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Abstract The potentially harmful effects of con-
suming potentially toxic elements (PTEs) and micro-
plastics (MPs) regularly via drinking water are a sig-
nificant cause for worry. This study investigated PTEs 
(Cd, Cu, Cr, Ni, Pd, Zn, Co), MPs, turbidity, pH, 
conductivity, and health risk assessment in the water 
treatment plant in Kielce, Poland. Zn had the highest 
concentrations throughout the water treatment facil-
ity, whereas Cd, Pb, and Co had lower concentrations 
(< 0.1 µg/L). The order of the concentrations among 
the specified PTEs was like Zn˃Cu˃Ni˃Cr˃Cd˃Pb and 
Co. The minimum turbidity was 0.34, and the maxi-
mum was 1.9 NTU. The range of pH in water samples 
was 6.51—7.47. The conductivity was 1,203—1,445 

ms in water samples. These identified MPs were 
categorized into fiber and fragments. The color of 
these identified MPs was blue, red, black, green, 
and transparent. The minimum and maximum size 
of the MPs was 196 and 4,018 µm, while the aver-
age size was 2,751 ± 1,905 µm. The average concen-
tration of MPs per liter of the water treatment plant 
was 108.88 ± 55.61. The elements listed are C, O, 
Na, Mg, Al, Si, K, Ca, and Ti. Fe and Zn were the 
predominant elements seen using EDX. HQ values of 
the PTEs were less than one for adults and children. 
The human health risk associated with all detected 
PTEs revealed that the HQ values exhibit a satisfac-
tory degree of non-carcinogenic adverse health risk. 
HI values for adults and children age groups were less 
than one. In most water treatment samples, the car-
cinogenic value exceeds the threshold value of  10−6. 
The PTEs and MP concentrations in drinking water 
should be periodically monitored to minimize con-
sumers’ environmental pollution and health risks.
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Introduction

Water is a vital component of terrestrial existence. 
Maintaining the functionality of the environment 
and the human body system is critical. Water is an 

Highlights  
• Zn has the most elevated concentration, with 929 µg/L.
• The detected MPs were classified into fiber and 
fragments.
• The mean size was of MPs 2,751 ± 1,905 µm.
• The mean concentration of MPs per liter was 
108.88 ± 55.61.
• The HQ and HI values for adult and child age groups 
were below one.
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essential component of our food and is present in eve-
rything, but the amount may vary. With the increas-
ing public knowledge and concern over the pres-
ence of potentially toxic elements (PTEs) that might 
disrupt the endocrine system, the provision of safe 
drinking water has become a significant priority for 
humans (Babaei et  al., 2014; Keshtkar et  al., 2016; 
Nadafi et  al., 2014; Sobhanardakani, 2019). PTEs 
in drinking water pose a significant risk due to their 
poisonous nature and ability to build up in the body 
over time. This makes them widespread and danger-
ous for environmental contamination (Chowdhury 
et al., 2016; Dobaradaran et al., 2018; Hosseini et al., 
2020; Sobhanardakani, 2017). Contaminants, such as 
PTEs, are introduced into drinking water systems due 
to industrial and natural pollution causes. Insufficient 
treatment of drinking water would pose a threat to 
human well-being (Janaszek & Kowalik, 2023; Kow-
alik et  al., 2021). As a result of their accumulation 
in various body tissues and organs, PTEs, including 
cadmium (Cd), mercury (Hg), lead (Pb), chromium 
(Cr), zinc (Zn), and copper (Cu), can all contribute 
to nephritis, anuria, and other kidney disorders in 
individuals who consume water tainted with them 
(Mansour & Sidky, 2002). In addition to PTEs, other 
substances must be eliminated from water before 
they can be suitable for drinking. Therefore, choos-
ing a method that can remove a substantial amount 
of water at once is necessary. PTEs provide various 
health hazards, thereby necessitating their elimination 
throughout the water treatment procedure. Elevated 
quantities of PTEs in drinking water over the thresh-
old set by the United States Environmental Protection 

Agency (USEPA) may adversely impact human 
health (EPA, 2018). Water pollution and its impacts 
are rising, making it a worldwide concern (Bhat & 
Gaga, 2022; Patidar et  al., 2023; Stovall & Bratton, 
2022). The hazardous properties of Pb and Cd may 
result in harmful outcomes such as abortion, early 
birth, neural damage, low birth weight, renal prob-
lems, and hypertension (Järup, 2003; Sarvestani & 
Aghasi, 2019). Cu buildup in drinking water may lead 
to Alzheimer’s disease (Kaplan et al., 2011).

