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Abstract Increasingly, dry conifer forest restoration 
has focused on reestablishing horizontal and vertical 
complexity and ecological functions associated with 
frequent, low-intensity fires that characterize these 
systems. However, most forest inventory approaches 
lack the resolution, extent, or spatial explicitness for 
describing tree-level spatial aggregation and open-
ings that were characteristic of historical forests. 
Uncrewed aerial system (UAS) structure from motion 
(SfM) remote sensing has potential for creating spa-
tially explicit forest inventory data. This study evalu-
ates the accuracy of SfM-estimated tree, clump, and 
stand structural attributes across 11 ponderosa pine-
dominated stands treated with four different silvi-
cultural prescriptions. Specifically, UAS-estimated 

tree height and diameter-at-breast-height (DBH) and 
stand-level canopy cover, density, and metrics of 
individual trees, tree clumps, and canopy openings 
were compared to forest survey data. Overall, tree 
detection success was high in all stands (F-scores 
of 0.64 to 0.89), with average F-scores > 0.81 for all 
size classes except understory trees (< 5.0  m tall). 
We observed average height and DBH errors of 
0.34  m and − 0.04  cm, respectively. The UAS stand 
density was overestimated by 53 trees  ha−1 (27.9%) 
on average, with most errors associated with under-
story trees. Focusing on trees > 5.0  m tall, reduced 
error to an underestimation of 10 trees  ha−1 (5.7%). 
Mean absolute errors of bole basal area, bole quad-
ratic mean diameter, and canopy cover were 11.4%, 
16.6%, and 13.8%, respectively. While no differences 
were found between stem-mapped and UAS-derived 
metrics of individual trees, clumps of trees, canopy 
openings, and inter-clump tree characteristics, the 
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UAS method overestimated crown area in two of the 
five comparisons. Results indicate that in ponderosa 
pine forests, UAS can reliably describe large- and 
small-grained forest structures to effectively inform 
spatially explicit management objectives.

Keywords Drone · Groups · Variable density · 
Silviculture · Spatial pattern

Introduction

Urban encroachment, shifting climates, and altera-
tions to historical disturbance regimes in dry conifer 
ecosystems are accelerating changes to forest man-
agement approaches (Larson et  al., 2012). Histori-
cally, forest management prioritized production and 
predictability, resulting in management practices 
designed to limit natural disturbance as well as struc-
tural and biological complexity (Fahey et  al., 2018). 
This type of management largely resulted in expanses 
of dense, homogenous forests, making them more 
susceptible to severe biotic and abiotic disturbances 
(Allen et al., 2002). As disturbances have increased in 
frequency and severity, societal and managerial pri-
orities have shifted toward restoring historical struc-
tural and biological diversity to promote ecosystem 
services, reduce the risk of large stand replacing fires, 
and promote resistance and resilience to a wide range 
of stressors (Franklin, 1993; Puettmann et  al., 2010; 
Stephens et  al., 2021). As a result, silvicultural pre-
scriptions are increasingly focused on reestablishing 
the horizontal and vertical variability at both the tree-
neighborhood and stand scale (Tinkham et al., 2017), 
while simultaneously calling for more frequent and 
widespread monitoring to facilitate adaptive manage-
ment (Addington et al., 2018). However, the planning 
and design of effective heterogeneous prescriptions 
requires detailed quantification of the distribution and 
spatial arrangement of the forest overstory (Cannon 
et al., 2018).

Numerous methods of describing tree spatial 
arrangement have been explored for their ability to 
inform management decision-making. Through a 
comprehensive review of spatial patterns in forests 
that have frequent low-intensity fires of the Western 
United States, Larson and Churchill (2012) found 
that most (56 of 60 reviewed papers) studies employ 
global pattern analysis—or analysis strategies 

designed to describe spatial patterns through a sin-
gular stand-level metric. Given that horizontal het-
erogeneity in tree density, or groups and clusters, 
are a defining characteristic of these forests (Lar-
son & Churchill, 2012), many studies employ spa-
tial aggregation analyses such as Ripley’s K and 
Moran’s I. These strategies connect ecological pro-
cesses like the facilitation and repulsion of species-
specific regeneration to established tree patterns 
(Kuehne et  al., 2015; Ziegler et  al., 2017). Mean-
while, some studies focus on quantifying meadows 
and open space within stands as a function of the 
percent of stand area in open space (Matonis & 
Binkley, 2018), while others described the area of 
open space scaled by the Euclidean distance from 
trees (Churchill et al., 2013) or as a distribution of 
opening sizes (Cannon et al., 2018). Although these 
methods can provide some general idea of spatial 
patterns within stands, they often neglect open-
grown trees and fail to describe vertical heterogene-
ity entirely. The lack of fine-scale characterization 
of the fuels complex associated with most stand-
level approaches limits the ability to develop three-
dimensional fuel representations at the stand scale 
required to inform silvicultural prescription devel-
opment or the assessment of heterogeneous treat-
ment effectiveness and longevity.

Analysis of local patterns is used to better describe 
stand structure and inform management actions. 
For instance, some studies have taken steps to iden-
tify and quantify local patterns of tree groups (Can-
non et  al., 2019; Tinkham et  al., 2017). Other stud-
ies described tree arrangement as the distribution of 
clump sizes and characterizing tree size class vari-
ability within clumps (Larson & Churchill, 2012). 
These local pattern analyses often provide nuanced 
insights into stand structure and are easily integrated 
with silvicultural prescriptions or translated for treat-
ment marking plans. One approach to describing and 
reintroducing mosaic patterns in dry conifer forests is 
the ICO (individuals, clumps, and openings) method 
initially developed by Larson and Churchill (2012). 
Such approaches require intensive stem map datasets 
to develop historical guidelines of clump size distri-
butions for silviculture prescription development. 
However, because of high data collection costs, such 
comprehensive data are limited in both extent and 
temporal depth across dry conifer forests, limiting the 
implementation of such strategies.
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Forest monitoring efforts now routinely augment 
field measurements with satellite sensor data (e.g., 
Landsat-9 or Sentinel-2 [Manfreda et  al., 2018]). 
Even cutting-edge satellite sensors are currently una-
ble to achieve the ultra-high spatial resolution (cm 
level) with multiple view angles that would be neces-
sary to characterize individual tree size metrics other 
than crown area, especially in vertically heterogene-
ous forests (Freudenberg et al., 2022). Currently, sat-
ellite monitoring of forest structure lacks the range 
and versatility to meet the increasing demand for fre-
quent ultra-high-resolution monitoring of forest struc-
ture (Manfreda et al., 2018). However, the increased 
focus on the spatial arrangement of tree groups in 
ecological restoration-based projects has led to a 
demand for data describing the current and dynamic 
arrangements of individual trees, clumps of trees, and 
canopy openings within heterogeneous forested land-
scapes (Camarretta et al., 2020; Castro et al., 2021).

