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Abstract  Surface oil sands mining and extraction  
in northern Alberta’s Athabasca oil sands region pro-
duce large volumes of oil sands process–affected water  
(OSPW). OSPW is a complex mixture containing 
major contaminant classes including trace metals, 
polycyclic aromatic hydrocarbons, and naphthenic 
acid fraction compounds (NAFCs). Naphthenic acids 
(NAs) are the primary organic toxicants in OSPW, 
and reducing their concentrations is a priority for oil 
sands companies. Previous evidence has shown that 
constructed wetland treatment systems (CWTSs) are 
capable of reducing the concentration of NAs and 
the toxicity of OSPW through bioremediation. In 
this study, we constructed greenhouse mesocosms 
with OSPW or lab process water (LPW) (i.e., water 
designed to mimic OSPW minus the NAFC content) 

with three treatments: (1) OSPW planted with Carex 
aquatilis; (2) OSPW, no plants; and (3) LPW, no 
plants. The OSPW–C. aquatilis treatment saw a sig-
nificant reduction in NAFC concentrations in compar-
ison to OSPW, no plant treatments, but both changed 
the distribution of the NAFCs in similar ways. Upon 
completion of the study, treatments with OSPW saw 
fewer high-molecular-weight NAs and an increase in 
the abundance of O3- and O4-containing formulae. 
Results from this study provide invaluable information 
on how constructed wetlands can be used in future 
remediation of OSPW in a way that previous studies 
were unable to achieve due to uncontrollable envi-
ronmental factors in field experiments and the active, 
high-energy processes used in CWTSs pilot studies.

Keywords  Oil sands process–affected water · 
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Introduction 

The Athabasca oil sands region in northern Alberta 
contains the third largest oil reserve in the world, 
accounting for an estimated 165 billion barrels of 
extractable oil reserves with approximately 2.9 mil-
lion barrels produced daily (Canadian Association of 
Petroleum Producers, 2022; Government of Canada, 
n.d.). Surface mining of bituminous sand produces 
large volumes of oil sands process–affected water 
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(OSPW) and tailings as a by-product, wherein the 
OSPW in tailings ponds is recycled throughout the 
extraction process (AER (Alberta Energy Regulator), 
2017). A “zero discharge” policy has been in place 
since 1993, resulting in the accumulation of over 1.3 
billion m3 of tailings being stored in tailings ponds 
across the mineable oil sands region (AER, 2017; 
Canadian Association of Petroleum Producers, 2022; 
Government of Canada, n.d.). The free water in tail-
ings ponds, or OSPW, are comprised of < 5% solids 
and contain varying amounts of salt, organic com-
pounds, and trace metals (AER, 2017; Canadian Asso-
ciation of Petroleum Producers, 2022; Government of 
Canada, n.d.). OSPW presents considerable environ-
mental and economic challenges due to the volume, 
complexity, and toxicity of the mixture (Allen, 2008). 
Within OSPW, there are several major classes of con-
taminants including naphthenic acids (NAs), polycy-
clic aromatic hydrocarbons (PAHs), BTEX (benzene, 
toluene, ethylbenzene, and xylenes), phenols, heavy 
metals, and ions (Alharbi et  al., 2021; Allen, 2008; 
Cancelli & Gobas, 2020; McQueen et  al., 2017a, b; 
Puttaswamy & Liber, 2012).

Of the many components in OSPW, naphthenic 
acid fractional compounds (NAFCs) are some of 
the primary organic toxicants of concern. This com-
plex class of organic acids includes naphthenic acids 
(NAs), which have been consistently implicated as 
being particularly toxic (Hughes et al., 2017; Morandi 
et al., 2015). The general formula for NAs follows the 
format CnH2n+ZO2, where n is the number of carbon 
atoms and z is a negative even integer that indicates 
hydrogen deficiencies caused by the presence of a ring 
structure (Brown & Ulrich, 2015; Grewer et al., 2010; 
Headley et  al., 2013; Wang et  al., 2016; Xue et  al., 
2018). The broader compound class encompassed 
by NAFCs includes diverse organic acids that can be 
aromatic, contain sulfur or nitrogen heteroatoms, and 
may be polyoxygenated (e.g., x ≥ 2) (Brown & Ulrich, 
2015; Grewer et al., 2010; Headley et al., 2013; Wang 
et  al., 2016; Xue et  al., 2018). NAs can be particu-
larly resistant to biodegradation when functionalized 
with an ante-iso-(β)-alkyl substituted moiety, a ter-
nary substitution other than β to the carboxylic group, 
or a methyl substitution on a ring structure is present 
(Quagraine et  al., 2007). Additionally, NAFCs with 
more rings, higher molecular weights, and increased 
branching tend to be more resistant to biodegrada-
tion (Biryukova et al., 2007; Del Rio et al., 2006; Han 

et al., 2008). Molecular features and level of unsatura-
tion can therefore be important determinants of envi-
ronmental persistence of NAFCs.

As the most toxic component of NAFCs, NAs pose 
considerable toxicological risks for aquatic and ter-
restrial biota with acute and chronic adverse responses 
(Anderson et  al., 2012; Bartlett et  al., 2017; Hagen 
et  al., 2014; Kavanagh et  al., 2013). As an example, 
results of studies 24 and 25 showed that the lethal 
concentration that causes 50% mortality (LC50) esti-
mated for wood frog (Xenopus tropicalis) tadpoles was 
4.76  mg/L of technical grade NAs (C10H18O2) over a 
24-hexposure period (Melvin & Trudeau, 2012), while 
fathead minnows (Pimephales promelas) exposed to 
10 mg/L of NAs for 21 days spawned fewer eggs with 
an LC50 of 32.8  mg/L of NAs for minnow embryos 
(Kavanagh et al., 2012). Cattails (Typha latifolia) were 
also susceptible to acute toxic effects when exposed 
to OSPW-derived NAs at 60 mg/L (Armstrong et  al., 
2009). In OSPW, NA concentrations and compositions 
can vary depending on the extraction processes, type of 
ore, and age of OSPW (Allen, 2008; Holowenko et al., 
2002), as NAs have an estimated half-life of approxi-
mately 13 years within tailings ponds (Han et al., 2009). 
Quantitation across sources and methods must be done 
sparingly; although NAs in OSPW can range between 
20 and 120 mg/L, this depends on the source of OSPW 
(Ajaero et al., 2018; Cancelli & Gobas, 2022; Vander 
Meulen et  al., 2021). Measurement methods must be 
kept consistent within study designs, as amounts of 
NAs and NAFCs will also vary between different quan-
tification methods, whether using FTIR (Grewer et al., 
2010; Ripmeester & Duford, 2019; Rogers et al., 2002), 
gas chromatography–mass spectrometry (Grewer et al., 
2010), or various forms of liquid chromatography–mass 
spectrometry (Ajaero et al., 2018; Duncan et al., 2016; 
Headley et al., 2011a, b; Janfada et al., 2006).