 Multiple techniques are available for eliminating 
this particular kind of pollution. Various treatment 
methods may eliminate PTEs from drinking water, 
including precipitation using carbonates, sulfides, or 
organic sulfides; coagulation and flocculation; and 
membrane treatments, which are efficient in removing 
both metal anionic and cationic species (Atari et al., 
2019). Additional removal methods include electro-
chemical techniques and selective substitution via 
ion exchange resins (Johnson et  al., 2008). Table  1 
provides the threshold values for specific metals and 
metalloids, as well as pH, conductivity, and turbidity, 
according to the guidelines set by the World Health 
Organization (WHO), the USEPA, and the rules 
established by the Polish government. Specialized 
laboratories perform analyses on drinking water qual-
ity according to the requirements specified in the rel-
evant law. Nevertheless, individuals sometimes voice 
discontentment over the quality of tap water, often 
attributed to its taste, appearance, or smell. Moreover, 
aquatic plants’ water composition might differ from 
tap water’s, mainly due to water transport systems. 
Due to its significance, multiple research has been 

Table 1  Limit values for 
selected parameters in 
drinking water 

Parameter WHO (WHO, 2022) USEPA (EPA, 2018) Polish regula-
tion (Polish, 
2017)

Cd (μg/ L) 3 5 5
Cu (mg/L) 2 1.3 2
Cr (total) (mg/L) 0.05 0.1 0.05
Ni (mg/L) 0.07 0.1 0.02
Pb (mg/L) 0.01 0.015 0.01
Zn (mg/L) 4 5 -
Co (ppb) - 70 -
Turbidity (NTU) 0.5  < 5 1
pH 6.5 – 8.5 6.5 – 8.5 6.5 – 9.5
Conductivity (μS/cm) 400 2,500 2,500
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conducted to examine the long-term health impacts 
of PTEs from drinking water intake on a global scale 
(Sarvestani & Aghasi, 2019; Turdi & Yang, 2016).

Nowadays, plastic objects are widely used in sev-
eral aspects of modern life, such as clothing, cos-
metics, healthcare, transportation, communication, 
and food packaging (Bhat et  al., 2021, 2023a; Hup-
pertsberg & Knepper, 2018; Thacharodi et al., 2024b, 
2024a). Due to the material characteristics of plastics, 
which make them seldom degrade, they stay in the 
environment for a very long period (Bhat et al., 2022, 
2023b; Eraslan et  al., 2023; Sighicelli et  al., 2018) 
and are a potential hazard to the environment due to 
their ubiquitous presence (Bhat, 2023a; Bhat et  al., 
2022; Eraslan et al., 2021; Thacharodi et al., 2024b). 
This highlights the need to investigate the potential 
hazards that plastic particles may pose to people and 
other living species (Bhat, 2023b, 2024a; Bhat et al., 
2023c). The plastic particles with a size of 5 mm or 
less are referred to as microplastics (MPs) and have 
received significant attention (Arthur et al., 2009; A. 
J. Verschoor, 2015; Bhat et al., 2023c). Nanoplastics 
(NPs), a subset of plastic particles, pose a more sig-
nificant threat to the environment, people, and living 
beings owing to their tiny size. Bhat et  al. (2023c) 
defined NPs as less than 1 µm or within 300 to 1000 
nm range. They are produced due to the deteriora-
tion of plastic goods and may also be created dur-
ing the aging of MPs breakdown. The manufacturing 
process or even during the use of the object (Bhat, 
2024a). Several investigations have conducted exten-
sive studies on MPs in marine ecosystems (Remy 
et  al., 2015; Santana et  al., 2016), freshwater bod-
ies (Free et al., 2014; Xiong et al., 2018), and urban 
watersheds (Birch et  al., 2020; Stovall & Bratton, 
2022). Recent research shows that individuals ingest 
a range of 0.1 to 5 g of MPs every week via differ-
ent exposure means (Senathirajah et al., 2021). It was 
also estimated that humans inhale 156—240 MPs 
daily in indoor houses (Bhat, 2024b) while as univer-
sity inhabitants are exposed to airborne MPs (≥ 2.5 
– 336.89  μm) at inhalation rates of 13.88 – 18.51 
MPs/m3 and 180 – 240 MPs daily (Bhat, 2024c). 
When the body consumes MPs they are absorbed 
and distributed through the circulatory system, 
entering various tissues and possibly causing differ-
ent detrimental consequences (da Costa et al., 2016; 
Yee et al., 2021). Most importantly, oxidative stress, 
cytotoxicity, and translocation to other tissues (Bhat, 

