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Abstract  Evaluating the performance of water 
indices and water-related ecosystems is crucial for 
Ethiopia. This is due to limited information on the 
availability and distribution of water resources at 
the country scale, despite its critical role in sustain-
able water management, biodiversity conserva-
tion, and ecosystem resilience. The objective of this 
study is to evaluate the performance of seven water 
indices and select the best-performing indices for 
detecting surface water at country scale. Sentinel-2 
data from December 1, 2021, to November 30, 2022, 
were used for the evaluation and processed using the 
Google Earth Engine. The indices were evaluated 
using qualitative visual inspection and quantitative 
accuracy indicators of overall accuracy, producer’s 
accuracy, and user’s accuracy. Results showed that 
the water index (WI) and automatic water extraction 
index with shadow (AWEIsh) were the most accurate 
ones to extract surface water. For the latter, WI and 
AWEIsh obtained an overall accuracy of 96% and 
95%, respectively. Both indices had approximately 

the same spatial coverage of surface water with 
82,650 km2 (WI) and 86,530 km2 (AWEIsh) for the 
whole of Ethiopia. The results provide a valuable 
insight into the extent of surface water bodies, which 
is essential for water resource planners and decision-
makers. Such data can also play a role in monitoring 
the country’s reservoirs, which are important for the 
country’s energy and economic development. These 
results suggest that by applying the best-performing 
indices, better monitoring and management of water 
resources would be possible to achieve the Sustain-
able Development Goal 6 at the regional level.

Keywords  Copernicus data · Google Earth Engine · 
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Introduction

Land surface water is one of the most decisive natu-
ral resources substantially changing in spatiotemporal 
terms, particularly because of land use and land cover 
dynamics as well as climate change. Land surface 
water encompasses streams, rivers, ponds, reservoirs, 
lakes, wetlands, and other inland water bodies (Pekel 
et  al., 2016; Vandas, 2002). In spite of its limited 
extent, particularly in semi-arid and arid regions of 
the globe, land surface water is a resource for numer-
ous human uses (e.g., drinking water supply, sanita-
tion, and hygiene), ensures irrigation agriculture, or 
is used for hydropower production and industrial use. 
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In addition, it maintains and supports biodiversity 
and provides essential and diverse ecosystem ser-
vices (Brauman, 2015; Dudgeon et al., 2006; Zedler 
& Kercher, 2005). Surface water resources also play 
a vital role in the climate system and the hydro-
logical cycle (Chahine, 1992; Tranvik et  al., 2009). 
However, water-related ecosystems are fragile and 
vulnerable to anthropogenic impacts and climate 
change (Vörösmarty et  al., 2000). The biodiversity 
of water-related ecosystems continues to deteriorate 
at an alarming rate (Collen et  al., 2014). Associated 
with climate change are hydrological extremes such 
as flooding or droughts, and emerging water-related 
diseases, both leading to increasing losses of lives. 
Therefore, timely monitoring of regional-scale sur-
face water resources is critical for policy and deci-
sion-making processes for its sustainable use and 
management (Giardino et  al., 2010; Morss et  al., 
2005).

Global initiatives and policy frameworks like the 
SDGs and the Aichi Biodiversity Targets under the 
Convention on Biological Diversity (CBD) aim to 
ensure sustainable development of water resources, 
to reduce human impact, and prevent the loss of bio-
diversity (CBD, 2010; Griggs, 2013). Especially, 
the SDG 6 “Clean water and sanitation” and its tar-
get 6.6 “Protect and restore water-related ecosys-
tems” emphasize the need to quantify its indicator 
6.6.1 “Change in the extent of water-related ecosys-
tems over time” (Dickens et al., 2017). Surface water 
monitoring is crucial for sustainable development, 
biodiversity conservation, ecosystem resilience, and 
people’s livelihoods. For this reason, improved moni-
toring of surface water resources on a large scale is 
needed, for example, by utilizing the latest advances 
of the Google Earth Engine with Sentinel-2 data for 
effective water management and decision-making 
processes. The implementation of water indices in 
this cloud computing system for improved water 
monitoring and management is in line with the 
broader goal of achieving SDG 6, thus contributing 
to both policy interventions and sustainable develop-
ment efforts.