In response, uncrewed aerial systems (UAS) have 
quickly risen as versatile alternative data collection 
platforms with the potential to bridge these spatial 
and temporal divides (Manfreda et  al., 2018). Spe-
cifically, individual tree detection methods have been 
able to identify greater than 90% of trees in ponderosa 
pine (Pinus ponderosa var. scopulorum Dougl. Ex 
Laws.) forests, facilitating high-resolution tree-to-tree 
spatial arrangement analysis (Creasy et  al., 2021). 
Additionally, the integration of diameter-at-breast-
height (DBH) extraction and modeling strategies 
in UAS monitoring has made it possible to generate 
diameter distributions and stand basal area estimates 
within 10% of stem map observations (Swayze et al., 
2021; Tinkham et  al., 2022). Having near census-
level forest inventories would enable managers to 
map explicit locations for tree retention and planned 
openings for use by marking crews or directly in the 
cabs of forest operations machinery (Keefe et  al., 
2022), eliminating potential subjectivity or second-
hand interpretation of silvicultural prescriptions. 
Similarly, having tree-oriented continuous maps of 
forest structure holds the future of unlocking the use 
of next-generation fire behavior models in compar-
ing treatment alternatives or planning prescribed fires 
(Moran et  al., 2020; Pimont et  al., 2016). However, 
the quality of individual tree remote sensing methods 
sometimes relies on offsetting tree detection errors, 
where trees that are missed (i.e., false negatives) are 
balanced against trees that are incorrectly added (i.e., 

false positives [Jeronimo et  al., 2018]). Ideally, both 
errors are close to zero and equal to each other across 
size classes, resulting in a dependable representa-
tion of tree size distributions (Li et  al., 2012). It is 
unknown how these tree-level errors will impact the 
data’s reliability in describing the local vertical and 
horizontal complexity.

This study evaluates the accuracy of UAS-esti-
mated horizontal and vertical forest structural het-
erogeneity across a range of post-treatment forest 
structures in ponderosa pine-dominated forests. Spe-
cifically, we compare the spatial pattern of UAS sin-
gle tree detection estimates against 11 stem-mapped 
1-ha sites exhibiting a gradient of horizontal and ver-
tical heterogeneity. Metrics are evaluated as tree-level 
DBH and height accuracy, distributions of clump 
sizes and vertical complexity, and stand-level density 
metrics.

Methods

Study site description

In 2017, eleven 100  m × 100  m (1  ha) ponderosa 
pine-dominated plots were inventoried within the 
Black Hills Experimental Forest, a part of the Black 
Hills National Forest in western South Dakota, USA 
(Fig. 1). Study sites were selected to provide a wide 
range of local tree densities and height complexity 
for testing if these unique structures could be iden-
tified and characterized. The plots were randomly 
located within stand interiors (> 50 m from the stand 
edge) that had received one of four unique treat-
ments designed to promote variation in forest struc-
ture horizontal and vertical complexity (Ritter et al., 
2022). Ground plot mapping included observations of 
tree location, species, DBH, height, and crown width 
along the major and minor axis of each tree greater 
than 1.37 m tall. The crown area of each tree was esti-
mated from its average crown width observation, and 
assuming the area of a circle, the crown areas were 
dissolved to eliminate crown overlap during stand 
and cluster analysis. Stem mapping was completed by 
establishing a 25  m × 25  m grid of survey locations 
in each stand with a Pentax PCS-515 (TI Asahi Co., 
Saitama, Japan) laser total station and then recording 
the northing and easting of each tree to a point in the 
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survey grid with distance tapes. Further details of plot 
establishment can be found in Ritter et al. (2022).

Study plots were in mechanically thinned for-
est treatments designed to capture a range of forest 
structure metrics (Fig.  2). The thinning treatments 
occurred between 2012 and 2014. These mechani-
cal treatments consisted of small group retention 
(SGR), commercial-grade thinning (CT), and two 
free selection treatments. The SGR treatments called 
for the retention of ~ 4.6  m2   ha−1 of basal area (BA) 
with half of this in ~ 20 tree groups and half in scat-
tered individuals. The retained groups emphasized 
large trees but also included trees of different sizes. 
In addition, pre-commercial sapling (0.1 to 12.4  cm 
DBH) and pole (12.4 to 22.6  cm DBH) sized trees 
were retained in large patches, resulting in both high 
vertical and horizontal heterogeneity (Fig. 2). The CT 
plots were thinned from below to a basal area of 9.2 
to 13.8  m2   ha−1, and trees were spaced a minimum 
of ~ 4.9  m apart, resulting in both low vertical and 
horizontal heterogeneity (Fig. 2). Both free selection 
prescriptions (FS-On and FS-Off) called for thinning 
the commercial-sized trees (> 22.6  cm DBH) to 9.2 
to 13.8  m2   ha−1 where ponderosa pine was favored 
for retention. These two free selection prescriptions 

used a crown vigor selection criterion (Graham & 
Jain, 2005; Hornibrook, 1939) to leave commercial-
sized trees. However, they differed in their treatment 
of pre-commercial-sized trees (< 22.6 cm DBH) with 
the FS-On treatment ignoring the overstory when 
thinning pre-commercial stems to a fixed ~ 4.3  m 
spacing. In contrast, the FS-Off treatments thinned 
pre-commercial stems to an ~ 4.3  m spacing when 
considering both overstory and other pre-commercial 
stems. On FS-On sites, foresters were told to think 
of commercial stems as “ghosts” or to imagine that 
they were not there when considering tree spacing, 
whereas FS-Off sites included commercial stems 
in their tree spacing considerations. Overall, this 
resulted in greater vertical heterogeneity in the FS-On 
plots. Although each of the sites received one of these 
four treatments, these stands were selected to provide 
a gradient of tree size and group-level variation in 
structural complexity.

