Skip to main content
Log in

Assessment of heavy metal distribution and bioaccumulation in soil and plants near coal mining areas: implications for environmental pollution and health risks

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Monitoring heavy metals (HMs) across source distance and depth distribution near coal mining sites is essential for preventing environmental pollution and health risks. This study investigated the distribution of selected HMs, cadmium (Cd2+), chromium (Cr2+), copper (Cu2+), manganese (Mn2+), nickel (Ni2+), lead (Pb2+), and zinc (Zn2+), in soil samples collected from ten sites (S-1–S-10) at two different depths (0–15 and 15–30 cm) and distances of 50, 100, and 200 m from a mining source. Additionally, three plant species, Prosopis spp., Justicia spp., and wheat, were collected to assess HM bioavailability and leaf accumulation. Coal mine activities’ impact on soil properties and their HM associations were also explored. Results reveal HM concentrations except for Cr2+ exceeding World Health Organization (WHO) limits. In surface soil, Cd2+ (58%), Cu2+ (93%), Mn2+ (68%), Ni2+ (80%), Pb2+ (35%), and Zn2+ (88%) surpassed permissible limits. Subsurface soil also exhibited elevated Cd2+ (53%), Cu2+ (83%), Mn2+ (60%), Ni2+ (80%), Pb2+ (35%), and Zn2+ (77%). Plant species displayed varying HM levels, exceeding permissible limits, with average concentrations of 1.4, 1.34, 1.42, 4.1, 2.74, 2.0, and 1.98 mg kg−1 for Cd2+, Pb2+, Cr2+, Cu2+, Mn2+, Ni2+, and Zn2+, respectively. Bioaccumulation factors were highest in wheat, Prosopis spp., and Justicia spp. Source distance and depth distribution significantly influenced soil pH, electrical conductivity (EC), and soil organic carbon (SOC). Soil pH and EC increased with an increase in soil depth, while SOC decreased. Pearson correlation analysis revealed varying relationships between soil properties and HMs, showing a considerably negative correlation. Concentrations of HMs decreased with increasing depth and distance from mining activities, validated by regression analysis. Findings suggest crops from these soils may pose health risks for consumption.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable

References

  • Adamczyk-Szabela, D., Romanowska-Duda, Z., Lisowska, K., & Wolf, W. M. (2017). Heavy metal uptake by herbs. V. Metal accumulation and physiological effects induced by thiuram in Ocimum basilicum L. Water, Air, & Soil Pollution, 228, 334.

    Article  Google Scholar 

  • Alnaimy, M. A., Elrys, A. S., Zelenakova, M., Pietrucha-Urbanik, K., & Merwad, A. R. M. (2023). The vital roles of parent material in driving soil substrates and heavy metals availability in arid alkaline regions: A case study from Egypt. Water, 15(13), 2481. https://doi.org/10.3390/w15132481

  • Ali, A. S., Ameen, U. S., & Ahmad, R. (2014). Effect of different heavy metal pollution on fish. Research Journal of Chemical and Environmental Sciences, 2, 74–79.

    Google Scholar 

  • Bai, J., Yang, Z., Cui, B., Gao, H., & Ding, Q. (2010). Some heavy metals distribution in wetland soils under different land use types along a typical plateau lake, China. Soil and Tillage Research, 106, 344–348.

    Article  Google Scholar 

  • Bayraklı, B., Dengiz, O., Özyazıcı, M. A., Koç, Y., Kesim, E., & Türkmen, F. (2023). Assessment of heavy metal concentrations and behavior in cultivated soils under humid-subhumid environmental condition of the Black Sea region. Geoderma Regional, 32, e00593.

    Article  Google Scholar 

  • Balachandran, R. C., Mukhopadhyay, S., McBride, D., Veevers, J., Harrison, F. E., Aschner, M., Haynes, E. N., & Bowman, A. B. (2020). Brain manganese and the balance between essential roles and neurotoxicity. Journal of Biological Chemistry, 295, 6312–6329.

    Article  CAS  Google Scholar 

  • Bayata, A. (2020). Assessment, accumulation, toxicity and importance of heavy metals in agricultural soil and living system. American Journal of Environmental Protection, 9, 116–119.