2024d; Bhat et al., 2023c; Prata et al., 2020). Human 
responses to inhaled MPs may lead to chronic inflam-
mation, such as bronchitis, and allergic reactions like 
asthma or pneumonia (Kacprzak & Tijing, 2022). In 
South Korea, MPs were traced in raw water (2.2 ± 1.3 
MP/L) and treated drinking water (0.02 ± 0.02 MP/L) 
(Jung et al., 2022). In the Czech Republic, the results 
of the occurrence of MPs in raw and treated drink-
ing water showed that MPs were found in all water 
samples, and their average abundance ranged from 
1473 ± 34 to 3605 ± 497 MP/L in raw water and from 
338 ± 76 to 628 ± 28 MP/L in treated water (Pivokon-
ský et  al., 2020). In Germany, the contamination of 
consumption tap water with MPs was not detected 
(Weber et al., 2021).

This study aims to evaluate and track the levels 
of PTEs (Cd, Cu, Cr, nickel (Ni), Pb, Zn, and cobalt 
(Co)) and overall MPs in a water treatment facility in 
Kielce, Poland. Evaluating water samples from vari-
ous sections of the water treatment facilities to detect 
the presence of PTEs and MPs will demonstrate the 
effectiveness of the water treatment plants in elimi-
nating metals and MPs. Examining the presence of 
PTEs and emerging contaminants (MPs) is crucial for 
tracking their levels in the distribution system, given 
their significant potential for damage. The PTEs were 
examined using an Inductively Coupled Plasma Opti-
cal Emission Spectrometer (ICP-OES). At the same 
time, the MPs were characterized using a stereomicro-
scope and Scanning Electron Microscopy-Energy Dis-
persive X-ray Analysis (SEM–EDX). The water sam-
ples’ turbidity, pH, and conductivity were also studied.

Materials and methods

Sampling, sample preparation, and quality assurance/
quality control

Water samples were collected from a water treatment 
plant in Kielce, Poland, in October 2022. The samples 
were collected in (500 ml) glass bottles. Nine sam-
ples were collected from different parts of the water 
treatment plant and were filtered through a Whatman 
glass microfiber filter (GF/A-1.6µm-47mm). During 
the analysis, plastic materials were avoided for qual-
ity control of MPs in the samples; only glass mate-
rial was used. All the solutions used in the study were 
pre-filtered through the same type of filters used in 
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the actual analysis of samples to remove the contami-
nants if present. Access to the laboratory was limited. 
Cotton laboratory attire and nitrile gloves were used 
to reduce the possibility of contamination (Bhat et al., 
2024). The surfaces where the tests were carried out 
and all the materials used during the analysis were 
regularly cleansed with 5% nitric acid and deionized 
water to eliminate any possible MPs. Dark glass bot-
tles (500 ml) were utilized for sampling to reduce the 
influence of photo-degradation. Before sampling, the 
sampling bottles were cleaned with filtered Milli-Q 
DI water and used carefully to avoid contamination. 
Plastic bottles were not used to reduce the chance of 
MPs being added to the bottles. A layer of aluminum 
foil was put between the bottles and screw closures 
to minimize sample contamination. The water sample 
was filtered through a Whatman glass microfiber fil-
ter, and 200 ml was used for quality and quantitative 
analysis of MPs. In comparison, 100 ml of filtered 
water was used for ICP-OES analysis.

Instrumental analysis

The physical characterization of MPs was done using 
a computer-driven system of automatic image analysis 
(stereoscopic microscope Nikon SMZ800, Prior stage,  
NIS-Elements program). A computer set of the microscope 
with software enabling comprehensive image analysis 
through automated and manual measurements and counting 
objects. Stereomicroscope with a zoom head, with a 
magnification range from 20 × to 126x, guaranteeing 
spatial vision of the magnified image. A dedicated color 
CCD digital camera is connected to the microscope. 
Halogen illuminator with adjustable light intensity 
and high power. A motorized measuring table allows 
precise movement control in the XY or XYZ axes. The 
control is carried out using a control stick or a computer, 
enabling convenient scanning of the sample surface, 
setting precision up to 0.1 μm (WawrzeĔczy et al., 2016). 
Under the stereomicroscope, the plastic particles were 
counted as the total MPs. Under the stereomicroscope, 
MPs were counted, and their physical characteristics, 
like color, type, and size, were also analyzed based on 
the previous studies (Bhat, 2023a, 2024a, 2024e) using 
ImageJ software.