UAS data collection and processing

In the summer of 2020, we planned and executed 11 
flights over the 1-ha sites using a DJI Phantom 4 Pro 
to acquire very high-resolution (< 2.0  cm) imagery 

Fig. 1  Study area showing the location of the eleven 1-ha study plots on the Black Hills National Forest in western South Dakota, 
United States. The red star in the inset map represents the general area within South Dakota that the study plots are located
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of each study site (Fig.  3). The Phantom 4 Pro was 
equipped with a 20-megapixel (5472 × 3648 pixels) 
metal oxide semiconductor (CMOS) red–green–blue 
sensor with a fixed 8.8-mm focal length. Altizure 
(version 4.6.8.193; Shenzhen, China) for Apple iOS 
was used to pre-program and conduct automated UAS 
crosshatch flight paths at an 80 m altitude, 90% for-
ward and 85% side overlap at 4.0 m  s−1 flight speed 
using a nadir (perpendicular to the ground) cam-
era orientation. Flight boundaries were extended 
past the study boundaries to ensure constant image 
overlap throughout the 1-ha study site. Flights aver-
age approximately 3  min per hectare in the field. 
To improve georectification and image alignment, 
ground control points were established using an 
Emlid Reach-2 real-time kinetic GPS at approxi-
mately the center and four corners of each plot but 
shifted to ensure visibility in the UAS imagery when 
a tree canopy was present. The GPS base station 
never exceeded 2.5 km from the recorded points with 
PDOP ranging from 1.1 to 3.1, achieving an average 
reported horizontal root mean squared error (RMSE) 

of 0.41 m. The ground control points for two of the 
sites had large vertical errors (0.48 to 4.01 m RMSE) 
compared to the other sites (0.01 to 0.62 m RMSE) 
resulting in skewed height depth maps that overes-
timated tree heights by 5.0–7.0  m. These two sites 
were subsequently reprocessed without ground con-
trol points but still maintained a relative horizontal 
accuracy of less than 2.00  m RMSE when compar-
ing UAS-detected tree locations with matched stem-
mapped tree coordinates.

Images were processed using Agisoft Metashape 
Version 1.6.4 to generate structure from motion (SfM) 
point clouds following the methodology outlined by 
Tinkham and Swayze (2021). Study-specific processing 
parameters for Agisoft Metashape are reported in Sup-
plemental Table A1. Point cloud generation through the 
structure from motion software required approximately 
90 min for each study site, with larger acquisitions com-
monly averaging 30 to 40 min per hectare. The result-
ing SfM point clouds underwent processing in the lidR 
package (Roussel et al., 2020) for the R statistical pro-
gram (R Core Team, 2022), including ground filtering, 

Fig. 2  Stem map and aerial photo of representative plots for 
each of the treatment types. Sites are placed along relative 
scales from more homogeneous to more heterogeneous hori-

zontal and vertical heterogeneity. Stem map trees are scaled 
according to their crown diameter
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height normalization, and canopy height model (CHM) 
generation at a resolution of 0.10 m. Because the point 
cloud data density exceeded 2000 points  m−2 for each 
study area, the point-to-raster function was used to 
generate the CHM from the height normalized point 
clouds. From the CHMs, individual trees were detected 
using a variable window function that reports tree 
location and height, following Creasy et  al. (2021). 

The variable window function scales the search radius 
around each focal cell of the CHM using Eq. 1 to evalu-
ate if the focal cell was the local maximum, where the 
focal cell needs to be the greatest value in the search 
radius to be retained as a tree location that is assigned 
the cells height value.

(1)
Variable Window Radius = CHM Focal Cell Value × 0.2

Fig. 3  Workflow diagram showing the integration of UAS 
data collection, raw image processing through the structure 
from motion algorithm, extraction of individual tree height 
and DBH, filtering of DBH values with regional height to 

DBH model, prediction of missing DBH values from UAS 
modeled height to DBH relationship, and matching of UAS 
and stem-mapped trees for analysis of tree, stand, and clump 
level accuracy
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The DBH for each tree was modeled by adapting 
the workflow of Swayze et al. (2021). This approach 
uses the TreeLS package (Conto, 2019) to extract a 
slice of the height-normalized point cloud at 1.32 to 
1.42 m, compresses the points to a flat plane, and then 
iteratively fits an ordinary least squares circle algo-
rithm to each tree location to estimate DBH. How-
ever, this process can mistakenly fit circles across 
branches and is only expected to extract 10–20% of 
DBH values in ponderosa pine forests (Tinkham 

et  al., 2022). To account for missing DBH values, 
regional United States Forest Service Forest Inven-
tory and Analysis (FIA; Tinkham et  al., 2018) data 
from the Black Hills National Forest were used to 
create a regional model of height predicting DBH 
(Fig.  4). The regional model was fit using a power 
function, achieving a residual standard error of 6.2 cm 
using the nls function in the stats package for the R 
statistical program. The successfully extracted UAS 
height and DBH pairs were filtered against the 90% 

Table 1  Summary of stand estimates of tree density, size, and canopy cover for the field stem-mapped and UAS-extracted trees

Plot name QMD (cm) Trees  ha−1 Trees  ha−1 (> 5 m) Basal area  (m2  ha−1) Canopy cover (%)

Stem map UAS Stem map UAS Stem map UAS Stem map UAS Stem map UAS

SGR-1 16.2 17.2 307 195 84 78 6.4 4.5 12.8 10.4
SGR-2 11.2 15.5 658 362 151 146 6.5 6.9 12.6 12.9
FS-Off-1 23.7 18.2 251 387 206 221 11.1 10.1 17.8 21.7
FS-Off-2 24.0 19.4 254 420 168 196 11.5 12.5 22.8 21.5
FS-Off-3 22.4 20.9 263 323 225 239 10.3 11.0 15.7 19.2
FS-On-1 23.8 17.6 244 516 158 193 10.8 12.6 22.0 23.1
FS-On-2 20.3 17.1 348 540 288 284 11.3 12.3 20.3 28.7
FS-On-3 18.9 16.3 225 321 70 71 6.3 6.7 12.2 13.5
CT-1 28.4 26.0 171 196 158 163 10.9 10.4 24.1 19.0
CT-2 33.4 32.5 159 167 149 156 13.9 13.9 26.8 27.5
CT-3 28.2 22.0 189 222 179 202 11.8 8.4 24.7 24.6

Fig. 4  Modeled relationships of height predicting DBH for the 
A regional model using Forest Inventory and Analysis (FIA) 
data and B the 11 models fit to filtered UAS observations. The 
shaded area in both plots represents the regional FIA model’s 
90% prediction bound used to filter UAS-extracted DBH val-

ues. The different colors in panel B represent the 11 stands 
being assessed, and only UAS height and DBH pairs that fell 
inside the prediction bound were used to fit a local height to 
DBH function and predict missing DBH values (2-column)
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prediction bounds of the regional model that was gen-
erated using the propagate package (Spiess, 2018) for 
the R statistical program. Only UAS DBH values fall-
ing inside the prediction bound were retained. Using 
the filtered UAS height and DBH pairs, site-specific 
power functions of height predicting DBH were cre-
ated for each site to predict the missing DBH values 
for the remaining UAS-extracted heights (Fig.  4). 
These site-specific models had a mean pseudo-R2 of 
0.51 (SE = 0.04) and mean residual standard error 
of 1.20  cm (SE = 0.01  cm), with a mean β1 of 4.29 
(SE = 0.40) and mean β2 of 0.68 (SE = 0.04). Finally, 
individual tree crown areas were estimated from the 
UAS CHM using the marker-controlled watershed 
method of the ForestTools package (Plowright & 
Roussel, 2021), providing a UAS dataset contain-
ing the location, DBH, height, and crown area of 
extracted trees. The processing from raw point cloud 
to UAS-derived inventory with location, height, and 
DBH for each tree requires approximately 80 min per 
hectare.

