Skip to main content
Log in

Anthropogenic disturbances influence mineral and elemental constituents of freshwater lake sediments

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Lake sediments can provide valuable insights into anthropogenic disturbances such as intensive aquaculture and land use changes. These disturbances often manifest as elevated levels of nutrients and elements within the sediments. This paper uses several analytical techniques, i.e., FTIR (Fourier-transform infrared spectroscopy), XRD (X-ray diffraction), EDS (energy-dispersive X-ray spectroscopy), and SEM (scanning electron microscopy), to examine the elemental constituents of lake sediments, along with their relative mineral abundances and surface morphology. The selected freshwater lakes are from the Central Gangetic Plain. The analysis provides a “fingerprint” of geogenic and biogenic mineral constituents of the sediments. Physicochemical, mineralogical, and elemental analysis shows that intensive aquaculture activities in lake alter the sediment chemistry as evidenced by the increase in pH, organic carbon, organic matter, and total phosphorus which is not observed in the lake where aquaculture is prohibited. Freshwater lake sediment is characterized by a high content of biogenic silica and carbonate minerals. The variations in sediment nutrients and mineral fluxes of the selected lakes are mainly attributed to diverse anthropogenic pressures, differences in lake productivity, and the overall ecological condition of the lakes. In the selected three lakes, major variation was reported in the autochthonous sediments in comparison to the allochthonous sediments. The study concludes that catchment and biotic deposit variations in the lakes cannot be evened out by in-lake mixing mechanisms due to variations in the terrigenous and pelagic deposits of the lake. The results highlight the importance of studying annual fluctuations and spatial variations in geogenic and biogenic mineral particle fluxes in lakes. Such investigations provide valuable insights into the annual dynamics of minerals within lakes, contributing to a more comprehensive understanding of their behavior and distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  • Addesso, R., De Waele, J., Cafaro, S., & Baldantoni, D. (2022). Geochemical characterization of clastic sediments sheds light on energy sources and on alleged anthropogenic impacts in cave ecosystems. International Journal of Earth Sciences, 111(3), 919–927.

    CAS  Google Scholar 

  • Aslam, S. N., Venzi, M. S., Venkatraman, V., & Mikkelsen, Ø. (2020). Chemical assessment of marine sediments in vicinity of Norwegian fish farms–a pilot study. Science of the Total Environment, 732, 139130.

    CAS  Google Scholar 

  • Banerjea, S. M. (1967). Water quality and soil condition of fish ponds in some states of India in relation to fish production. Indian Journal of Fisheries, 14(1&2), 115–144.

    Google Scholar 

  • Boldea, D. A., Praisler, M., Quaranta, M., & Minguzzi, V. (2013). Multi-technique characterization of painted eneolithic ceramics originating from Cucuteni (Romania). European Journal of Science and Theology, 9(4), 253–262.

    Google Scholar 

  • Bruckman, V. J., & Wriessnig, K. (2013). Improved soil carbonate determination by FT-IR and X-ray analysis. Environmental Chemistry Letters, 11, 65–70.

    CAS  Google Scholar 

  • Burford, M. A., & Williams, K. C. (2001). The fate of nitrogenous waste from shrimp feeding. Aquaculture, 198(1-2), 79–93.

    CAS  Google Scholar 

  • Cannane, N. O. A., Rajendran, M., & Selvaraju, R. (2013). FT-IR spectral studies on polluted soils from industrial area at Karaikal, Puducherry State, South India. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 110, 46–54.

    Google Scholar 

  • Chen, R., Chen, J., Ma, J., & Cui, Z. (2019). Quartz grain surface microtextures of dam-break flood deposits from a landslide-dammed lake: A case study. Sedimentary Geology, 383, 238–247.

    Google Scholar 

  • Chu, V., Regev, L., Weiner, S., & Boaretto, E. (2008). Differentiating between anthropogenic calcite in plaster, ash and natural calcite using infrared spectroscopy: Implications in archaeology. Journal of Archaeological Science, 35(4), 905–911.

    Google Scholar 

  • Farooqui, A., Khan, S., Agnihotri, R., Phartiyal, B., & Shukla, S. (2023). Monitoring hydroecology and climatic variability since~ 4.6 ka from palynological, sedimentological and environmental perspectives in an Ox-bow lake, Central Ganga Plain, India. The Holocene, 09596836231183067.

