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Abstract The current study investigated the use of 
VNIR–SWIR (visible/near infrared to short-wave-
length infrared: 400–2500 nm) spectroscopy for 
predicting trace metals in overbank sediments col-
lected in the study site. Here, we (i) derived spec-
tral absorption feature parameters (SAFPs) from 
measured ground spectra for correlation with trace 
metal (Pb, Cd, As, and Cu) contents in overbank 
sediments, (ii) built univariate regression models to 
predict trace metal concentrations using the SAFPs, 
and (iii) evaluated the predictive capacities of the 
regression models. The derived SAFPs associated 
with goethite in overbank sediments were  Depth433b, 
 Asym433b, and  Width433b, and those associated with 
kaolinite in overbank sediments were  Depth1366b, 
 Asym1366b,  Width1366b,  Depth2208b,  Asym2208b, 
and  Width2208b. Cadmium in the overbank sedi-
ments showed the strongest correlations with the 
goethite-related SAFPs, whereas Pb, As, and Cu 
showed strong correlations with goethite- and kao-
linite-related SAFPs. The best predictive models 

were obtained for Cu  (R2 = 0.73, SEE = 0.15) and 
Pb  (R2 = 0.73, SEE = 0.21), while weaker models 
were obtained for As  (R2 = 0.46, SEE = 0.31) and 
Cd  (R2 = 0.17, SEE = 0.81). The results suggest that 
trace metals can be predicted indirectly using the 
SAFPs associated with goethite and kaolinite. This 
is an important benefit of VNIR–SWIR spectroscopy 
considering the difficulty in analyzing “trace” metal 
concentrations, on large scales, using conventional 
geochemical methods.

Keywords Remote sensing · Reflectance 
spectroscopy · Floodplain sediments · Heavy metal · 
Predictive modeling

Introduction

Trace metal pollution in the environment is one of 
the major concerns related to acid mine drainage 
(AMD). This is because trace metals do not chemi-
cally degrade and thus, can accumulate in hazardous 
concentrations in the environment. The accumula-
tion of trace metals over time poses potential threat, 
not only to the environment and animal species, but 
also to human health via contaminated soil and water 
resources (N’Guessan et  al., 2009; Wu et  al., 2005; 
Xie et al., 2012). Thus, the detection and monitoring 
of trace metals in AMD-contaminated areas is crucial 
for mitigation of the hazard they pose to human, soci-
etal, and environmental health (Bradshaw, 2000).

bThe number refers to the absorption-band position, 
namely the wavelength corresponding with the minimum 
reflectance percentage within the wavelength range of the 
absorption feature (Van der Meer, 2004).

J.-L. R. Abrahams (*) · E. J. M. Carranza 
Department of Geology, Faculty of Natural 
and Agricultural Sciences, University of the Free 
State, 205 Nelson Mandela Drive, Park West, 
Bloemfontein 9301, South Africa
e-mail: jrobinabrahams@gmail.com

/ Published online: 2 October 2023

Environ Monit Assess (2023) 195:1261

http://crossmark.crossref.org/dialog/?doi=10.1007/s10661-023-11837-y&domain=pdf
https://orcid.org/0000-0002-6575-1302
https://orcid.org/0000-0003-1765-0352


Environ Monit Assess (2023) 195:1261

1 3
Vol:. (1234567890)

Traditional wet chemical methods for detecting and 
monitoring trace metal contamination in the environ-
ment involve a number of, often tedious and time-con-
suming, steps such as (Pandit et  al., 2010; Wu et  al., 
2007): (i) sample collection, preservation, and prepara-
tion for analysis, (ii) destructive and costly laboratory 
analysis, and (iii) the continuous reproduction of geo-
chemical maps. Thus, in cases where rapid data col-
lection and analyses are necessary to detect and moni-
tor trace metal contamination associated with mining 
accidents (Kemper & Sommer, 2002, 2003) and natu-
ral disasters in mining areas (McCarthy & Humphries, 
2012), the conventional geochemical methods become 
inefficient and costly. Consequently, there is a need for 
a more efficient and cost-effective method for timeous 
detection and monitoring of trace metal contamination 
in the environment.

Reflectance spectroscopy is a promising tool that 
offers a non-destructive, in-situ, easily reproducible, and 
potentially cost-effective method for predicting trace 
metal concentrations in the environment (Wu et  al., 
2007). It is the study of surface materials’ interaction 
with (i.e., scattering and absorption of) light (Mustard 
& Glotch, 2020). The proportion of light that is scat-
tered and absorbed is largely controlled by the chemi-
cal composition and structure of the material interacted 
with, thus, generating distinct spectral absorption fea-
tures (SAFs) for that material (Bishop, 2020). SAFs in 
the visible/near infrared (VNIR) to short-wavelength 
infrared (SWIR) region (400–2500 nm) of the electro-
magnetic (EM) spectrum are known to be diagnostic of 
soil properties and mineralogy (Ben-Dor et  al., 1999; 
Lilliesand et al., 2015). SAFs in this region of the EM 
spectrum are mainly the result of electronic transitions 
and overtones and combinations of fundamental molec-
ular vibrations of the crystal lattice (Bishop, 2020).

