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Abstract  Reducing emissions from deforestation 
and forest degradation (REDD) is a specific strategy 
for combating deforestation and forest degradation to 
alleviate the effects of climate change. In this study, 
the potential greenhouse gas (GHG) emission reduc-
tion resulting from the implementation of a REDD 
project is estimated. Changes in forest cover through-
out the years 1985, 1990, 1995, 2000, 2010, 2015, 
and 2020 were analyzed using time-series Landsat 
imagery (TM, ETM + , and OLI) and a random for-
est algorithm. Multilayer perceptron neural networks 
were used to model the transition potential of the 
forest cover, which were then predicted via Markov 

chain analysis. The change detection analysis revealed 
two discernible patterns in forest cover dynamics. 
Between 1985 and 2000, a notable decrease in forest 
cover was seen, whereas from 2000 to 2020, it sig-
nificantly increased. The results suggested that the 
absence of REDD implementation would result in 
the deforestation of approximately 199,569 hectares 
of forest cover between 2020 and 2050, leading to 
the release of 1,995,695 tCO2e of emissions into the 
atmosphere. However, with the implementation of 
REDD, these emissions would be reduced to 405,512 
tCO2e, effectively preventing the release of 1,590,183 
tCO2e of emissions into the upper atmosphere. This 
study demonstrates that the implementation of REDD 
projects can be an effective strategy for reducing 
GHG emissions and mitigating climate change in the 
Hyrcanian forests.

Keywords  BioCF · Deforestation · Forest 
conservation · CO2 reduction · Sustainability

Introduction

Global warming is a significant concern for the inter-
national community due to its far-reaching impli-
cations on the environment and the socioeconomic 
progress of societies (Brown et  al., 2021; Haruna 
et  al., 2023). Climate warming can be attributed 
to multiple significant factors, including the emis-
sion of greenhouse gases (GHGs), burning of fossil 
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fuels, deforestation, forest degradation, industrial pro-
cesses, agricultural activities, and land-use changes 
(Roshan et  al., 2021). Forests play a vital role as 
essential ecosystems offering crucial goods and ser-
vices. They regulate and safeguard the quality of air, 
soil, and water while reducing the concentration of 
GHGs and promoting climate stability (Howe et  al., 
2019; Weishou et  al., 2011). The impact of defor-
estation and forest degradation on global warming is 
undeniable (Savaresi, 2016). This disrupts the Earth’s 
energy balance due to the loss of carbon sequestration 
capacity, leading to increased surface temperatures 
and regional warming (Cadman et al., 2019; Corbera, 
2012). Furthermore, deforestation or the degradation 
of forests leads to the release of carbon dioxide (CO2) 
into the atmosphere, heightening the greenhouse 
effect (Savaresi, 2016). The increased CO2 exacer-
bates the natural greenhouse effect, contributing to 
the general warming of the Earth’s climate. This, in 
consequence, disrupts intricate feedback loops, trig-
gering a cascade of effects on climate systems. Addi-
tionally, deforestation contributes to the loss of biodi-
versity and habitat fragmentation, directly impacting 
ecosystem functions and carbon cycling. It is evident 
that swift action is necessary to address deforestation 
and its impact on our planet (Beygi Heidarlou et al., 
2023). Deforestation and land-use/land-cover (LULC) 
changes in developing nations that are necessary for 
timber production and agricultural expansion are the 
primary sources of GHG emissions. The conversion 
of forested areas into non-forested areas in develop-
ing countries significantly affects the accumulation 
of GHGs in the atmosphere  (Olander et  al., 2008). 
Factors such as LULC changes, illegal logging (Zeb 
et  al., 2019), insect outbreaks (van Lierop et  al., 
2015), wildfires (Nasiri et  al., 2022a), bad manage-
ment (Muttaqin et al., 2019), overgrazing (Niu et al., 
2021), and other disturbances contribute to forest loss 
and degradation. These factors hinder the regenera-
tion and recovery of forests, leading to their decline 
and loss (Achard et  al., 2012). Deforestation and 
LULC changes are responsible for around 20% of 
global GHG emissions, exceeding the emissions of 
the transportation sector (Olander et al., 2008).

Deforestation and forest degradation are major 
contributors to the loss of carbon sinks, biodiversity, 
and sustainable land management practices. To com-
bat this, it is vital to accurately and systematically 
monitor deforestation and forest degradation to gain 

essential data on the extent, causes, and patterns of 
forest loss. This information serves as a foundation 
for informed decision-making and the development 
of targeted strategies to mitigate the adverse impacts 
of climate change (Ghanbari et al., 2018; Leon et al., 
2022). The reducing emissions from deforesta-
tion and forest degradation (REDD) strategy is one 
such targeted approach that aims to address defor-
estation and forest degradation to mitigate climate 
change (Muttaqin et  al., 2019). Specifically, REDD 
is a scientific strategy that aims to provide financial 
incentives to developing countries to mitigate GHG 
emissions resulting from deforestation and forest 
degradation. The strategy acknowledges the crucial 
role of forests in sequestering CO2 from the atmos-
phere and incentivizes countries to conserve and 
sustainably manage their forest resources. Within 
the REDD framework, countries that successfully 
reduce deforestation and forest degradation will 
receive financial compensation for their prevented or 
reduced carbon emissions (Pattanayak et  al., 2010). 
These incentives can originate from diverse sources, 
such as international funds, carbon markets, and 
bilateral agreements. Importantly, the REDD strat-
egy extends beyond addressing deforestation and 
forest degradation alone. It encompasses additional 
elements, including forest conservation, sustainable 
forest management, enhancement of forest carbon 
stocks, and ensuring the rights and livelihoods of 
local communities (RRI, 2014; Gilmour, 2016; Mut-
taqin et al., 2019).