Tree matching and error assessment

Extracted and modeled UAS tree observations were 
spatially matched with individual stem-mapped trees 
following Silva et al. (2016) to provide an evaluation 
of true positive, false positive, and false negative rates 
and to compare tree and stand-level structural attrib-
utes. These spatially aligned datasets were further 
used to evaluate the ability of the UAS inventory to 
describe horizontal and vertical structural complexity 
by comparing the distribution of UAS-detected tree 
clusters and openings against distributions derived 
from the stem-mapped trees.

Matching of UAS trees with field stem map trees 
was conducted by selecting a target UAS tree and 
identifying all candidate stem map trees within 4.0 m. 
If one or more candidate stem map tree was found 
to have less than a 2.0-m height error, the candidate 
with the smallest error was assigned as a true posi-
tive match and removed from the process. If a match 
could not be found for the target tree, the target was 
considered a false positive. The process consid-
ered each UAS tree iteratively until all UAS trees 
were classified as true positive or false positive. All 
remaining stem map trees that could not be matched 
were considered false negatives. Based on the calcu-
lated true positive, false positive, and false negative 

rates, F-score was calculated as an overall metric of 
tree extraction success using Eq. 2. Our F-score, true 
positive, false positive, and false negative rates were 
then summarized across understory (< 5.0  m tall), 
intermediate (5.0–15.0 m), and overstory (> 15.0 m) 
dominance classes.

Using the matched field stem map and UAS-
extracted trees, the mean error (ME) and root-mean-
squared error (RMSE) of tree height and DBH were 
calculated for each study site. To evaluate how tree 
height and DBH errors vary across tree size, obser-
vations were summarized across 5-m tree height size 
classes. Finally, to evaluate the efficacy of UAS meas-
urements for stand-wide data collection and analysis, 
we compared estimates of stand basal area and trees 
per hectare (TPH), quadratic mean diameter (QMD), 
and percent canopy cover between the stem-mapped 
and UAS-extracted trees for each site. Remotely 
sensed canopy cover was defined as the proportion 
of CHM pixels identified as crown within each site, 
while the elliptical area of stem-mapped tree crowns 
was spatially intersected to eliminate canopy overlap 
before determining canopy cover.

To evaluate the ability of UAS-extracted trees 
to characterize horizontal and vertical heterogene-
ity tree arrangement, clusters of trees were identified 
within the stem-mapped and UAS trees. A cluster of 
trees was defined as two or more trees with the poten-
tial for interlocking crowns. Overstory trees on the 
stem maps generally had a crown radius of ~ 3.0 m, so 
stems within 6 m of one another were considered to 
have the potential for developing interlocking crowns. 
Density-based spatial clustering of applications with 
noise (DBSCAN) from the fpr package (Hahsler et al., 
2019) in R was used to assign trees to unique clusters, 
including individual trees that were assigned by them-
selves if they did not have the potential to develop 
interlocking crowns (> 6 m from another tree).

To analyze the effect of tree aggregation on tree 
attributes, the identified trees and clusters were des-
ignated as an “individual” or as a cluster consisting 
of 2–4, 5–9, 10–15, and > 15 trees. We then cal-
culated the number of clusters, the percent of stand 
basal area, the height coefficient of variation, and the 

(2)

F-score = 2 ×

(

True Positive

True Positive + False Negative
×

True Positive

True Positive + False Positive

)

(

True Positive

True Positive + False Negative
+

True Positive

True Positive + False Positive

)
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canopy area within the cluster size classes for each 
site. Differences in the mean UAS and stem-mapped 
datasets of these metrics were compared through a 
series of one-way analyses of variance (ANOVA). 
All analyses of variance used a Bonferroni correction 
to determine adjusted p-values (Eq.  3) for identify-
ing significant differences (α ≤ 0.05). The Bonferroni 
correction was included to account for the increased 
type 1 error rate associated with running the ANOVA 
across multiple levels. Comparisons of the number 
of clusters and canopy area were summarized at the 
study site level providing n = 11 for the five compari-
sons across clump sizes. Comparisons of the cluster 
basal area and height coefficient of variation were 
done using the individual clusters, providing a mini-
mum of n = 35 and five clump size comparisons for 
basal area and four clump size comparisons for height 
coefficient of variation.

Finally, to assess the efficacy of UAS for describ-
ing openings within each plot, distributions of 
inter-tree distances to every location in a 1.0-m grid 
were determined for each dataset. Distance distri-
butions were used to calculate the proportion of 
the total plot area within 3-m intervals of distance 
away from a tree. The total plot area detected within 
each distance interval was compared between the 
UAS and stem map datasets (n = 11) using a series 
of one-way ANOVAs with a Bonferroni correction 
for the five comparisons (0–3, 3–6, 6–9, 9–12, and 
12–15 m).

Results

Tree and stand summarization

UAS tree detection resulted in F-scores from 0.64 
to 0.89 across the 11 sites, with the F-score decreas-
ing from the tallest to shortest height dominance 
classes (Fig. 5). For the intermediate and overstory 
classes, the average F-score exceeded 0.80, and the 
maximum exceeded 0.95. Within the understory 
class, F-score ranged from 0.31 to 0.80. Similar 
trends occurred for true positive rates, with perfor-
mance maximizing in the tallest class and decreas-
ing to the shortest class (Fig. 5). At the stand level, 

(3)Bonf -adj p-value = # of comparisons × p-value

false positive and false negative detection rates were 
partially balanced and resulted in average values of 
29.5 and 16.8%, respectively (Fig. 5). However, the 
smallest size class had greater false positive rates 
with an average of 61.4%.