Trace metals at concentrations below 4000 ppm are 
spectrally inactive in the VNIR–SWIR region of the EM 
spectrum (Wu et  al., 2007). However, they do exhibit 
distinct SAFs when bound to spectrally active soil com-
ponents such as clays (Clark, 1999; Van der Meer, 1999) 
and iron oxides (Ben-Dor et  al., 1999). Clay-related 
SAFs are associated with molecular vibrations between 
1300 and 2500 nm (Clark, 1999) while iron oxide-
related SAFs are mainly the result of crystal field effects 
and charge transfer between transition metals and related 
ligands between 400 and 1200 nm of the EM spec-
trum (Ben-Dor et al., 1999). As trace metal cations are 
adsorbed to surface hydroxyl (OH) groups on clays and 

metal oxides,  H+ is released, thus, decreasing the num-
ber of OH sites and increasing the number of oxygen 
(O) sites on the mineral surface (Schindler & Sposito, 
1991). The decrease in OH and increase in O sites on 
oxide and clay surfaces may cause changes in the area, 
depth, and asymmetry of their absorption peaks (here, 
referred to as SAFPs), thus allowing the indirect quanti-
fication of trace metals (Choe et al., 2008).

Numerous authors have demonstrated the potential 
of VNIR–SWIR spectroscopy for predicting trace/heavy 
metal contents in agricultural and mine soils (Gholizadeh 
et al., 2015; Ji et al., 2010; Omran, 2016; Pandit et al., 
2010; Ren et al., 2009; Sawut et al., 2018; Song et al., 
2015; Tu et al., 2021; Wang et al., 2022; Xie et al., 2012; 
Zhang et al., 2019; Zhang et al., 2022), lake- (Jiang et al., 
2018; Malley & Williams, 1997), and stream sediments 
(Choe et al., 2008; Piroozfar et al., 2018). However, trace/
heavy metal prediction in overbank/floodplain soils and 
sediments has received only limited attention (Lamine 
et al., 2019). In addition, no research has yet investigated 
the potential of field VNIR–SWIR spectroscopy for pre-
dicting trace/heavy metals in sediments along streams in 
coal mining districts. Coal mine wastes are different to 
that of metal mines chiefly because coal is a sedimen-
tary deposit which, compared to non-sedimentary metal-
lic deposits and the common metal sulfides therein, are 
largely dominated by pyrite (Eby, 2004; INAP, 2009). As 
a result, coal mine drainage is typified by elevated iron 
(Fe), aluminum (Al), and manganese (Mn) and trace 
metal concentrations related to their sedimentary strata 
(INAP, 2009).

Here, we assess the feasibility of using ground (field) 
VNIR–SWIR spectroscopy to predict trace metal con-
tents in overbank sediments along an AMD-contam-
inated stream draining a coal mine. The objectives of 
this study were to (i) derive SAFPs from ground spectra 
and relate these to trace metal contents in overbank sedi-
ments in the study site, (ii) construct univariate regres-
sion models to predict trace metal concentrations using 
the derived SAFPs, and (iii) evaluate the stability and 
predictive capacities of the regression models.

Materials and methods

Description of the study site

The Blesbokspruit River is a low order stream that 
forms part of the Olifants River catchment in South 
Africa. It is located roughly 5 km NW of the town 
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of Emalahleni in Mpumalanga province. Emalahleni 
is well known for its long history of coal mining (Bell 
et  al., 2001). The Blesbokspruit River was chosen 
as an area of interest because (i) prior AMD-related 
studies have been conducted at this site (Bell et  al., 
2001; Netshitungulwana et al., 2013) and (ii) the site 
is not completely overgrown with vegetation and 
thus, it comprises several areas with exposed over-
bank sediments that are suitable for the measurement 
of ground spectra. The study site has four constructed 
acid pools located at the headwaters of the stream and 
a wetland located roughly 3 kms downstream of the 
acid pools (Fig. 1).

Sample collection

Twelve overbank sediment samples (i.e., two sam-
ples roughly 5 m apart at six different localities) 
were collected along an approximately 6 km section 
of the Blesbokspruit River (Fig. 1). The collection of 
two overbank sediment samples roughly 5 m apart at 
each of the six different localities was in view of the 
knowledge that overbank sediment deposition rates 
show considerable spatial variability (Walling & 
He, 1998). The roughly 5 m separation from sample 
pairs at of the six different location was considered 

adequate considering that knowledge gained from this 
study will be imported to the subsequent analysis of 
1-m spatial resolution airborne reflectance hyperspec-
tral data that are available over the study area.