Due to the persistence of NAFCs and its toxic-
ity in OSPW, NAFCs and OSPW must be adequately 
degraded and toxicity reduced prior to the potential 
discharge back into the environment. The development 
of effective and efficient approaches for treating OSPW 
is required. Many active treatment techniques are being 
investigated (e.g., electrical or chemical oxidation, 
sequestration, and/or filtration techniques) for treat-
ing NAFCs in OSPW (Abdalrhman & El-din, 2020; 
Allen, 2008; Alpatova et  al., 2014; Kim et  al., 2012; 
Wang et al., 2016), but there have been few treatment 
strategies that have shown promise for large-scale and 
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cost-effective implementation (Quinlan & Tam, 2015; 
Wang et al., 2016).

Constructed wetland treatment systems (CWTS) 
can facilitate the remediation of OSPW by degrad-
ing NAFCs through the microbial communities and 
wetland plants (Cancelli & Gobas, 2020; Hendrikse 
et  al., 2018; McQueen et  al., 2017a, b). Plants are 
incorporated into CWTS to directly or indirectly pro-
mote microbial activity by increasing aeration and 
accumulating organic matter (Allen, 2008; Phillips 
et  al., 2010; Truu et  al., 2015). Biodegradation of 
NAFCs by leveraging natural processes could be an 
effective method to reduce NAFC concentrations and 
related toxicity compared to resource- and energy-
intensive chemical and physical approaches. It is 
imperative to understand the various parameters that 
affect the success of CWTS in reducing OSPW toxic-
ity, particularly in northern areas like the Athabasca 
oil sands region with short growing seasons and cold 
winter temperatures (Allen, 2008; Truu et al., 2009).

Previous successful petroleum bioremediation 
projects have focused on the potential of wetland 
graminoids to degrade OSPW in a CWTS (Hendrikse 
et al., 2018; McQueen et al., 2017a, b; Simair et al., 
2021). A variety of wetland graminoids (Typha lati-
folia, Phragmites australis, and Scirpus acutus) were 
able to selectively enhance the dissipation of nonion-
ized NA compounds, effectively reducing the toxicity 
of NAs in the system over 30 days (Armstrong et al., 
2009). Slender wheatgrass (Elymus trachycaulus) 
seedlings grown in substrate saturated with OSPW 
were found to directly uptake five types of NAs that 
represent aliphatic, single-ring, and three-ring dia-
mondoid NA classes (Alberts et  al., 2021). Sandbar 
willow (Salix exigua) plants decreased concentra-
tions of single-ring and triple-ring diamondoid NAs 
in a hydroponic system within 6 h by 95% and 84%, 
respectively; for the single-ring NAs, the concen-
tration decreased by < 20% within the first 30  min 
(Alberts et  al., 2021). Various studies focused on 
the bioremediation of NAs in OSPW with CWTS 
using C. aquatilis, a locally common species to the 
oil sands region, as it is a highly competitive species 
capable of tolerating tailings pond water, becom-
ing the dominant species in these systems (Caners & 
Lieffers, 2014; Crowe et  al., 2002). C. aquatilis has 
outperformed other tested species in reducing the tox-
icity of NAFCs in OSPW (Cancelli & Gobas, 2022; 
Crowe et al., 2002; Simair et al., 2021).

While field- and pilot-scale CWTS projects have 
shown they are a viable option for NAFC remediation 
(Ajaero et al., 2018; Simair et al., 2021), it is essen-
tial to gain a better understanding of how these pas-
sive, low-energy systems degrade OSPW (Cancelli & 
Gobas, 2020). Field studies are influenced by a large 
variety of uncontrollable environmental variables 
(e.g., rainfall events, seasonality, mechanical failure, 
and leakages) which lead to reduced experimental 
replicability, thus making conclusive observations 
difficult (Cappello & Yakimov, 2010; McQueen et al., 
2017a, b; Simair et  al., 2021). Mesocosm systems 
are built-in environments where factors that would 
be integral components in a CWTS can be controlled 
and evaluated (Cappello & Yakimov, 2010). Meso-
cosm systems create a representative exposure for test 
organisms while maintaining enough control to exam-
ine the effects of individual experimental parameters 
(e.g., OSPW typology, substrate, plant species, tem-
perature), track biotic changes, and examine chemi-
cal dissipation pathways (Boyle & Fairchild, 1997; 
Schindler, 1998).

This study aims to evaluate the impacts of C. 
aquatilis on the attenuation of NAFCs in OSPW. 
Our study is conducted in a continuous surface flow 
CWTS constructed using sand and peat. The param-
eters examined within this mesocosm study will help 
to understand the different attenuation processes 
occurring in a CWTS.

Materials and methods

Experimental design

The experiment was set up in the Northern Forestry 
Centre’s greenhouse in Edmonton, AB.  It consisted 
of three treatments with 4 replicates each: unplanted 
mesocosms with lab process water (LPW) not con-
taining NAFCs, unplanted mesocosms with OSPW, 
and established C. aquatilis in mesocosms with 
OSPW. A total of 12 individual C. aquatilis plants 
was transplanted into each mesocosm prior to initiat-
ing the experiment. The mesocosms were randomly 
placed in the greenhouse bay.

