for hetero-
geneous defect prediction; Herbold et al. (2018) to assess the performance of cross-project
defect prediction approaches.

As for other external software attributes: Kabinna et al. (2018) use ROC curves and AUC
to assess the change proneness of logging statements; da Costa et al. (2018) to study in
which future release a fixed issue will be integrated in a software product; Murgia et al.
(2018) to assess models for identifying emotions like love, joy, and sadness in issue report
comments; Ragkhitwetsagul et al. (2018) to evaluate code similarity; Arisholm et al. (2007)
to assess the performance of predictive models obtained via different techniques to identify
parts of a Java system with a high probability of fault; Dallal and Morasca (2014) to evaluate
module reusability models; Posnett et al. (2011) to study the risk of having fallacious results
by conducting studies at the wrong aggregation level; Cerpa et al. (2010) to evaluate models
of the relationships linking variables and factors to project outcomes; Malhotra and Khanna
(2013) to assess change proneness models.

ROC curves (with and without AUC) have also been used in Empirical Software Engi-
neering studies to find optimal thresholds t for fn(z,t) to build a defect prediction model. For
instance, Shatnawi et al. (2010) use AUC to quantify the strength of the relationship between
a variable z and defect proneness. The threshold selected by Tosun and Bener (2009) corre-
sponds to the ROC curve point at minimum Euclidean distance from the ideal point (0, 1),
which represents perfect estimation. The threshold selected by Sánchez-González et al.
(2012) corresponds to the farthest point from the ROC diagram diagonal (see also Mendling
et al. (2012)).

13.3 Cost Modeling

The cost related to the use of defect prediction models has been the subject of several studies
in the literature that focused on misclassification costs (Hand 2009; Jiang and Cukic 2009;
Khoshgoftaar and Allen 1998; Khoshgoftaar et al. 2001; Khoshgoftaar and Seliya 2004), or
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used cost curves (Drummond and Holte 2006; Jiang et al. 2008). A recent paper (Herbold)
defines a cost model based on the idea that a defect may affect several modules and a module
may be affected by several defects. Herbold’s cost model also allows the use of different
Verification and Validation costs for different modules, different costs for different defects,
and different probabilities that Verification and Validation activities miss a defect.

Here we provide a detailed discussion for the cost model investigated by Zhang and
Cheung (2013). Specifically, Zhang and Cheung use the overall cost of a prediction model
Cp = cFP (T P +FP)+ cFNFN , which includes cFP T P , and derive two inequalities that
must be satisfied by the confusion matrix of a defect prediction model. We now show how
this cost model can be studied in our approach, by defining the inequalities proposed by
Zhang and Cheung as RoI borders.

The first inequality is derived by comparing the value of Cp obtained with a binary
classifier and the value obtained by trivially estimating all modules positive. When λ �= 1

2 ,
the equation of the first border is

y − 1 = (1 − λ)k

2λ − 1
(x − 1) (11)

This is a pencil of straight lines going through point (1, 1). A straight line from this pencil
defines an effective border (i.e., the straight line is in the upper-left triangle) if and only if
its slope is between 0 and 1, i.e., 0 <

(1−λ)k
2λ−1 < 1. When λ > 1

2 , the slope is nonnegative

and it can be shown that the slope is less than 1 if and only if cFP

cFN
< AP

n
. When λ < 1

2 ,

the slope is negative, and the straight lines are outside the ROC space. When λ = 1
2 , the

equation of border is x = 1, which is not an effective border in the ROC space.
The second inequality is derived by comparing the value of Cp obtained with a defect

prediction model and the value obtained with the uni random policy. The second inequality,
however, turns out to always set the diagonal y = x as the border straight line, so it does
not introduce any real constraints.

At any rate, any cost model based on the cells of the confusion matrix related to a defect
prediction model can be dealt with by our approach.

14 Conclusions and FutureWork

In this paper, new concepts and techniques are proposed to assess the performance of a
given defect proneness model fp(z) when building defect prediction models. The proposed
assessment is based on two fundamental concepts: 1) only models that outperform reference
ones—including, but not limited to, random estimation—should be considered, and 2) any
combination of performance metrics can be used. Concerning the latter point, not only do
we allow researchers and practitioners to use the metric they like best (e.g., F-measure or
φ), but we introduce the possibility of evaluating models against cost, and we show that
there is a clear correspondence between performance metrics (such as Recall, Precision,
F-measure, etc.) and cost.