Samples were collected during autumn, one of 
the driest seasons of the year in the study area, dur-
ing which moisture levels in overbank sediments are 
low and thus, ideal for the measurement of spectra in 
the field (Wu et al., 2005). The sampled section of the 
river was limited to the first 6 km downstream from 
the acid pools because of the neutralizing and dilut-
ing effect of the Prison tributary roughly 5 km down-
stream of the acid pools (Bell et  al., 2001). Sample 
collection along the stream was also restricted by the 
presence of a wetland (Fig. 1) and sewage contamina-
tion from a neighboring informal settlement.

In geology and environmental sciences, more 
often than not, sample design and density are 
beyond the control of the researcher (Davis, 2002). 
Thus, geological and environmental data are occa-
sionally sparse (e.g., n = 4 in Dragović et al., 2010; 
n = 6 in Mutiyar & Mittal, 2014; n = 3 in Baran & 
Tarnawski, 2015). In these situations, data must be 
collected where available and appropriate statisti-
cal analyses must be applied (Davis, 2002). In our 
case, the sparseness of data (due to financial, time, 

Fig. 1  Localities (red dots) 
for overbank sediment 
sampling and ground hyper-
spectral data collection 
along the Blesbokspruit 
River, Mpumalanga, South 
Africa. Overbank sediment 
samples were collected at 
two sites roughly 5 m apart 
at each of the six different 
localities. Flow direction 
is indicated by the black, 
dashed arrow. Also shown 
is a wetland (green dash 
lines) and acid ponds (yel-
low rectangle)
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and field constraints) was addressed by applying 
statistical analyses that are appropriate for a small 
set of data and the uncertainty determined using 
confidence intervals (CIs) and statistical signifi-
cance (p). While larger datasets are preferred over 
smaller ones (de Winter, 2013), they are not with-
out their challenges. They can introduce arbitrary 
“spurious” correlations far exceeding the meaning-
ful ones (Poppelars, 2015). As a result, the number 
of significant correlations are often exaggerated for 
larger datasets (Calude & Longo, 2017), thereby 
potentially impeding subsequent predictions. Here, 
we considered our samples n = 12 to be adequate 
for simple univariate regression (see the “Data 
analysis” section below) because, according to Van 
Voorhis and Morgan (2007), the absolute minimum 
sample size is n = 10 per predictor.

Geochemical analysis

The sediment samples were air-dried at the base 
camp to limit possible changes in redox, and were 
passed through a 63 μm nylon sieve to separate the 
clay-and silt sized fraction. This size fraction has 
been considered the most important host of trace 
metals in soils and sediments (Förstner & Salo-
mons, 1980). Nylon sieves and high density poly-
ethylene storage bags were used to avoid possible 
contamination with metals targeted in this study 
(Zief & Mitchell, 1976). In the laboratory, the 
sieved samples were pretreated with reverse aqua 
regia (which excludes trace metals bound in the 
crystal lattice of primary minerals and releases the 
environmentally extractable proportions of trace 
metals) (Shahbazi & Beheshti, 2019) and then 
decomposed using microwave digestion for analy-
sis by ICP-AES/MS. The samples were analyzed for 
major elements (Al, Fe, Si, and Mn) and trace metal 
(loid)s (Cu, Pb, Cd, and As) because they are often 
closely related to AMD (España, 2007; Nieto et al., 
2007; Sengupta, 1993). The following were used 
in this study for quality assurance and quality con-
trol purposes: (i) field and analytical duplicates, (ii) 
procedural blanks, and (iii) soil certified reference 
materials (CRM). Analytical results for elements 
with precision of 20% or better (Ramsey, 1998) 
were retained for further data analysis.

Mineralogical analysis

For XRD Rietveld analysis, overbank sediment 
samples were crushed and split, and subsamples 
were milled to obtain a size fraction less than 75 
μm. Milling was necessary to ensure that (Buhrke 
et  al., 1998): (i) crystallite orientations were ran-
domized, (ii) there were adequate quantities of 
crystallites to yield a representative intensity dis-
tribution for a given sample, and (iii) adequate 
diffraction intensity was yielded to meet counting 
statistics. The milled samples were then analyzed 
using the Bruker D8 Advance diffractometer. The 
samples were not separated into various soil frac-
tions prior to the XRD analysis to ensure that the 
results of this study will be consistent with the sub-
sequent analysis of airborne hyperspectral data col-
lected over the study area that is not discussed here 
but in a future publication.