Thus, having the aforementioned potential con-
flicts in mind, this study contributed to quantifying 
the spatial distribution of the extent of water-related 
ecosystems, thereby ensuring its sustainable man-
agement in Ethiopia. Surface water plays a pivotal 
role, constituting more than 50% of the world’s water 

utilized for agricultural, domestic, and industrial 
purposes (OECD, 2015). This substantial reliance is 
largely attributed to lakes and reservoirs. Monitor-
ing reservoirs is particularly important for providing 
early warning of drought, water, and food insecurity 
(Donchyts et al., 2022). Furthermore, effective reser-
voir monitoring serves as a deterrent to transbound-
ary water conflicts and promotes international col-
laboration and also providing timely information by 
analyzing surface water dynamics as demonstrated 
for Turkey (Donchyts et  al., 2022). The insights 
provided by surface water monitoring is needed for 
informed decision-making in environmental, agri-
cultural, and urban water use, as for example shown 
for semi-arid Australia where it plays a crucial role 
in shaping water policy and management strategies 
(Tulbure et  al., 2016). Overall, the integrated moni-
toring of surface water resources emerges as a sup-
port in addressing water challenges on a global scale, 
contributing not only to resource sustainability but 
also fostering international cooperation and informed 
governance.

Ethiopia has significant surface water resources 
with 12 major river basins, one lake basin and three 
dry basins (Fig.  1). A strong rainfall gradient sepa-
rates the central and western highlands with abundant 
annual rainfall of up to 1200 mm from the arid south-
east, east, and northeast, which receive 200 mm and 
below (Berhanu et al., 2014). Therefore, surface water 
resources are comparatively less available in the east-
ern part of Ethiopia (especially in the Awash basin) 
while the western part with the Abay (Blue Nile) river 
basin has large water resources. In contrast to the 
importance of water resources for human well-being 
and the country’s ecosystems, monitoring systems 
for the availability of surface water and hydrological 
flows are in poor condition and sometimes unreliable 
or malfunctioning (Dile et al., 2018). A country-wide 
continuous assessment of a water resource indicator 
as requested as part of SDG6 is not in place.

In contrast to in  situ measurements, satellite 
remote sensing is an effective and efficient tool for 
monitoring and mapping surface water distributions. 
It allows covering a wide range of spatial and tem-
poral scales because of its accessibility, repeatability, 
geospatial consistency, and global coverage (Fisher 
et  al., 2016; Mueller et  al., 2016). Satellite remote 
sensing plays a vital role in monitoring inland sur-
face waters, particularly lakes and reservoirs. In the 
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recent past, accurate surface water detection methods 
have been developed for a wide range of environmen-
tal conditions (Feyisa et al., 2014; Fisher et al., 2016), 
with particular benefit for methods and data fusion 
techniques using machine learning methods (Schmitt, 
2020). Recent advances in remote sensing technol-
ogy, characterized by high spatial, temporal, and 
spectral resolution, have contributed substantially to 
the monitoring of inland water bodies, with emphasis 
on their accurate detection (McCarthy et  al., 2017), 
even though monitoring lakes and reservoirs is still 
a challenge for classification algorithms due to their 
characteristics. This challenge is for example shown 
for Lake Mead (USA), Nova Ponte reservoirs (Bra-
zil), and Lake Williston (Canada) because of its 
temporal variability, various narrow ends, dynamic 
shape, and missing values by cloud or ice cover 
(Khandelwal et al., 2017). Therefore, this study tested 
surface water detection methods for the study area of 
Ethiopia using high spatial and temporal resolution in 
a cloud computing platform.

Google Earth Engine is such a cloud comput-
ing platform for global-scale analyses. It provides 
access to a range of satellite imagery, particularly 

Landsat and Sentinel-2 products and facilitates 
high-performance computing for social and envi-
ronmental analysis, including water monitoring 
(Gorelick et  al., 2017). The launch of the Sentinel 
program by the European Space Agency (ESA) as 
part of the Copernicus program was a breakthrough 
moment as it provided access to free, high-resolu-
tion images on a large scale for the first time. The 
band characteristics and spectral response meth-
ods of Sentinel-2 data are helpful to detect surface 
water bodies from the background (Jiang et  al., 
2021). Thus, in this study, Google Earth Engine was 
employed to process the potential of water index 
methods and selected the best-performing indices 
for surface water detection using multi-spectral sat-
ellite imageries of Sentinel-2 data.

Surface water can be detected using multi-spec-
tral satellite imageries on the base of the signifi-
cantly lower infrared reflectance of water compared 
to other land cover types. Hence, based on the pecu-
liarities of the Near-Infrared/Short-Wave Infrared 
(NIR/SWIR) domain, numerous approaches have 
been developed for extracting surface water from 
remote sensing imageries.