The results of the REDD scenario should be exam-
ined for an accurate understanding of the natural 
phenomena in the environment (Gaveau et al., 2013; 
Parker et  al., 2008; Zimmerman & Kormos, 2012). 
In this regard, various researchers have used remote 
sensing datasets and tools based on geographic infor-
mation systems to explore the impact of deforesta-
tion prevention on GHGs emissions and carbon stor-
age. Ty et  al. (2011) in Cambodia researched and 
simulated forest cover changes. They claimed the 
REDD + initiative might save 8.6 million tons of CO2 
from being released. Further, a study conducted in 
Nigeria during 1990–2009 evaluated the severity of 
deforestation. The simulation of the REDD + scenario 
for the year 2040 revealed that under the conservation 
scenario, the storage of 1,606,147 tCO2e and preven-
tion of its emission could be achieved (Bununu et al., 
2016). Similarly, a study conducted in Indonesia 
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assessed the emission of greenhouse gases resulting 
from deforestation. The simulation results indicated 
that the implementation of REDD + could decrease 
carbon emissions from 26 million tCO2e to 18 mil-
lion tCO2e (Nahib & Suwarno, 2018). Another study 
by Parsamehr et al. (2019) evaluated changes in forest 
cover and carbon reserves in certain parts of Iran. The 
results of the study suggested that 705,336 tCO2e 
would be emitted into the atmosphere by 2044 under 
the baseline scenario. This literature review reveals 
the complexity of the relationship between defor-
estation, GHG emissions, and global warming, with 
variations observed across different regions. Defor-
estation trends in various parts of the world have been 
extensively studied. However, a notable research gap 
exists concerning the Hyrcanian forests, a unique 
region whose specific dynamics and deforestation 
effects warrant investigation.

Temperate deciduous forests are scarce and lim-
ited in the arid and semi-arid Middle East. The Hyr-
canian ecoregion, situated on the southern coast of 
the Caspian Sea in northern Iran, is the most nota-
ble area where these forests can be found (Gholiza-
deh et  al., 2020). The Hyrcanian forests, spanning 
over an area of approximately 55,000 km2 along the 
southern coast of the Caspian Sea, provide a wide 
range of ecosystem services. These services include 
climate regulation, human health benefits, wildlife 
habitats, tourism and recreation opportunities, nutri-
ent cycling, erosion control, biodiversity conserva-
tion, disturbance regulation, and freshwater supply 
(Asadolahi et  al., 2017). The Hyrcanian forests are 
known for their Arcto-Tertiary relict elements, which 
hold significant phytogeographical importance. But, 
due to the rising human activities in this region, the 
conservation of these forests has become a major con-
cern. As a result, in 2019, the Hyrcanian forests were 
recognized as a UNESCO World Heritage property, 
emphasizing the need to protect and preserve this 
threatened forest zone (Ghorbanalizadeh & Akhani, 
2022).

In short, the intricate relationship between defor-
estation, greenhouse gas emissions, and global warm-
ing demands urgent attention and decisive action. As 
we navigate the challenges posed by deforestation 
globally, it is essential to extend our focus to unique 
ecosystems like the Hyrcanian forests, recogniz-
ing their ecological significance and the need for 
preservation. Embracing strategies such as REDD 

provides a pathway toward mitigating climate change 
by addressing the root causes of deforestation. In this 
regard, this study aims to address the mitigation of 
global warming by focusing on GHG emission reduc-
tion. Specifically, the potential impact of the imple-
mentation of a REDD project within the protected 
area of Kojoor, located in the Hyrcanian forests, north 
Iran, is modeled. The effectiveness of the REDD 
framework in reducing GHG emissions in the Hyrca-
nian forests is assessed. Through the visualization of 
areas at risk of substantial deforestation, habitat frag-
mentation, and carbon stock depletion by 2050, our 
scientific investigation provides valuable insights for 
decision-making processes and future land-use plan-
ning, particularly in relation to the preservation of the 
Hyrcanian forests, which hold significant world herit-
age value.

Material and methods

Study area

This study was conducted within the Kojoor water-
shed (Fig. 1), a protected area in the Hyrcanian for-
ests, north Iran. The study site is notable for its 
diverse topography, elevated altitude, and humid 
subtropical climate, which exhibits distinct seasonal 
variations (Fig.  1). The altitude of the area ranges 
from 432 to 3800 m (2002 m on average) above sea 
level. The region receives an annual average precipi-
tation of approximately 869 mm; the maximum value 
is observed in October, and the minimum is in Feb-
ruary. The landscape mostly consists of the Hyrcan-
ian forests; some parts are pastures and agricultural 
lands. The Hyrcanian forests, a World Heritage Site, 
are mainly covered by deciduous trees, such as com-
mon hornbeam, oak, Persian ironwood, and Oriental 
beech (Nasiri et al., 2023a, b). The Hyrcanian forests 
are also home to a variety of wildlife, including bears, 
leopards, wolves, wild boars, and different types of 
birds. These forests provide habitats and ecosystems 
for these animals and many plant species (Darvishse-
fat, 2006). The Central Alborz Protected Area, which 
has an area of ​​399,000 ha and is one of the most 
valuable regions of Iran in terms of gene and spe-
cies diversity, was added to a list of protected areas 
in the world after the approval of the Supreme Envi-
ronmental Council of Iran in 1967. The existence of 
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four forest reserves in the protected area of ​​Kojoor is 
another sign of the value of the forests in this region, 
especially for the protection of Cupressus sempervi-
rens, Buxus hyrcanus, and Alnus glutinosa (Meteoro-
logical Organization of Iran, n.d.).