The mesocosms were constructed out of polypro-
pylene (50.8 cm height × 33.0 cm width × 129.5 cm 
length; 248.1 L) and were filled evenly with 10 cm 
(42.8 L) coarse sand tailings (CST) topped with 
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10 cm (42.8 L) peat–mineral mix (PMM). The CST 
and PMM represent locally abundant CWTS sub-
strates and were collected from a mine located in 
the Alberta oil sands. Either LPW or OSPW from 
the same mine was used to fill each mesocosm to 
25  cm (139 L) above the substrate surface. The 
LPW was created to represent a similar chemical 
composition to OSPW excluding NAs to isolate the 
potential leaching of NAFCs from the substrate. 
The LPW was created using reverse osmosis water 
(RO) water containing 100 mg/L of calcium carbon-
ate, 350 mg/L of sodium sulfate, and 100 mg/L of 
sodium chloride. The mesocosms were operated as 
surface flow closed loop systems, where the OSPW 
or LPW was pumped from a 159 L reservoir tank 
into the mesocosm. The pumps were set to cycle 
28.8 L/day by pumping intermittently every 10 min, 
with a flow rate of approximately 20 mL/min. This 
flow rate sets each cycle to be 4  days (i.e., the 
amount of time required to exchange the entire vol-
ume of free water in the mesocosm with the reser-
voir) or a hydraulic retention time of 4.8 days; this 
experiment ran for 84 days or 21 cycles.

The C. aquatilis used in this study were grown from 
seeds collected from natural stands in seed zone DM1.3 
(Dry Mixedwood). C. aquatilis seedlings were grown in 
a peat plug for 3 months in standard styroblock contain-
ers (size 512A). Seedlings were fertilized three times a 
week with Miracle Grow All Purpose water-soluble plant 
food (N-P-K ratio of 24–8–16). At the time of planting 
in the mesocosms, C. aquatilis plants were between 63 
to 110  cm tall (mean = 83  cm). To acclimate C. aqua-
tilis in the mesocosms prior to adding OSPW, RO water 
was used during the acclimation period (32 days) where 
the water level was slowly raised to achieve the final 
depth of 25 cm. The mesocosms were then drained and 
filled with 50% OSPW or LPW and 50% RO water for 
7 days to acclimate the plants to OSPW, after which the 
mesocosms were drained and 100% OSPW or LPW was 
added to the desired depth of 25  cm. Throughout the 
experiment, the greenhouse temperature was maintained 
at approximately 20ºC with a 16-h daily photoperiod sup-
plemented using LED grow lights. To account for evapo-
transpiration from the C. aquatilis, RO water was added 
to the reservoir tanks to maintain a consistent volume of 
water throughout the experiment.

General chemistry parameters for the substrate, 
OSPW, and LPW were analyzed at the beginning 
and the conclusion of the experiment. Substrate 

and OSPW samples were sent to Element Materials 
Technology (Edmonton, AB, Canada). The initial 
LPW samples were sent to the analytical lab at the 
Northern Forestry Centre (Edmonton, AB, Canada). 
Analysis for the substrates included pH, electrical 
conductivity (EC), sodium adsorption ratio (SAR), 
major nutrients, total petroleum hydrocarbons, and 
metal concentrations. Characterization of pH, EC, 
SAR, and major nutrients was determined using the 
saturated paste method, and metal concentration was 
completed using an ICP method with boron measured 
using hot water extraction. The analysis of OSPW 
and LPW included pH, EC, hardness, total dissolved 
solids, metals, major anions, and total alkalinity.

Various water, substrate, and plant parameters 
were measured at the end of every 4-day cycle. A 
YSI® Professional Plus Multiparameter instrument 
was used to measure pH, dissolved oxygen, salinity, 
oxidation reduction potential (ORP), and conductivity 
of the water. Vegetation assessments included assess-
ments of plant survival, vegetation cover, and height.

To determine the major ion concentrations for 
plant tissue, above-ground biomass for each meso-
cosm was collected and sent to Element Materials 
Technology for analysis (Edmonton, AB, Canada).

Sample preparation and high‑resolution MS analysis 
of NAFCs

Water samples were extracted using an ENV + solid-
phase extraction (SPE) method, as has been previously 
described by Headley et al. (2002). SPE cartridges were 
rinsed with 6  mL of Milli-Q water, 6  mL of LC–MS 
grade methanol (Fisher Scientific, Hampton NH, USA), 
and conditioned with a further 6  mL of Milli-Q water 
prior to sampling. Sample aliquots were measured to 
100 mL and acidified to pH < 2 with formic acid. Acidi-
fied samples were drawn through prepared cartridges at 
1–2 mL/min under vacuum conditions, rinsed with 6 mL 
of Milli-Q water to desalt, and then dried under gen-
tle vacuum. Sample extracts were eluted with 6 mL of 
LC–MS grade methanol then evaporated at 40 °C under 
a gentle flow of 5.0-grade ultrahigh purity N2 (Linde 
Canada, Saskatoon, SK). Dried sample eluents were 
reconstituted into 1 mL of 50:50 ACN:H2O with 0.1% 
NH4OH, then transferred to clean and labeled 2.0  mL 
LC–MS vials. Sample extracts were analyzed via loop 
injection to an LTQ Orbitrap Velos Elite™ mass spec-
trometer (Thermo Fisher Scientific, Waltham, MA) 
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operating at 240,000 resolution (measured at 400 m/z) in 
negative ion electrospray ionization mode, as was previ-
ously described in the literature by Headley et al. (2011a). 
Concentrations of NAFCs were determined using a  
5-point external standard calibration of Athabasca oil 
sands OSPW-derived NAFCs at known concentrations as  
described elsewhere (Ahad et al., 2020).

Carboxyl group targeted carbon isotope analysis

Non-bitumen-derived organic matter such as fatty acids 
and humic material extracted with NAFCs can con-
found interpretations of naphthenic acid distributions in 
environmental samples (Ahad et al., 2013; Ajaero et al., 
2017). Carbon isotope ratios of the CO2 generated by 
the pyrolytic decarboxylation (δ13Cpyr) of NAFCs (also 
referred to as acid-extractable organics) were thus car-
ried out to quantify the proportion of OSPW contrib-
uting to NAFC concentrations at three sampling points 
over the course of the experiment in the planted and 
unplanted OSPW mesocosms. The δ13Cpyr values were 
determined by thermal conversion/elemental analy-
sis–isotope ratio mass spectrometry (TC/EA-IRMS) 
at the Delta-Lab of the Geological Survey of Canada 
(Québec, QC, Canada) using a Delta Plus XL isotope 
ratio mass spectrometer (Thermo Fisher Scientific, 
Waltham, MA) following a protocol adapted from Ahad 
et  al. (2012). Around 1 L of water was collected on 
days 28, 41, and 84, acidified to pH 4.5, and extracted 
using loose Strata-X-A solid-phase extraction (SPE) 
sorbent (Phenomenex, Torrance, CA). The sorbent was 
then filtered from the aqueous phase under vacuum and 
NAFCs eluted with methanol containing 10% formic 
acid and pure methanol. The extracts were evaporated 
to dryness under ultrahigh purity N2 and re-dissolved 
in methanol. Small aliquots were transferred by syringe 
into a 40-μL rigid silver capsule, dried, and sealed with 
pliers prior to isotopic analysis. The δ13Cpyr values were 
determined using isotopically calibrated CO2 gas pur-
chased from Oztech Trading Corp. (Safford, AZ, USA). 
Based on replicate standard and sample analyses, the 
uncertainty for δ13Cpyr values was ± 0.5‰.