Fig. 1   Main water bodies 
with basins of Ethiopia
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The water indices method is a common classifica-
tion method using multi-bands (Fisher et al., 2016). It 
is easy to use and quick to calculate (Ryu et al., 2002). 
Further indices include the normalized difference 
water index (NDWI) (McFeeters, 1996), the modified 
normalized difference water index (MNDWI) (Xu, 
2006), and the land surface water index (LSWI) (Xiao 
et al., 2002). All these indices have been widely used 
in Landsat 5 Thematic Mapper (TM) and Landsat 7 
Enhanced Thematic Mapper (ETM+) imagery analy-
ses. They are easy to compute and rely only on two 
input bands. Feyisa et al. (2014) developed the auto-
matic water extraction with no shadow (AWEInsh) 
using four bands (green, NIR, SWIR1, and SWIR2) 
(Feyisa et  al., 2014). The AWEIsh additionally uti-
lizes the blue band. AWEIsh is designed for shadows 
from mountains, buildings, and clouds. The sentinel 
water index (SWI) is computed using red-edge1 and 
SWIR1 bands of Sentinel-2 (Jiang et al., 2021). The 
water indices methods have the benefits of robust-
ness, quick detection, and high accuracy in large-
scale surface water detection (Li et  al., 2013; Wang 
et  al., 2021; Feyisa et  al., 2014). Each water index 
was designed and previously tested using Landsat 
imagery, except for the SWI. Therefore, this study 
evaluated the performance of each water index 
method using Sentinel-2 data in Ethiopia.

A few studies have been carried out to monitor 
surface water resources in Ethiopia using water indi-
ces with Landsat imagery. For example, NDWI was 
used for surface water extraction and change detec-
tion in the Central Rift Valley region of Ethiopia, 
specifically Abjata, Shala, and Langano Lakes (Sisay, 
2017). Another study demonstrated the use of NDWI 
to monitor surface water in Chelekleka, Crafty, Coke, 
and other lakes (Sathianarayanan, 2018). An evalu-
ation of the performance of three water indices was 
carried out at Lake Zeway, which confirmed that the 
AWEI performed better than the MNDWI and NDWI 
in detecting surface water bodies (Asfaw et al., 2020). 
However, Ethiopia faces challenges related to limited 
spatio-temporal information on water resources at the 
national level. This lack of information is particu-
larly problematic given its importance for effective 
water management and decision-making. It is also 
a key challenge for achieving the SDG 6 indicators. 
Ethiopia’s diverse landscapes require the selection 
of appropriate water detection and monitoring tech-
niques tailored to local conditions. Such an analysis 

would also increase the knowledge of remote sens-
ing applications for water resources in different geo-
graphical settings. The performance of a wide range 
of water index methods has not been tested on the 
country level of Ethiopia, and a comparative perfor-
mance analysis for the more recent Sentinel-2 data is 
missing.

Choosing the best index for large-scale surface 
water detection is difficult due to inconsistent results 
obtained from various indices and unstable thresh-
old values to differentiate water from non-water, 
which is changing with location and scene (Ji et al., 
2009). Therefore, this study sets out to identify opti-
mal thresholds for large-scale assessment. In Ethio-
pia, surface water detection is challenging at a large 
scale due to the labeled water and non-water feature 
datasets being limited. Hence, the objective of this 
work was to demonstrate the potential of water index 
methods and to select the best-performing indices 
for detecting surface water using high-resolution and 
multi-temporal Sentinel-2 data at the country scale. 
The indices were calculated using the Google Earth 
Engine. The spatial distribution of water resources in 
Ethiopia and monitor surface water resources in rela-
tion to the fulfillment of SDG 6 are investigated.

Materials and methods

Description of the study area

Ethiopia’s diverse topography ranges from the depths 
of the northeastern Afar Depression at 116 m below 
sea level to the towering heights of the Ras Dashin 
Mountains at about 4600 m above sea level. This has 
created a diverse of agro-ecological zones, climates, 
and soil compositions. The agro-ecological zones 
are categorized into six major groups (MoA, 2000), 
which include arid, semi-arid, sub-moist, moist, sub-
humid, and humid zones. Ethiopia’s climate is tra-
ditionally divided into five distinct zones, based on 
altitude and temperature: “Wurich” (cold to moist), 
“Dega” (cool to humid), “Weynadega” (cool sub-
humid), “Kola” (warm semi-arid), and “Berha” (hot 
arid). Average temperature variations are significant, 
ranging from 5 °C in the highlands to about 40 °C 
in the lowlands (Gebrechorkos et  al., 2023). Rain-
fall patterns show considerable spatial and tempo-
ral variation. It ranges from 100 mm/yr in the arid 
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northeastern lowlands to 2500 mm/year in the abun-
dant southwestern highlands. The country experi-
ences two main rainy seasons: the “Belg” from March 
to May, which is characterized by light rainfall, and 
the “Kiremt” from June to September, which is the 
main rainy season.