Ground spectral analysis

Using a portable ASD FieldSpec® 3 spectroradiome-
ter, four ground spectral measurements were collected 
(because of the relative stability of measurements) at 
each of the twelve sample sites in six different locali-
ties (Fig.  1). The instrument used measures reflec-
tance spectra across the VNIR–SWIR (350–2500 
nm) region of the EM spectrum. Spectral data were 
measured in-situ (i.e., not dried prior to measure-
ment) to ensure consistency with airborne hyperspec-
tral data that are available over the study area. Spectra 
were measured under clear skies, with data collection 
restricted to 11 AM and 2 PM each day, when the sun 
was at or closest to its peak (Goetz, 2012). A field of 
view of 25° was used because this is considered best 
for ground spectral measurements (Janse et al., 2018) 
and a white reference panel (Spectralon) was used in 
between measurements as a baseline for the spectral 
measurements. The Spectralon was made of polytetra-
fluoroethylene and cintered halon (ASD Inc., 2009). 
This material is known to be nearly 100% reflective 
within the VNIR–SWIR wavelength range, scattering 
light uniformly in all directions within that wavelength 
range (ASD Inc., 2009).The ground spectra were cap-
tured using the  RS3 software package included with 
the ASD FieldSpec® 3 spectroradiometer.
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Preprocessing

Because of the small number of measurements (n 
= 4) collected at each sample location, a combined 
spectral plot (Fig. 2) was generated using the median 
as an estimator of central tendency. The advantage of 
using the median over the mean is that (i) it is robust 
against outliers and (ii) it does not make any distribu-
tional assumptions, making it better suited for skewed 
data as is common in exploration and environmen-
tal geochemistry (Reimann & Filzmoser, 2000). 
There is a noticeable offset in spectra around 1000 
nm (Fig. 2). This offset is a common problem asso-
ciated with hyperspectral data when the same wave-
length is measured by more than one sensor (Grillini 
et al., 2021). In our case, the offset is the result of the 
spectral overlap between the VNIR detector (measur-
ing 350–1000 nm) and SWIR1 detector (measuring 
1000–1800 nm) in the ASD FieldSpec® 3 spectrora-
diometer (ASD Inc., 2009).

Spectra between 1830 and 1930 nm, and between 
2350 and 2500 nm (Fig. 2) were removed to exclude 
the noise associated with atmospheric water (Clevers 
et al., 2008; Pandit et al., 2010; Prasad et al., 2015). 
The remaining reflectance data were then enhanced 
using continuum-removal (CR), which is a widely 
used transformation in spectroscopy (Piroozfar 
et  al., 2018; Prasad & Gnanappazham, 2016; Zhao 
et al., 2020). In CR analysis, the overall albedo of a 
reflectance curve (called the continuum) is removed, 
thereby scaling reflectance spectra to 100% when 
approaching the continuum (Van der Meer, 2004). 

Spectral absorption features do not occur at every 
wavelength within the VNIR–SWIR range but rather 
at certain wavelengths typically associated with 
oxides, clays, carbonates, sulfides, and organic matter 
(Malley & Williams, 1997). Here, changes in SAFPs, 
including absorption-band position, absorption-band 
depth (D), absorption-band width (W), and absorp-
tion-band asymmetry (S), were derived from the 
strongest SAFs in the CR spectra (Fig. 3) around 433 
nm, which are known to be associated with lattice OH 
in goethite (Balsam & Wolhart, 1993), and around 
1400 and 2200 nm, which are known to be associated 
with OH and Al–OH groups, respectively, related to 
kaolinite (Hunt & Ashley, 1979; Khunsa et al., 2017; 
Van der Meer, 1999).

Definition of the SAFPs

Absorption-band position, D, S, and W can be calcu-
lated from CR spectra according to Fig. 4. Absorption-
band position is the wavelength corresponding with the 
minimum reflectance percentage over the wavelength 
range of the absorption feature (Van der Meer, 2004).

The D is typically defined relative to the hull/con-
tinuum  (Rc), as:

where  Rb is the reflectance at the wavelength mini-
mum and  Rc is the reflectance of the continuum at the 
wavelength position of  Rb (Van der Meer, 2004). The 
S is typically defined as:

(1)D = 1–Rb∕Rc

Fig. 2  Median raw ground-
derived spectra of overbank 
sediments at each of the 
12 sample sites (Fig. 1) 
along the Blesbokspruit 
River, highlighting the 
wavelengths associated with 
atmospheric water
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where the  Arealeft is the area from the starting point 
of the absorption feature to the minimum reflectance 
point and  Arearight is the area from the minimum 
reflectance point to the shoulder (end point) of the 
absorption feature (Van der Meer, 2004). The W is 
typically defined as the area to the left and right of the 
minimum reflectance value/percentage of the absorp-
tion feature relative to the absorption depth (Van der 
Meer, 1999), thus:

(2)S = Arealeft∕Arearight

(3)W =
(

Arealeft + Arearight
)