    Article  Google Scholar 

  • Jones, B., Jr. (1991). Plant tissue analysis in micronutrients. Micronutrients in agriculture, 4, 477–521.

    Google Scholar 

  • Bernard, A. (2008). Cadmium & its adverse effects on human health. Indian Journal of Medical Research, 128, 557.

    CAS  Google Scholar 

  • Bhardwaj, S., Soni, R., Gupta, S. K., & Shukla, D. P. (2020). Mercury, arsenic, lead and cadmium in waters of the Singrauli coal mining and power plants industrial zone, Central East India. Environmental Monitoring and Assessment, 192, 1–20.

    Article  Google Scholar 

  • Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6, e04691.

    Article  CAS  Google Scholar 

  • Chapman, E. E. V., Dave, G., & Murimboh, J. D. (2013). A review of metal (Pb and Zn) sensitive and pH tolerant bioassay organisms for risk screening of metal-contaminated acidic soils. Environmental Pollution, 179, 326–342.

    Article  CAS  Google Scholar 

  • Chasapis, C. T., Ntoupa, P.-S. A., Spiliopoulou, C. A., & Stefanidou, M. E. (2020). Recent aspects of the effects of zinc on human health. Archives of Toxicology, 94, 1443–1460.

    Article  CAS  Google Scholar 

  • Chen, W., Peng, L., Hu, K., Zhang, Z., Peng, C., Teng, C., & Zhou, K. (2020). Spectroscopic response of soil organic matter in mining area to Pb/Cd heavy metal interaction: A mirror of coherent structural variation. Journal of Hazardous Materials, 393, 122425.

    Article  CAS  Google Scholar 

  • Cheng, W., Lei, S., Bian, Z., Zhao, Y., Li, Y., & Gan, Y. (2020). Geographic distribution of heavy metals and identification of their sources in soils near large, open-pit coal mines using positive matrix factorization. Journal of Hazardous Materials, 387, 121666.

    Article  CAS  Google Scholar 

  • Choppala, G., Kunhikrishnan, A., Seshadri, B., Park, J. H., Bush, R., & Bolan, N. (2018). Comparative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils. Journal of Geochemical Exploration, 184, 255–260.

    Article  CAS  Google Scholar 

  • Choudhury, B. U., Malang, A., Webster, R., Mohapatra, K. P., Verma, B. C., Kumar, M., Das, A., Islam, M., & Hazarika, S. (2017). Acid drainage from coal mining: Effect on paddy soil and productivity of rice. Science of the Total Environment, 583, 344–351.

    Article  CAS  Google Scholar 

  • Chuan, M. C., Shu, G. Y., & Liu, J. C. (1996). Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH. Water, Air, and Soil Pollution, 90, 543–556.

    Article  CAS  Google Scholar 

  • Cui, X., Wang, X., & Liu, B. (2020). The characteristics of heavy metal pollution in surface dust in Tangshan, a heavily industrialized city in North China, and an assessment of associated health risks. Journal of Geochemical Exploration, 210, 106432.

    Article  CAS  Google Scholar 

  • De Tender, C. A., Debode, J., Vandecasteele, B., D’Hose, T., Cremelie, P., Haegeman, A., Ruttink, T., Dawyndt, P., & Maes, M. (2016). Biological, physicochemical and plant health responses in lettuce and strawberry in soil or peat amended with biochar. Applied Soil Ecology, 107, 1–12.

    Article  Google Scholar 

  • Dinu, C., Vasile, G. G., Buleandra, M., Popa, D. E., Gheorghe, S., & Ungureanu, E. M. (2020). Translocation and accumulation of heavy metals in Ocimum basilicum L. plants grown in a mining-contaminated soil. Journal of Soils and Sediments, 20, 2141–2154. https://doi.org/10.1007/s11368-019-02550-w

  • Dotaniya, M. L., Thakur, J. K., Meena, V. D., Jajoria, D. K., & Rathor, G. (2014). Chromium pollution: A threat to environment-a review. Agricultural Reviews, 35(2), 153–157.