Data analysis and visualization

High-resolution mass spectrometry data were processed 
and background-subtracted in XCalibur software (ver-
sion 2.2) (Thermofisher, 2011) and then imported into 
Composer64 software (version 1.5.6) (Paulssen & 

Gieg, 2019) to assign formulae from exact mass using 
a 3-ppm mass tolerance restricted to those containing 
H, C, N, O, and S. This non-targeted analysis workflow 
generates data with a level 4 identification confidence 
level (Schymanski et al., 2014). All formula data were 
imported into R Software (version 4.1.0) (Team, 2021) 
for wrangling and visualization. Plots were generated 
using ggplot2 (Wickham, 2016) or Microsoft Excel 
2016 if the desired plot could not be achieved in R 
(Microsoft Corporation, 2018).

Prior to principal component analysis (PCA), 
base–peak normalized spectral abundance data were 
arranged, centered and Pareto-scaled (Ivosev et  al., 
2008; van den Berg et  al., 2006), and then analyzed 
using the built-in R function prcomp() (Team, 2021). 
Where possible, figures were color-coded using color-
blind-friendly viridis color palettes (Garnier, 2022).

To complete the analysis on the total NAFC con-
centration data, the glmmTMB package and the 
tidyverse packages were installed (Brooks et  al., 
2017; Wickham et  al., 2019) and generalized lin-
ear mixed-effects models used to model the effect of 
treatments over time (intervals at Day 1, Day 40, and 
Day 83) on total NAFC concentrations (Bolker et al., 
2009; Zuur et al., 2010). A generalized linear model 
was used to model the effect of the various soil and 
water parameters. Initial LPW parameters were not 
included in analysis computed in R since the param-
eters were collected from a different lab. The random 
effect that was used in the model was “mesocosm” to 
account for non-independent measures within each 
mesocosm. The DHARMa package was installed and 
used to complete model diagnostics (Harting, 2021), 
and the model with the best fit was used for visualiza-
tion. A Gaussian identity link function was used for 
each of the following: total NAFC concentrations, 
CST (pH, arsenic, boron, chloride cobalt, lead, potas-
sium, and nickel), and PMM (cadmium, chromium, 
cobalt, lead, nickel, vanadium, and zinc). Gamma log 
link function was used for each of the following: on 
all water parameters, CST (SAR, EC, calcium, sul-
fur, sodium, magnesium, vanadium, and zinc), and 
PMM (EC, pH, arsenic, barium, beryllium, boron, 
calcium, chloride, copper, potassium, magnesium, 
sodium, and sulfur). To test the fixed effects in mod-
els for their significance via the Anova() function of 
the car package (Fox & Weisberg, 2018), a Wald chi-
square test was conducted on each model. Based on 
the fitted model, the estimated marginal means were 
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calculated using the emmeans package (Lenth, 2018). 
The P-values for multiple-mean comparisons were 
adjusted using the Tukey method. Plant growth and 
plant health over time are presented descriptively to 
provide a general idea but were not analyzed statisti-
cally due to the low number of replicated samples.

Results and discussion

Substrate quality and characteristics

CST is a unique substrate that varies between oper-
ators due to the variability in ore type (Sarkar & 
Sadrekarimi, 2022). The CST used in this study 
was dominated by coarse sand (98% sand ± 0 
(2 mm to 50 µm), 1.5% silts ± 0.6 (2–50 µm), 0.5% 
clay ± 0.6 (< 2  µm)). Trace metals, petroleum 
hydrocarbons (C10–C50), EC, and SAR in CST 
did not exceed any of the provincial soil guidelines 
(Table 1) (Government of Alberta, 2022).

The PMM used in this study had a lower SAR, 
EC, and cation exchange capacity than the general 
range of PMM used for reclamation in this region 
(MacKenzie & Quideau, 2012; Pinno et  al., 2012; 
Schott et  al., 2016), and the pH and trace metal 
concentrations were within the general acceptable 
range, meeting local guidelines (Table 2) (Govern-
ment of Alberta, 2022; MacKenzie & Quideau, 
2012; Pinno et  al., 2012). However, B increased 
substantially from the initial baseline concentration 
to the final concentration in the OSPW treatments, 
and the final concentration of B in PMM exceeded 
the provincial limit (Table  2) (Government of 
Alberta, 2022). It is hypothesized that OSPW is the 
likely source of boron in this experiment (Table 3). 
Boron adsorption in organic humic substrates is 
four times higher than clays or other substrates 
with little organic matter (Lehto, 1995; Parks & 
White, 1952). Therefore, it is reasonable to expect 
more B accumulated in the PMM compared to CST 
(Tables 1 and 2).

Table 1   Coarse sand tailings physiochemical, inorganic, trace metal, and organic properties pre-experiment (initial) and post-experi-
ment (final) per treatment; mean ± standard deviation. P-values and significant letters are based on generalized linear model

Properties Parameter Initial Final

CST OSPW–unplanted OSPW–C. aquatilis LPW–unplanted P-value

(n = 4) (n = 4) (n = 4) (n = 4)

Physiochemical pH 7.2 ± 0.3a 7.7 ± 0.3a 7.8 ± 0.1a 7.6 ± 0.6a 0.110
EC (dS/m) 0.8 ± 0.2a 0.7 ± 0.2a 0.9 ± 0.1a 0.9 ± 0.8a 0.743
SAR 1.2 ± 0.1a 1.6 ± 0.3a 2.1 ± 1.1a 1.3 ± 0.5a 0.107