∕2D

Data analysis

Of the spectral data measured, all but the spectra in 
the subset around 2200 nm for samples no. 1 and 2 
were used in further statistical analysis. Spectra meas-
ured around 2200 nm for samples no. 1 and 2 were 
excluded from the statistical analysis because they 
were very noisy and likely a result of the high per-
centage of local humidity (i.e., 24%) at the time and 
day of measurement. Because of the small number 
of overbank sediment samples (n = 12), correlations 
among the CR SAFPs were determined using Spear-
man’s rank correlation analysis, which is suitable for 
smaller datasets and is robust against outliers (Rei-
mann & Filzmoser, 2000). The reliability of the cor-
relations is expressed by the statistical significance 
(p) and confidence intervals (CIs). Although the trace 
metal concentrations are compositional data (Bucci-
anti & Pawlowsky-Glahn, 2005; Pawlowsky-Glahn & 
Egozcue, 2006), they were not subjected to log-ratio 
transformation because the data per element were 
correlated with spectral data which do not come from 
the same, closed composition, thus, rendering them 
independent (Reimann & de Caritat, 2017). How-
ever, the trace metal concentration data were ln-trans-
formed to improve the normality of the data prior to 
further analysis (Reimann & Filzmoser, 2000). The 
relationships between trace metal concentration data 
(as target variables) and spectral data (as predictor 
variables) can be modeled using linear regression 
analysis (i.e., one predictor variable (or regressor) and 

Fig. 3  Continuum-removed 
ground spectra of overbank 
sediments at each of the 12 
sample sites (Fig. 1) along 
the Blesbokspruit River, 
with wavelengths related to 
atmospheric water removed 
and the spectral subsets 
used to derive the SAFPs 
enclosed in black rectangles

Fig. 4  Definition of absorption-band position, depth, and 
asymmetry (modified after Van der Meer, 1999)
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one target variable (or regressand). However, multiple 
linear regression analysis is unsuitable when predic-
tor variables show high collinearity, as is typical of 
spectral data (Van der Meer & Jia, 2012). In addition, 
the resulting models are often too complex to under-
stand (Wu et al., 2005).

Here, SAFPs which showed the strongest correla-
tions with trace metal contents were used to establish 
univariate regression models, thereby, satisfying the 
“one in ten” rule of thumb for the number of samples 
required per predictor variable in regression analysis 
(Austin & Steyerberg, 2015; Harrell Jr., 2001; Stey-
erberg, 2009). Calibration regression models were 
evaluated using the coefficient of determination  (R2) 
and the standard error of estimation (SEE) as fit-
ness indicators. The goodness of fit increases as  R2 
values approach 1 while the uncertainty of the cali-
bration models decrease as SEE values approach 0. 
“Predicted” concentrations were calculated using the 
regression equation obtained for each of the calibra-
tion regression models. Predicted concentrations in 
ln were then back-transformed to normal values for 
comparison with measured trace metal concentra-
tions. The predictive capacity of each of the regression 
models was evaluated using the leave-one-out cross-
validation (LOO-CV) method, which is suitable for 
very small datasets (Yadav & Shukla, 2016). Here, a 
single data point was removed from the dataset and 
the regression analysis performed using the remain-
ing data points. The resulting model was then used to 

predict the removed data point and the squared error 
(SE) was calculated for the predictive models. This 
process was repeated until each of the data points has 
been removed and used for cross-validation. The pre-
diction capacity was determined by calculating the 
root mean squared error of prediction of cross-valida-
tion  (RMSEPCV). The stability of the predictive mod-
els was evaluated using the Chow test (Chow, 1960), 
which examines the equality of regression coefficients 
(i.e., slope and intercept) across subsets of the data 
and returns a significant result if the coefficients are 
statistically different (Sotirakopoulos et al., 2015).

Results and discussion

Mineralogy and geochemistry

Table 1 shows the mineralogical and trace metal com-
position of the overbank sediment samples collected 
from the study site. The results of XRD Rietveld anal-
ysis showed that the overbank sediments in the study 
site contained mainly quartz (95–100%) and kaolinite 
(0–5%). Thus, they can be considered as sediments 
with sandy texture. The major element composition 
of the overbank sediment samples can be summarized 
according to decreasing median concentrations (ppm) 
as: Al (44719.56) > Fe (25670.24) > Si (3459.86) 
> Mn (212.17). The trace metal composition of the 
overbank sediment samples can be summarized 

Table 1  Mineralogical (%) and trace metal composition (ppm) of Blesbokspruit River overbank sediment samples, as determined by 
XRD Rietveld analysis and ICP-AES/MS, respectively