Fig. 5  Summary of UAS tree extraction across understory 
(< 5.0 m), intermediate (5.0–15.0 m), and overstory (> 15.0 m) 
tree dominance classes. Each violin and nested boxplot repre-
sents the 11 observations from the different study sites, where 
each violin represents the complete distribution, and the nested 
boxplot shows the median and interquartile range
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Stand-level UAS tree height estimates tended to 
be slightly taller than the stem-mapped values with 
an average mean error of 0.36 m and average RMSE 
of 1.32  m (Fig.  6). Though mean error tended to 
increase as tree height increased, the RMSE was sim-
ilar across the tree size classes. The tree-level DBH 
mean error across the stand averaged ~ 0.0  cm with 

the UAS DBHs tending to be overestimated for the 
smaller tree size classes and underestimated for the 
largest size classes (Fig.  6). Prediction of the miss-
ing DBH values using the UAS height to DBH model 
resulted in an average RMSE of 4.8 cm. When sum-
marized across the 11 sites, the UAS-estimated QMD 
was on average underestimated by 2.5 cm (Table 1). 
Only the SGR treatments resulted in overestimated 
QMD values.

The 11 sites had an average TPH of 332, with val-
ues ranging from 159 to 658 TPH. The UAS observa-
tions overestimated TPH compared to the stem maps 
by an average of 53 TPH (27.9%), but this varied 
across the sites and treatments (Table  1). The larg-
est overestimations in TPH were in the FS-On and 
FS-Off treatments at 187 and 121 TPH on average, 
respectively. Conversely, the small-group retention 
treatments underestimated TPH on average by 204, 
while the commercial thinning treatments were on 
average overestimated by 22 TPH. The free selection 
sites where TPH was overestimated had the great-
est false positive rates in the understory size class 
(< 5.0  m tall), while the underestimated SGR sites 
had the largest false negative rates in the same size 
classes (Fig.  5). When only evaluating the TPH of 
trees greater than 5.0 m in height (Table 1), the UAS 
errors improved to an average underestimation of 10 
TPH (5.7%) and RMSE of 17 TPH (10.1%).

Stand basal area estimates across all trees were 
similar between the UAS and stem maps with a 
mean underprediction error of 0.1  m2  ha−1 or − 1.7% 
(Table  1) and a mean absolute error of 1.1  m2   ha−1 
or 11.4%. Although two stands showed greater under-
prediction errors at about − 29% and another overpre-
dicted by ~ 16% for stand basal area, these errors were 
inconsistent with the errors seen for other sites with 
the same treatment type. The other nine sites all had 
errors of < 10%. Stand-level canopy cover estimates 
from the UAS ranged between underestimating by 
5.1% and overestimating by 8.4% with a mean abso-
lute error of 2.6% (Table 1).

Characterization of horizontal and vertical 
heterogeneity

When evaluating the horizontal arrangement of trees, 
no significant differences were found between the 
stem maps and UAS data for the number of clumps 
within each of the clump size classes (Table  2, 

Fig. 6  Summary of UAS-extracted tree height and DBH. Each 
violin and nested boxplot represents the 11 observations from 
the different study sites, where each violin represents the com-
plete distribution, and the boxplot shows the median and inter-
quartile range
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Fig.  7). Additionally, although close in one clump 
size class (p = 0.080), there were no significant dif-
ferences in the coefficient of variation of tree heights 
within the different clump sizes (Table 2, Fig. 7). In 
describing the proportion of stand basal area within 
each clump size class, there were no significant dif-
ferences between the UAS and stem map datasets 
(Table  2, Fig.  7). However, comparing the crown 
area in each clump size class between the datasets 
showed that the UAS method significantly underes-
timated the crown area in the 2–4 trees (p = 0.030) 
and 10–15 trees clump sizes (p = 0.010; Table  2). 
Across all intra-clump metrics, the 10–15 tree clump 
size consistently provided the largest differences 
between the datasets, although only significant for 

crown area (Table 2). Visual inspection of the data 
demonstrated that the observed differences (both 
significant and non-significant) can mostly be attrib-
uted to the 3-year delay between stem mapping and 
UAS data collection. This delay allowed a cohort 
of small trees to grow past 1.37  m tall, changing 
the number of trees in a clump in a way that either 
shifted them between clump classes or increased the 
clump’s height coefficient of variation.

Assessment of stand openings showed no significant 
differences in the proportion of stand area at different 
distance intervals from the nearest tree between the 
stem map and UAS datasets (Fig. 8, Table 2). The larg-
est shift occurred in the < 3.0 m and 3.0–6.0 m distance 
intervals of ~ 6% over and underestimation, respectively.

Table 2  Summary of one-
way ANOVAs comparing 
the distribution from the 
UAS and stem map datasets 
for the number of clumps 
by size, the proportion of 
stand basal area within 
clumps, height coefficient 
of variation within clumps, 
and the proportion of stand 
area at different distances 
from the nearest tree. 
Analysis used a Bonferroni 
correction to determine 
adjusted p-values, with 
significant differences 
(α ≤ 0.05) indicated in bold. 
Values are reported as 
mean (standard deviation) 
in the stem map and UAS 
columns

Metric and class Data source F Bonf-adj
p-value

n Stem map UAS

Number of clumps
   Individual trees 11 28 (17) 25 (21) 0.126 1.000
   2–4 trees 11 18 (10) 15 (7) 0.435 1.000
   5–9 trees 11 5 (2) 4 (3) 1.248 1.000
   10–15 trees 11 2 (1) 3 (2) 0.301 1.000
   > 15 trees 11 3 (2) 4 (2) 0.402 1.000

Height coefficient of variation (%)
   2–4 trees 330 38.3 (18.1) 34.3 (17.4) 0.077 1.000
   5–9 trees 93 48.3 (24.3) 52.0 (26.9) 0.735 1.000
   10–15 trees 26 50.4 (28.5) 88.3 (40.1) 5.832 0.084
   > 15 trees 56 63.2 (26.3) 73.4 (22.7) 0.896 1.000

Proportion of stand basal area (%)
   Individual 597 0.5 (0.2) 0.5 (0.1) 0.215 1.000
   2–4 trees 330 1.3 (0.3) 1.1 (0.3) 0.111 0.555
   5–9 trees 93 2.8 (0.7) 2.4 (1.1) 0.779 1.000
   10–15 trees 26 4.4 (2.0) 3.2 (0.7) 0.053 0.265
   > 15 trees 56 15.5 (7.2) 14.3 (6.9) 0.941 1.000