The samples’ turbidity, pH, and conductivity were 
also measured using automatic instruments. Turbidity 
was measured by a Hach turbidity meter (2100P ISO 
turbidimeter), pH was measured by an Elmetron pH 

meter (CPC-505), and conductivity was measured by 
an Elmetron conductivity meter (CC-551).

The concentrations of PTEs (Cd, Cu, Cr, Ni, Pb, 
Zn, and Co) in the water samples were measured 
using a Perkin Elmer Optima 8000 ICP-OES manu-
factured by PerkinElmer, located in Waltham, MA, 
USA. This device is very effective for analyzing ele-
ments, providing exceptional sensitivity, the ability to 
analyze several elements at the same time, low detec-
tion limits, and precise quantitative measurements for 
a wide variety of elements.

The micro and nanostructure of the MPs collected 
on the Whatman glass microfiber filter were exam-
ined using scanning electron microscopy (SEM). A 
Quanta FEG 250 microscope obtained from the FEI 
Company (Hillsboro, OR, USA) equipped with a 
Large Field Detector (LFD), Backscattered electron 
detector (BSED), and an energy-dispersive X-ray 
microanalyzer (EDS) was used. Before being placed 
under the microscope, the filters could dry properly 
under natural room conditions without further sput-
tering to prevent any influence on their composition. 
The test was performed at vacuum (30 Pa) using an 
electron beam of 5.00 kV, a working distance of 9.2 
– 10.3 mm, and magnification of 4000x – 16,000 × for 
image acquisition with the LFD and BSED detector 
for elemental analysis with the EDS detector.

Health risk assessment

The process of evaluating health risks associated 
with exposure to a chemical substance involves four 
stages: identifying potential hazards, assessing the 
level of exposure, evaluating the relationship between 
the dose and the response, and characterizing the 
overall risk. The exposure assessment relies on deter-
mining the amount of the substance that is taken in. 
In this case, the health risk assessment was conducted 
using data from previous studies on drinking water 
(Dashtizadeh et  al., 2019a, 2019b; Michalski et  al., 
2020). The Chronic Daily Intake (CDI, mg/kg × day) 
was determined by using Eq. 1:

where: C is the average concentration of metals 
at exposure, mg/L; CR is contact rate, L/day; EF is 
exposure frequency, days per year; ED is exposure 
duration, years; BW is body weight, kg; AT is period 

(1)CDI = C
CR × EF × ED

BW × AT
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over which exposure is averaged, days. In Table 2, the 
values of parameters for CDI calculation are reported. 
Non-carcinogenic health risk assessment is based on 
the Hazard Quotient (HQ), calculated using Eq. 2.

where RFD is the Reference Dose Factor [mg/kg/
day], the Hazard Index (HI) is the HQ sum calculated 
when several metalloids are studied; the critical value 
for HQ and HI is 1. The individual excess lifetime 
cancer risk (IELCR) is calculated for carcinogenic 
substances using Eq. 3.

where SF is the Slope Factor (mg/kg/day), total 
IELCR is calculated when several carcinogenic 

(2)HQ =
CDI(noncarcinogenic)

RFD

(3)IELCR = CDI(carcinogenic) × SF

metalloids are studied. The critical value for IELCR 
and total IELCR is  10−6.

Visualizing data

The study included many statistical analyses includ-
ing calculations of mean, standard deviation, data 
analysis, human health risk assessment, and graph 
plotting. These analyses were performed using Excel-
2019, Origin-2018, and SPSS-2022 software.

Results and discussion

Potentially toxic elements

An investigation was conducted to examine the fate 
of PTEs throughout the treatment procedure. Results 
of Cd, Cu, Cr, Ni, Pb, Zn, and Co mean concentra-
tions in samples from water treatment plants steps are 
presented in Table 3. Cd, Pb, and Co had lower con-
centrations (< 0.1 µg/L), while the Zn had the highest 
concentrations at all the points in the water treatment 
plant compared with other identified PTEs. Cu has 
the lowest (6.5 µg/L) and highest (83.9 µg/L) concen-
tration at points 2 and 8. Cr has the lowest (0.4 µg/L) 
and highest (1.3 µg/L) concentration at points 3, 9, 
and 4. Ni has the lowest (2.8 µg/L) and highest (6.4 
µg/L) concentration at points 5 and 2. Zn has the low-
est (98 µg/L) and highest (929 µg/L) concentration at 
points 5 and 7. The concentration of identified PTEs 
varied between sample points in the water treatment 