  • Düring, R.-A., Hoß, T., & Gäth, S. (2003). Sorption and bioavailability of heavy metals in long-term differently tilled soils amended with organic wastes. Science of the Total Environment, 313, 227–234.

    Article  Google Scholar 

  • Eid, E. M., Shaltout, K. H., Alamri, S. A. M., Alrumman, S. A., Hussain, A. A., Sewelam, N., El-Bebany, A. F., Alfarhan, A. H., Picó, Y., & Barcelo, D. (2021). Prediction models based on soil properties for evaluating the uptake of eight heavy metals by tomato plant (Lycopersicon esculentum Mill.) grown in agricultural soils amended with sewage sludge. Journal of Environmental. Chemical Engineering, 9, 105977.

    CAS  Google Scholar 

  • Enya, O., Lin, C., & Qin, J. (2019). Heavy metal contamination status in soil-plant system in the Upper Mersey Estuarine Floodplain, Northwest England. Marine Pollution Bulletin, 146, 292–304.

    Article  CAS  Google Scholar 

  • Gitt, M., & Dollhopf, D. (1991). Coal waste reclamation using automated weathering to predict lime requirement. Journal of Environmental Quality, 20, 285–288.

    Article  Google Scholar 

  • Gonzalez-Cuyar, L. F., Nelson, G., Criswell, S. R., Ho, P., Lonzanida, J. A., Checkoway, H., Seixas, N., Gelman, B. B., Evanoff, B. A., Murray, J., Zhang, J., & Racette, B. A. (2014). Quantitative neuropathology associated with chronic manganese exposure in South African mine workers. NeuroToxicology, 45, 260–266.

    Article  CAS  Google Scholar 

  • Guilarte, T. R. (2013). Manganese neurotoxicity: New perspectives from behavioral, neuroimaging, and neuropathological studies in humans and non-human primates. Frontiers in Aging Neuroscience, 5, 23. https://doi.org/10.3389/fnagi.2013.00023

  • Guo, X., Zhang, S., Shan, X. Q., Luo, L., Pei, Z., Zhu, Y. G., Liu, T., Xie, Y. N., & Gault, A. (2006). Characterization of Pb, Cu, and Cd adsorption on particulate organic matter in soil. Environmental Toxicology and Chemistry: An International Journal, 25, 2366–2373.

    Article  CAS  Google Scholar 

  • Honma, T., Ohba, H., Kaneko-Kadokura, A., Makino, T., Nakamura, K., & Katou, H. (2016). Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environmental Science & Technology, 50, 4178–4185.

    Article  CAS  Google Scholar 

  • Horning, K. J., Caito, S. W., Tipps, K. G., Bowman, A. B., & Aschner, M. (2015). Manganese is essential for neuronal health. Annual Review of Nutrition, 35, 71–108.

    Article  CAS  Google Scholar 

  • Hossen, M. A., Chowdhury, A. I. H., Mullick, M. R. A., & Hoque, A. (2021). Heavy metal pollution status and health risk assessment vicinity to Barapukuria coal mine area of Bangladesh. Environmental Nanotechnology, Monitoring & Management, 16, 100469.

    Article  CAS  Google Scholar 

  • Hou, S., Zheng, N., Tang, L., Ji, X., & Li, Y. (2019). Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L.) rhizospheric soil of non-ferrous metals smelting area. Environmental Monitoring and Assessment, 191, 634.

    Article  Google Scholar 

  • Ji, H., Li, H., Zhang, Y., Ding, H., Gao, Y., & Xing, Y. (2018). Distribution and risk assessment of heavy metals in overlying water, porewater, and sediments of Yongding River in a coal mine brownfield. Journal of Soils and Sediments, 18, 624–639.

    Article  CAS  Google Scholar 

  • Jiang, H.-H., Cai, L.-M., Wen, H.-H., Hu, G.-C., Chen, L.-G., & Luo, J. (2020). An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Science of the Total Environment, 701, 134466.

    Article  CAS  Google Scholar 

  • Kazlauskaitė-Jadzevičė, A., Volungevičius, J., Gregorauskienė, V., & Marcinkonis, S. (2014). The role of pH in heavy metal contamination of urban soil. Journal of Environmental Engineering and Landscape Management, 22, 311–318.

