
EDITORIAL

Guest editorial: Program comprehension
Rocco Oliveto1 & Christian Bird2

Published online: 25 May 2017
# Springer Science+Business Media New York 2017

Program comprehension is an important part of software engineering and is central to software
maintenance, reuse, inspection, reverse engineering, reengineering, migration, and extension
of existing software systems. Program comprehension is surprisingly complex and the past
decade has seen a surge in research aimed at investigating, understanding, and aiding how
developers reason about, ask and answer questions about, and make changes to software.

This special issue of the Empirical Software Engineering Journal contains extensions of the
highest quality papers published at the International Conference on Program Comprehension in
2015 in Florence Italy and represents some of the leading research being conducted in this important
area. Each paper was significantly extended and went through multiple rounds of peer review and
revision prior to publication. We hope that readers find these papers useful and enjoyable.

The first paper BHow Programmers Read Regular Code: a Controlled Experiment Using Eye
Tracking^ byAhmad Jbara andDror G. Feitelson uses eye tracking to explore the hypothesis that a
developer can understand code faster if it contains patterns that he or she has seen and understood
before. They were able to successfully model the time required to understand code similar to
previously seen code using an exponential decay model. Their findings suggest that seeing
repeated code does not lead to understanding more quickly, but rather that the initial code receives
more focus and is looked at more times while the later instances can be skimmed.

The second paper BDocumenting and Sharing Software Knowledge Using Screencasts^ by
Laura MacLeod, Margaret-Anne Storey, and Andreas Bergen examines the growing use of
screencasts by developers as an alternate form of documentation. Through manual analysis of
screencasts on YouTube and interviews of authors of screencasts to understand what kinds of
knowledge is shared, the techniques used to share it, and the motivations for creating the
screencasts. The authors explain how well screencasts work, how they are useful for devel-
oping an online reputation, and provide best practices that other developers can use to create
high quality and useful screencasts.

Empir Software Eng (2017) 22:1438–1439
DOI 10.1007/s10664-017-9525-1

* Rocco Oliveto
rocco.oliveto@unimol.it

Christian Bird
cbird@microsoft.com

1 University of Molise, Pesche, Italy
2 Microsoft Research, Redmond, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9525-1&domain=pdf


The third paper BThe Last Line Effect Explained^ by Moritz Beller, Andy Zaidman, Andrey
Karpov, and Rolf A. Zwaan explores the hypothesis that when a small piece of code is copied
from one location to another (a so-called micro-clone), the last line is much more likely to
contain an error that other lines in the copied code. Through an investigation of code and
interviews, they examine the underlying psychological mechanisms for the presence of these
mistakes and find that they are often trivial errors. Their findings are beneficial in that they
point developers to areas where mistakes are more likely. The authors also present a tool to
find mistake-prone micro-clones.

The forth paper entitled BLicense Usage and Changes: a Large-Scale Study on GitHub^ by
Christopher Vendome, Mario Linares-Vasquez, Gabriele Bavota, Massimiliano Di Penta,
Daniel German, and Denys Poshyvanyk reports on a large-scale empirical study investigating
when and why developers adopt or change software licenses. Using both qualitative and
quantitative approaches they examine the history of over 51,000 projects. Reasons for license
adoption and changes include making it easier for code to be used in commercial contexts,
requests from users to clarify what license is in use, and newer versions of licenses (such as the
GPL) becoming available, and ensuring license compatibility. However, the authors also
discovered that there is almost no traceability for when and why the license changes are made,
which may be cause for concern and highlights the need for techniques to help in choosing or
changing licenses as well as recording the rationale for the changes.

We hope you enjoy the papers in this special issue. We also hope that such papers will help
you to acquire knowledge on this field and shed some lights on new research directions.

We would like to thank all the authors who extended their research and addressed the
feedback from the external reviewers. We also appreciate the time and effort put in by the
initial ICPC 2015 program committee as well as the reviewers of the extended versions of
these papers that led to a successful special issue with high quality papers. Finally, we would
like to thank the editorial board of the Journal of Empirical Software Engineering and the
Editors in Chief Thomas Zimmermann, Lionel Briand, and Robert Feldt for help and guidance
during creation of this special issue.

Empir Software Eng (2017) 22:1438–1439 1439


	Guest editorial: Program comprehension