Inorganics (mg/kg) Exchangeable Ca2+ 30.9 ± 8.2a 29.5 ± 16.4a 34.6 ± 7.4a 55.8 ± 65.0a 0.479
Exchangeable Na+ 17.0 ± 2.8a 23.5 ± 2.1ab 31.3 ± 13.3b 19.8 ± 1.7ab 0.002
Exchangeable K+ 3.5 ± 0.6a 2.8 ± 0.5a 2.5 ± 2.4a 2.3 ± 0.6a 0.740
Exchangeable Mg2+ 8.2 ± 2.1a 8.2 ± 3.8a 10.4 ± 1.9a 13.5 ± 14.4a 0.596
Exchangeable Cl– 3.0 ± 1.0a 11.0 ± 3.0ab 15.0 ± 8.0b 16.0 ± 4.0b <0.001
Extractable S 45.0 ± 12.0a 30.0 ± 21.0a 38.0 ± 10.0a 50.0 ± 79.0a 0.862

Trace metals (mg/kg) Arsenic 0.6 ± 0.2a 0.7 ± 0.0a 0.7 ± 0.0a 0.7 ± 0.0a 0.633
Boron 0.5 ± 0.1a 0.6 ± 0.2a 0.4 ± 0.1a 0.4 ± 0.3a 0.468
Cobalt 0.9 ± 0.1a 1.0 ± 0.3a 0.8 ± 0.2a 0.8 ± 0.2a 0.388
Lead 0.4 ± 0.1a 1.0 ± 0.3b 0.9 ± 0.3b 0.9 ± 0.2ab 0.001
Nickel 1.2 ± 0.2a 2.4 ± 0.9a 1.6 ± 0.6a 1.6 ± 0.6a 0.050
Vanadium 0.9 ± 0.2a 1.8 ± 0.9a 1.3 ± 0.5a 1.4 ± 0.5a 0.094
Zinc 2.0 ± 0.0a 3.3 ± 1.3a 2.5 ± 0.6a 2.5 ± 0.6a 0.059

Petroleum Hydrocar-
bons

F2c C10–C16   82 ± 12     – – – –
F3c C16–C34 657 ± 82 – – – –
F4C34–C50 +  625 ± 91 – – – –
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Water quality and characteristics

Dissolved oxygen concentrations remained above 
5 mg/L throughout the experiment (Table 3) and gener-
ally varied with water temperature. During the experi-
ment,  ORP were measured between 10–20 cm depths, 
the values fluctuated between 60 to 200 mV across all 
treatments and remained positive during the entire study 
period (Table 3). The pH in the OSPW–C. aquatilis and 
LPW–unplanted treatments decreased over time com-
pared to OSPW–unplanted treatment (Table  3), where 
it increased slightly. The LPW, which started with an 
alkaline pH due to the presence of calcium carbonate, 
reached equilibrium with atmospheric CO2 over time, 
leading to the stabilization of pH to around 7.2 (Table 3). 
The EC decreased across all treatment types (Table 3). 
The final general characteristics of the OSPW are similar 

to the findings of other studies (Cancelli & Gobas, 2020; 
McQueen et al., 2017a, b; Simair et al., 2021).

The presence of boron in the untreated OSPW 
(1.2  mg/L; Table  3), though only marginally below 
the provincial limit (1.5  mg/L)(Government of 
Alberta, 2018), showed a decrease after 84  days to 
0.5 and 0.4  mg/L in the unplanted and the planted 
treatments, respectively.

Naphthenic acid fraction compound dynamics

Both quantitative and qualitative data describing NAFCs 
in the aqueous phase were collected throughout the 
experiment. Concentrations of NAFCs were dynamic, 
especially in OSPW-containing mesocosms. This is evi-
dent in the mesocosms with OSPW gradually reaching 
a maximum concentration after approximately 12 days, 

Table 2   PMM physiochemical, inorganic, trace metal, and 
organic properties pre-experiment and post-experiment with 
the various treatments; mean ± standard deviation. Bolded val-

ues exceed Alberta tier 1 guidelines (Government of Alberta, 
2022). P-values and significant letters are based on generalized 
linear model

Initial Final

Properties Parameter PMM OSPW–unplanted OSPW–C. aquatilis LPW–unplanted P-value

(n = 6) (n = 4) (n = 4) (n = 4)

Physiochemical pH 7.2 ± 0.1a 7.4 ± 0.2b 7.2 ± 0.1ab 7.2 ± 0.1ab 0.008
EC (dS/m) 0.4 ± 0.2a 0.8 ± 0.2b 1.0 ± 0.5b 0.8 ± 0.1b <0.001
C:N ratio 29.5 ± 1.2 – – –
Total organic carbon 

(%)
5.5 ± 1.4 – – –

Inorganics (mg/kg) Exchangeable Ca2+ 41.9 ± 20.5a 63.7 ± 23.9a 121.7 ± 114.7a 117.3 ± 76.0a 0.024
Exchangeable Na+ 2.8 ± 2.0a 116.8 ± 49.0b 99.5 ± 20.7b 164.3 ± 89.5b <0.001
Exchangeable K+ 2.3 ± 1.0a 7.0 ± 3.4b 4.3 ± 2.6ab 5.3 ± 2.6b <0.001
Exchangeable Mg2+ 10.8 ± 45.0a 17.6 ± 9.0a 27.6 ± 24.5a 25.9 ± 15.8a 0.071
Exchangeable Cl– 4.5 ± 1.4a 61.25 ± 27.2bc 38.0 ± 8.0b 136.3 ± 87.4c <0.001
Extractable S 18.2 ± 18.5a 81.7 ± 53.4ab 119.5 ± 140.9b 83.3 ± 21.4ab 0.009