    Article  Google Scholar 

  • Khan, A. Z., Ding, X., Khan, S., Ayaz, T., Fidel, R., & Khan, M. A. (2020). Biochar efficacy for reducing heavy metals uptake by cilantro (Coriandrum sativum) and spinach (Spinaccia oleracea) to minimize human health risk. Chemosphere, 244, 125543.

    Article  CAS  Google Scholar 

  • Król, A., Mizerna, K., & Bożym, M. (2020). An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. Journal of Hazardous Materials, 384, 121502.

    Article  Google Scholar 

  • Kumari, M., & Bhattacharya, T. (2023). A review on bioaccessibility and the associated health risks due to heavy metal pollution in coal mines: Content and trend analysis. Environment and Development, 46, 100859.

    Article  Google Scholar 

  • Kumar, V., Sharma, A., Dhunna, G., Chawla, A., Bhardwaj, R., & Thukral, A. K. (2017). A tabulated review on distribution of heavy metals in various plants. Environmental Science and Pollution Research, 24, 2210–2260.

    Article  CAS  Google Scholar 

  • Kumpiene, J., Lagerkvist, A., & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments – A review. Waste Management, 28, 215–225.

    Article  CAS  Google Scholar 

  • Kuźniar, A., Banach, A., Stępniewska, Z., Frąc, M., Oszust, K., Gryta, A., Kłos, M., & Wolińska, A. (2018). Community-level physiological profiles of microorganisms inhabiting soil contaminated with heavy metals. International Agrophysics, 32, 101–109.

    Article  Google Scholar 

  • Kwiatkowska-Malina, J. (2016). The comparison of the structure of humic acids from soil amended with different sources of organic matter. Polish Journal of Soil Science, 48(1). https://doi.org/10.17951/pjss.2015.48.1.57

  • Lenka, J. L., Lepzem, N. G., Mankilik, M. M., & Dafil, R. P. (2018). Heavy metal contamination in selected cruciferous vegetables grown in Jos Nigeria. International Journal of Current Research in Chemistry and Pharmaceutical Sciences, 5, 26–34.

    Article  CAS  Google Scholar 

  • Li, C., Sanchez, G. M., Wu, Z., Cheng, J., Zhang, S., Wang, Q., Li, F., Sun, G., & Meentemeyer, R. K. (2020). Spatiotemporal patterns and drivers of soil contamination with heavy metals during an intensive urbanization period (1989–2018) in southern China. Environmental Pollution, 260, 114075.

    Article  CAS  Google Scholar 

  • Liang, J., Feng, C., Zeng, G., Gao, X., Zhong, M., Li, X., Li, X., He, X., & Fang, Y. (2017). Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environmental Pollution, 225, 681–690.

    Article  CAS  Google Scholar 

  • Liu, X., Shi, H., Bai, Z., Zhou, W., Liu, K., Wang, M., & He, Y. (2020). Heavy metal concentrations of soils near the large opencast coal mine pits in China. Chemosphere, 244, 125360.

    Article  CAS  Google Scholar 

  • Mahato, M. K., Singh, G., Singh, P. K., Singh, A. K., & Tiwari, A. K. (2017). Assessment of mine water quality using heavy metal pollution index in a coal mining area of Damodar River Basin, India. Bulletin of Environmental Contamination and Toxicology, 99, 54–61.

    Article  CAS  Google Scholar 

  • Mortada, W. I., El-Naggar, A., Mosa, A., Palansooriya, K. N., Yousaf, B., Tang, R., Wang, S., Cai, Y., & Chang, S. X. (2023). Biogeochemical behaviour and toxicology of chromium in the soil-water-human nexus: A review. Chemosphere, 331, 138804.

    Article  CAS  Google Scholar 

  • Masto, R., Sheik, S., Nehru, G., Selvi, V., George, J., & Ram, L. (2015). Assessment of environmental soil quality around Sonepur Bazari mine of Raniganj coalfield, India. Solid Earth, 6, 811.