Sample # % Quartz % Kaolinite Si Al Fe Mn Pb Cd As Cu

1 99 1 4018.99 34055.15 60397.83 810.81 19.30 0.03 8.56 39.58
2 99 1 2995.00 42604.86 63870.49 958.88 23.63 0.03 8.94 50.81
3 100 0 3481.57 35141.18 19537.25 199.16 22.90 0.01 5.24 27.07
4 99 1 3718.11 41685.31 26825.22 325.12 26.78 0.05 6.52 31.59
5 95 5 3814.73 51827.09 26902.85 262.41 31.67 0.26 8.29 42.81
6 96 4 2968.00 46834.26 25172.25 189.48 35.76 0.30 8.61 46.68
7 99 1 3472.74 51362.93 26168.22 112.34 23.45 0.02 5.07 27.42
8 98 2 3709.28 57907.06 33456.19 238.30 27.33 0.07 6.36 31.94
9 99 1 3210.44 32634.63 17837.61 99.22 51.22 0.02 11.15 31.05
10 100 0 3446.98 39178.77 25125.58 225.18 47.34 0.06 12.44 35.57
11 100 0 2005.81 83014.95 12225.91 126.44 22.86 0.01 2.64 23.93
12 100 0 2598.00 72826.09 11932.37 103.51 20.36 0.02 2.70 23.85
Median 99 1 3459.86 44719.56 25670.24 212.17 25.21 0.03 7.40 31.77
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according to decreasing median concentrations (ppm) 
as: Cu (31.77) > Pb (25.21) > As (7.40) > Cd (0.03). 
The major element composition of the overbank sedi-
ments suggests that the < 63 μm fraction of the over-
bank sediments is largely dominated by Al and Fe 
oxides and oxyhydroxides, with lower proportions of 
clay (indicated by Si) and minor proportions of Mn 
oxides and oxyhydroxides.

Correlations among the derived goethite- and kao-
linite-related SAFPs and ln-transformed trace metal 
contents are shown in Table 2. The rationale for trace 
metal predictions is based on the knowledge that iron 
oxide minerals (Parker et  al., 2007; Webster et  al., 
1998), such as goethite, and clay minerals (Uddin, 
2017; Ugwu & Igbokwe, 2019), such as kaolinite, 
play significant roles in trace metal attenuation in 
aquatic environments, largely via adsorption processes. 
According to Table 2, Cd showed strong (r > 0.7) and 
significant (CI > 95%) correlation with only the goe-
thite-related SAFP  (Depth433). This strong correlation 
is supported by Covelo et  al. (2007) who determined 
that Cd was preferentially adsorbed (and retained) 
by Fe-oxides, compared to clays, in soils. Pb showed 
strong (r > 0.7) and significant (CI > 95%) correlations 
with both the goethite-related SAFPs  (Depth433 and 
 Width433) and the kaolinite-related SAFP  (Width2208). 
These strong correlations are consistent with Moreno 
et  al. (2006) who found that iron oxide and clay (the 
most significant of which was kaolinite) contents 
played important roles in the adsorption of Pb. Arse-
nic appeared strongly correlated (r > 0.7) with both 

goethite-related  (Asym433) and kaolinite-related 
 (Asym2208) SAFPs. While the strong and significant 
correlation with goethite is expected (Kumpiene et al., 
2008; Palansooriya et al., 2020), the strong correlation 
with kaolinite  (Asym2208) is consistent with Choe et al. 
(2009) and Piroozfar et  al. (2018) and may be attrib-
uted to strong complexes between As and (i) octahe-
drally coordinated aluminum- (Halter & Pfeifer, 2001) 
and (ii) Fe and Al hydroxide coatings on kaolinite sur-
faces (Goldberg, 2002). Similar to As, Cu is strongly 
correlated (r > 0.7) with both goethite-  (Asym433) and 
kaolinite-related  (Depth1366, and  Width1366) SAFPs. 
Copper is commonly associated with Fe oxides 
(Kabata-Pendias & Pendias, 2000; Kumpiene et  al., 
2008) and similar to As, has shown a strong affin-
ity for kaolinite when it is coated with Fe hydroxides 
(González-Costa et  al., 2017; Osei & Singh, 2000; 
Zhuang & Yu, 2002), as is applicable in the study area.

Regression modeling

Model calibration

Inputs to the univariate regression modeling were 
based on correlations of the SAFPs with the ln-trans-
formed trace metal concentrations (Table 2). Table 3 
shows the  R2 and SEE of the calibration models 
obtained for Pb, Cd, As, and Cu. The SEE generally 
provides a better estimate of a model’s predictive 
accuracy, compared to the  R2, because it is a meas-
ure of the actual distance of the data points from 
the regression line on average (Frost, 2023a). Thus, 
according to the SEE, the best performing model was 
obtained for Cu (SEE = 0.15), followed by Pb (SEE 
= 0.21), As (SEE = 0.31), and Cd (SEE = 0.81).