Remote sensing datasets and LULC maps

Accurate LULC maps are the first component of 
such studies of deforestation (Nasiri et al., 2022b). 
This requires remote sensing, which can interpret 
massive amounts of spatial and temporal data (Man-
sourihanis et  al., 2023; Taherizadeh et  al., 2023a, 
b). Based on our research objectives and methodol-
ogy, LULC maps were used to (1) create an accurate 
forest/non-forest mask to model the effect of REDD 
implementation and (2) map the driving forces of 
LULCCs. We used the capabilities of the Google 
Earth Engine cloud computing platform to process 
multisensor Landsat data. As the primary step in 
LULC mapping, a multitemporal reference dataset, 
including training and validation samples, was gen-
erated based on in  situ recording using the Global 
Positioning System and the visual interpretation 

of aerial and very-high-resolution (VHR) Google 
Earth images. Field surveys were performed in the 
summer of 2020 to collect precise samples, which 
were grouped in classes with a high level of spectral 
similarity (Table 1); for the other time points, these 
samples were overlaid with the abovementioned 
VHR images, and a revision process was conducted. 
For each time point (1985, 1990, 1995, 2000, 2010, 
2015, and 2020), a total of 800 samples represent-
ing six LULC classes were collected: forests, range-
lands, croplands, barren lands, artificial lands, and 

Fig. 1   Geographical location of the study area

Table 1   The characteristics of the reference dataset for the 
year 2020 (pixel size = 30 m)

LULC Training samples Validation samples

Sample no Pixel no Sample no Pixel no

Forest 154 1386 66 594
Rangeland 98 882 42 378
Cropland 98 882 42 378
Barren lands 63 567 27 243
Artificial lands 84 756 36 324
Water bodies 63 567 27 243
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water bodies. The samples in the reference dataset 
were randomly divided into training (70%) and test-
ing (30%) subsets.

As for the classification features, at each time point, 
we created an image collection based on all the Landsat 
images captured during the growing season (from April 
to September) and calculated pixel-wise spectral–tem-
poral metrics (STMs) based on the resulting image col-
lections. In addition to the spectral bands, common veg-
etation indices, namely, the difference vegetation index 
(DVI), normalized DVI (NDVI), and enhanced vegeta-
tion index, were used to distinguish different vegetation 
types and perform LULC mapping (Kordi & Yousefi, 
2022; Rahmanian et al., 2023). Finally, STMs were cal-
culated as the median, standard deviation, minimum, 
maximum, and percentile (25th, 50th, and 75th) val-
ues for all bands and vegetation indices (Table 2). For 
further analysis, the LULC map was classified into two 
distinct classes: forest and non-forest.

The training samples (Table  1) and STMs 
(Table  2) were used to train a random forest (RF) 
model for LULC classification. The RF model, 
rooted in decision trees, demonstrates exceptional 
performance in analogous studies owing to its abil-
ity to effectively differentiate and map classes shar-
ing similar spectral attributes (Chang et  al., 2020; 
Nasiri et  al., 2023a, b; Yin et  al., 2021). Unlike 
alternative methods, RF demands less compu-
tational time, has fewer parameters to tune, and 
exhibits adeptness in managing multi-modal data. 
The effectiveness of the RF model correlates with 
its hyperparameters employed during training. 
These parameters can be fine tuned to enhance the 
learning process and generate more precise models. 
In this study, we utilized the GEE-based hyperpa-
rameter optimizer to ascertain the optimal value 
for “ntree” (the number of trees). The alteration in 

accuracy assessment served as a criterion for deter-
mining this parameter. Ultimately, “ntree” was set 
to 500 for model training and classification.

Change detection, transition potential, and LULC 
prediction

During the study period, the multitemporal LULC 
maps were used to identify and track deforested 
areas. Markov chain analysis was conducted to pre-
dict future LULCCs, and the predictions were sub-
sequently utilized as input data to analyze GHG 
emissions under the REDD project in the coming 
decades. The probability of changing the land cover 
of a system into a situation (changing the land cover 
of a system at a particular time) at a particular time 
( t2 ) was obtained from information about the same 
system in the past ( t1 ) and did not depend on infor-
mation from times before t1 , as such a transition is a 
one-time process (Eq. 1). The primary assumption in 
Markov chain analysis is that future land-use changes 
are primarily influenced by past trends or patterns in 
land-use changes. This assumption is rooted in the 
idea that the transition probabilities between land-use 
categories remain consistent over time based on his-
torical observations. Essentially, the model assumes 
that the probabilities of transitioning from one land-
use class to another are determined by the historical 
sequence of changes. This assumption of persistence 
or dependency on past trends forms the core principle 
of the Markov chain model in this study and guides 
our predictive capability. In the Markov model, the 
LULCC at t2 was obtained using its distribution at 
t1 by calculating the transition matrix. The Markov 
chain is expressed as Eq. (2) (Eastman, 2003; Rajitha 
et al., 2010).

Table 2   Details of image collections and features used for LULC mapping

Sensor Image no Features (STMs) Feature No

1985 Landsat-5, TM 10 Median, standard deviation, minimum, maximum, and percentiles (25th, 50th, 
and 75th)

63
1990 Landsat-5, TM 19
1995 Landsat-5, TM 27
2000 Landsat-7, ETM +  14
2010 Landsat-5, TM 25
2015 Landsat-8, OLI 22
2020 Landsat-8, OLI 28
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In this equation, vt1 is the land cover vector at t1 , 
vt2 is the land cover vector at t2 , and M is the tran-
sition probability matrix m × m for the time interval 
Δt = t2 − t1.

The probability of transition between two states 
( Pij ) is calculated using Eq. (3).

where ni is

Here, nij is the number of pixels of class i at t1 that 
are changed into pixels of class j at t2 and q is the 
total number of classes.