Table 2  The values of parameters for exposure assessment 
calculation

Parameter Value

Non-carcinogenic
risk assessment

Carcinogenic 
risk assess-
ment

Adult Child

CR, L/day 2 1 2
EF, days per year 365 365 365
ED, years 30 6 70
BW, kg 70 15 70
AT, days ED × 365 ED × 365 70 × 365

Table 3  The concentration of potentially toxic elements in the water treatment samples

Sample points Concentration (µg/L) of potentially toxic elements analyzed

Cd Cu Cr Ni Pb Zn Co

1  < 0.1 7.4 0.7 6.3  < 0.1 631  < 0.1
2  < 0.1 6.5 0.5 6.4  < 0.1 458  < 0.1
3  < 0.1 10.5 0.4 4.2  < 0.1 402  < 0.1
4  < 0.1 9.1 1.3 3.6  < 0.1 145.8  < 0.1
5  < 0.1 24.3 0.9 2.8  < 0.1 98  < 0.1
6  < 0.1 27.2 0.5 4.6  < 0.1 337.5  < 0.1
7  < 0.1 12.8 0.7 3.6  < 0.1 929  < 0.1
8  < 0.1 83.9 0.5 5.2  < 0.1 477.7  < 0.1
9  < 0.1 47.6 0.4 3.4  < 0.1 695  < 0.1
Avg ± SD 0.1 ± 1.38E-17 25 ± 24 0.65 ± 0.27 4.45 ± 1.2 0.1 ± 1.38E-17 465.93 ± 247.91 0.1 ± 1.38E-17
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plant. The order of the concentrations among the 
specified PTEs was like Zn˃Cu˃Ni˃Cr˃Cd˃Pb and Co.

The Cd, Cu, Cr, Ni, Pb, and Co concentration val-
ues were below the limit values set by WHO (WHO, 
2022), USEPA (EPA, 2018), and Polish regulations 
(Polish, 2017). This indicates that the examined water 
is suitable for human consumption. For Zn, the con-
centration levels were mainly higher than those set by 
WHO (WHO, 2022) due to the dissolution of Zn from 
pipes. There is currently no recommended limit for 
Zn concentration in drinking water based on health 
considerations. Several research have examined the 
occurrence of PTEs in drinking water, and the find-
ings of this study align with their conclusions. For 
example, Stegavik (1970) tested the PTEs pollution in 
Trondheim, Norway’s drinking water distribution net-
work. The findings indicated that the levels of Pb, Cd, 
Cu, and Zn in the drinking water have been less than 
the standard level, and there is no concern for public 
health. Dashtizadeh et  al. (2019b) evaluate the con-
centrations of As, Cd, Cr, Ni, Pb, B, Al, Hg, Mn, Zn, 
Cu, Fe, Se, and Ba in the tap water of Zahedan, Iran. 
The average amounts of all PTEs in the study were far 
below the recommended maximum limits set by the 
USEPA and WHO for drinking water. Another study 
from Iran, reported by Sarvestani and Aghasi (2019), 
has been conducted to evaluate the concentrations of 
Pb, Cd, and Cu in drinking water samples in Kerman, 
Iran. The findings indicated that the average levels of 
Pb in tap water were above the acceptable threshold 
established by the WHO and the USEPA. The con-
centrations of As, Cd and Cr in 26 water samples col-
lected from 13 rural areas near mines in Sabzevar, 
Iran, showed the potential health risks among local 
residents. As and Cr concentration in drinking water 
of the rural regions in the vicinity of mines were 
estimated to be in the range of 0.0152 to 0.0220 and 
0.0194 to 0.1806 mg/L, respectively, which exceeded 
the drinking water guidelines recommended by WHO 
(Shams et al., 2020).

Turbidity, pH, and conductivity

The turbidity, pH, and conductivity of the water treat-
ment samples are given in Table  4. Water samples’ 
turbidity, pH, and conductivity were cross-checked 
with the USEPA, WHO, and Polish drinking water 
guidelines. In most cases, the parameters followed 
these standards. The minimum turbidity was 0.34, 

and the maximum was 1.9 NTU. Turbidity of drink-
ing water should not exceed 5 NTU (EPA, 2018) and 
should be 1 NTU (Polish, 2017). All drinking facili-
ties should able to achieve 0.5 NTU before disinfec-
tion at all times and average 0.2 NTU or less) (WHO, 
2022). Turbidity may arise due to substandard quality 
of the water supply, inadequate treatment, and dis-
ruption of sediments and biofilms inside distribution 
systems, or the infiltration of contaminated water via 
main breaks and other faults. High turbidity levels 
may cause the discoloration of materials, fittings, and 
textiles that are exposed during washing. Addition-
ally, it can disrupt the efficiency of treatment opera-
tions. Visible turbidity diminishes the suitability of 
drinking water. While the majority of particles caus-
ing turbidity do not pose a health risk (although they 
may suggest the presence of harmful chemical and 
microbiological pollutants), many consumers see tur-
bidity as a sign of danger and deem turbid water unfit 
for consumption.