Using the proposed technique, practitioners and researchers can identify the thresholds
worth using to derive defect prediction models based on a given defect proneness model, so
that the obtained models perform better than reference ones. Our approach helps practition-
ers evaluate competing defect prediction models and select adequate ones for their goals
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and needs. It allows researchers to assess software development techniques based only on
those defect prediction models that should be used in practice, and not on irrelevant ones
that may bias the results and lead to misleading conclusions.

Unlike the traditional AUC metric, which considers the entire ROC curve, our approach
considers only the part of the ROC curve where performance—evaluated via the metrics of
choice—is better than reference performance values, which can be provided by reference
models, for instance.

We show that RRA—when used with suitable areas of interest, like those that exclude
random behaviors—is theoretically sounder than traditional ROC-based metrics (like AUC
and Gini’s G). The latter are special cases or RRA, but computed on areas that include worse
than random classifiers.

We also applied RRA, G, and AUC to models obtained from 67 real-life projects, and
compared the obtained indications. RRA appeared to provide much deeper insight into the
actual performance of models.

RRA proved more adequate than AUC and G in capturing the information used in the
evaluation of defect prediction models. Specifically, AUC and G appeared to consider a
large amount of information pertaining to random (and worse) performance conditions. As
a consequence, AUC and G often reported high performance levels, while the performance
of the corresponding models was much lower. In these cases, RRA provided much more
realistic indications, revealing these low performance levels. Our analysis showed also that
AUC and G can be quite frequently misleading.

Although in the empirical validation (Section 10) only measures taken on modules were
used as independent variables, other types of measures—e.g., process measures—could be
used in exactly the same way. That is, our approach is applicable to a broader class of models
than those considered in this paper.

As a further generalization, our approach can be used outside Software Defect Prediction.
What is needed is a scoring function, so that a ROC curve can be built. Thus, if such a model
for, say, availability is known, it can be used in our approach in exactly the same way as
defect proneness models.

Even more generally, the approach can be conceptually used for any kind of scoring
function, so it can be used in disciplines beyond Empirical Software Engineering. Also, the
approach can be used with other kinds of constraints that can be set on scoring function.
For instance, one can also set a constraint on the value of the first derivative of the scoring
function, as we did in our previous work (Morasca and Lavazza 2017) to define risk-averse
thresholds for defect proneness models.

Future work will be needed to provide more evidence about the usefulness and the
limitations of the approach, including

– the assessment of the approach on more datasets
– the use of additional performance metrics, to have a more complete idea of the

performance of the classification
– a more in-depth study of the characteristics of RRA, for instance, by introducing sta-

tistical tests to check whether the differences in the values of RRA of different ROC
curves are statistically significant

– the investigation of other techniques for obtaining an overall assessment of a defect
proneness model

– the investigation of other cost models, such as the one recently introduced by (Herbold)
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– the application to other external attributes that can be quantified by means of prob-
abilistic models (Krantz et al. 1971; Morasca 2009), e.g., maintainability, usability,
reusability.
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Appendix A: Proof of Properties of RoIs

We here prove the properties of RoIs that we introduced in Section 6.

Property 1 Intersection of RoI.
The intersection of any number of RoIs is a RoI.

Proof Let R1 and R2 be two RoIs and take (x, y) ∈ R1 ∩ R2. We need to show that
ULR(x, y) ⊆ R1 ∩ R2. By contradiction, suppose that ∃(x′, y′) ∈ ULR(x, y) such that
(x′, y′) /∈ R1 ∩ R2. This is not possible, since (x′, y′) ∈ ULR(x, y), which implies that
(x′, y′) ∈ R1 ∧ (x′, y′) ∈ R2. So, (x′, y′) ∈ R1 ∩ R2. This proof can be easily extended in
the case of the intersection of any number of RoIs.

Property 2 Upper-left Rectangle.
The smallest RoI to which a point (x, y) in the ROC space belongs is ULR(x, y).