  • Fedotov, A. P., Phedorin, M. A., Enushchenko, I. V., Vershinin, K. E., Krapivina, S. M., Vologina, E. G., et al. (2013). Drastic desalination of small lakes in East Siberia (Russia) in the early twentieth century: inferred from sedimentological, geochemical and palynological composition of small lakes. Environmental Earth Sciences, 68, 1733–1744.

    Google Scholar 

  • Forghani, G., Moore, F., Lee, S., & Qishlaqi, A. (2009). Geochemistry and speciation of metals in sediments of the Maharlu Saline Lake, Shiraz, SW Iran. Environmental Earth Sciences, 59, 173–184.

    CAS  Google Scholar 

  • Heneash, A. M. M., & Alprol, A. E. (2020). Monitoring of water quality and zooplankton community in presence of different dietary levels of commercial wood charcoal of red tilapia. Journal of Aquaculture Research & Development, 11, 1–6.

    Google Scholar 

  • Heneash, A. M., Alprol, A. E., Abd El-Hamid, H. T., Khater, M., & El Damhogy, K. A. (2021). Assessment of water pollution induced by anthropogenic activities on zooplankton community in Mariout Lake using statistical simulation. Arabian Journal of Geosciences, 14, 1–21.

    Google Scholar 

  • ICDD. (2017). Technical bulletin, modulated and composite structures, exploring modulated and composite structures in the powder diffraction file. International Centre for Diffraction Data. ICDD available at www.icdd.com

  • Jackson, M. (1967). Soil chemical analysis prentice (p. 498(1)). Hall of India Private Limited.

    Google Scholar 

  • Jackson, M. L. (2005). Soil chemical analysis: Advanced course. UW-Madison Libraries parallel press.

    Google Scholar 

  • Jia, B., Tang, Y., Tian, L., Franz, L., Alewell, C., & Huang, J. H. (2015). Impact of fish farming on phosphorus in reservoir sediments. Scientific Reports, 5(1), 16617.

    CAS  Google Scholar 

  • Karathanasis, A. D. (2009). Soil mineralogy, land use, land cover and soil sciences–Vol.6 (p. 233).

    Google Scholar 

  • Khang, V. C., Korovkin, M. V., & Ananyeva, L. G. (2016). Identification of clay minerals in reservoir rocks by FTIR spectroscopy. In IOP Conference Series: Earth and Environmental Science (Vol. 43, No. 1, p. 012004). IOP Publishing.

    Google Scholar 

  • Koshy, M. (2002). Study of carbon, phosphorus and nitrogen in the sediments of River Pamba. Asian Journal of Chemistry, 14(3-4), 1660–1666.

    CAS  Google Scholar 

  • Krinsley, D. H., Pye, K., Boggs, S., Jr., & Tovey, N. K. (1998). Backscattered scanning electron microscopy and image analysis of sediments and sedimentary rocks (p. 203). Cambridge University Press.

    Google Scholar 

  • Lein, A. Y., Makkaveev, P. N., Savvichev, A. S., Kravchishina, M. D., Belyaev, N. A., Dara, O. M., et al. (2013). Transformation of suspended particulate matter into sediment in the Kara Sea in September of 2011. Oceanology, 53, 570–606.

    Google Scholar 

  • Liu, L., Yu, K., Li, A., Zhang, C., Wang, L., Liu, X., & Lan, J. (2023). Weathering intensity response to climate change on decadal scales: A record of Rb/Sr ratios from Chaonaqiu Lake sediments, western Chinese Loess Plateau. Water, 15(10), 1890.

    CAS  Google Scholar 

  • Matijević, S., Bilić, J., Ribičić, D., & Dunatov, J. (2012). Distribution of phosphorus species in below-cage sediments at the tuna farms in the middle Adriatic Sea (Croatia). Acta Adriatica: International Journal of Marine Sciences, 53(3), 399–411.

    Google Scholar 

  • Mayer, L. M., Schick, L. L., Hardy, K. R., Wagai, R., & McCarthy, J. (2004). Organic matter in small mesopores in sediments and soils. Geochimica et Cosmochimica Acta, 68(19), 3863–3872.

    CAS  Google Scholar 

  • Mazzotta, M., Bousquin, J., Berry, W., Ojo, C., McKinney, R., Hyckha, K., & Druschke, C. G. (2019). Evaluating the ecosystem services and benefits of wetland restoration by use of the rapid benefit indicators approach. Integrated Environmental Assessment and Management, 15(1), 148–159.

    Google Scholar 

  • Melack, J. M. (2020). Lakes and watersheds in the Sierra Nevada of California: Responses to environmental change (Vol. 5). Univ of California Press.