Geologically, Ethiopia’s landscape is shaped by 
three main structural units, i.e., Precambrian base-
ment, Paleozoic and Mesozoic sediments, and Ceno-
zoic volcanites and sediments (Hurni et  al., 2007). 
These geological formations contribute to the diverse 
topography and soil characteristics that are observed 
throughout the country. Soil composition adds 
another layer of diversity to Ethiopia’s agricultural 
landscape. More than half of the country’s arable land 
is covered by nitosols (23%), cambisols (19%), and 
vertisols (18%) (Dubale, 2001). Nitosols and cam-
bisols dominate the highlands west of the Rift Valley 
and the Afar region, whereas xerosols and yermosols 
dominate the northern and southern regions, respec-
tively. Agriculture is the backbone of the Ethiopian 
economy, with crop production being the main eco-
nomic activity. It contributes about 40% of the coun-
try’s gross domestic product (Jimma et al., 2024).

Ethiopia is endowed with substantial surface 
water resources and 12 major river basins. (Fig.  1). 
A majority of Ethiopia’s rivers experience seasonal 
variation and approximately 70% of the total runoff 
occurs between June and September (FAO, 2016). 
Four of Ethiopia’s river basins, namely Abbay or 
Blue Nile, Baro-Akobo, Tekeze, and Mereb which 
are parts of Nile basin, cover 33% of the country and 
drain the northern, central, and western parts (FAO, 
2016). In the eastern part of Ethiopia, surface water 
resources are limited since almost no perennial riv-
ers are found below 1500 m a.s.l. Three of the main 
basins (Aysha, Dinakle, and Ogaden) are mainly dry 
with no permanent discharge (Berhanu et al., 2014). 
Ethiopia’s 12 major lakes cover around 7300 km2. 
Lake Tana is the largest lake in the Abay Basin. It is 
the main water source of the Abay River. Most other 
lakes are saline and located in the Rift Valley.

Sentinel‑2 data and pre‑processing

Sentinel-2 data from December 1, 2021, to Novem-
ber 30, 2022, were used. Images were acquired by 
the Copernicus program in the Earth Observation 
program of the European Union, which provides 

multi-spectral data in the visible, near-infrared, and 
shortwave infrared parts of the spectrum, a total of 13 
bands. The tiles cover 100 by 100 km2 with a spatial 
resolution of 10 m (bands blue (B2), green (B3), Red 
(B4), and NIR (B8), 20 m (red edge 1 (B5), red edge 
2 (B6), red edge 3 (B7), red edge 4 (B8a), SWIR 1 
(B11), and SWIR 2 (B12) and 60 m (aerosols (B1), 
water vapor (B9), and cirrus (B10)) for one of the 
most widely available Level-1C standard product. 
The temporal resolution or the revisit frequency of 
each individual Sentinel-2 satellite is 10 days and the 
combined constellation revisit is 5 days.

The Sentinel-2 imagery was collected using the 
Sentinel-2 Surface Reflectance product COPERNI-
CUS/S2_SR. However, Sentinel-2 imagery covers 
all of Ethiopia only in December, March, and Janu-
ary among all months. The images were then filtered 
based on the specified time range using the filterDate 
function. The dataset was further refined spatially by 
filtering based on a designated region of interest using 
filterBounds(roi). Subsequently, images with a cloudy 
pixel percentage exceeding 20% are excluded using 
ee.Filter.lt(‘CLOUDY_PIXEL_PERCENTAGE’, 20). 
Clouds were then masked out using a custom cloud-
masking function through the cloud/shadow mask 
function in Google Earth Engine. Processing was 
performed in all spectral bands and the cloud mask 
detected cloud-free and cloudy pixels, including both 
dense clouds and cirrus clouds. Thus, the process-
ing steps combining cloud and cirrus masking and 
atmospheric correction function in the Google Earth 
Engine contributed to cloud-free pixels and atmos-
pheric correction of Sentinel-2 imagery. Lastly, the 
median value for each pixel across all filtered images 
was calculated using the median() function, resulting 
in a single composite image that effectively aggre-
gates Sentinel-2 observations over the specified tem-
poral and spatial extent.

Surface water detection

Seven water indices (Table 1) were calculated in the 
Google Earth Engine computing system. All indices 
have originally been developed using Landsat images 
except for the SWI. Various mechanisms have been 
used to obtain optimal thresholds for distinguishing 
water from land. We applied the optimum threshold 
value for the automated water extraction index by 
considering the error of commission and omission. 
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The threshold ranges between − 1 and + 1, and a 
default threshold of zero does not represent the high-
est water detection accuracy (Feyisa et al., 2014). The 
selection of the optimum threshold involves an itera-
tive trial and error process (Acharya et al., 2018). At 
the beginning, an initial threshold of default value 
zero for the water index was set and applied to the 
dataset. The classification accuracy was then assessed 
by incrementally adjusting the threshold until the 
highest overall accuracy values were achieved. This 
approach ensured optimal differentiation between 
water and land.