    Article  Google Scholar 

  • McLean, E. O. (1983). Soil pH and lime requirement. In Methods of soil analysis: Part 2 Chemical and microbiological properties (vol. 9, pp. 199–224). https://doi.org/10.2134/agronmonogr9.2.2ed.c12

  • Men, C., Liu, R., Xu, L., Wang, Q., Guo, L., Miao, Y., & Shen, Z. (2020). Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China. Journal of hazardous materials, 388, 121763.

    Article  CAS  Google Scholar 

  • Michaud, A. M., Chappellaz, C., & Hinsinger, P. (2008). Copper phytotoxicity affects root elongation and iron nutrition in durum wheat (Triticum turgidum durum L.). Plant and Soil, 310, 151–165.

    Article  CAS  Google Scholar 

  • Muhammad-aree, S., & Teepoo, S. (2020). On-site detection of heavy metals in wastewater using a single paper strip integrated with a smartphone. Analytical and Bioanalytical Chemistry, 412, 1395–1405.

    Article  CAS  Google Scholar 

  • Muhammad, N., Nafees, M., Khan, M. H., Ge, L., & Lisak, G. (2020). Effect of biochars on bioaccumulation and human health risks of potentially toxic elements in wheat (Triticum aestivum L.) cultivated on industrially contaminated soil. Environmental Pollution, 260, 113887.

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3. Chemical methods, 5, 961–1010.

    Google Scholar 

  • Nriagu, J. (2007). Zinc toxicity in humans (pp. 1–7). School of Public Health.

  • Pająk, M., Błońska, E., Szostak, M., Gąsiorek, M., Pietrzykowski, M., Urban, O., & Derbis, P. (2018). Restoration of vegetation in relation to soil properties of spoil heap heavily contaminated with heavy metals. Water, Air, & Soil Pollution, 229, 392.

    Article  Google Scholar 

  • Pandey, B., Agrawal, M., & Singh, S. (2014). Coal mining activities change plant community structure due to air pollution and soil degradation. Ecotoxicology, 23, 1474–1483.

    Article  CAS  Google Scholar 

  • Pandey, B., Agrawal, M., & Singh, S. (2016). Ecological risk assessment of soil contamination by trace elements around coal mining area. Journal of Soils and Sediments, 16, 159–168.

    Article  CAS  Google Scholar 

  • Pandey, B., Mukherjee, A., Agrawal, M., & Singh, S. (2019). Assessment of seasonal and site-specific variations in soil physical, chemical and biological properties around opencast coal mines. Pedosphere, 29, 642–655.

    Article  CAS  Google Scholar 

  • Pariente, S. (2001). Soluble salts dynamics in the soil under different climatic conditions. Catena, 43, 307–321.

    Article  CAS  Google Scholar 

  • Pellerin, C., & Booker, S. M. (2000). Reflections on hexavalent chromium: health hazards of an industrial heavyweight. Environmental Health Perspectives, 108, A402–A407.

    Article  CAS  Google Scholar 

  • Plum, L. M., Rink, L., & Haase, H. (2010). The essential toxin: Impact of zinc on human health. International Journal of Environmental Research and Public Health, 7, 1342–1365.

    Article  CAS  Google Scholar 

  • Qian, J., Wang, Z. J., Shan, X. Q., Tu, Q., Wen, B., & Chen, B. (1996). Evaluation of plant availability of soil trace metals by chemical fractionation and multiple regression analysis. Environmental Pollution, 91(3), 309–315.

  • Racette, B. A., Aschner, M., Guilarte, T. R., Dydak, U., Criswell, S. R., & Zheng, W. (2012). Pathophysiology of manganese-associated neurotoxicity. NeuroToxicology, 33, 881–886.

    Article  CAS  Google Scholar 

  • Rahim, H. U., Akbar, W. A., & Alatalo, J. M. (2022). A comprehensive literature review on cadmium (Cd) status in the soil environment and its immobilization by biochar-based materials. Agronomy, 12, 877.

    Article  CAS  Google Scholar 

  • Ray, R. R. (2016). Review article. Adverse hematological effects of hexavalent chromium: An overview. Interdisciplinary Toxicology, 9, 55–65.

    Article  CAS  Google Scholar 

  • Reeves, J. L., & Liebig, M. A. (2016). Depth matters: Soil pH and dilution effects in the northern Great Plains. Soil Science Society of America Journal, 80, 1424–1427.