Proof Suppose, by contradiction, that, given point (x, y), R is the smallest RoI to which
(x, y) belongs, i.e., none of its proper subsets R′ ⊂ R that include (x, y) is a RoI. However,
R∩ULR(x, y) is a RoI because of Property 1 and R ⊇ ULR(x, y) because of the definition
of RoI. Thus, R ∩ ULR(x, y) = ULR(x, y) ⊆ R, so ULR(x, y) is not larger than any
other RoIs R. Because of the definition of RoI, no proper subset of ULR(x, y) is a RoI.

Property 3 Perfect Estimation Point.
A RoI always contains point (0, 1).

Proof Point (0, 1) is in the upper-left rectangle of all points of the ROC space, so it must
be in any RoI.

Property 4 Intersection of RoIs is Nonempty.
The intersection of any number of RoIs is nonempty.

Empirical Software Engineering (2020) 25:3977–4019 4009

http://creativecommonshorg/licenses/by/4.0/


Proof This is a direct consequence of Property 3, because all RoIs share at last point (0, 1).

Property 5 Connectedness of a RoI.
A RoI is connected.

Proof This property is a consequence of Property 4. By contradiction, let R = R1 ∪ R2
be a RoI composed of two unconnected RoIs R1 and R2. Thus, R1 ∩ R2 = ∅, which is not
possible, as shown by Property 4.

Property 6 Monotonic Border.
The border of a RoI is a (non necessarily monotonically) increasing function.

Proof By definition, the border of a RoI is continuous, since a RoI is a connected subset (see
Property 5). Thus, the border can be represented by means of two continuous parametric
functions x = x(s) and y = y(s), where s plays the role of the parameter.

We first show that the border is a single-valued function, i.e., the border does not bend in
such a way as to have a “U-turn”. More formally, we prove that there are no three values s′,
s′′, and s′′′ such that s′ < s′′ < s′′′ and, at the same time, x(s′) = x(s′′′) and y(s′) = y(s′′′)
and y(s′) �= y(s′) �= y(s′′′). For instance, after it goes through point (x(s′), y(s′)) and then
through point (x(s′′), y(s′′)) to the right of point (x(s′), y(s′)), it does not go through point
(x(s′), y(s′′′)) with the same x-value as (x(s′), y(s′)) but with a different y-value, which
is to the left of point (x(s′′), y(s′′)). Suppose that x(s′) < x(s′′) and that y(s′) < y(s′′′).
Then, there are points of the ROC space in ULR(x(s′′), y(s′′)) that do not belong to the
RoI, which contradicts Property 2. So, the border is a single-valued function.

Suppose now that, by contradiction, the border B(x) is not an increasing function. Sup-
pose, therefore, that there exist x1 and x2 with x1 < x2 such that B(x1) > B(x2). Then, not
all points in ULR(x2, b(x2)) belong to the RoI of (x2, B(x2)), which contradicts Property
2. So, the border is an increasing function.

Appendix B: Computation of PerformanceMetrics

We here show how to compute the performance metrics of Table 2 in terms of x and y.
First, they can all be built as functions of the ratios of the cells of a confusion matrix

(TP, FP, TN, and FN) to the row and column totals (AP, EP, AN, and EN). This is true by
definition for the metrics that assess performance with respect to the positive class Precision
and Recall, and therefore for F-measure too. Likewise, this is true by definition for the
metrics that assess performance with respect to the negative class NPV and Specificity, and
therefore for NM too. As for overall metrics, this is the case for J and Markedness by
definition, so it is also the case for φ.

Now, we show how to express these ratios in terms of x and y. We start with the ratios
of the cells to AP : T P

AP
= y; FP

AP
= FP

AN
AN
AP

= kx; T N
AP

= AN−FP
AP

= k − FP
AP

= k(1 − x);
FN
AP

= AP−T P
AP

= 1 − y.
Via an example, we show how the other ratios can now be derived. Ratio T P

EP
is clearly

equal to T P
AP

AP
EP

. Now, AP
EP

= AP
FP+T P

= 1
FP
AP

+ T P
AP

= 1
kx+y

. Thus, T P
EP

= y
kx+y

. Likewise, we

can compute all other ratios whose denominator is EP , by multiplying the corresponding
ratios obtained with AP at the denominator by 1

kx+y
. As for the ratios with denominator

AN , we multiply the corresponding ratio obtained with AP as the denominator by AP
AN

=
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1
k

. Finally, for the ratios whose denominator is EN , we multiply the corresponding ratio
obtained with AP as the denominator by AP

EN
= AP

T N+FN
= 1

T N
AP

+ FN
AP

= 1
k(1−x)+(1−y)

.