Evaluation of water indices

Accuracy assessments were carried out to determine 
whether or not the results of surface water extrac-
tion are acceptable. In this study, qualitative (visual) 
and quantitative assessments were undertaken. In the 
visual assessment, the magnitude of continuousness 
and the smoothness of the boundary of water bod-
ies were assessed and cross-checked with reference 
data. During classification, 80% of the samples were 
used for calibration and training, while the remaining 
20% were kept for validation (Elith et al., 2011). For 
validation, sample points were collected from differ-
ent locations and considered seasons from December 
1, 2021, to November 30, 2022, using georeferenced 
samples from Sentinel-2 and coincident high-reso-
lution imagery and OpenStreetMap data in Google 
Earth Engine.

For a coverage of < 4000 km2 per land cover and 
less than 12 classes of land cover, Lillesand et  al. 
(2008) recommend at least 50 samples for each 
map class. However, sample point sizes vary in the 

literature. For example, to assess accuracy by visual 
interpretation using Sentinel-2 data, Xia et al. (2019) 
selected 1000 sample points for water and non-water 
in the Huai River Basin and Wang et al. (2020) col-
lected 1500 points each in the Hetao Plain. For sur-
face water extent estimation in France using 2 years 
of Sentinel-2 data, a total of 4800 sample points were 
evaluated by visual interpretation in the Google Earth 
Engine platform (Yang et  al., 2020). Hence, in this 
study, we collected a total of 4680 sample points for 
the validation as a whole. Specifically, 2340 samples 
were taken from water bodies. The remaining 2340 
samples included non-water bodies from a wide range 
of land cover types such as agricultural land, forest, 
grassland, built-up areas, and bare land. These sam-
ple points were collected throughout the entire study 
area using a stratified random sampling approach. 
Water bodies were additionally stratified by size and 
type to ensure that the assessment was representative 
of the diversity of water bodies present in the study 
area. Spatial stratification also improves the assess-
ment of the classification accuracy of remote sens-
ing data (Dong et  al., 2022). Spatial autocorrelation 
examines how pixels that are close together are more 
similar than those that are far apart (Karasiak et  al., 
2022), resulting in falsely high precision metrics 
(Roberts et  al. 2017; Meyer et  al. 2019). Thus, fea-
tures were separated by a minimum distance of 500 m 
to reduce spatial autocorrelation (Cabra-Rivas et  al., 
2016). This minimum distance for separating features 
ensures that they are spatially independent, reduc-
ing the risk of biased accuracy results and providing 
a more objective assessment of algorithm’s perfor-
mance. The quantitative assessment was carried out 
using the 4680 feature sample points. Indicators of 

Table 1   Water index methods

Index Index name Source Equation

NDWI Normalized Difference Water Index McFeeters (1996) (Green−NIR)

(Green+NIR)

MNDWI Modified Normalized Difference Water Index Xu (2006) (Green−SWIR1)

(Green+SWIR1)

AWEInsh Automated Water Extraction Index non-shadow Feyisa et al. (2014) (4*(Green-SWIR1))-(0.25*NIR+(2.75*SWIR2))
AWEIsh Automated Water Extraction Index shadow Feyisa et al. (2014) (Blue+2.5*Green-1.5*(NIR+SWIR1)-

0.25*SWIR2)
WI Water Index Fischer et al. (2016) (1.7204+171*Green+3*Red-70*NIR-

45*SWIR1-71*SWIR2)
SWI Sentinel Water Index Jiang et al. (2021) (RedEdge1−SWIR1)

(RedEdge1+SWIR1)

LSWI Land Surface Water Index Xiao et al. (2002) (NIR−SWIR1)

(NIR+SWIR1)
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evaluation include producer accuracy, user accuracy, 
and overall accuracy.

Confusion matrices, the common method 
of describing the accuracy of the classification 
(Lillesand et  al., 2008), were used to compare the 
reference data and the corresponding classification 
outputs on a category-by-category basis. User accu-
racy is computed by dividing the number of correctly 
classified pixels in each category by the total num-
ber of pixels that are classified in that category (the 
row total), which is known as the specificity or true 
negative rate, and the complement of the commission 
error (Lillesand et  al., 2008). Whereas the producer 
accuracy is obtained by dividing the number of cor-
rectly classified pixels in each category (on the major 
diagonal) by the number of training set pixels used for 
that category (the column total), which is known as 
the sensitivity or true positive rate, and the comple-
ment of the omission error. The user’s accuracy, pro-
ducer’s accuracy, overall accuracy, error of omission 
and error of commission were computed including 
the confusion matrix for the classification in Google 
Earth Engine computing. Finally, based on the afore-
mentioned indicators of accuracy, the better-perform-
ing indices were selected and then used to quantify 
the spatial distribution of surface water resources in 
Ethiopia.