    Article  CAS  Google Scholar 

  • Ren, Y., Luo, Q., Zhuo, S., Hu, Y., Shen, G., Cheng, H., & Tao, S. (2021). Bioaccessibility and public health risk of heavy Metal (loid) s in the airborne particulate matter of four cities in northern China. Chemosphere, 277, 130312.

    Article  CAS  Google Scholar 

  • Rhoades, J. (1993). Electrical conductivity methods for measuring and mapping soil salinity. Advances in Agronomy, 49, 201–251.

    Article  Google Scholar 

  • Rieuwerts, J. S., Ashmore, M. R., Farago, M. E., & Thornton, I. (2006). The influence of soil characteristics on the extractability of Cd, Pb and Zn in upland and moorland soils. Science of the Total Environment, 366, 864–875.

    Article  CAS  Google Scholar 

  • Romaneckas, K., Buragienė, S., Kazlauskas, M., Steponavičius, D., Naujokienė, V., Bručienė, I., & Šarauskis, E. (2023). Effects of soil electrical conductivity and physical properties on seeding depth maintenance and winter wheat germination, development and productivity. Agronomy, 13(1), 190.

  • Saha, J., Choudhuri, S., & Choudhuri, D. (2017). Effect of subchronic exposure to chromium on hematological and biochemical parameters of male albino rat. Asian Journal of Pharmaceutical and Clinical Research, 10, 345–348.

    Article  CAS  Google Scholar 

  • Sankhla, M. S., Kumar, R., & Prasad, L. (2019). Zinc impurity in drinking water and its toxic effect on human health. Indian Internet Journal of Forensic Medicine and Toxicology, 17, 84–87.

    Article  Google Scholar 

  • Sawut, R., Kasim, N., Abliz, A., Hu, L., Yalkun, A., Maihemuti, B., & Qingdong, S. (2018). Possibility of optimized indices for the assessment of heavy metal contents in soil around an open pit coal mine area. International Journal of Applied Earth Observation and Geoinformation, 73, 14–25.

    Article  Google Scholar 

  • Shaheen, S. M., & Rinklebe, J. (2015). Impact of emerging and low cost alternative amendments on the (im) mobilization and phytoavailability of Cd and Pb in a contaminated floodplain soil. Ecological Engineering, 74, 319–326.

    Article  Google Scholar 

  • Shahid, M., Sabir, M., Arif Ali, M., & Ghafoor, A. (2014). Effect of organic amendments on phytoavailability of nickel and growth of berseem (Trifolium alexandrinum) under nickel contaminated soil conditions. Chemical Speciation & Bioavailability, 26, 37–42.

    Article  Google Scholar 

  • Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N. K., Dumat, C., & Rashid, M. I. (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere, 178, 513–533.

    Article  CAS  Google Scholar 

  • Sharma, R. K., & Archana, G. (2016). Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria. Applied Soil Ecology, 107, 66–78.

    Article  Google Scholar 

  • Shen, F., Liao, R., Ali, A., Mahar, A., Guo, D., Li, R., Xining, S., Awasthi, M. K., Wang, Q., & Zhang, Z. (2017a). Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China. Ecotoxicology and Environmental Safety, 139, 254–262.

    Article  CAS  Google Scholar 

  • Shen, Z. J., Xu, D. C., Chen, Y. S., & Zhang, Z. (2017b). Heavy metals translocation and accumulation from the rhizosphere soils to the edible parts of the medicinal plant Fengdan (Paeonia ostii) grown on a metal mining area, China. Ecotoxicology and Environmental Safety, 143, 19–27.

    Article  CAS  Google Scholar 

  • Sherene, T. (2010). Mobility and transport of heavy metals in polluted soil environment. Biological forum—an international journal, 2, 112–121.

    Google Scholar 

  • Shi, G. L., Lou, L. Q., Zhang, S., Xia, X. W., & Cai, Q. S. (2013). Arsenic, copper, and zinc contamination in soil and wheat during coal mining, with assessment of health risks for the inhabitants of Huaibei, China. Environmental Science and Pollution Research, 20, 8435–8445.