The Markov chain had three outputs. The model 
generated a transition probability matrix and a tran-
sition area matrix to show the probability of class 
changes and the number of pixels that may be con-
verted into pixels of other classes. The model also 
generated a set of status probability images to indi-
cate the position of each landcover (Fan et al., 2008; 
Pontius, 2000). Various biophysical variables were 
considered: elevation; slope; aspect; and distance 
from forests, rangelands, croplands, artificial lands, 
water bodies, and roads. The elevation, slope, and 
aspect layers were generated based on the shuttle 
radar topography mission digital elevation model. 
The distance between LULC classes was calculated 
based on the multitemporal LULC maps, and the dis-
tance between roads was calculated based on a road 
map obtained from the National Cartographic Center 
of Iran. The artificial neural network (ANN) model 
utilized actual changed pixels from the last time point 
for both training and testing data (dependent vari-
ables) (Roy et al., 2022; Ding et al., 2023; Mokayed 
et al., 2023; Preethi & Mamatha, 2023). The driving 
forces mentioned earlier served as explanatory vari-
ables (independent variables). This approach led to an 
iterative model calibration process, where the training 
data enabled the model to estimate change potential 
in areas without samples. The model computed train-
ing RMSE and testing RMSE errors, enabling accu-
rate monitoring of the calibration process. Lower 
testing errors during iterations signified effective 

(1)vt2 = Mvt1

(2)Pij =
nij

ni
,

(3)ni =

q
∑

j=1

nij.

model training, ensuring its readiness for predictive 
use. Additionally, setting stopping criteria, includ-
ing RMS = 0.01 and iterations = 1000, was crucial for 
successful model calibration.

For the prediction of future LULCCs, we used 
historical LULC data and transition probability 
maps and performed Markov chain analysis to sim-
ulate LULC maps for two time points: 2010 (based 
on LULCCs observed from 1985 to 2000) and 2020 
(based on LULCCs observed from 2000 to 2010). To 
assess the accuracy of our simulations, we compared 
the simulated LULC maps with the classified LULC 
maps (“Remote sensing datasets and LULC maps” 
section) using three agreement metrics, namely, Kno , 
Klocation , and Kquantity (Eqs. 4–6).

The observed proportion correct, denoted as P0 , 
measures the accuracy of the results. NQNL repre-
sents the expected proportion correct in cases without 
quantity and location information. MQNL indicates 
the percentage of correct outcomes when there is a 
moderate ability to specify the quantity but no abil-
ity to specify the location. MQPL represents the per-
centage of correct outcomes when there is a moderate 
ability to specify the quantity and a perfect ability to 
specify the location. NQML indicates the percent-
age of correct outcomes when there is no ability to 
specify the quantity and a moderate ability to specify 
the location (for additional details, see Pontius, 2000). 
Following the accuracy assessment of the simulated 
LULC maps, we used all observed changes to forecast 
LULCCs up to 2050.

REDD scenario modeling based on BioCF approach

The BioCF method, proposed by the BioCarbon Fund 
in 2008, provides a framework for estimating the 
carbon sequestration potential of deforestation and 
reforestation projects under the REDD framework. 
This method involves a scenario modeling approach 

(4)Kno =
P0 − NQNL

1 − NQNL

(5)Klocation =
P0 −MQNL

MQPL −MQNL

(6)Kquantity =
P0 − NQML

PQML − NQML
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that considers various factors that influence car-
bon sequestration in forested areas. To establish the 
REDD baseline, it is crucial to delineate the project 
area and leakage belt. The project coverage is divided 
into the project implementation area for forest protec-
tion and the leakage belt where deforestation occurs. 
The objective within the project area is to counteract 
factors leading to forest destruction, thereby inhibit-
ing their spread to the leakage belt. This approach 
aims to prevent deforestation over time in regions 
with substantial forest coverage that are vulnerable 
to degradation. Figure  2 shows the REDD scenario 
modeling process based on the BioCF method (Fund, 
2008). The studied REDD project followed a 30-year 
projection, incorporating periodic assessments every 
5 years. Carbon reporting was conducted based on 
these specific time intervals. The GHG emission 
reduction was calculated by subtracting the esti-
mated carbon savings achieved through the REDD 
project intervention, including the estimated carbon 
losses resulting from leakage, from the estimated 
carbon loss that would occur without the REDD 
project(Ramachandra & Setturu, 2020). This carbon 
loss was specifically associated with LULCCs. The 
formula used for this calculation is

C − Baseline represents the GHG emissions 
within the project area, C − Actual represents the 
actual GHG emissions observed in the same area, 
C − Leakage represents the GHG emissions result-
ing from leakage, and C − REDD represents the net 
reduction in anthropogenic GHG emissions attributed 
to the REDD project. All measurements are expressed 
in metric tons of CO2 equivalent (tCO2e).

Results

Accuracy assessment of LULC maps

The accuracy assessment of the LULC maps shows 
that the generated features and RF model can produce 
reliable sources for further analysis. The overall accu-
racy and kappa coefficient for all time points range 
from 87.78 to 92% and from 0.8 to 0.86, respectively. 
Per class, the F1 score for forests ranges from 92.52 
to 94.31, indicating that the forest cover is mapped 
with high accuracy.

(7)
C − REDD = (C − Baseline) − (C − Actual) − (C − Leakage).

Fig. 2   REDD scenario modeling based on the proposed BioCF method (Fund, 2008)
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Change detection analysis

The forest area in the study area was calculated 
based on the multitemporal LULC maps (Figs.  3  
and 4). The result shows that the forest area ranges 
between 65,586 and 92,731 ha (all values rounded 
to hectare). Moreover, the change detection results 
reveal two general trends in forest cover changes: 
a decline from 1985 to 2000 and an increase 
from 2000 to 2020. The highest forest recovery 
(8.91%) occurs between 2000 and 2010. By con-
trast, the highest deforestation (− 9.87%) appears 
in 1990–1995. In general, during the study period 
(1985–2020), the forest area increases by 8251 ha.