Table 2  Correlations between the derived SAFPs and ln-trans-
formed trace metal concentrations. Strong (r > = 0.7) and sig-
nificant (p < 0.05) correlations are shown in bold

*Correlation is significant at the 0.05 level (2-tailed)
**Correlation is significant at the 0.01 level (2-tailed)

n = 12 ln.Pb ln.Cd ln.As ln.Cu

Depth433 0.7** 0.7** 0.6* 0.5
Asym433 −0.2 −0.4 −0.7* −0.8**
Width433 −0.7* −0.2 −0.5 −0.1
Depth1366 0.1 0.4 0.5 0.8**
Asym1366 −0.6* −0.3 −0.5 −0.3
Width1366 −0.3 −0.1 −0.7 −0.7**
Depth2208 0.6* 0.4 −0.0 −0.2
Asym2208 −0.4 −0.4 −0.7** −0.6
Width2208 −0.8** −0.2 0.0 −0.3

Table 3  Goodness of fit  (R2) and uncertainty (SEE) of the uni-
variate calibration regression models for the SAFPs and trace 
metal contents

*Standard error of estimation

Metal Predictor R2 SEE*

Pb Width2208 0.61 0.21
Cd Depth433 0.56 0.81
As Asym2208 0.70 0.31
Cu Depth1366 0.69 0.15
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Table 4  Regression equations, SE and  RMSEPCV and Chow statistic for Pb, Cd, As, and Cu, using the LOO-CV method

a Cross-validation
b y refers to metal, x refers to SAFP predictor
c Squared error
d Root mean squared error of prediction of cross-validation

Metal Sample #s included in  CVa Regression  equationb SEc (y - ŷ)2 RMSEPCV
d Chow test (p)

Pb 2, 3, 4, 5, 6, 7, 8, 9, 10 y = 0.60x + 12.2 19.7 4.30 0.20
1, 3, 4, 5, 6, 7, 8, 9, 10 y = 0.60x + 13.0 3.8
1, 2, 4, 5, 6, 7, 8, 9, 10 y = 0.61x + 11.6 0.5
1, 2, 3, 5, 6, 7, 8, 9, 10 y = 0.62x + 11.6 3.9
1, 2, 3, 4, 6, 7, 8, 9, 10 y = 0.59x + 12.4 8.4
1, 2, 3, 4, 5, 7, 8, 9, 10 y = 0.59x + 12.6 2.5
1, 2, 3, 4, 5, 6, 8, 9, 10 y = 0.60x + 12.0 73.4
1, 2, 3, 4, 5, 6, 7, 9, 10 y = 0.54x + 13.2 67.7
1, 2, 3, 4, 5, 6, 7, 8, 10 y = 0.65x + 9.8 3.4
1, 2, 3, 4, 5, 6, 7, 8, 9 y = 0.69x + 8.5 4.6

Cd 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 y = 0.35x + 0.03 6.59E-05 0.06 0.18
1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 y = 0.36x + 0.03 4.55E-05
1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12 y = 0.35x + 0.03 5.10E-04
1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12 y = 0.35x + 0.03 3.98E-05
1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12 y = 0.35x + 0.03 0.02
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12 y = 0.39x + 0.02 0.03
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12 y = 0.37x + 0.02 1.45E-04
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12 y = 0.36x + 0.03 2.84E-04
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12 y = 0.39x + 0.02 1.82E-04
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12 y = 0.36x + 0.02 2.38E-04
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 y = 0.35x + 0.03 3.16E-04
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 y = 0.35x + 0.03 2.13E-04

As 2, 3, 4, 5, 6, 7, 8, 9, 10 y = 0.47x + 3.3 0.2 1.70 0.06
1, 3, 4, 5, 6, 7, 8, 9, 10 y = 0.45x + 3.5 0.0
1, 2, 4, 5, 6, 7, 8, 9, 10 y = 0.42x + 3.5 1.5
1, 2, 3, 5, 6, 7, 8, 9, 10 y = 0.42x + 3.7 2.0
1, 2, 3, 4, 6, 7, 8, 9, 10 y = 0.49x + 3.0 0.2
1, 2, 3, 4, 5, 7, 8, 9, 10 y = 0.45x + 3.3 0.0
1, 2, 3, 4, 5, 6, 8, 9, 10 y = 0.52x + 3.2 4.6
1, 2, 3, 4, 5, 6, 7, 9, 10 y = 0.62x + 2.6 4.2
1, 2, 3, 4, 5, 6, 7, 8, 10 y = 0.32x + 4.7 8.6
1, 2, 3, 4, 5, 6, 7, 8, 9 y = 0.32x + 4.7 8.1