Appendix C: The Behavior of Border Straight Lines

We discuss how the borders obtained for each performance metric change depending on k,
c, and p (see Table 5).

Precision. The general straight line y = c
1−c

kx goes through the origin and has a slope
that is proportional to k and increases with c. Thus, the higher k and/or c, the stricter the
constraint, i.e., the smaller the RoI , as expected. The uni straight line is y = x regardless
of p, so it is also the pop straight line. This is the diagonal of the ROC space, so it does
not provide any additional constraints on the values of x and y, as only ROC curves in
the upper-left half of the ROC space should be considered, as explained in Section 5.1.

Recall. The general straight line is horizontal. As expected, the constraint becomes
stricter as c increases. Unlike with Precision, k has no influence on the strictness of the
constraint (unless c itself is a function of k, like in the pop case). The uni straight line
shows that the higher p, the stricter the constraint. The pop straight line can be rewritten
as y = AP

n
.

F-measure. The general straight line intersects the x-axis at x = − 1
k

and the y-axis
at y = c

2−c
≤ 1. Both the intercept and the coefficient of x increase with c, and the

coefficient also increases with k. As for the uni straight line, given p, the larger k, the
larger the slope and the intercept, so the stricter the constraint. Also, given k, the larger p,
the larger the slope and the intercept, so the stricter the constraint. The uni line intersects
the vertical line x = 1 at y = pk+p

pk+1 ≤ 1, so it extends across the entire horizontal span
of the ROC space. In the pop straight line, when k increases from 0 to ∞, the slope
monotonically increases from 0 to 1 and the intercept monotonically decreases from 1

2 to
0. Thus, when k = 0, we have the horizontal line y = 1

2 , which, as k increases, tilts and
tends to the diagonal y = x when k → ∞.

NPV. The general straight line goes through point (1, 1) and has a slope proportional
to k and an intercept that decreases with k. Thus, the higher k, the less strict the con-
straint. Also, the slope decreases and the intercept increases when c increases, i.e., the
constraint becomes stricter as the minimum acceptable value of NPV increases. The uni
(and therefore pop) straight line is y = x, like in the Precision case.

Specificity. The general straight line is vertical. As expected, the constraint becomes
stricter as c increases. Unlike with NPV, k has no influence on the strictness of the con-
straint (unless, again, c itself is a function of k, like in the pop case). The uni straight line
shows that the higher p, the stricter the constraint. The pop straight line can be rewritten
as x = AP

n
.

NM. In the general straight line, given a value of c, the coefficient of x increases with
k and the intercept decreases. Given a value of k, the coefficient of x decreases with c

and the intercept increases. As for the uni straight line, when p is fixed, the higher k, the
steeper the slope, but the lower the intercept. When k is fixed, the slope increases when
p increases, but the intercept decreases. In both cases, the constraint becomes less strict.
The straight line has a negative intercept − p

1−p
k, it intersects the horizontal line y = 0

at x = pk
1−p+k

≤ 1, and the horizontal line y = 1 at x = 1−pk
1−p+k

≤ 1, so it extends across
the entire vertical span of the ROC space. With any random policy, when k = 0 the
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straight line is the diagonal y = x, and when k → ∞, the straight line tends to become
the vertical straight line x = p.

In the pop straight line, p and k are no longer independent, so the results on the behavior
of slope and intercept when k varies while p is fixed no longer hold. Instead, with pop, the
slope increases with k and the intercept remains constant.

Appendix D: Conic Sections as Borders

Here, we show that the border equations for Markedness (see Appendix D.1) and φ (see
Appendix D.2) of Table 6 are conic sections, and discuss some of their properties.

Recall that a conic section can be analytically represented via the quadratic equation
(which we describe with doubled terms for mathematical convenience)

Ax2 + 2Bxy + Cy2 + 2Dx + 2Ey + F = 0 (12)

which represents an ellipse if and only if B2 −AC < 0, a parabola if and only if B2 −AC =
0, and a hyperbola if and only if B2 − AC > 0.