Projected LULC maps

The projected LULC maps based on the MLP and 
Markov chain analysis are presented in Fig. 5. Con-
sidering the change trajectories of the forest cover 
between 1985 and 2020 and based on the variables 
used for transition potential modeling, the forest area 
in the study area is expected to expand. Table 3 dis-
plays the accuracy assessment results of the projected 
LULC maps. The models perform strongly in predict-
ing forest covers based on past changes. The Kloca-
tion metric ranges between 0.956 and 0.971, indicat-
ing a high level of accuracy in locating forested areas. 
Similarly, the Kquantity metric ranges between 0.980 

Fig. 3   Forest cover dynam-
ics (area) during the during 
the study time period

Fig. 4   Changes in forest 
cover at different time 
points
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Fig. 5   Land use plan envisaged in the REDD project area
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and 0.993, demonstrating precise estimation of the 
forest cover quantity. These results signify the effec-
tiveness of the models in accurately predicting forest 
covers based on historical data.

Scenario modeling

According to Fig.  6, the long-term average (2020 
to 2050) deforestation rates in the leakage belt (the 
“leakage belt” typically refers to the area surround-
ing a conservation or deforestation prevention pro-
ject site) and the project area (the “project area” is 
the specific geographic region or location where 
a conservation or deforestation prevention project 
is implemented) are 15.12 and 188.08 ha per year, 
respectively, but this trend shows short-term changes. 
The average deforestation amounts for 2020–2022 
are − 8.28 and 211.48 ha for the leakage belt and the 
project area, respectively. From 2026 to 2032, the 
averages are 17.42 and 185.77 ha for the leakage belt 
and the project area, respectively. Finally, from 2034 
to 2050, these values reach 46.60 and 156.60 ha, 
respectively.

According to Fig. 7, the 30-year average amount of 
carbon sequestration due to the conversion of forests 
into non-forest areas in the project area is approxi-
mately 105.254 thousand tons, and the 30-year aver-
age amount of CO2 emissions in the project area is 
approximately − 9.449 tons. Over the 30 years, the 
changes show a discernible pattern. During the initial 
5 years of project implementation, the conversion of 
forests into non-forest areas results in 118.655 thou-
sand tons of carbon sequestration. In the next 5 years, 
the carbon sequestration amount increases to 138.987 
thousand tons. In the third 5-year interval, the seques-
tration amount declines to 104.234 thousand tons, fol-
lowed by a further decrease to 92.479 thousand tons 
during the fourth 5-year span. Within the fifth 5-year 
period, carbon sequestration reaches 90.934 thousand 
tons, and in the last 5 years, it amounts to 87.864 
thousand tons. The CO2 emissions in the project area 
change by the following amounts: − 10.6, − 12.446, − 
9.334, − 8.281, − 8.143, and 7.868 thousand tons in 
the first, second, third, fourth, fifth, and sixth 5-year 
periods, respectively.

Figure  8 depicts two completely different trends 
from 2020 to 2050. The minimum amount of CO2 
emissions is equal to − 8.646 tons (2020), and the 
maximum amount is 254.5552 tons (2050). Affected 
by the lack of implementation of the BioCF method 
in the leakage belt, the cumulative carbon sequestra-
tion amount due to forest to non-forest conversion in 
the leakage belt (red curve) decreases from 2020 to 
2027 but shows an upward trend from 2028 to 2050. 

Table 3   Accuracy assessment of predicted forest cover maps

Simulate forest 
covermap

Kno Klocation Kquantity

2010 0.994 0.971 0.993
2020 0.993 0.956 0.980

Fig. 6   The rate of defor-
estation in the leakage belt 
and the project area under 
the BioCF methodology per 
year per hectare
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The cumulative amount of CO2 emissions in the leak-
age belt (blue curve) increases from 2020 to 2027 but 
declines from 2028 to 2050. The amount of CO2 emis-
sions in this period is approximately − 755 tons, and 
the amount of carbon sequestration due to the conver-
sion of forests into non-forest areas is 8.432 tons. This 
change occurs because with an increase in forest to 
non-forest conversion, the percentage of CO2 emitted 
into the atmosphere decreases by the same amount.

According to Table 4, the actual amount of carbon 
emissions in the REDD scenario in the project area 
reduces from 108,030 tons per year in 2020 to 79,995 
tons in 2050. Between 2020 and 2022, the trend of 
carbon emissions is projected to stabilize, undergoing 
no significant change. Between 2023 and 2027 (sec-
ond 5-year period of project implementation), this 
trend increases again. Thus, in this period, this trend 

is increased by moving some processes and control-
ling the whole project area from nondeforestation. 
Gradually, beginning in the third 5-year period, the 
emissions decrease. This prevents the emission of a 
considerable amount of carbon into the atmosphere.

According to Table 5, which shows the CO2 emis-
sion reduction due to the relocation of some defor-
estation activities in the project area in the REDD 
scenario, the average amount of CO2 emissions in 
the project area over the first 5 years (2020–2022) 
is 149,082 tons. In the second 5-year period 
(2023–2027), the average amount of CO2 emissions 
in the project area is 476,242 tons; in the third 5-year 
period (2027–2032), 855,850 tons; in the fourth 
5-year period (2033–2037), 1,209,765 tons; in the 
fifth 5-year period (2038–2042), 1,543,179 tons; in 
the sixth 5-year period (2043–2050), 1,867,633 tons.

Fig. 7   Diagram of CO2 emissions and carbon sequestration in the leakage belt under BioCF methodology per year in terms of ton

Fig. 8   Cumulative diagram 
of CO2 emission and 
carbon sequestration in the 
leakage belt under BioCF 
methodology—red diagram 
is the cumulative amount of 
carbon sequestration due to 
forest to non-forest conver-
sion in the leakage belt 
and the blue diagram is the 
cumulative CO2 emission 
in the leakage belt under 
BioCF methodology
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As seen in Table  5, the average CO2 emission 
reduction in the leakage belt in the REDD scenario 
is 64,818 tons in the first 5 years (2020–2022), 
183,954 tons in the second 5-year period 
(2023–2027), 263,041 tons in the third 5-year 
period (2027–2032), 307,280 tons in the fourth 
5-year period (2033–2037), 348,957 tons in the fifth 

5-year period (2038–2042), and 389,813 tons in the 
sixth 5-year period (2043–2050).