Crown area  (m2)
   Individual 11 11.2 (10.0) 13.2 (10.2) 5.721 0.085
   2–4 trees 11 29.0 (18.9) 23.5 (18.5) 7.755 0.030
   5–9 trees 11 52.4 (29.1) 51.5 (30.9) 0.025 1.000
   10–15 trees 11 99.9 (46.1) 57.2 (35.4) 10.955 0.010
   > 15 trees 11 246.5 (250.9) 290.6 (426.8) 0.250 1.000

Proportion of stand at distance to a tree (%)
   < 3 m 11 50.3 (9.7) 53.5 (12.3) 0.471 1.000
   3–6 m 11 40.9 (6.4) 38.3 (8.3) 0.679 1.000
   6–9 m 11 7.3 (5.6) 6.8 (6.5) 0.029 1.000
   9–12 m 11 1.3 (1.6) 1.3 (2.1) 0.000 1.000
   > 12 m 11 0.2 (0.4) 0.2 (0.5) 0.037 1.000
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Discussion

Results demonstrate that UAS-based observations 
of ponderosa pine forest structural heterogene-
ity can be consistently achieved for a broad range 
of forest structures. Specifically, we evaluated tree 
detection rates and extracted height and DBH errors 
across tree size classes, finding that height and DBH 

estimates were well captured, with mean errors of 
0.36 m and ~ 0.0 cm, respectively. Then we compared 
UAS-derived stand-level TPH, basal area, QMD, and 
canopy cover estimates against stem-mapped esti-
mates. Tree detection was within 6% of tree  ha−1 for 
stems > 5.0 m tall, with larger errors for sites with a 
greater density of shorter trees. These accuracies 
translated to mean absolute errors of 11.4% for stand 
basal area and 16% for QMD. Finally, we demon-
strated that UAS methods can successfully charac-
terize the distributions of individuals, clumps, and 
openings as well as the inter-clump characteristics of 
percent of stand basal area and height CV associated 
with clump size classes.

Tree detection performance

Overall, the UAS-detected trees strongly agreed with 
the stem-mapped trees across the 11 sites, producing 
F-scores ranging from 0.64 to 0.89. Our tree detection 
success is comparable to findings from recent studies 
extracting individual trees from point clouds in pine-
dominated forests that have produced F-scores rang-
ing from 0.71 to 0.94 (Creasy et  al., 2021; Mohan 
et  al., 2017; Silva et  al., 2016). This study differed 
from past studies, in that it was designed to assess if 
the wide range of forest structures and local aggre-
gation levels produced through treatments in pon-
derosa pine forests could be characterized by UAS. 

Fig. 7  Evaluation of stem-mapped and UAS-extracted tree 
clusters, presented from top to bottom as boxplots showing the 
number of unique cluster structures, coefficient of variation for 
height within the clusters, the proportion of stand basal area 
within the clusters, and the crown area within clusters. The 
boxplots show the median and interquartile range

Fig. 8  Boxplots showing the distribution of distance to the 
nearest tree within the stem-mapped and UAS-extracted tree 
datasets. The boxplots were developed from the 11 study sites 
and show the median and interquartile range of distance to the 
nearest tree within consecutive 3.0-m wide bands
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We assessed the accuracy of data collection for trees 
of all size classes within both even and uneven-aged 
stand structures across densities ranging from 159 
to 658 TPH. In our study, only trees detected within 
2.0 m of height and 4.0 m of horizontal distance to 
a stem-mapped tree were considered true positive 
matches. Mohan et  al. (2017) achieved an overall 
F-score of 0.86 in an open-canopy lodgepole pine-
dominated (Pinus contorta) stand through a visual 
assessment of UAS-detected trees versus UAS-
derived orthomosaics, point clouds, and crown height 
models. This approach may have had a higher like-
lihood of introducing human error as only trees that 
were visible in the orthomosaic could be assessed. 
Creasy et al. (2021) and Silva et al. (2016) both took 
similar approaches to this study’s tree matching 
method and achieved F-scores of 0.69–0.79 and 0.83, 
respectively. The Creasy et al. (2021) study occurred 
in untreated uneven-aged ponderosa pine stands and 
included all trees > 1.37 m tall, while the Silva et al. 
(2016) study occurred in longleaf pine (Pinus palus-
tris) stands and only included trees > 6.0 m tall and at 
a lower stand density. The ability for this study and 
Creasy et al. (2021) to achieve similar results to other 
studies only including larger trees is attributed to the 
use of a fine resolution (0.10 m) CHM that facilitated 
the use of the variable window function during tree 
detection.

UAS-extracted height and DBH

Extracted tree heights saw similar success as other 
UAS studies, with an overall RMSE of 1.32  m for 
extracting tree heights. This precision is in line with 
results from recent studies producing RMSE rang-
ing from 1.30 to 3.94  m in dry eucalypt, ponderosa 
pine, and northern European mixed-conifer forests 
(Belmonte et al., 2020; Panagiotidis et al., 2017; Wal-
lace et al., 2016). However, our study had an overes-
timation bias of 0.36 m which is double the 0.15 m 
seen by Swayze et al. (2021) and 0.13 m by Krause 
et al. (2019) in ponderosa pine and Scots pine (Pinus 
sylvestris L.) stands, respectively. Both of these stud-
ies acquired their UAS data within 1  year of their 
field data, whereas our increased overestimation bias 
is attributed to the 3  years between field stem map-
ping and UAS acquisitions, with a recent study in 
adjacent stands finding that ponderosa pine regen-
eration height growth averages 0.60 m every 3 years 

(Tinkham et  al., 2021). Along with this, during plot 
stem mapping, it was noted that some sites had many 
trees between 1.00 and 1.30 m tall, but shorter than 
the 1.37 m threshold for inventorying at the time. As 
a result, many trees that were too short to be inven-
toried initially could have grown to be over 1.37  m 
by the time the UAS inventory occurred 3 years later. 
Additionally, any growth over these 3  years would 
lead to the consistent positive bias across all size 
classes that we observed.