    Google Scholar 

  • Meyer-Jacob, C., Vogel, H., Gebhardt, A. C., Wennrich, V., Melles, M., & Rosén, P. (2014). Biogeochemical variability during the past 3.6 million years recorded by FTIR spectroscopy in the sediment record of Lake El'gygytgyn, Far East Russian Arctic. Climate of the Past, 10(1), 209–220.

    Google Scholar 

  • Mikac, I., Fiket, Ž., Terzić, S., Barešić, J., Mikac, N., & Ahel, M. (2011). Chemical indicators of anthropogenic impacts in sediments of the pristine karst lakes. Chemosphere, 84(8), 1140–1149.

    CAS  Google Scholar 

  • Mikac, N., Sondi, I., Vdović, N., Pikelj, K., Ivanić, M., Lučić, M., et al. (2022). Origin and history of trace elements accumulation in recent Mediterranean sediments under heavy human impact. A case study of the Boka Kotorska Bay (Southeast Adriatic Sea). Marine Pollution Bulletin, 179, 113702.

    CAS  Google Scholar 

  • Mir, I. A., Jaiswal, J., Bharti, N., Dabhi, A., & Bhushan, R. (2022). Anthropogenic and natural footprints of climate change and environmental degradation in the Honnamanakere Lake. Western Ghats, southern India during the past 753 years.

    Google Scholar 

  • Morrisey, D. J., Gibbs, M. M., Pickmere, S. E., & Cole, R. G. (2000). Predicting impacts and recovery of marine-farm sites in Stewart Island, New Zealand, from the Findlay–Watling model. Aquaculture, 185(3-4), 257–271.

    Google Scholar 

  • Mwamburi, J. (2018). Lake sedimentary environments and roles of accumulating organic matter in biogeochemical cycling processes and contaminants loading are invasions of water hyacinth in Lake Victoria from 1989 a Concern? In Persistent Organic Pollutants. IntechOpen.

    Google Scholar 

  • Ohfuji, H., & Rickard, D. (2005). Experimental syntheses of framboids—a review. Earth-Science Reviews, 71(3-4), 147–170.

    CAS  Google Scholar 

  • Pérez, Ó., Almansa, E., Riera, R., Rodriguez, M., Ramos, E., Costa, J., & Monterroso, Ó. (2014). Food and faeces settling velocities of meagre (Argyrosomus regius) and its application for modelling waste dispersion from sea cage aquaculture. Aquaculture, 420, 171–179.

    Google Scholar 

  • Petrovskii, S. K., Stepanova, O. G., Vorobyeva, S. S., Pogodaeva, T. V., & Fedotov, A. P. (2016). The use of FTIR methods for rapid determination of contents of mineral and biogenic components in lake bottom sediments, based on studying of East Siberian lakes. Environmental Earth Sciences, 75, 1–11.

    CAS  Google Scholar 

  • Pirrie, D., Butcher, A. R., Power, M. R., Gottlieb, P., & Miller, G. L. (2004). Rapid quantitative mineral and phase analysis using automated scanning electron microscopy (QemSCAN); potential applications in forensic geoscience. Geological Society, London, Special Publications, 232(1), 123–136.

    CAS  Google Scholar 

  • Punning, J. M., Boyle, J. F., Terasmaa, J., Vaasma, T., & Mikomägi, A. (2007). Changes in lake-sediment structure and composition caused by human impact: Repeated studies of Lake Martiska, Estonia. The Holocene, 17(1), 145–151.

    Google Scholar 

  • Ramasamy, V., Rajkumar, P., & Ponnusamy, V. (2009). Depth wise analysis of recently excavated Vellar river sediments through FTIR and XRD studies. Indian Journal of Physics, 83, 1295–1308.

    CAS  Google Scholar 

  • Ravisankar, R., Senthilkumar, G., Kiruba, S., Chandrasekaran, A., & Jebakumar, P. P. (2010). Mineral analysis of coastal sediment samples of Tuna, Gujarat, India. Indian Journal of Science and Technology, 3(7), 774–780.

    CAS  Google Scholar 

  • Renjith, K. R., & Chandramohanakumar, N. (2007). Geochemical characteristics of surficial sediments in a tropical estuary, south-west India. Chemistry and Ecology, 23(4), 337–343.

    CAS  Google Scholar 

  • Rogozin, D. Y., Burdin, L. A., Bolobanshchikova, G. N., & Degermendzhy, A. G. (2023). The unprecedented current increase in the amount of charcoal particles in sediments of lakes of the North Minusinsk Basin (southern Siberia): Possible evidence of anthropogenic influence. In Doklady Earth Sciences (pp. 1–5). Pleiades Publishing.