    Article  CAS  Google Scholar 

  • Siddique, M. A. B., Alam, M. K., Islam, S., Diganta, M. T. M., Akbor, M. A., Bithi, U. H., Chowdhury, A. I., & Ullah, A. A. (2020). Apportionment of some chemical elements in soils around the coal mining area in northern Bangladesh and associated health risk assessment. Environmental Nanotechnology, Monitoring & Management, 14, 100366.

    Article  Google Scholar 

  • Singh, P., Itankar, N., & Patil, Y. (2021). Biomanagement of hexavalent chromium: Current trends and promising perspectives. Journal of Environmental Management, 279, 111547.

    Article  CAS  Google Scholar 

  • Skłodowski, P., Maciejewska, A., & Kwiatkowska, J. (2006). The effect of organic matter from brown coal on bioavailability of heavy metals in contaminated soils. In Soil and water pollution monitoring, protection and remediation (pp. 299–307). Springer Netherlands.

  • Steinhauser, G., Adlassnig, W., Lendl, T., Peroutka, M., Weidinger, M., Lichtscheidl, I. K., & Bichler, M. (2009). Metalloid contaminated microhabitats and their biodiversity at a former antimony mining site in Schlaining, Austria. Open Environmental Sciences Journal, 3(1).

  • Sudduth, K., Kitchen, N., Wiebold, W., Batchelor, W., Bollero, G. A., Bullock, D., Clay, D., Palm, H., Pierce, F., & Schuler, R. (2005). Relating apparent electrical conductivity to soil properties across the north-central USA. Computers and Electronics in Agriculture, 46, 263–283.

    Article  Google Scholar 

  • Tam, N., & Wong, Y. (1996). Retention and distribution of heavy metals in mangrove soils receiving wastewater. Environmental Pollution, 94, 283–291.

    Article  CAS  Google Scholar 

  • Tavakoli, M., Hojjati, S. M., & Kooch, Y. (2019). The effect of traditional coal mining on soil physical and chemical properties and heavy metals concentrations in Lavij Forest. Iranian Journal of Forest, 11, 81–93.

    Google Scholar 

  • Tumolo, M., Ancona, V., De Paola, D., Losacco, D., Campanale, C., Massarelli, C., Uricchio, V. F., & health, p. (2020). Chromium pollution in European water, sources, health risk, and remediation strategies: An overview. International Journal of Environmental Research and Public Health, 17, 5438.

    Article  CAS  Google Scholar 

  • Umair, M., Yang, R., Cheng, W., & Khattak, S. A. (2022). Geochemistry and mineralogy of Paleocene coal from the Padhrar and Darra Adam Khel coalfields of Pakistan. Acta Geologica Sinica-English Edition, 96(6), 2056–2073.

    Article  CAS  Google Scholar 

  • Van Maele-Fabry, G., Lombaert, N., & Lison, D. (2016). Dietary exposure to cadmium and risk of breast cancer in postmenopausal women: A systematic review and meta-analysis. Environment International, 86, 1–13.

    Article  Google Scholar 

  • Violante, A., Cozzolino, V., Perelomov, L., Caporale, A., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 10, 268–292.

    Article  Google Scholar 

  • Vinayagam, S., Sathishkumar, K., Ayyamperumal, R., Natarajan, P. M., Ahmad, I., Saeed, M., ... & Sundaram, T. (2023). Distribution and transport of contaminants in soil through mining processes and its environmental impact and health hazard assessment: A review of the prospective solutions. Environmental Research, 117473. https://doi.org/10.1016/j.envres.2023.117473

  • Wahba, M. M. (2006). The relation between heavy metals distribution and particle size fractions in some egyptian soils. Italian Journal of Agronomy, 1, 309–314.

    Article  Google Scholar 

  • Wan, Y., Huang, Q., Wang, Q., Yu, Y., Su, D., Qiao, Y., & Li, H. (2020). Accumulation and bioavailability of heavy metals in an acid soil and their uptake by paddy rice under continuous application of chicken and swine manure. Journal of Hazardous Materials, 384, 121293.