The range of pH in water samples was 6.51—7.47. 
pH of the drinking water should be 6.5—8.5 (EPA, 
2018; WHO, 2022). The water pH in this study fol-
lowed the pH of 6.6—7.8 found by Dashtizadeh et al. 
(2019b) in drinking tap water in Zahedan City, Iran. 
For effective disinfection with chlorine, the pH should 
be less than 8; however, lower-pH water (approxi-
mately pH seven or less) is more likely to be corro-
sive. It is necessary to regulate the pH of the water 
that enters the distribution system in order to reduce 
the corrosion of water mains and pipes in domestic 
water systems. Alkalinity and calcium management 
are factors that influence the stability of water and its 

Table 4  Turbidity, pH, and conductivity of water treatment 
samples

Sample points Turbidity (NTU) pH Conductivity (ms)

1 1.52 6.8 1,345
2 1.63 7.41 1,350
3 0.6 7.47 1,401
4 0.34 6.98 1,344
5 1.46 7.26 1,425
6 1.9 7.12 1,445
7 1.04 6.51 1,203
8 0.58 6.62 1,204
9 0.9 6.83 1,204
Avg ± SD 1.1 ± 0.54 7 ± 0.34 1324 ± 97
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tendency to corrode pipelines and appliances. Inad-
equate efforts to reduce corrosion may lead to the 
pollution of potable water and negative impacts on its 
flavor and visual qualities.

The conductivity was 1,203—1,445 ms in water 
samples. The conductivity of the drinking water 
should be 2,500 ms (Polish, 2017). High or low con-
ductivity levels can indicate potential issues, such as 
contamination, salinity, or the need for water treat-
ment. The conductivity of water samples in this study 
was higher than the conductivity (157—794 ms) 
found by Michalski et  al. (2020) in tap water con-
sumption in Silesia, Poland.

Microplastics

The MPs found in the water treatment plant are 
shown in Fig.  1. The concentration of MPs varies 
among the sample points. Sample point 7 had the 
highest MPs (39 ± 195), and sample point 9 had the 
lowest (8 ± 40). The average MPs were 21 at each 
point in the water treatment plant, and 196 ± 980 in 
100 ml MPs were found there. The average concen-
tration of MPs per liter of the water treatment plant 
was 108.88 ± 55.61. MPs were categorized into size, 
shape, and color (Fig. 2). These identified MPs were 
categorized into fiber and fragments. The color of 
these identified MPs was blue, red, black, green, and 
transparent. The minimum and maximum size of the 

MPs was 196 and 4,018 µm, while the average size 
was 2,751 ± 1,905 µm.

MPs have been in different water bodies, but lim-
ited studies have been done on water treatment plants. 
The MP concentration (108.88 ± 55.61) found in this 
study was higher than the number of MPs found in 
raw water and drinking water treatment plants 0.5 to 
7 and 0.02—0.11 particles/L in Busan, South Korea 
(Jung et al., 2022). However, in other studies, 1,000—
6,000 particles/L and several hundred particles/L 
were identified in raw water (upstream) and treated 
drinking water, respectively (Kankanige & Babel, 
2021; Pivokonský et  al., 2020; Wang et  al., 2020). 
Drinking water treatment can effectively block vari-
ous water-borne particles, potentially including MPs. 
However, plastic components in treatment plants and 
distribution networks may erode or degrade, leading 
to MPs in drinking water. Plastic bottles and caps 
used for bottled water may contain MPs that may end 
up in drinking water (Oßmann et  al., 2018). MP’s 
size, shape, and polymer type may affect their trans-
portation in water and may impact the toxicity and 
effectiveness of drinking-water treatment. (WHO, 
2019).