Table  6 shows that the amount of inhibited CO2 
emissions increases from 36,730 tons in 2020 to 
481,134 tons in 2050, which is a significant amount 
compared with the amount before project implemen-
tation. This process will promote the move of the area 

Table 4   The amount of 
actual carbon emissions 
under the project 
implementation. (A) CO2 
emissions in the BioCF 
project area over the 
next 30 years; (B) actual 
carbon emissions in the 
REDD project area + CO2 
emissions due to relocation 
of some deforestation 
activities under the REDD 
project

Year A tCO2e B tCO2e Year A tCO2e B tCO2e Year A tCO2e B tCO2e

2020 108,030 51,062 2030 94,900 78,010 2040 82,791 68,056
2021 108,030 51,062 2031 94,900 78,010 2041 82,791 68,056
2022 108,030 51,062 2032 94,900 78,010 2042 82,791 68,056
2023 126,541 78,015 2033 84,198 69,213 2043 79,995 65,759
2024 126,541 78,015 2034 84,198 69,213 2044 79,995 65,759
2025 126,541 78,015 2035 84,198 69,213 2045 79,995 65,759
2026 126,541 78,015 2036 84,198 69,213 2046 79,995 65,759
2027 126,541 78,015 2037 84,198 69,213 2050 79,995 65,759
2028 94,900 78,010 2038 82,791 68,056
2029 94,900 78,010 2039 82,791 68,056

Table 5   Reduction of CO2 
emissions due to relocation 
of some deforestation 
activities in the project 
area under REDD scenario. 
(A) CO2 emission rate 
due to relocation of some 
deforestation activities 
under the project; (B) CO2 
emissions in the leakage 
belt

Year A tCO2e B tCO2e Year A tCO2e B tCO2e Year A tCO2e B tCO2e

2020 149,082 64,818 2030 855,850 263,041 2040 1,543,179 348,957
2021 198,776 86,424 2031 931,770 272,531 2041 1,609,412 357,236
2022 248,470 108,030 2032 1,007,690 282,021 2042 1,675,644 365,515
2023 324,394 133,338 2033 1,075,048 290,441 2043 1,739,641 373,515
2024 400,318 158,647 2034 1,142,406 298,860 2044 1,803,637 381,514
2025 476,243 183,955 2035 1,209,765 307,280 2045 1,867,633 389,514
2026 552,167 209,263 2036 1,277,123 315,700 2046 1,931,630 397,513
2027 628,092 234,571 2037 1,344,481 324,120 2050 1,995,626 405,513
2028 704,011 244,061 2038 1,410,714 332,399
2029 779,931 253,551 2039 1,476,947 340,678

Table 6   The amount of 
tCO2e inhibited in the 
atmosphere during the 
implementation of the 
REDD project. (A) CO2 
emissions in the project 
area under the BioCF 
methodology over the next 
30 years; (B) actual carbon 
emissions in the project 
area under the REDD 
scenario

Year A tCO2e B tCO2e Year A tCO2e B tCO2e Year A tCO2e B tCO2e

2020 324,091 110,191 2030 1,457,553 338,662 2040 2,316,714 424,578
2021 432,121 146,921 2031 1,552,453 348,152 2041 2,399,505 432,857
2022 540,151 183,651 2032 1,647,352 357,642 2042 2,482,296 441,136
2023 666,692 208,960 2033 1,731,550 366,062 2043 2,562,291 449,136
2024 793,233 234,268 2034 1,815,748 374,482 2044 2,642,286 457,135
2025 919,773 259,576 2035 1,899,946 382,901 2045 2,722,282 465,135
2026 1,046,314 284,884 2036 1,984,144 391,321 2046 2,802,277 473,134
2027 1,172,855 310,192 2037 2,068,342 399,741 2050 2,882,273 481,134
2028 1,267,754 319,682 2038 2,151,133 408,020
2029 1,362,654 329,172 2039 2,233,923 416,299
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toward reforestation, biodiversity conservation, and 
the implementation of Kyoto Protocol policies, thus 
paving the way for a sustainable (a sustainable pro-
cess that long-term health and resilience of ecosys-
tems, reduces greenhouse gas emissions, and supports 
the well-being of communities), clean process (in the 
context of the Kyoto Protocol, a “clean process” may 
involve actions that reduce or mitigate greenhouse gas 
emissions, such as transitioning to renewable energy 
sources, improving energy efficiency, and implement-
ing carbon capture and storage technologies).

Discussion

In this study, we aimed to assess the impact of imple-
menting REDD on deforestation patterns and GHG 
emissions. Deforestation is the permanent removal of 
forests, whereas forest degradation refers to declines in 
forest quality and vitality (Houghton, 2012). Monitor-
ing these two phenomena necessitate distinct method-
ologies and considerations. Our study focuses solely on 
deforestation while acknowledging the need for future 
investigations of the effects of forest degradation. 
Our methodology begins with the generation of pre-
cise multitemporal LULC maps. To accomplish this, 
we used innovative techniques leveraging time-series 
satellite imagery, which allowed us to extract spec-
tral–temporal features. These features were then uti-
lized to train an RF model for the production of LULC 
maps. We evaluated the accuracy of the generated 
LULC maps, and the findings affirmed their suitability 
for our subsequent analyses. An RF model was selected 
in this study because of its established superiority over 
alternative classification methods, including maximum 
likelihood methods, support vector machines, and 
neural networks, as validated by prior investigations 
(Adugna et al., 2022; Kamal et al., 2022).