Results

Surface water detection

The results of water detection using seven indi-
ces for specific locations and the whole of Ethio-
pia were analyzed by visual inspection (Figs.  2, 3, 
and 4). The optimum threshold values that sepa-
rate water from non-water pixels were selected 
for NDWI (0.06), MNDWI (0.14), AWEIsh (0), 
AWEInsh (0.04), WI (0.02), SWI (0.03) & LSWI 
(0.12). WI and AWEIsh were relatively better at 
detecting surface water where the surrounding areas 
are vegetated areas and urban areas (Fig. 2, #1 and 
#3). SWI was less good as there was some misclas-
sification as water bodies (Fig. 2, #1 and #2). NDWI 
was relatively less effective than MNDWI because 
of some unclassified water pixels (Fig.  2, #1 and 
#3). In this case, AWEInsh only detects large water 
bodies, and LSWI was also unable to detect water 

bodies correctly. In flat areas, WI and AWEIsh were 
more effective to detect rivers compared to other 
water indices (Fig.  3). MNDWI was also superior 
in these flat and less vegetated areas, while NDWI 
was less able to map the rivers. SWI detected the 
river but misclassified non-water pixels as water 
pixels (Fig.  4). AWEInsh and NDWI were unable 
to identify rivers and small water bodies. Therefore, 
in this large-scale water detection experiment using 
Sentinel-2 data in Google Earth Engine, the WI 
and AWEIsh were most effective for surface water 
detection from a visual inspection point of view.

Performance evaluation of water indices

The water producer’s accuracy ranged from 32 
to 96%, whereas non-water producer’s accuracy 
ranged from 84 to 97%. All indices, except LSWI, 
had a satisfying classification accuracy > 85% with 
regard to the overall accuracy, producer’s accuracy, 
and user’s accuracy (Table 2). The WI achieved the 
highest accuracy with an overall accuracy of 96%. 
All other indicators, except for the LSWI, had only 
slightly worse performance criteria in terms of 
user’s and producer’s accuracy for water, as well 
as overall accuracy. The difference in accuracy 
between the LSWI and the other indices was strik-
ing. This index was the least-performing one with 
an overall accuracy of 78%. Overall, the AWEIsh 
and particularly WI outperform the other indices 
regarding accuracy indicator performances depicted 
by the heat map (Table 2), whereby it must be said 
that the differences between six of the seven indi-
ces were in part only marginal. Together with the 
information from the visual assessment, we con-
cluded that in this study, the WI and AWEIsh were 
the most accurate water indices using the high and 
multi-temporal resolution of Sentinel-2 data for sur-
face water detection in Ethiopia.

Finally, the surface water coverage was calcu-
lated using the seven indices across Ethiopia. WI, 
AWEIsh, and MNDWI indices extracted more or less 
similar surface water coverages of 82,650, 86,530, 
and 88,160 km2, respectively. Slightly deviating 
was the coverage estimated by NDWI (79,650 km2). 
Completely different were the remaining coverages 
derived by the AWEInsh (51,800 km2), SWI (111,500 
km2), and LSWI (207,520 km2).
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Discussion

The special spectral properties of water are utilized 
when detecting surface water and non-water sur-
faces. Water absorbs light above 700 nm, particularly 
in the NIR and MIR bands. Thus, water bodies can 
be identified based on their unique absorption char-
acteristics by analyzing the reflectance spectrum of 
different surfaces. This analysis goes beyond color 
information and is based on how water behaves in 
the electromagnetic spectrum. In the visual assess-
ment, the results showed that the WI and AWEIsh 
indices had a superior accuracy in surface water 
detection. They were more effective to detect surface 
water in urban and vegetated areas, despite that the 
detection in such areas is commonly difficult due to 
shadows (Feyisa et al., 2014). Shadows in urban areas 

are often misclassified as water bodies, as they have 
similar low reflectivity characteristics to water bodies 
(Liu et al., 2022). Fischer et al. (2016) stated that WI 
and AWEIsh performed best, whereas the MNDW 
and AWEInsh performed less accurately, and NDWI 
the least. In this study, MNDWI was more effective 
than NDWI, AWEInsh and SWI in detecting rivers 
and small water bodies. The MNDWI is an improved 
version of the NDWI in that it uses the SWIR band 
instead of the NIR band that is used in the NDWI 
to normalize the water and vegetation indices (Xu, 
2006). NDWI was less sensitive to small water bod-
ies and rivers than MNDWI and was also affected by 
noise from urban and vegetated areas. This is due to 
the spectral signature response of water bodies, which 
is less sensitive in the NIR band of the NDWI than in 
the MIR band of the MNDWI (Xu, 2006). In contrast, 