    Google Scholar 

  • Rosén, P., Vogel, H., Cunningham, L., Reuss, N., Conley, D. J., & Persson, P. (2010). Fourier transform infrared spectroscopy, a new method for rapid determination of total organic and inorganic carbon and biogenic silica concentration in lake sediments. Journal of Paleolimnology, 43, 247–259.

    Google Scholar 

  • Ruban, V., López-Sánchez, J. F., Pardo, P., Rauret, G., Muntau, H., & Quevauviller, P. (2001). Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments–a synthesis of recent works. Fresenius' Journal of Analytical Chemistry, 370, 224–228.

    CAS  Google Scholar 

  • Saad, A. S., Massoud, M. A., Amer, R. A., & Ghorab, M. A. (2017). Assessment of the physicochemical characteristics and water quality analysis of Mariout Lake, Southern of Alexandria, Egypt. Journal of Environmental & Analytical Toxicology, 7(1), 2–19.

    Google Scholar 

  • Saha, A., Salim, S. M., Sudheesan, D., Suresh, V. R., Nag, S. K., Panikkar, P., et al. (2020). Geochemistry, mineralogy and nutrient concentrations of sediment of River Pampa in India during a massive flood event. Arabian Journal of Geosciences, 13, 1–18.

    Google Scholar 

  • Saikia, B. K., Sharma, A., Sahu, O. P., & Baruah, B. P. (2015). Study on physico-chemical properties, mineral matters and leaching characteristics of some Indian coals and fly ash. Journal of the Geological Society of India, 86, 275–282.

    CAS  Google Scholar 

  • Saikia, B. K., Wang, P., Saikia, A., Song, H., Liu, J., Wei, J., & Gupta, U. N. (2015). Mineralogical and elemental analysis of some high-sulfur Indian Paleogene Coals: A statistical approach. Energy & Fuels, 29(3), 1407–1420.

    CAS  Google Scholar 

  • Saikia, B. K., Mahanta, B., Gupta, U. N., Sahu, O. P., Saikia, P., & Baruah, B. P. (2016). Mineralogical composition and ash geochemistry of raw and beneficiated high sulfur coals. Journal of the Geological Society of India, 88, 339–349.

    CAS  Google Scholar 

  • Sánchez-González, A., Fuentes-García, R., Pablo-Trujillo, C., Hernández-Quiroz, M., de León, P., & Hill, C. A. (2019). Sediment organic matter description from an urban wetland: multivariate analysis of FT-IR bands to determine its origin. International Journal of Environmental Analytical Chemistry, 1–19.

  • Sandeep, K., Shankar, R., Warrier, A. K., & Aravind, G. H. (2022). The geochemical and pedogenic signatures of Shantisagara lake sediments, southern India: Implications for weathering, terrigenous influx, and provenance during the Holocene. Geological Journal, 57(5), 1925–1937.

    CAS  Google Scholar 

  • Savic, R., Ondrasek, G., Zemunac, R., Kovacic, M. B., Kranjcec, F., Jokanovic, V. N., & Bezdan, A. (2021). Longitudinal distribution of macronutrients in the sediments of Jegricka watercourse in Vojvodina, Serbia. Science of the Total Environment, 754, 142138.

    CAS  Google Scholar 

  • Shakeel, A., Zander, F., de Klerk, J. W., Kirichek, A., Gebert, J., & Chassagne, C. (2022). Effect of organic matter degradation in cohesive sediment: A detailed rheological analysis. Journal of Soils and Sediments, 22(11), 2883–2892.

    CAS  Google Scholar 

  • Siročić, A. P., Kurajica, S., Dogančić, D., & Fišter, N. (2020). Soils and sediments of Prošće Lake catchment as a possible terrigenous input in the lakes system. Acta Carsologica, 49(1).

  • Strakhovenko, V., Subetto, D., Ovdina, E., Danilenko, I., Belkina, N., Efremenko, N., & Maslov, A. (2020). Mineralogical and geochemical composition of Late Holocene bottom sediments of Lake Onego. Journal of Great Lakes Research, 46(3), 443–455.

    CAS  Google Scholar 

  • Thorpe, M. T., & Hurowitz, J. A. (2020). Unraveling sedimentary processes in fluvial sediments from two basalt dominated watersheds in northern Idaho, USA. Chemical Geology, 550, 119673.