SEM–EDX

SEM examples of different-shaped MPs (fiber, pellet, 
and fragment) are shown in Fig. 3. The EDX analy-
sis of MPs is shown in Table 5. The elements listed 
are C, O, Na, Mg, Al, Si, K, Ca, and Ti. Fe and Zn 
were the predominant elements seen using EDX. The 
EDX study revealed that C, O, and Si exhibited the 
highest concentrations, while the other detected ele-
ments had the lowest concentrations. The distribution 
and composition of elements in MPs varied across the 
samples, with no consistent presence or dominance 
of any particular element or proportion. The vari-
ance might arise from identifying distinct MPs and 
their compositions or from pollutants on their surface 
(Bhat, 2023a; Bhat et al., 2023b). C, O, and plastic-
specific chemical components in high concentrations 
prove MPs’ identity. The primary components of sili-
cate minerals (such as clays) found on MPs include 
elements Al, Si, Na, and Mg. These elements are 
likely present due to the adsorption of silicates onto 
the surface of the MPs. The elements Al, Ca, Si, and 
Mg mostly derive from natural sources such as soil or 
dust, whereas Cu and Zn come from human activities 

Fig. 1  The concentration of microplastics in the water treat-
ment plant 
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such as burning fossil fuels and vehicle abrasion 
(Abbasi et al., 2020; Arslan, 2001) can also adhere to 
the surface of MPs. The elements Na, Mg, K, Al, Si, 
Ca, Cl, and O stick to the surface of the MPs, and sili-
cate minerals such as clays may cause their presence 
(Ganesan et  al., 2019; Nematollahi et  al., 2022). Zn 
is a well-recognized urban element believed to have 
been generated mostly from human activities, such 
as transportation and industrial operations (Ahmady-
Birgani et  al., 2015; Nematollahi et  al., 2021). Fe is 
often used as an addition in plastic materials to attain 
certain qualities, such as imparting color to the plas-
tic (Nematollahi et al., 2020). A broad range of ele-
ments (Ti, Si, Zn, Al, and Fe) have been employed in 
paintings as pigments, binders, or additions to gen-
erate a wide range of colors, textures, and function-
alities (Kowalczyk et  al., 2012; Lopez et  al., 2023; 
Pfaff, 2021; Zuin et  al., 2014). These additives may 
be released into the environment due to weathering 
since they are not chemically bound to the polymeric 
matrix (Bhat, 2024d; Bhat et  al., 2023b). Minerals 

like gypsum contain S naturally (Kong et al., 2020), 
and these gypsums are used inside houses.

Health risk assessment

The determination of PTE’s non-carcinogenic and 
carcinogenic effects was done using the HQ and 
ELCR. Table 6 summarizes the estimated HQ of trace 
elements for two age groups (children and adults) 
that consume the drinking water in the study area. 
Table 6 shows that all HQ values of the PTEs were 
less than one for adults and children. Consequently, 
evaluating the human health risk associated with all 
detected trace elements revealed that the HQ values 
exhibit a satisfactory degree of non-carcinogenic 
adverse health risk (Ghaderpoori et  al., 2018; Turdi 
& Yang, 2016). Table  5 also shows that HI values 
for adults and children age groups were less than 
one and were in the order of Zn 0.035788606 > Cu 
0.000262053 > Ni 2.29139E-05 > Cr 5.05707E-
07 and Zn 0.083508418 > Cu 0.00061147 > Ni 

Fig. 2  Typical examples of some microplastics with their type and color under the stereomicroscope found in this study. Fiber (a; 
blue, b; red, c; black,) and (e; green, f; black, g; red, h; transparent, i; black) and fragment (d; red)
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5.34669E-05 > 1.18001E-06 respectively. Based on 
the non-carcinogenic risk, these HI values of less 
than one show that the drinking water of the water 
treatment plant is safe for human ingestion. Overall, 
the study’s findings showed no appreciable non-car-
cinogenic risk for the PTEs examined; nevertheless, 
regular monitoring is still required since unexpected 
contamination may occur. Table 6 represents the esti-
mated ELCR values of carcinogenic PTEs. For carci-
nogenic substances, the acceptable threshold is  10−6. 
In most water treatment samples, the carcinogenic 
value exceeds the threshold value. The total HI values 
were above one in the drinking water of all villages in 
Joghatai, Iran, and generally, total HI values for chil-
dren were much higher than those of adults in each 

studied area (Shams et  al., 2020), and carcinogenic 
risk for Cr in drinking water of all villages for chil-
dren was above the USEPA risk assessment guideline 
limit. Sajjadi et al. (2022) found children were more 
exposed to health risks due to drinking water contain-
ing As, Cr, and Pb in Ghayen County, Iran.