Change detection analysis provided valuable 
insights into forest cover dynamics. Overall, we 
found a net increase of 8251 ha in forest cover from 
1985 to 2020. We observed two distinct trends: a 
decline in forest cover from 1985 to 2000 and an 
increase from 2000 to 2020 (Fig.  3). The highest 
rate of forest recovery (8.91%) occurred between 
2000 and 2010. By contrast, the 1990–1995 period 
exhibited the most extensive deforestation, showing 
a loss of − 9.87% of forested areas. The observed 
decline in forest cover during the period from 1985 

to 2000 raises questions about the potential drivers 
of deforestation during this timeframe. Investigat-
ing the socio-economic, land-use, and policy factors 
influencing this particular period may offer valuable 
insights into the drivers of deforestation and inform 
targeted conservation efforts. Nasiri et  al., (2023a, 
b) employed a modeling approach to explore the 
factors influencing deforestation and forest recovery 
in the Hyrcanian forests. Their findings highlighted 
that population growth, urbanization, and climate 
change emerged as particularly influential factors 
contributing to deforestation in the Hyrcanian for-
ests. Also grazing and tourism activities are the 
main drivers of deforestation in the Hyrcanian for-
ests (Jahanifar et al., 2020; Shooshtari et al., 2018).

Grazing substantially affects deforestation. 
Directly, it induces forest removal or degradation as 
animals exceed the land’s regenerative capacity by 
consuming vegetation. Indirectly, grazing contrib-
utes to deforestation through forest clearance for pas-
ture or feed crop cultivation (Erb et al., 2016; Godde 
et  al., 2018). Moreover, trampling and soil compac-
tion resulting from grazing activities intensify soil 
erosion and degradation, impeding forest regeneration 
(Ligate et al., 2018). Tourism activities can contribute 
to deforestation through infrastructure development, 
land-use changes, unsustainable resource consump-
tion, forest fragmentation, and illegal activities (Nasiri 
et al., 2018). However, well-managed ecotourism ini-
tiatives can promote forest conservation and provide 
alternative livelihoods. Therefore, sustainable prac-
tices should be adopted, local communities should be 
engaged, and regulations should be enforced to ensure 
that tourism benefits forests and minimizes deforesta-
tion. Conversely, the period from 2000 to 2020 stands 
out for its positive trajectory, showing a significant 
increase in forest cover. Understanding the factors 
contributing to this resurgence is crucial for both con-
servation and sustainable land management practices. 
The observed positive changes suggested a transition 
from unsustainable forest management practices to 
more sustainable approaches or the establishment of 
a balanced utilization of forests by local communities. 
According to Nasiri et al., (2023a, b), the implemen-
tation of the Forest Rest Plan (FRP) as a conserva-
tion policy in the Hyrcanian forest has shown promise 
in arresting deforestation trends and fostering forest 
recovery, particularly in regions with high levels of 
protection and ongoing restoration initiatives.
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Regarding the deforestation trend in the leakage 
belt and the project area under the BioCF method, 
the results showed varying averages across differ-
ent periods. In 2020–2022, the leakage belt (project 
area) had an average deforestation amount of − 8.28 
ha (211.48 ha). The observed increase or decrease in 
GHG emissions within the leakage belt and the pro-
ject area corresponded to the presence or absence of 
prevention measures. These emissions have direct 
implications for regional biomass dynamics and the 
potential extinction of valuable animal and plant spe-
cies. Additionally, these emissions contribute to the 
exacerbation or mitigation of climate change impacts 
in a reciprocal manner.

In summary, REDD projects incentivize forest con-
servation and emission reduction to mitigate climate 
change; they can also significantly slow the extinc-
tion rate of forest species (Busch et  al., 2011). This 
includes ensuring that local people and communities 
are informed about such projects and are consulted 
in the decision-making process; project outcomes are 
also rigorously monitored. Additionally, REDD pro-
jects should be integrated with other activities, such 
as sustainable land-use management and biodiversity 
conservation efforts. The conservation and restoration 
of natural forests can be highly effective (Milne et al., 
2019). The Iranian Parliament endorsed the Forest 
Rest Plan in 2016 within this framework. The plan 
prohibits all commercial and industrial wood harvest-
ing in the Hyrcanian forests to mitigate their defor-
estation and enhance their vegetation, resilience, and 
productivity. The successful implementation of this 
conservation plan and the implementation of REDD 
in the Hyrcanian forests are anticipated to decrease 
the GHG emissions of the forests.

As shown by 40 voluntary projects across nine 
countries, REDD projects effectively decrease defor-
estation and forest degradation relative to the first 5 
years of their implementation (Guizar-Coutiño et al., 
2022). Within the Hyrcanian forests, as evidenced by 
a study conducted in the Nowshahr and Noor forests 
(Parsamehr et  al., 2023), the results of REDD base-
line modeling reveal a projected release of 827,591.5 
metric tons of carbon dioxide equivalent (tCO2e) 
over the next 30 years (2014–2044). However, the 
implementation of the REDD project in these areas 
is anticipated to significantly curtail this release, pre-
venting the emission of approximately 584,056.38 
tCO2e during the same period. In another study 

conducted in Iran, Delpasand et  al. (2022) assessed 
the transformations in the Zagros Forest cover over a 
20-year period and forecasted the potential outcomes 
of implementing the REDD + project in the forthcom-
ing two decades. The study reveals a loss of 37,809 
hectares of forest cover during the past two decades, 
with an associated increase in greenhouse gas emis-
sions. However, promisingly, the implementation of 
the REDD + project is anticipated to avert the release 
of approximately 1,714,534.13 metric tons of carbon 
dioxide equivalent (tCO2e), offering a significant 
positive impact on emission reduction and forest con-
servation in the region. Therefore, similar to previous 
studies in Iran, our findings provide valuable insights 
into the potential impact of implementing REDD pro-
jects in Iranian forests. This indicates that the REDD 
initiative has the potential to play a crucial role in 
mitigating carbon emissions and promoting sustain-
able forest management in the Hyrcanian. Further-
more, the implementation of the BioCF method in 
the leakage belt improved the carbon sequestration 
rate due to the conversion of forests into non-forest 
areas and the reduction of CO2 emissions. Therefore, 
the BioCF method should be used more efficiently to 
reduce the negative impacts of deforestation on the 
environment.