Fig. 2   Specific map section for visual assessment and comparison of water indices outputs for part of the lake Tana area in Bahir 
Dar
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Fig. 3   Specific map section for visual assessment and comparison of water indices outputs for the Awash river reach in Adaytu, Afar

Fig. 4   Ethiopia surface water coverage map using best-performing water indices
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the MIR band in MNDWI can enhance the contrast 
between water and surrounding land, making it more 
effective at detecting smaller water features that may 
be missed by NDWI. In addition, the MIR band used 
in MNDWI is less sensitive to vegetation and less 
affected by noise from urban areas than the NIR band 
used in NDWI. As a result, the NDWI was unable to 
detect part of the Awash River and small water bodies 
in the Lake Tana area (Figs.  2 and 3). The contrast 
between water and land is acceptable for MNDWI, 
although it is less accurate than the WI and AWEI in 
detecting small water bodies or small streams (Liu 
et al., 2022). SWI was better than NDWI, AWEInsh, 
and LSWI for the detection of the same features. 
However, it was challenged by the elimination of 
shadow noise from surrounding non-water features. 
In general, SWI is better than NDWI at detecting 
wide river channels (Jiang et al., 2021).

The results showed that the WI and AWEIsh were 
the most accurate water indices. A similar finding was 
observed in four case studies in Switzerland, Ethio-
pia, South Africa, and New Zealand, where AWEIsh 
achieved water user’s and producer’s accuracies of 
96–99% and 91–99%, respectively (Feyisa et  al., 
2014). Similarly, AWEInsh was also detected in a 
shadow-free image from Denmark with water user’s 
and producer’s accuracy of 98% and 92%, respec-
tively (Feyisa et al., 2014). AWEI with Google Earth 
Engine is a quick and robust method for surface water 
monitoring (Nguyen et al., 2019). Overall accuracies 
of WI (98%) were also outperforming other indices 
(MNDWI 97%, NDWI 95%) in image analyses from 
eastern Australia (Fisher et al., 2016). WI achieved an 
overall accuracy of 96% and AWEIsh also performed 

well with an overall accuracy of 96% (Liu et  al., 
2022). In this study, LSWI performed worse due to 
the limitation of the index in interpreting Sentinel-2 
data in this study area. It was also heavily influenced 
by the background noise of non-water features in the 
study area.

Overall, the performance evaluation criteria in this 
study are common and acceptable for evaluating the 
results of surface water detection using water indices 
(Feyisa et al., 2014; Fisher et al., 2016). The results 
present were even slightly higher than those of pre-
vious works, which range from 90 to 96% in overall 
accuracy, except for LSWI. This is perhaps due to the 
use of relatively higher spatial and spectral resolution 
of the Sentinel-2 data with Google Earth Engine pro-
cessing. In addition, Sentinel-2’s band characteristics 
and spectral response methods are likely more effec-
tive than Landsat imagery at detecting water bodies 
from the background (Jiang et al., 2021).

In this study, the better-performing WI and 
AWEIsh predicted 82,650 and 86,530 km2 of surface 
waters in Ethiopia, respectively. A slightly higher 
coverage of 91,056 km2 was obtained by extracting 
the Global Surface Water dataset which was devel-
oped by the European Commission’s Joint Research 
Centre (Pekel et al., 2016) (Fig. 5). Also, on a smaller 
domain, our assessment proofed good results. Lake 
Tana and Zeway surface water coverages were 
estimated to 3095 and 408 km2, similar to results 
extracted from the Global Surface Water dataset with 
3132 km2 and 434 km2, respectively (Pekel et  al., 
2016). In other studies, the Lake Tana surface water 
area was estimated to 3041 km2 (Ayele and Atla-
bachew, 2021) and that of Lake Zeway to 418 km2 

Table 2   Heat map of classification accuracies of water indices

Producer 
accuracy

Error of 
omission

Producer 
accuracy

Error of 
omission

User accuracy Error of 
commission

User accuracy Error of 
commis-
sion

Overall 
accu-
racy

Water (%) Non-water (%) Water (%) Non-water (%) (%)

NDWI 85 15 92 8 90 10 92 8 90
MNDWI 92 8 93 7 93 7 93 7 92
AWEInsh 94 6 95 5 93 7 95 5 94
AWEIsh 95 5 96 4 94 6 97 3 95
WI 96 4 97 3 96 4 96 4 96
SWI 91 9 94 6 93 7 94 6 93
LSWI 32 68 84 16 36 66 81 19 78
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between October 2010 and February 2016 (Asfaw 
et al., 2020).