The implemented flight, processing, extraction, 
and filtering procedure for DBH extraction correctly 
identified 26.3% of all tree DBHs on average across 
the 11 sites that corresponded with the regional 
height to DBH model’s prediction bounds. This 
extraction rate is more than three times greater than 
that achieved by Swayze et al. (2021) in untreated and 
overstocked ponderosa pine forests. However, look-
ing at Fig. 4b, the importance of DBH filtering with 
the regional prediction bound is highlighted by the 
many erroneous DBH values that were eliminated in 
alignment with short tree heights that visual inspec-
tions showed to be patches of regeneration. After 
predicting these erroneous and missing DBH values, 
our 4.8  cm RMSE is on-par with past UAS studies 
conducted in coniferous systems with RMSE ranging 
from 3.5 to 4.2  cm (Brede et  al., 2017; Dalla Corte 
et  al., 2020). Similar trials have been conducted in 
broadleaf systems to varying results with RMSE 
ranging from 15.0 to 42.0  cm depending on scan 
angle and leaf presence (Neuville et al., 2021). All of 
the referenced studies, except Swayze et  al. (2021), 
employed airborne LiDAR sensors, indicating that 
aerially acquired SfM point clouds are a comparably 
effective approach for DBH estimation. In dissect-
ing our DBH errors, the shift toward underpredicting 
diameters for the tallest trees (Fig. 6) is attributed to 
many of these trees representing mature ponderosa 
pine with characteristic flat-topped crowns that had 
stopped accumulating height while still adding stem 
diameter. Similar error structures were observed by 
Tinkham et  al. (2022) who suggested that moving 
beyond the power function model of height predicting 
DBH by including covariates of local stem density or 
crown structural attributes might improve the DBH 
prediction accuracy. Unfortunately, the current study 
only acquired post-treatment UAS imagery and thus 
could not explore how including local density met-
rics might improve DBH modeling, but future studies 



 Environ Monit Assess         (2024) 196:530 

1 3

  530  Page 14 of 20

Vol:. (1234567890)

could track this through pre- and post-treatment mon-
itoring to potentially enhance DBH modeling.

UAS-estimated stand metrics

Overall, UAS monitoring successfully described 
stand-wide metrics of forest density, tree size, and 
cover (Table  1). However, we observed fluctuating 
error levels for TPH across treatments from 5 to 112% 
absolute error. The UAS method overestimated TPH 
in every plot except the SGR treatments, where UAS 
underestimated TPH by a wide margin. After exclud-
ing all trees < 5 m in height from TPH estimates, UAS 
absolute errors were reduced to < 8%—indicating that 
small stems were the primary source of error. The 
resulting under- and overestimation suggests two dif-
ferent error sources. Underestimation of TPH in the 
SGR treatments is likely due to limitations in identi-
fying individual small stems in CHMs due to issues 
with separating the interlocking crowns in the high-
density groups produced in this treatment (Creasy 
et  al., 2021). Only area-based point cloud modeling 
techniques (Swayze et  al., 2022) may be possible of 
characterizing these high regeneration density areas. 
The overestimation of TPH in the other treatments 
is attributed to the ingrowth of small trees past the 
1.37 m tall threshold during the 3 years between stem 
mapping and UAS acquisitions.

Despite errors concerning understory TPH esti-
mates, it seemed to only negligibly impact our abil-
ity to describe other stand-level metrics. Our mean 
absolute error in basal area of 11.4% is in line with 
results reported in pre-treatment ponderosa pine 
forests where stand-level basal area estimates were 
within 4.1 to 24.7% of field observed values (Swayze 
et  al., 2021) and outperforms results from complex 
pre-treatment mixed hardwood and conifer forests 
where basal area was overestimated by 14.6 to 42.1% 
(Fraser & Congalton, 2021). Additionally, UAS esti-
mates of QMD varied from 0.9 to 6.2  cm absolute 
error. Stand QMD was overestimated in the SGR 
treatments where some smaller trees were missed by 
the UAS and QMD was underestimated in treatments 
with larger proportions of mature trees where DBH 
values tended to be underestimated.

Stand-level canopy cover estimates were in line 
with field observations providing a mean abso-
lute error of 2.6%. This follows other UAS-based 
approaches that have found LiDAR estimates of 

canopy cover to fall within 5% of field observations 
(Ahmed et  al., 2015). Overall, remote sensing strat-
egies have consistently been shown to effectively 
assess crown cover, as across different methods, stud-
ies have found strong relationships to field observa-
tions with r2 values ranging from 0.78 to 0.91 (Dick-
inson et  al., 2016; Gülci, 2019; Tang et  al., 2019). 
The relatively larger error in the UAS-estimated can-
opy area of the 10–15 tree class is at least partially 
attributed to ingrowth shifting groups between cluster 
classes. This shifted some groups into the 10–15 tree 
class with small canopy area values and shifted some 
groups into the > 15 tree class, ultimately causing the 
distribution of canopy area values in the 10–15 tree 
class to shift toward smaller values. Similarly, while it 
was not significant at the α = 0.05 level, it can be seen 
in Table 2 that the UAS derived a greater amount of 
height variation in the 10–15 tree class. Inspection of 
these group structures showed a number of trees that 
likely grew past the 1.37  m height threshold during 
the 3 years between stem mapping and UAS acquisi-
tion. Because these trees were excluded at the time of 
the field inventory but included by the UAS, they are 
attributed with increasing the group variation.

Implications for management

This study demonstrated a UAS method for extracting 
spatially explicit tree lists across a range of treatments 
designed to create variation in horizontal and vertical 
heterogeneity. While this study was not able to assess 
the method’s performance in both pre- and post-treat-
ment conditions, previous work using similar UAS 
strategies has demonstrated comparable, but slightly 
lower pre-treatment tree and stand structural attrib-
ute accuracies (Creasy et  al., 2021; Swayze et  al., 
2021). Although not representing a complete census, 
such tree lists represent a valuable resource for land 
managers in planning, implementing, and evaluating 
spatially explicit silvicultural prescriptions (Add-
ington et al., 2018). This level of data would enable 
managers to map explicit locations for tree retention 
and planned openings for use by marking crews or 
directly in the cabs of forest operations machinery 
(Keefe et al., 2022). The benefits of this type of spa-
tially explicit data for treatment implementation are 
also highlighted in the individuals, clumps, and open-
ings implementation guide for dry conifer restoration 
(Churchill et  al., 2016) and the UAS approach used 
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here provides a more flexible strategy for project level 
monitoring than landscape level airborne LiDAR 
acquisitions. This flexibility can facilitate greater use 
of pre- and post-treatment data collection to evaluate 
treatment implementation and improve future pre-
scriptions. While not successfully extracting all trees 
from the UAS data, the presented methods captured 
the relative local trends and stand-level metrics that 
are necessary for informing a broad range of thinning 
and restoration (Almeida et al., 2019) actions in low 
to moderate canopy cover (e.g., < 60%) pine-domi-
nated or mixed-conifer systems. The achieved pre-
cisions for basal area and trees per hectare fall well 
inside the common US public land forest inventory 
design standard of ± 20% allowable error at a 95% 
confidence level (USDA Forest Service, 2015).