    CAS  Google Scholar 

  • Uzarowicz, Ł., Skiba, S., Skiba, M., & Šegvić, B. (2011). Clay-mineral formation in soils developed in the weathering zone of pyrite-bearing schists: A case study from the abandoned pyrite mine in Wieściszowice, Lower Silesia, SW Poland. Clays and Clay Minerals, 59(6), 581–594.

    CAS  Google Scholar 

  • Wen, Z., Zheng, H., & Ouyang, Z. Y. (2020). Research progress on the relationship between biodiversity and ecosystem services. Ying Yong Sheng tai xue bao= The Journal of Applied Ecology, 31(1), 340–348.

    Google Scholar 

  • Wieland, E., Lienemann, P., Bollhalder, S., Lück, A., & Santschi, P. H. (2001). Composition and transport of settling particles in Lake Zurich: Relative importance of vertical and lateral pathways. Aquatic Sciences, 63, 123–149.

    CAS  Google Scholar 

  • Xia, Z., Lin, Y., Wei, H., Hu, Z., Liu, C., & Li, W. (2022). Reconstruct hydrological history of terrestrial saline lakes using Mg isotopes in halite: A case study of the Quaternary Dalangtan playa in Qaidam Basin, NW China. Palaeogeography, Palaeoclimatology, Palaeoecology, 587, 110804.

    Google Scholar 

  • Yongxiu, S., Shiliang, L., Fangning, S., Yi, A., Mingqi, L., & Yixuan, L. (2020). Spatio-temporal variations and coupling of human activity intensity and ecosystem services based on the four-quadrant model on the Qinghai-Tibet Plateau. Science of the Total Environment, 743, 140721.

    CAS  Google Scholar 

  • Yu, Z. T., Wang, X. J., Zhang, E. L., Zhao, C. Y., & Liu, X. Q. (2015). Spatial distribution and sources of organic carbon in the surface sediment of Bosten Lake, China. Biogeosciences, 12(22), 6605–6615.

    Google Scholar 

  • Yuan, Z., Wu, D., Niu, L., Ma, X., Li, Y., Hillman, A. L., et al. (2021). Contrasting ecosystem responses to climatic events and human activity revealed by a sedimentary record from Lake Yilong, southwestern China. Science of the Total Environment, 783, 146922.

    CAS  Google Scholar 

  • Zhang, Y., Yu, J., Su, Y., Du, Y., & Liu, Z. (2019). Long-term changes of water quality in aquaculture-dominated lakes as revealed by sediment geochemical records in Lake Taibai (Eastern China). Chemosphere, 235, 297–307.

    CAS  Google Scholar 

  • Zhang, Y., Chang, F., Liu, Q., Li, H., Duan, L., Li, D., et al. (2022). Contamination and eco-risk assessment of toxic trace elements in lakebed surface sediments of Lake Yangzong, southwestern China. Science of the Total Environment, 843, 157031.

    CAS  Google Scholar 

  • Zhu, M., Zhu, G., Li, W., Zhang, Y., Zhao, L., & Gu, Z. (2013). Estimation of the algal-available phosphorus pool in sediments of a large, shallow eutrophic lake (Taihu, China) using profiled SMT fractional analysis. Environmental Pollution, 173, 216–223.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support provided by the University Sophisticated Instrumentation Centre (USIC) and the Department of Environmental Science, Babasaheb Bhimrao Ambedkar University (BBAU), Lucknow to carry out this work. The permission to carry out fieldwork in the Samaspur Bird Sanctuary in Salon, Uttar Pradesh by the Uttar Pradesh Forest Department is gratefully acknowledged. The first author is thankful to the University Grants Commission (UGC) for providing the doctoral fellowship for this study.

Author information

Authors and Affiliations

Authors

Contributions

Divya Dubey: Project administration, Methodology, Data curation, Interpretation of FTIR and XRD, SEM and EDS data, writing-review and editing of original draft Saroj Kumar: Review, Formal analysis Venkatesh Dutta: Conceptualization, Supervision, Methodology, Validation, Writing-review and editing, Finalization of the manuscript.

Corresponding author

Correspondence to Venkatesh Dutta.

Ethics declarations

Consent to participate

We declare that we have no human participants, human data, or human tissues in this study.

Consent for publication

All the authors agree with the publishing of this research article.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, D., Kumar, S. & Dutta, V. Anthropogenic disturbances influence mineral and elemental constituents of freshwater lake sediments. Environ Monit Assess 195, 1459 (2023). https://doi.org/10.1007/s10661-023-12063-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12063-2

Keywords

Navigation