Trace metals (mg/kg) Arsenic 4.0 ± 1.3a 3.8 ± 1.1a 2.8 ± 0.5a 3.1 ± 0.5a 0.091
Boron 1.0 ± 0.2a 9.1 ± 5.4c 4.7 ± 2.3bc 2.0 ± 0.9ab <0.001
Barium 61.0 ± 9.6a 71.0 ± 14.4a 56.0 ± 6.2a 81.5 ± 42.7a 0.219
Beryllium 0.2 ± 0.1a 0.2 ± 0.1a 0.2 ± 0.1a 0.2 ± 0.1a 0.695
Cadmium 0.1 ± 0.0a 0.1 ± 0.0a 0.1 ± 0.0a 0.1 ± 0.0a 0.244
Chromium 8.1 ± 3.2a 6.3 ± 2.2a 7.6 ± 1.2a 4.5 ± 1.4a 0.087
Cobalt 3.6 ± 0.5a 3.7 ± 0.5a 3.2 ± 0.5a 3.1 ± 0.6a 0.295
Copper 3.2 0.6a 3.9 ± 1.4a 3.2 ± 0.5a 3.4 ± 0.5a 0.476
Lead 3.3 ± 0.6a 2.8 ± 0.3ab 2.7 ± 0.5ab 2.2 ± 0.7b 0.024
Nickel 8.15 ± 2.3a 7.0 ± 1.36a 7.4 ± 1.1a 5.5 ± 1.4a 0.115
Vanadium 11.4 ± 2.4a 9.5 ± 1.1ab 9.1 ± 2.3ab 6.8 ± 2.8b 0.018
Zinc 13.5 ± 2.9a 16.3 ± 5.4a 14.8 ± 1.5a 14.0 ± 2.9a 0.643
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with gradually decreasing NAFC concentrations there-
after (Fig. 1). The concentrations of NAFCs were likely 
impacted by diffusion and adsorption during the first 
12 days, dissipating afterwards in the remaining 72 days. 
The LPW–unplanted treatment had relatively little to no 
NAFCs with no significant change over time (P > 0.857) 
(0.6 mg/L initial to 0.6 mg/L final), suggesting minimal 
NAFC desorption from CST or PMM. After 84  days, 
concentrations of NAFCs in the planted mesocosms sig-
nificantly decreased (P < 0.015) over time (72.1  mg/L 
initial to 17.1 mg/L final), whereas the unplanted treat-
ments saw no significant decrease (P > 0.851) in total 
NAFCs over time (64.5 mg/L initial to 59.0 mg/L final) 
(Fig. 1). Between the OSPW–unplanted and OSPW–C. 
aquatilis treatment, there are large variations from the 
initial 4 mesocosm measurements. The initial (day 1) 
variation is likely because the OSPW has not had time 
to equilibrate within each mesocosm. There was a sig-
nificant difference between treatments (P < 0.001) and 
a significant interaction effect from treatment and time 
(P < 0.001); however, timing of sample collection was 
not significant (P = 0.828) (Fig.  1). Further research 

into the influence of plants in conjunction with micro-
bial community in the mesocosm will help identify the 
mechanism for the decrease of NAFCs.

The δ13Cpyr values in the unplanted mesocosms 
ranged from − 22.5 to − 19.5‰ and from − 21.8 
to − 20.9‰ in the planted mesocosms (Table 4). Pre-
vious work has demonstrated a significantly more 
positive δ13Cpyr value for OSPW (− 20.7 ± 0.6‰) 
compared to non-bitumen, plant-derived NAFCs 
(− 27.9‰) (Ahad et  al., 2013, 2020). The rela-
tively narrow range of values calculated in both the 
unplanted and planted mesocosms thus indicates a 
predominantly OSPW-derived origin for NAFCs, 
with little contribution from non-bitumen-derived 
organics. Using a two end-member isotopic mass 
balance incorporating δ13Cpyr values for OSPW and 
non-bitumen contaminated background sources, the 
calculated proportions of OSPW in NAFCs were 
between 74–100% and 85–97% in the unplanted 
and planted mesocosms, respectively (Table  4). The 
results from δ13Cpyr measurements thus verify that the 
trends in NAFC concentrations shown in Fig.  1 and 

Table 3   Lab process water (LPW) and oil sands process–
affected water (OSPW) physiochemical, inorganic, and 
trace metal initial and final with the various treatments; 
mean ± standard deviation. P-values and significant letters 

are based on generalized linear model; initial LWP was not 
included in the statistical analysis because a different method 
was used to test those values

Parameter Initial Final

LPW OSPW OSPW–unplanted OSPW–C. aquatilis LPW–unplanted P-value

(n = 4) (n = 4) (n = 4) (n = 4) (n = 4)

pH 9.5 ± 0.02 8.0 ± 0.0a 8.5 ± 0.1c 7.7 ± 0.0b 8.4 ± 0.0c <0.001
EC (dS/cm) 1.36 ± 0.02 1.23 ± 9.6a 1.20 ± 25.2b 0.74 ± 48.5c 0.90 ± 18.3d <0.001
TDS (mg/L) – 225.0 ± 3.8a 775.5 ± 18.5b 456.8 ± 34.4c 545.0 ± 19.3d <0.001
Total alkalinity (mg/L) 7.8 ± 1.3 <5a 387.8 ± 30.1b 241.0 ± 16.1c 309.0 ± 23.0d <0.001
Soluble Ca2+ (mg/L) 7.3 ± 0.3 54.4 ± 1.1a 83.0 ± 10.9b 51.8 ± 2.8c 70.38 ± 4.1d <0.001
Soluble Na+ (mg/L) 267.5 ± 3.3 24.8 ± 0.1a 152.75 ± 5.9b 91.95 ± 8.3c 113.5 ± 3.5d <0.001
Soluble K+ (mg/L) – 190.0 ± 1.2a 9.9 ± 0.2b 0.7 ± 0.3c 1.7 ± 0.2d <0.001
Soluble Mg2+ (mg/L) – 53.5 ± 0.2a 30.4 ± 1.8b 15.1 ± 1.3c 15.3 ± 1.2c <0.001
Soluble Cl- (mg/L)   157.3 ± 1.0 0.04 ± 0.02a 23.1 ± 1.1b 11.8 ± 1.2c 49.4 ± 0.9d <0.001
Iron (mg/L) – 13.7 ± 0.1a 0.02 ± 0.0bc 0.05 ± 0.0b 0.1 ± 0.1c <0.001
Aluminum (mg/L) – 0.1 ± 0.0a 0.02 ± 0.0b 0.004 ± 0.0c 0.05 ± 0.0ab <0.001
Barium (mg/L) – 0.2 ± 0.0a 0.05 ± 0.0b 0.04 ± 0.0c 0.04 ± 0.0c <0.001
Boron (mg/L) – 1.2 ± 0.0a 0.5 ± 0.0b 0.4 ± 0.0b 0.03 ± 0.0c <0.001
Manganese (mg/L) – 0.04 ± 0.0a 0.02 ± 0.0a 0.01 ± 0.0a 0.06 ± 0.0a 0.100
Strontium (mg/L) – 1.1 ± 0.0a 0.4 ± 0.0b 0.3 ± 0.0c 0.1 ± 0.0d <0.001
Vanadium (mg/L) – 0.008 ± 0.0a 0.0008 ± 0.0b 0.0002 ± 0.0c 0.0004 ± 0.0c <0.001
Zinc (mg/L) – 0.008 ± 0.0a 0.007 ± 0.0a 0.01 ± 0.0a 0.005 ± 0.0a 0.271
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in the Orbitrap MS data, presented in subsequent fig-
ures, can be almost exclusively attributed to changes 
in OSPW-derived rather than plant-derived NAFCs, 
particularly during the latter stages of the experiment 
(i.e., days 41 and 84).