Cu 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 y = 0.66x + 10.6 8.2 2.50 0.48
1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 y = 0.68x + 10.6 32.9
1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12 y = 0.71x + 9.7 3.4
1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12 y = 0.70x + 9.7 0.6
1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12 y = 0.72x + 9.4 7.1
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12 y = 0.77x + 7.9 7.8
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12 y = 0.70x + 10.8 4.7
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12 y = 0.70x + 10.7 1.0
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12 y = 0.72x + 9.0 0.2
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12 y = 0.72x + 9.5 0.3
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 y = 0.76x + 7.5 3.4
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 y = 0.76x + 7.5 3.5
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Model evaluation

Table  4 shows the regression equations, SE, 
 RMSEPCV and Chow statistic (p) for Pb, Cd, As, and 
Cu, using the LOO-CV method. According to the 
Chow statistic (Table 4), regression coefficients gen-
erated by CV, for each of the trace metals, were stable 
(p > 0.05) and thus, robust, in spite of the small sam-
ple size. According to Table  4, the lowest RMSEP 
was obtained for Cd (0.06), followed by As (1.70), Cu 
(2.50), and Pb (4.30). However, when the RMSEP is 
compared with the concentration range of each of the 
metals, the RMSEP obtained for Cd represents ~ 25% 
of the population; for As, it represents ~ 17% of the 
population; for Cu, it represents ~ 9% of the popula-
tion and for Pb, it represents ~ 14% of the population. 
Thus, Cu was the most accurately predicted while Cd 
was the least accurately predicted.

Scatterplots depicting measured vs. predicted trace 
metal (Pb, Cd, As, and Cu) contents were generated 
as part of the predictive model evaluation process 
(Fig.  5). Data points appeared mostly scattered in 

pairs (generally corresponding with the 5-m-spaced 
sample pairs). According to Fig. 5, the highest  R2 was 
obtained for Cu  (R2 = 0.73) and Pb  (R2 = 0.73), fol-
lowed by Cd  (R2 = 0.70) and As  (R2 = 0.46). The  R2 
values obtained for Pb (Fig. 5a) and Cu (Fig. 5d) are in 
good agreement with the distribution of points around 
their 1:1 control lines. However, the regression line 
obtained for Cd (Fig. 5b) showed significant deviation 
from the 1:1 control line, suggesting that its high  R2 
is likely strongly influenced by the outliers at ~ 0.25 
ppm. When the outliers are removed from the regres-
sion analysis, the  R2 lowers substantially from 0.7 to 
0.17. This suggests that the Cd model is inappropriate 
for predictions and thus, is a limitation of this study.

The RMSEP (Table  4), which generally shows a 
high sensitivity to outliers (Frost, 2023b), is a seem-
ingly unsuitable estimation of model performance, 
especially for Cd. In addition, it was strongly con-
trolled by the concentration range of the training data-
set (i.e., Cd had the lowest RMSEP because its train-
ing dataset had the lowest mean) and does not agree 
with the regression line obtained for Cd (Fig. 5b). In 

Fig. 5  Measured vs. predicted concentrations of a Pb, b Cd, c As, and d Cu in overbank sediments in the study area (red dots with 
sample identification). The 1:1 control lines are shown in solid black and the regression lines are shown in dotted grey line
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contrast, the SEE (Table  3), showed better consist-
ency with the regression line obtained for Cd, com-
pared to the RMSEP, and thus, is a more suitable esti-
mate of model accuracy.

Conclusions

Conventional geochemical methods of investigating 
trace metal contents in soils and sediments can be very 
costly and time-consuming, especially when conducted 
on large scales. This study served as a first attempt to 
predict potentially toxic trace metals in overbank sedi-
ments of the Witbank Coalfield using VNIR–SWIR 
spectroscopy and the distinct SAFPs of mineral-bound 
trace metals. We determined the following:

1. The strongest calibration models were obtained 
using  Depth433,  Depth1366,  Width2208, and  Asym2208 
as trace metal predictors. The association of these 
predictors with goethite and kaolinite suggests that 
these minerals play an important role in trace metal 
attenuation and prediction in the study area.

2. Of the trace metals analyzed, Cu and Pb were the eas-
iest to predict while As and Cd were harder to predict.

3. The RMSEP was highly sensitive to outliers, as 
well as the concentration ranges of the analyzed 
metals. Thus, it provided a seemingly inappropri-
ate estimate of predictive model accuracy. In con-
trast, the SEE appeared more consistent with the 
regression lines obtained for the predictive mod-
els and thus, was a better estimate of the predic-
tive accuracy, overall.

Although the data analysis was tailored to the 
small sample size, it remains a limitation of this 
work. This study, therefore, serves mainly as a proof 
of concept. Additional research using a larger dataset 
and more complex multivariate regression analysis 
is warranted to improve the validation of the predic-
tive models. Following improved validation, ground 
reflectance spectroscopy could prove to be a valuable 
screening tool for detecting trace metal concentrations 
in overbank sediments with significant Fe oxides and 
clays, as a precursor to more in-depth sampling and 
geochemical analyses.
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