Conclusion

The presence of PTEs in drinking water poses a sig-
nificant concern due to their potential adverse health 
effects on consumers. This study presents a com-
prehensive assessment of PTEs such as (Cd, Cu, 
Cr, Ni, Pb, Zn, and Co) and MPs in drinking water, 

Fig. 3  Scanning electron microscope images of microplastics (sourced from nine raw water sources) deposited on the Whatman 
glass microfiber filter
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considering a wide range of parameters, including 
turbidity, pH, conductivity, and health risk assess-
ment. Zn had the greatest quantities among all the 
PTEs in the water treatment plant, whereas Cd, Pb, 
and Co had lower values, measuring less than 0.1 
µg/L. The concentrations of the required PTEs fol-
lowed the order Zn > Cu > Ni > Cr > Cd, Pb, and Co. 
The lowest turbidity recorded was 0.34 NTU, while 
the highest was 1.9 NTU. The pH values observed 
in the water samples ranged from 6.51 to 7.47. The 
conductivity of the water samples ranged from 1,203 
to 1,445 ms. MPs are currently regarded as perva-
sive contaminants due to their extensive presence in 
all environmental components, particularly water 
sources. The increasing amount of plastic waste has 
raised concerns about these MPs in aquatic environ-
ments. MPs can be fragmented into NPs that can pass 
through water treatment processes and into tap water, 
potentially threatening human health because of their 
high adsorption capacity for hazardous organic mate-
rials and their intrinsic toxicity. The detected MPs 
were classified into two groups: fiber and fragments. 
The detected MPs were blue, red, black, green, and 
transparent. The MPs exhibited a range of sizes, with 
the smallest being 196 µm and the largest being 4,018 
µm. The average size of the MPs was 2,751 µm, with 
a standard deviation of 1,905 µm. The mean MP con-
centration per liter of the water treatment facility was 
108.88 ± 55.61. The listed elements are C, O, Na, Mg, 
Al, Si, K, Ca, and Ti. The elements Fe and Zn were 
the most prevalent when seen using EDX. The con-
centrations of PTEs in both adults and children were 
below one. The assessment of human health risks 

related to PTEs indicates that the HQ values demon-
strate an acceptable level of non-carcinogenic adverse 
health risk. The HI values for adults and children in 
all age categories were below one. The carcinogenic 
value in most water treatment samples is above the 
threshold value of  10−6. Therefore, it is advisable to 
regularly test the levels of metals and metalloids, pH, 
turbidity, conductivity, and MPs outside the scope of 
statutory regulations to limit potential health hazards 
for consumers. Although the study analyzed several 
potentially toxic elements, it did not cover all possible 
contaminants that could be present in drinking water, 
potentially overlooking other significant pollutants. 
Explore and develop effective mitigation strategies 
at water treatment plants to reduce the levels of PTEs 
and MPs, ensuring safe drinking water for consumers.
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Table 6  Non-carcinogenic and carcinogenic risk of potentially toxic elements in water treatment plant

Sample 
points

HQ/ Adult HQ/ Child IELCR

HQ/Cu HQ/Cr HQ/Ni HQ/Zn HQ/Cu HQ/Cr HQ/Ni HQ/Zn Cr

1 8.45702E-06 5.99991E-08 3.59995E-06 0.005411062 1.97334E-05 1.40001E-07 8.40004E-06 0.012626063 1.6E-05
2 7.42846E-06 4.28565E-08 3.65709E-06 0.003929084 1.73334E-05 1.00001E-07 8.53338E-06 0.009168046 1.14286E-05
3 1.19998E-05 3.42852E-08 2.39996E-06 0.003447377 2.80001E-05 8.00004E-08 5.60003E-06 0.00804404 9.14286E-06
4 1.03998E-05 1.11427E-07 2.05711E-06 0.001249696 2.42668E-05 2.60001E-07 4.80002E-06 0.002916015 2.97143E-05
5 2.7771E-05 7.71417E-08 1.59998E-06 0.000839987 6.48003E-05 1.80001E-07 3.73335E-06 0.00196001 2.05714E-05
6 3.10852E-05 4.28565E-08 2.62853E-06 0.002892814 7.25337E-05 1.00001E-07 6.13336E-06 0.006750034 1.14286E-05
7 1.46284E-05 5.99991E-08 2.05711E-06 0.007964452 3.41335E-05 1.40001E-07 4.80002E-06 0.018584093 1.6E-05
8 9.58843E-05 4.28565E-08 2.97138E-06 0.00409451 0.000223734 1.00001E-07 6.93337E-06 0.009554048 1.14286E-05
9 5.43992E-05 3.42852E-08 1.94283E-06 0.005959625 0.000126934 8.00004E-08 4.53336E-06 0.01390607 9.14286E-06
HI = ΣHQ 0.000262053 5.05707E-07 2.29139E-05 0.035788606 0.00061147 1.18001E-06 5.34669E-05 0.083508418 Total ELCR 

0.000134857
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