To examine the changes in molecular formulae of 
NAFCs over the course of the study, data were organized 
according to unique heteroatoms (i.e., anything other 

than carbon or hydrogen) and plotted according to per-
cent spectral abundance (Fig. 2). Sample data from the 
mesocosms with LPW were excluded from Fig. 2 owing 
to trace concentrations of polar organic compounds.

As compared to initial background conditions 
(i.e., day -8), the spectral signature of OSPW (i.e., 
high relative percent abundance of O2–NAFCs) 
remained strong throughout the 84-day treatment 

Fig. 1   Mean total NAFC 
concentration (mg/L) in 
initial (day 1), middle (day 
40), and final (day 82) 
per treatment. Error bars 
represent standard error for 
the means. Differing letters 
between means indicate 
a significant difference 
(P < 0.05)

Table 4   The δ13Cpyr values and fractions of NAFCs derived 
from OSPW and non-bitumen sources calculated using an iso-
topic mass balance. The δ13Cpyr values for OSPW (− 20.7‰) 

and non-bitumen-derived NAFCs (− 27.9‰) used in the mass 
balance were taken from the literature (Ahad et al., 2020)

a refers to the 1σ standard deviation between duplicate mesocosms. The error on δ13Cpyr measurements was 0.5‰

Day Mesocosm δ13C (‰) 1σ (‰)a f OSPW f non-bitumen

28 OSPW–unplanted −22.5 0.74 0.26
41 OSPW–unplanted −19.3 1.00 0.00
84 OSPW–unplanted −20.7 0.47 1.00 0.00
28 OSPW–C. aquatilis −20.9 1.00 0.97 0.03
41 OSPW–C. aquatilis −21.8 1.00 0.85 0.15
84 OSPW–C. aquatilis −21.1 1.42 0.94 0.06
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period in treatments with OSPW. Nonetheless, in 
both treatments, formula characteristics gradually 
shifted, where O2–NAFCs gradually decreased 
in relative abundance while O3– and O4–NAFCs 
gradually increased in relative abundance. The 
rate of decrease of O2–NAFCs (i.e., classical NAs) 
is almost negligible, decreasing by ~ 10% spec-
tral intensity over the span of 84 days (Fig.  2). In 
a comparable study, the half-lives of selected NAs 
were estimated at 12–23 days (Ajaero et al., 2018). 
However, there are important differences between 
these two studies; Ajaero et al. (2018) used wetland 
mesocosms with upward vertical flow of  OSPW 
through the entire growth medium, whereas the 
mesocosms in the present study operated with 
horizontal surface flow. Observable changes in sur-
face water may be obfuscated by gradual intermix-
ing and/or equilibrium with the OSPW in the pore 
water and the OSPW saturated porous media. The 
study by Ajaero et  al. (2018) also used inorganic 

growth media (e.g., sand or gravel), making 
OSPW-derived organics the only available source 
of carbon, whereas the substrate used here included 
substantial organic-rich PMM, which may provide 
a favorable source of carbon for microbes. Further, 
Ajaero et al. (2018) used OSPW supplied by a dif-
ferent operator; accordingly, the typology of OSPW 
from their study and ours is not chemically identi-
cal (Frank et al., 2016), so it should not be expected 
to biodegrade identically.

Although the bulk percent abundance of heteroatom 
classes remained relatively static, the spectra of cer-
tain mixture components changed over time. A gradual 
shift in mixture composition is supported by a princi-
pal component analysis (PCA) of all OSPW-containing 
mesocosm samples, shown in Fig. 3. Although sample 
data resolves incompletely during PCA, groupings of 
sample data from this experiment are best explained 
by sampling date. In contrast, there were no compel-
ling differences between planted and unplanted systems 

Fig. 2   Percent-normalized heteroatom abundance of various formula classes, based on unique heteroatom inclusions (i.e., anything 
other than hydrogen or carbon), reported with standard deviation (n = 4)
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when examined with PCA. The similarity between 
planted and unplanted systems likely could be th effect 
of adsorption to PMM. Further research into this 
hypothesis is currently underway.

To examine the connection between sampling 
dates with the presence, emergence, or absence of 
particular formulae over time, the Spearman rank cor-
relation between sampling dates and base–peak nor-
malized relative formula abundances were calculated. 
The Spearman rank correlation was used to color-
code a Kendrick mass plot and carbon number (#C) 
versus double bonding equivalents (DBE) plots in 
Fig. 4. High carbon number O2–NAFCs tend to have 
a low-to-negative correlation with sampling date, sug-
gesting that many of these formulae, especially those 
with high molecular weight (i.e., > 225 m/z) and satu-
rated formulae (i.e., KMD = 0.05–0.10), will dimin-
ish in relative spectral abundance over time. The two 
formulae with the most negative correlations from 
Fig. 4a are found in the O3S panel of Fig. 4b, corre-
sponding to C14H24O3S and C17H28O3S. On the other 
hand, many O3–NAFCs have a considerable positive 
correlation with sampling date, suggesting that most 
of these formulae consistently increased in spec-
tral relative abundance over time. The correlations 
of O4–NAFCs are moderately positive-to-neutral, 

suggesting that some of these formulae increased, 
while others persisted with unchanged abundance 
over the treatment period.

Plant response

Throughout the experiment, OSPW–C. aquatilis had 
a 98% survival rate. Furthermore, all C. aquatilis 
individuals, apart from one, remained at 90–99% 
alive tissue through the experiment. However, all 
individuals in the OSPW–C. aquatilis presented some 
symptoms of chlorosis, necrosis, and/or mottling by 
the end of the experiment. Some individuals also pre-
sented signs of deformed and crinkled leaves. By day 
40, C. aquatilis likely reached maturity with a growth 
threshold of around 150–154  cm in height (Fig.  5). 
Depending on the site conditions, the average height 
for C. aquatilis in Alberta is between 20 and 155 cm 
(Hauser, 2006; Johnson et  al., 1995; Tannas, 2003; 
Vitt et al., 2020).