D.1Markedness

The border equation for Markedness in Table 6 is, in implicit form,

ck2x2 + 2ckxy + cy2 − (ck2 + ck + k)x − (ck − k + c)y = 0 (13)

It is immediate to show that B2 = AC. Thus, the curve in Formula (13) is a parabola.
The following properties of the parabola can be proven.

– There is one degenerate case that we deal with immediately, which occurs when c = 0.
The parabola of Formula (13) degenerates into the straight line y = x, i.e., the diagonal.
From this point on, we therefore assume that c > 0.

– The symmetry axis of the parabola is

y = −kx + 1 + k

2
− k(1 − k)

2c(1 + k2)
(14)

– The directrix of the parabola is

y = 1

k
x +

(
c 1+k2

k
+ k−1

1+k

)2 + 1

4c 1+k2

1+k

(15)

It is immediate to show that the parabola goes through the origin, which is below the direc-
trix. Since parabolas never intercept their directrices, the entire parabola of Formula (13)
lies below the directrix. Therefore, the vertex of the parabola lies below the directrix too
and the parabola lies to the “south-east” of its vertex.

D.2 Ellipses as Constant φ Curves

Formula (16), already shown in Table 6, describes the curve obtained for φ = c

(k + c2k2)x2 + 2(c2k − k)xy + (c2 + k)y2 − c2(k2 + k)x − c2(k + 1)y = 0 (16)
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This curve is an ellipse, since B2 − AC < 0, i.e.,

(c2k − k)2 − (k + c2k2)(c2 + k) = −c2k(k + 1)2 < 0 (17)

The following properties of the ellipse can be proven.

– The ellipse intercepts the boundaries of the ROC space at (0, 0), (0,
c2(k+1)

c2+k
), ( 1−c2

1+c2k
, 1),

(1, 1), (1,
(1−c2)k)

c2+k
), (

c2(k+1)

1+c2k
, 0).

– The ellipse is centered in point ( 1
2 , 1

2 ), in the center of the ROC space
– The equation of the major axis of the ellipse is

y = −c2(1 − k2) + √
c4(1 − k2)2 + 4k2(c2 − 1)2

2k(1 − c2)

(
x − 1

2

)
+ 1

2
(18)

– Regardless of the value of k, when c2 → 0, the slope tends to +1, i.e., the major axis
tends to the diagonal of the ROC space. When c2 → 1, the slope tends to 0, i.e., the
major axis tends to the horizontal straight line y = 1

2 .
– When k < 1, the slope of the major axis is a monotonically decreasing function of

c2 and when c2 → 1, the slope tends to 0, i.e., the major axis tends to the horizontal
straight line y = 1

2 .
– When k > 1, the slope of the major axis is a monotonically increasing function of c2,

and when c2 → 1, the slope tends to +∞, i.e., the major axis tends to the vertical
straight line x = 1

2 .
– The slope of the major axis is an increasing function of k, regardless of the value of c.

When k → 0, the slope tends to 0 and when k → +∞, the slope tends to +∞.

Appendix E: On the Relationships betweenμ, c, and k

Here, for each metric in Table 5, we show how to compute 1) the value of the cost reduc-
tion proportion μ that can be achieved with a technique that improves the value of a metric
PFM from PFMpop to c; 2) the improvement of PFM required to obtain a μ cost reduc-
tion. In Section 8.2, we showed the results only for Precision, which we repeat here for
completeness.

For each metric PFM, we find the intersection point between the straight line that repre-
sent the locus in the ROC space where PFM is equal to a constant value c and the straight
line y = −kx +1 to which point (μ 1

1+k
, 1−μ k

1+k
) belongs. Each point on that straight line

corresponds to a different value of μ and, conversely, for each value of μ that point belongs
to a straight line where PFM = c for a specific value of c.

Precision. We need to solve the following linear system

{
y = c

1−c
kx

y = −kx + 1

The result is {
x = 1−c

k

y = c

Let us equate x = 1−c
k

and x = μ 1
1+k

. We obtain μ = (1−c)(1+k)
k

and c = 1 − kμ
1+k

.