    Article  CAS  Google Scholar 

  • Wen, J., Wu, C., Bi, X., Zhang, S., Ouyang, H., Ye, J., Ohnuki, T., & Yu, Q. (2023). Soil pH change induced by smelting activities affects secondary carbonate production and long-term Cd activity in subsoils. Applied Geochemistry, 152, 105663.

    Article  CAS  Google Scholar 

  • Wang, Z., Hong, C., Xing, Y., Wang, K., Li, Y., Feng, L., & Ma, S. (2018). Spatial distribution and sources of heavy metals in natural pasture soil around copper-molybdenum mine in Northeast China. Ecotoxicology and Environmental Safety, 154, 329–336.

    Article  CAS  Google Scholar 

  • Wu, S., Hu, C., Tan, Q., Li, L., Shi, K., Zheng, Y., & Sun, X. (2015). Drought stress tolerance mediated by zinc-induced antioxidative defense and osmotic adjustment in cotton (Gossypium Hirsutum). Acta Physiologiae Plantarum, 37, 167.

    Article  Google Scholar 

  • World Health Organization (WHO). (1996). Permissible limits of heavy metals in soil and plants. Geneva, Switzerland.

  • Xu, L., Lu, A., Wang, J., Ma, Z., Pan, L., Feng, X., & Luan, Y. (2015). Accumulation status, sources and phytoavailability of metals in greenhouse vegetable production systems in Beijing, China. Ecotoxicology and Environmental Safety, 122, 214–220.

    Article  CAS  Google Scholar 

  • Yang, H. J., Jeong, H. J., Bong, K. M., Jin, D. R., Kang, T.-W., Ryu, H.-S., Han, J. H., Yang, W. J., Jung, H., Hwang, S. H., & Na, E. H. (2020). Organic matter and heavy metal in river sediments of southwestern coastal Korea: Spatial distributions, pollution, and ecological risk assessment. Marine Pollution Bulletin, 159, 111466.

    Article  CAS  Google Scholar 

  • Yu, H.-Y., Liu, C., Zhu, J., Li, F., Deng, D.-M., Wang, Q., & Liu, C. (2016). Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value. Environmental Pollution, 209, 38–45.

    Article  CAS  Google Scholar 

  • Zhao, J., Song, S., Zhang, K., Li, X., Zheng, X., Wang, Y., & Ku, G. (2023). An investigation into the disturbance effects of coal mining on groundwater and surface ecosystems. Environmental Geochemistry and Health, 45, 7011–7031.

    Article  CAS  Google Scholar 

  • Zhan, S., Wu, J., Wang, J., & Jing, M. (2020). Distribution characteristics, sources identification and risk assessment of n-alkanes and heavy metals in surface sediments, Tajikistan, Central Asia. Science of the Total Environment, 709, 136278.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Waqas Ali Akbar: conceptualization, methodology, formal analysis, writing—original draft. Hafeez Ur Rahim: conceptualization, methodology, literature and data curation, formal analysis, visualization, writing—original draft, review and editing, supervision. Muhammad Irfan: conceptualization, investigation, supervision, review and editing. Muhammad Mudassir: methodology, formal analysis. Muhammad Mudassir: data curation, formal analysis. Adiba Khan Sehrish: review and editing.

Corresponding author

Correspondence to Hafeez Ur Rahim.

Ethics declarations

Ethical approval

Not applicable

Consent to participate

Not applicable

Consent for publication

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

•The concentration of HMs exhibited different pollution degrees along depth and source distance.

•The concentration of HMs in both surface and subsurface soils was higher than relevant background levels.

•The concentration of HMs in soil declines with depth and source distance.

•The bioaccumulation factor (BAF) of heavy metals was more pronounced towards wheat, Prosopis spp., and Justicia spp.

•Soil pH and EC were increased with an increase in soil depth, while soil organic carbon decreased with an increase in soil depth.

Supplementary information

ESM 1

(DOCX 30 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbar, W.A., Rahim, H.U., Irfan, M. et al. Assessment of heavy metal distribution and bioaccumulation in soil and plants near coal mining areas: implications for environmental pollution and health risks. Environ Monit Assess 196, 97 (2024). https://doi.org/10.1007/s10661-023-12258-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12258-7

Keywords

Navigation