However, this method has limitations and prob-
lems. Major obstacles to REDD implementation 
stem from the need for substantial international com-
mitment to climate change reduction and increased 
carbon financing (Sunderlin et  al., 2015). The com-
plexity and cost of measuring and monitoring for-
est carbon stocks may limit the efficacy of REDD 
initiatives. REDD projects require significant funds, 
which may be difficult to obtain for many countries. 
Moreover, the success of REDD projects may be con-
strained by the uncertainty of their long-term finan-
cial viability. Another hindrance is the possible lack 
of an overall reduction in emissions. For instance, 
if a REDD project slows down deforestation in one 
location, leakage (the movement of emissions from 
one area to another) can increase in another. Overall, 
although REDD can be an essential tool against cli-
mate change, these limitations should be addressed to 
maximize its benefits.

The conceptual model in Fig.  9 shows climate 
change mitigation through the implementation of 
REDD projects that incentivize sustainable forest 
management practices in the Hyrcanian forests, north 



Environ Monit Assess (2024) 196:474	

1 3

Page 15 of 19  474

Vol.: (0123456789)

Iran. The conceptual model of REDD projects is 
based on several fundamental principles, such as an 
understanding of the importance of forests for miti-
gating climate change, the need to address the root 
causes of deforestation and forest degradation, and 
the significance of involving local communities in 
project planning and implementation. The need to 
address the underlying causes of deforestation and 
forest degradation is a critical element of this concep-
tual model. This model also emphasizes the impor-
tance of involving local populations in the planning 
and execution of REDD programs. By reducing GHG 
emissions and promoting biodiversity and ecosystem 
services, the approach presented in Fig.  9 can con-
tribute to the global effort to address climate change 
while benefiting local communities and improving 
forest health and resilience.

Finally, based on our findings, in order to safe-
guard the Hyrcanian forests through the REDD pro-
ject, we propose several practical recommendations:

1.	 Strengthen monitoring and surveillance systems 
to efficiently identify and deter illegal logging, 
encroachments, and other activities that contrib-
ute to deforestation.

2.	 Employ advanced technologies, such as satellite 
imagery and remote sensing, for real-time moni-
toring of changes in forest cover.

3.	 Engage local communities in the decision-making 
process and the implementation of conservation 
measures. Their active involvement can signifi-
cantly contribute to sustainable forest management.

4.	 Execute community-based initiatives that offer 
alternative livelihoods and economic opportuni-
ties, reducing reliance on forest resources.

5.	 Allocate resources for reforestation and affores-
tation projects aimed at restoring degraded areas 
and enhancing overall forest cover.

6.	 Prioritize native and endemic species in reforest-
ation efforts to preserve the ecological diversity 
of the Hyrcanian forests.

Conclusion

The primary objective of this study is to combat the 
pressing issue of global warming by strategically tar-
geting the reduction of GHG emissions. Specifically, it 
delves into the potential impact of executing a REDD 
project within the protected area of Kojoor, situated 

Fig. 9   Climate change mitigation through the implementation of REDD + projects
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in the Hyrcanian forests of northern Iran. By focus-
ing on the implementation of the REDD framework, 
this research endeavors to gauge its efficacy in curbing 
GHG emissions within the Hyrcanian forests. Despite 
its regional focus on Kojoor, the implications and out-
comes derived from this study can be extrapolated to 
benefit other areas within the Hyrcanian forests and 
similar ecological sites globally. The study’s findings 
underscore a crucial insight: in the absence of REDD 
implementation, the trajectory would lead to defor-
estation, consequently resulting in the release of sig-
nificant amounts of CO2-equivalent emissions into the 
atmosphere. However, the implementation of REDD 
emerges as a pivotal intervention capable of counter-
acting this detrimental trend. It effectively mitigates 
emissions, preventing the release of CO2-equivalent 
emissions into the upper atmosphere. This research not 
only highlights the potential catastrophic consequences 
of deforestation but also showcases the substantial 
positive impact that strategic initiatives like REDD can 
have in preserving these vital ecosystems and mitigat-
ing the adverse effects of climate change on a broader 
scale. To harness the advantages of REDD implemen-
tation effectively, it is crucial that national GHG emis-
sion reduction programs and forest management strate-
gies are intricately designed to align with international 
agreements like REDD. This involves creating strate-
gies that bolster forest carbon sequestration or prevent 
emissions, accomplished through comprehensive forest 
conservation plans, reforestation efforts, and the provi-
sion of socio-economic support. A main limitation of 
studies that use historical LULC data to predict future 
LULCCs to assess the impact of REDD projects on 
climate change and GHG emissions is the inherent 
uncertainty associated with these predictions. Although 
historical trends can provide insights, future land-use 
dynamics are influenced by numerous unpredictable 
factors, such as changes in economic conditions, policy 
shifts, technological advancements, and social prefer-
ences. These uncertainties can affect the accuracy of 
projected LULCCs and hence the estimation of GHG 
emissions and the effectiveness of REDD projects in 
mitigating climate change. Additionally, the complexity 
of land-use decision-making processes, which involve 
multiple stakeholders with varying motivations and pri-
orities, adds another layer of uncertainty to these pre-
dictions. Furthermore, the accuracy of LULCC data 
and the quality of the remote sensing methods used for 
prediction can introduce uncertainties and errors in the 

analysis. These limitations highlight the need for robust 
sensitivity analysis that incorporates various scenarios 
and considers multiple influencing factors, which will 
improve the reliability and robustness of predictions 
and assessments of the effects of REDD projects on cli-
mate change and GHG emissions.
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