Recall. The border is y = c, which, as we saw for Precision is associated with x = 1−c
k

.
We therefore obtain exactly the same results as with Precision.
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F-measure. We need to solve the following linear system{
y = c

2−c
kx + c

2−c

y = −kx + 1

Again (and as expected, since the F-measure is the harmonic mean of Precision and
Recall), we have the same results as with Precision and Recall, since{

x = 1−c
k

y = c

NPV. We need to solve the following linear system{
y = 1−c

c
k(x − 1) + 1

y = −kx + 1

The result is {
x = 1 − c

y = −(1 − c)k + 1

By equating x = 1 − c and x = μ 1
1+k

, we obtain μ = (1 − c)(1 + k) and c = 1 − μ
1+k

.
Specificity. The border is x = 1 − c, which, as we saw for NPV is associated with y =

−(1 − c)k + 1. We therefore obtain exactly the same results as with NPV.
NM. We need to solve the following linear system{

y = 2−c
c

kx − 2 1−c
c

k + 1
y = −kx + 1

Again (and as expected, since NM is the harmonic mean of NPV and Specificity), we
have the same results as with NPV and Specificity, since{

x = 1 − c

y = −(1 − c)k + 1

Appendix F: On the Effect of k

We here describe the analytic results that show the effect of k in two cases: when NCmax is
kept fixed (Section F.1) and when μ is kept fixed (Section F.2).

F.1 Keeping NCmax Fixed for Different Values of k

Suppose that a software manager has chosen a value of NCmax , but he or she is not entirely
sure about the value of k for the project at hand. Since the pencil of straight lines described
by Formula (10) go through center point (μ 1

1+k
, 1 − μ k

1+k
), we need to study how that

point varies when NCmax is fixed and k varies. Depending on the possible positions of the
center point, one can make decisions on the level of performance of the defect prediction
models that need to be used. To this end, we solve NCmax = μ k

(1+k)2 for μ, and we obtain

μ = NCmax
(1+k)2

k
. By substituting μ into the coordinates of center point (μ 1

1+k
, 1−μ k

1+k
),

we obtain point (NCmax
1+k
k

, 1−NCmax(1+k)). The x- and y-values of this point vary with
k, i.e., they describe a curve in parametric form, where k is the parameter. The parametric
equations of the curve are

x = NCmax

1 + k

k
, y = 1 − NCmax(1 + k) (19)
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By solving the first for k, we obtain k as a function of x. We replace k in the second equation
by using this function of x and we obtain the following relation between x and y

xy − (1 − NCmax)x − NCmaxy + NCmax = 0 (20)

It can be shown that it is the equation of an equilateral hyperbola, with vertical asymptote
x = NCmax and horizontal asymptote y = 1 − NCmax . We are interested in the part of
this hyperbola that is above the diagonal. It can be shown that this hyperbola intersect the
diagonal at two points

x = 1

2
±

√
1

4
− NC2

max (21)

The part under the space root sign is nonnegative, because NCmax ≤ 1
4 , as we showed in

Section 8.1. Thus, the software manager, based only on the desired value of NCmax , can
compute all the points in the ROC space in which NC = NCmax .

Note also that different projects will have different values of k. If the software manager
decides that all projects should have NC = NCmax , (20) also describes the set of points in
the ROC space where this happens.

F.2 Keepingμ Fixed for Different Values of k

Suppose now that the software manager wants the normalized cost for every project to be
at the most equal to NCmax = μ k

(1+k)2 , i.e., with the same proportion μ for every value
of k. The value of NCmax however changes across projects, but the software manager may
expect that, because projects with different values of k may have different needs. We here
show how center point (μ 1

1+k
, 1−μ k

1+k
) moves in the ROC space when k varies. Based on

the definition of center point (μ 1
1+k

, 1−μ k
1+k

), when k vary, we have a curve in parametric
form, whose parametric equations are

x = μ
1

1 + k
, y = 1 − μ

k

1 + k
(22)

By eliminating k, we obtain the following relation between x and y

y = x + 1 − μ (23)

This straight line is parallel to the diagonal. The part of this straight line that belongs to the
ROC space is the segment corresponding to values of x in the interval [0, μ].
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