While UAS understory stem density precision 
is flawed due to interlocking crowns in small tree 
groups, the methods tested in this study accurately 
reflect relative understory densities across the stand. 
Characterization of relative understory density across 
a stand has been proposed as sufficient to guide thin-
ning objectives that target understory trees (Allen 
et al., 2002), especially as traditional field plot sam-
pling only provides estimates of average stem density 
in a stand but not the stem locations.

The level of inventory information available from 
the approach we implemented can act as a critical 
first step to developing spatially explicit canopy 
and surface fuel maps for silvicultural prescription 
development and evaluation using next-generation 
three-dimensional fire behavior and effects models. 
The identification of individual tree locations and 
properties needs to be linked with estimates of bio-
mass and other intrinsic fuel properties to develop 
these maps. Such linkages to crown biomass could 
be made through existing allometric relationships 
(Campbell et  al., 2023). Such an advance in char-
acterizing the spatial distribution of canopy fuels 
can also help with surface fuel modeling by link-
ing canopy position with empirical and mechanis-
tic models of surface fuels (McDanold et al., 2023; 
Sánchez-López et  al., 2023). As newer fuel mod-
eling approaches become able to utilize individual 
tree identification approaches to build three-dimen-
sional representations of the fuels complex for 
next-generation fire behavior and effects modeling, 
land managers will be able to increasingly under-
stand and account for spatial heterogeneity while 

designing and evaluating heterogeneous silvicul-
tural prescriptions.

In addition to providing spatially explicit data for 
treatment design, and implementation, the data pro-
duced by UAS could also inform wildlife habitat 
management. In the past, LiDAR observations have 
been proposed for similar purposes in monitoring 
habitat distributions for species of conservation inter-
est (Vogeler & Cohen, 2016). Across many ponder-
osa pine-dominated forests, species like the northern 
goshawk are of particular forest management con-
cern, with forest structure characteristics considered 
to be a primary limiting factor. Northern goshawks 
preferentially select centrally located nesting sites 
in areas with dense patches of old growth and high 
canopy cover with lifted crowns for sub-canopy flight 
within the range of the principal prey habitat (Reyn-
olds et al., 1992, 2006). In ponderosa-dominated eco-
systems, the principal prey habitat occurs in mosaics 
of tree clumps of varying maturities and large grass/
forb-dominated meadows and interspaces (Reynolds 
et  al., 1992). As a result, habitat management rec-
ommendations for the northern goshawk (Reynolds 
et al., 1992) promote a shifting mosaic of interspersed 
tree groups in different vegetative structural stages 
(Reynolds et  al., 1992, 2006). However, adequate 
implementation of these recommendations requires 
a spatially explicit understanding of horizontal and 
vertical forest structure. The methods outlined in this 
study could be reliably scaled, with most consumer-
grade UAS capable of capturing 10–20 ha of remote 
sensing observations in a single flight of 10–20 min 
(Tinkham et al., 2021). Broader testing of these meth-
ods across larger extents could provide the neces-
sary information for guiding treatment implementa-
tion landscapes. Should these methods prove able to 
provide reliable tree-level observations across forest 
gradients, their potential for augmenting the train-
ing data used by satellite-based sensors for mapping 
forest structure across entire landscapes is immense. 
Such UAS strategies could provide an order of mag-
nitude increase in the amount of training data availa-
ble for tuning satellite models compared to traditional 
ground-based forest inventories.

Limitations and potential sources of error

As with all inventory strategies, the accuracy of our 
results needs to be interpreted within the context of 
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their application and the dataset used to validate 
them. Our use of 1-ha stem maps located within 
treated stands likely increased the false positive rate 
within larger tree sizes as the crowns of these trees 
were observed to overlap into the study area and 
were extracted as actual trees. However, scaling these 
methods to full management units and utilizing com-
mon stand boundaries like roads should reduce this 
effect during operational monitoring. Additionally, 
studies have also found that field observations tend 
to underestimate tree heights by about 5% and can 
vary in precision by 10% (Vastaranta et  al., 2009). 
Similarly, Krause et al. (2019) found that field meas-
urements generally misestimated tree heights with a 
RMSE of 0.30  m and a systematic error of 0.14  m. 
Such a bias could be a consistent source of error in 
accuracy assessments and potentially lead to the mis-
interpretation of results. These types of errors are 
likely compounded by the 3 years separating the stem 
map and UAS data acquisitions and contribute to the 
high overestimation of understory tree density.

The study’s use of ANOVA for comparing the stand-
level metrics (e.g., number of clumps, crown area, and 
distance to a tree) is potentially problematic for only hav-
ing a sample size of 11. While ANOVA is considered 
a robust test against deviations from normality when 
sample sizes are small but equal (Sullivan et al., 2016), 
it is possible that the small sample size for these met-
rics may have masked potential significant differences. 
The Bonferroni adjusted p-values for number of clumps 
and distance to a tree likely indicate the small sample 
size was not a problem for these metrics. However, the 
relatively small p-values for the crown area comparisons 
could indicate that there is more departure between the 
UAS estimates of crown area in each clump class from 
the field observations than the ANOVA indicates.

Conclusion

As management objectives in dry conifer forests shift 
toward promoting horizontal and vertical complex-
ity, there is a growing need for forest inventory tech-
niques capable of capturing the resolution, extent, and 
spatial explicitness required to inform management 
decisions. This study found that in relatively open-
canopy forests, UAS SfM can successfully detect 
individual trees from most size classes and estimate 
tree-level height and DBH across all size classes. This 

data could be reliably summarized to estimate stand-
level density and cover, with the largest errors in the 
estimation of understory TPH due to issues separat-
ing interlocking small tree crowns from each other. 
Additionally, the data could be summarized to char-
acterize and describe individuals, clumps, and open-
ings as well as inter-clump characteristics like the 
percent of stand basal area and height CV through all 
clump size classes. These findings indicate that aer-
ial SfM photogrammetry can effectively characterize 
large- and small-scale forest structure metrics within 
ponderosa pine-dominated stands to a level likely 
adequate for monitoring and implementing spatially 
explicit management objectives. This approach could 
also be easily integrated into management processes 
to inform approaches like the individuals, clumps, 
and openings method of stand prescription develop-
ment. However, further work is needed to evaluate if 
incorporating site-specific drivers of height to DBH 
relationships can improve DBH modeling and how 
these techniques will transfer to sites with more com-
plex species compositions.
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