A majority of the ion concentrations were not 
notably elevated compared to other studies (Table  5). 
Although the mean manganese concentration in Table 5 
is several orders of magnitude higher than that of other 
ions, the manganese concentrations in tissue gener-
ally vary between plant species (30–500 µg/g), making 

Fig. 3   A principal component analysis (PCA) of all OSPW-containing samples, excluding lab process water
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the results reasonable (Li et  al., 2019; Millaleo et  al., 
2005). However, studies have shown toxicity effects 
in concentrations as low as 176 µg/g in Juncus effusus 
L. (soft rush) (Najeeb et  al., 2009) and 150  µg/g dry 
weight in some crop species (Li et al., 2019; Millaleo 

et al., 2005). C. aquatilis in the mesocosm study started 
to show signs of toxicity expressed through chlorosis, 
necrosis, crinkling of the leaves, and mottling, which 
indicate reduced overall health over this 84-day study. 
It is unclear whether the decline in plant health was 

Fig. 4   Plots summarizing spearman rank correlations of indi-
vidual formula abundances using a Kendrick mass plot of all 
formulae detected across samples from OSPW-containing 
mesocosms, where this figure has been decomposed into major 
oxygen-containing formula heteroatom classes (b) that consti-

tute approximately 95% of spectral intensity by carbon num-
ber and double bonding equivalents for clearer interpretation of 
trends. In both cases, scatterplot point transparency has been 
scaled by a factor of rho2 to highlight the strongest correlations

Fig. 5   Mean height of C. 
aquatilis (n = 48) pre-
experiment and during 
the experiment. Error bars 
represent the standard 
deviation
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attributed to NAs in the OSPW or other ions in OSPW. 
Although commercial NAs are found to be more toxic 
than NAs derived from OSPW, Armstrong et al. (2009) 
found that systems with 30–60  mg/L of commercial 
NAs significantly reduced wetland plant growth. In the 
present study, the OSPW–C. aquatilis treatment had 
concentrations of 10.2–72  mg/L of NAFCs, of which 
85–97% originated from OSPW. Further research needs 
to look at the concentration threshold for NAFCs in 
OSPW where toxicity effects are evident and the pro-
cess of translocating NAFCS from the roots to the 
shoot tissues through the vascular system and how that 
relates to the concentration of NAFCs in plant tissues 
(young leaves, lateral shoots and roots, and root tips). 
Alberts et al. (2021) found that various NA groups are 
likely being partially bio-transformed when entering the 
central metabolism where the carbon from these com-
pounds is assimilated into other macromolecules (e.g., 
lipids, starch, and cellulose). Although plant mortality 
and reduced growth in C. aquatilis were not observed 
here, further research is needed for improved analysis 
of NAs within plant tissue to more effectively evaluate 
potential toxicity effects from NAFCs (Alberts et  al., 
2021; Armstrong et al., 2009).

Conclusions

The present study reinforces the weight of evidence 
that CWTSs are a potential treatment method for 

OSPW as it is capable of attenuating NAFCs. Treat-
ments with or without plants attenuated NAFCs in 
the water column according to similar distributions 
of molecular characteristics, though planted treat-
ments seemed to outperform the unplanted treat-
ments. Although results observed in this study 
showed NAFC attenuation in the water column to a 
lesser degree than previous work (Ajaero et al., 2018; 
Simair et  al., 2021), important differences between 
the experiments likely contribute to the divergence in 
outcomes. First, previous studies used wetland meso-
cosms grown in mineral substrates (e.g., sand and/
or gravel), with systems configured for vertical flow, 
and some systems included active aeration as well. 
These differences in study design likely impacted 
the distribution and/or degradation of NAFCs in 
the water column, namely, the adsorption and, by 
association, the temporary removal of NAFCs from 
the water phase to the organic substrate phase. This 
temporary removal conversely limited the availabil-
ity of labile carbon in systems (e.g., system with no 
organic substrates) which could facilitate the deg-
radation and assimilation of NAFCs for continued 
microbial growth. In addition, the vertical flow of 
water may enhance mixing across the water column, 
and increased aeration can maximize the potential 
for aerobic metabolism of NAFCs. In contrast, the 
mesocosm systems in the present study had surface 
flow and recirculation of OSPW over a porous min-
eral and organic medium, which in comparison could 
potentially adsorb considerable amounts of NAFCs 
temporarily. Slower diffusion and partitioning effects 
can obfuscate the rate at which transformation of 
NAFC species might occur, as noted in this study, 
where the period in which NAFCs changed the most 
rapidly occurred in the last 28 days of this study. This 
experiment also used OSPW from a single opera-
tor; it thus remains to be seen whether other OSPW 
types would undergo similar patterns of attenuation, 
further investigation into this is recommended. Past 
work has shown that gradual maturing and ecological 
succession in reclaimed wetlands can be associated 
with amelioration of toxicity therein (Armstrong, 
2009, Cancelli & Gobas, 2020, Hendrikse et  al., 
2018; McQueen et  al., 2017a, b. The effect of wet-
land age and related community maturity is therefore 
likely an important parameter that must be further 
evaluated to better understand relationships between 
ecosystem succession and weather of NAFCs.

Table 5   The mean of above-ground tissue ion concentrations 
in C. aquatilis plant material (n = 4) with standard deviation

Ions Mean ± standard 
deviation

Boron (µg/g) 22.4 ± 8.19
Calcium (%w/w) 0.7 ± 0.16
Copper (µg/g) 1.4 ± 0.30
Manganese (µg/g) 240.0 ± 80.71
Magnesium (%w/w) 0.3 ± 0.04
Molybdenum (µg/g) 2.9 ± 1.36
Nitrogen (%w/w) 1.0 ± 0.11
Phosphorous (%w/w) 0.2 ± 0.03
Potassium (%w/w) 1.2 ± 0.17
Sodium (%w/w) 0.2 ± 0.08
Sulfur (%w/w) 0.2 ± 0.04
Zinc (µg/g) 11.9 ± 1.99
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