The best-performing indices, WI and AWEIsh, 
were efficient and replicable in Sentinel-2 data using 
Google Earth Engine computing. Even though they 
are specifically designed for Landsat sensors (Feyisa 
et al., 2014; Fisher et al., 2016), they are also effec-
tive in producing high-quality maps for large-scale 
surface water detection using high-resolution Sen-
tinel-2 imagery. Consequently, these methods are 
useful for policymakers, experts and stakeholders in 
water resources monitoring, also in the light of miss-
ing monitoring efforts of SDG6 for Ethiopia.

Ethiopia’s man-made reservoirs have become criti-
cal to the country’s energy and economic develop-
ment, particularly through hydropower projects like 
the Grand Ethiopian Renaissance Dam (GERD). The 
natural lakes of Ethiopia, such as Lake Tana and Lake 
Zeway, are freshwater lakes and have a considerable 
amount of outflow. They have both ecological features 
and cultural significance. They support a variety of 
ecosystems, supporting aquatic life and contributing 
to biodiversity. In addition, natural lakes but also wet-
lands provide ecosystem services such as water filtra-
tion and climate regulation. However, changing land 
use and land cover due to population pressure, water 
scarcity due to contamination, soil erosion, over-
grazed land, and alien species are major problems of 

African lakes (Singh et al., 2006). In the northern and 
western areas of the Lake Ziway, high expansion of 
local and commercial agricultural irrigation is exhib-
ited (Asfaw et al., 2020). Understanding and mitigat-
ing anthropogenic and environmental impacts will be 
critical to achieving a harmonious balance between 
development and conservation as Ethiopia navigates 
the complex interaction of man-made and natural 
water bodies. Water indices per se cannot distinguish 
between man-made (e.g., constructed wetlands, river 
diversions, reservoirs) and natural water surfaces. 
But water indices provide excellent tools for moni-
toring spatial changes in water coverage. Together 
with information of long-term land use, water indices 
could also contribute in the separation of man-made 
versus natural changes in water surface areas. This 
would require a sufficiently long time series of land 
use maps. However, such information is currently not 
available for Ethiopia.

Conclusion

This paper demonstrated the potential of water 
index methods and selected the best-performing 
indices for large-scale surface water detection using 
Sentinel-2 data with Google Earth Engine in Ethio-
pia. Sentinel-2 data processed within Google Earth 

Fig. 5   Extracted map of 
surface water from GSW 
dataset
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Engine has immense potential to provide large-scale 
surface water detection with a very high efficiency, 
accuracy, and temporal frequency, thereby support-
ing water resource monitoring and management. 
The results showed that WI and AWEIsh were the 
best performers in terms of accuracy indicators for 
overall accuracy, producer’s accuracy, and user’s 
accuracy, ranging from 0.94 to 0.97. Applying both 
indices, the WI and AWEI extracted surface water 
areas of 82,650 and 86,530 km2 respectively. The 
results confirmed that WI and AWEIsh indices 
using Sentinel-2 data provide reliable assessments 
of surface water coverage. Utilizing such indices 
could substantially improve the monitoring of the 
country’s reservoirs, which have become critical to 
the country’s energy and economic development. 
These best-performing indices could play a critical 
role in surface water monitoring for water resource 
planners and decision-makers. They provide accu-
rate, timely, and reliable spatial information to 
support informed decision-making, planning and 
development, risk management, and policy formula-
tion related to surface water resources. This would 
be all the more the case if high-temporal resolution 
sequences of remote sensing images were available. 
The application of water indices could also success-
fully contribute to the achievement of SDG 6 at the 
regional level, as they are useful for guiding conser-
vation efforts and the sustainable use and manage-
ment of surface water resources.

However, any approach of surface water detec-
tion that only considers remote sensed imagery has 
difficulties in making future projections of surface 
water coverage, as images are always from the past. 
For future projections, for example, if information 
is needed on climate or land use change effects on 
surface water resources, dynamic variables that 
change over time should complement surface water 
detection. This likely includes hydro-meteorolog-
ical variables from weather forecasts or climate 
projections as well as dynamic land use features of 
land use projections. Such information should be 
fused with satellite imagery to enable future pro-
jections. Machine learning models with data fusion 
techniques, which have recently shown promising 
results for accurate surface water detection over a 
wide range of environmental conditions, are seen as 
having particular potential for this purpose.
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