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Abstract Mining is one of the principal economic 
activities in Mexico, which in addition to bringing 
benefits to the population, causes health and envi-
ronmental problems. This activity produces a lot of 
wastes, but the main one is tailings. In Mexico, these 
wastes are disposed of in the open air, and there is no 
control over them, so the particles of these wastes are 
dispersed by wind currents to the surrounding popu-
lation. In this research, tailings were characterized, 
finding in them particles smaller than 100 microns; 
in this way, tailings can enter into the respiratory 
system and hence can cause diseases. Furthermore, 
it is important to identify the toxic components. The 
present work does not have previous research in Mex-
ico, and it shows a qualitative characterization of the 

tailings from an active mine using different analyti-
cal techniques. In addition to the data obtained from 
the characterization of the tailings, as well as the con-
centration of the toxic elements found, which were 
Pb and As, a dispersal model was generated and used 
to estimate the concentration of particles in the wind 
generated at the studied area. The air quality model 
used in this research is AERMOD, where it uses 
emission factors and available databases provided by 
Environmental Protection Agency (USEPA); Moreo-
ver, the model was coupled with meteorological 
information from the latest generation WRF model. 
The modeling results estimated that the dispersion 
of particles from the tailings dam can contribute up 
to 10.15 µg/m3 of  PM10 to the air quality of the site, 
which, according to the characterization of the sam-
ples obtained, could be dangerous for human health 
and can be estimated up to a concentration of 0.04 µg/
m3 of Pb and 10.90 ng/m3 of As. It is very important 
to make this kind of research to know the risk which 
people around this disposal sites are exposed to.

Keywords Air pollution · Modelling · Mining 
tailing · AERMOD · WRF

Introduction

Nowadays, the necessity to manufacture prod-
ucts to satisfy human needs, whose essential ele-
ments are metals, has increased (Armienta et  al., 
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2016; Xiaolong et  al., 2021). In Mexico, mining 
has belonged to the main economic activities since 
colonial times and has currently contributed signifi-
cantly to economic development. Mainly extract-
ing: silver, gold, copper, zinc, and lead. However, 
this activity affects the environment and generates 
considerable amounts of waste. Mine tailings (or 
“jales”, as they are known in Mexico), refer to the 
materials that are left over after the valuable sub-
stances have been removed at the end of mining or 
mineral processing. They are the primary residues 
produced in the metal extraction process, they con-
tain significant concentrations of potentially toxic 
metals and metalloids (Corrales-Pérez & Romero, 
2013; Dótor-Almazán et al., 2017; Zúñiga-Vázquez 
et  al., 2018). Tailings may contain Ni, Cu, Fe, Zn, 
and Pb, in relatively high concentrations (0.5 to 3%) 
and sometimes Ag and Au. However, these residues 
can also contain potentially toxic elements, such as 
arsenic, in concentrations of up to 100 mg/kg. (Cen-
iceros-Gómez et al., 2018; Falagán et al., 2017).

Historically, tailings were frequently placed in 
convenient areas, occasionally even in rivers or 
drainage systems (Ritcey, 2005; Vick, 1990). Cur-
rently, a range of approaches has been devised to 
handle mining waste. These approaches encompass 
the placement of dehydrated or thickened tailings in 
self-supporting deposits or stockpiles, their appli-
cation as fill material in underground and open-pit 
mines, subaqueous disposal, and the prevailing 
method, which entails depositing tailings in open air 
dams (Carrillo López et al., 2016). In Mexico, mine 
tailings deposits principally are carried out in piles, 
depending on the type of mineral and the applicable 
environmental regulation. However, it is important 
to note that the construction of new tailings dams is 
currently regulated and restricted due to the environ-
mental risks they pose (SEMARNAT, 2003). Man-
aging mine tailings is not easy and represents trouble 
because the piles that contain them can have prob-
lems from the dispersion of material, have structural 
failures, cause spills and generate acid drainage the 
disposal is done in open-air conditions (Hudson-
Edwards, 2016; Kossoff et  al., 2014; Loredo-Por-
tales et al., 2020). Sometimes these mining piles are 
abandoned and the dispersion of tailings is favored, 
either by hydraulic or wind processes (Loredo-Por-
tales et al., 2020; Sánchez-Donoso et al., 2019).

One of the leading environmental problems in 
Mexico is the lousy management of tailings due 
to mining being one of the principal economic 
activities since colonial time (García et  al., 2017; 
Meza-Figueroa et  al., 2009; Suter, 2016). Dur-
ing the windy season, the dispersion of the parti-
cles in the environment can be seen with the naked 
eye. According to literature, it is known that min-
ing tailings are very fine-grained. The consist of 
particles ranging from sizes of 1–600  μm; so they 
can be classified according to aerodynamic diam-
eter:  PM2.5 and  PM10 (less than 2.5  µm and less 
than 10  µm respectively), based on their respec-
tive health impacts (Ceniceros-Gómez et al., 2018; 
World Health Organization, 2013).

Carrying out an impact assessment on the sur-
rounding areas of a mining site, as well as the sur-
rounding ecosystems and human settlements, it is 
complicated since assessing of risks to human health 
is needed. (Corrales-Pérez & Romero, 2013; Kos-
soff et al., 2014; Solà et al., 2004). However, a first 
approximation of the site’s dangerousness could be 
made based on the characterization of the particu-
late matter from tailings using different analytical 
techniques and determining the total concentrations 
of potentially toxic elements and comparing them 
with the maximum permissible limits established by 
governmental or international organizations (Gavi-
lán-García et al., 2020; Loredo-Portales et al., 2020; 
Salas Urviola et al., 2020a, 2020b). Dispersion mod-
eling of tailings’ particles into the air can be done 
by having the availability of data and representative 
inventories of particle emissions that are essential 
for an environmental risk assessment and provide 
the basis for the analysis of the environmental fate 
of these tailings’ emissions (Richardson et al., 2019a, 
2019b). For this reason, to estimate the emission fac-
tors, the following equation can be used (“Emission 
Factors for Air Pollutants Related to Mining and 
Mineral Processing,” 2016).

where

PMEprocess =  particulate matter emissions for a 
given process, lbs or kg.

PMEprocess =
(

PMEFprocess
)(

Unitprocess
)

(

1 −
EC

100

)
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PMEFprocess =  particulate matter emission factor 
for a given process; lbs  unit−1 or kg 
unit.−1

Unitprocess =  tons (processed, produced, charged, 
transferred), miles traveled, kg sol-
vent used, etc.

EC  = emission control factor, %

This work aims to evaluate the danger of tailings 
belonging to an active mine in Mexico through its 
tailings characterization and dispersion modelling 
of particles present in them, so that in subsequent 
studies, a treatment of these residues can be pro-
posed to mitigate environmental and health damage. 
With the information obtained from this research, 
it is intended to be beneficial to the environmental 
regulatory entity of Mexico, the academy and the 
environment.

Materials and methods

Samples

Ten samples of mining wastes were obtained follow-
ing the NMX-AA-132-SCFI-2006 procedure (Secre-
taría de Economía, 2006). The sampling was superfi-
cial in an area of approximately 15 ha. Samples were 
taken at a depth of 10 cm, and approximately 5 kg of 
wastes were collected and stored in plastic bags (Fig-
ure S1, Supplementary Materials).

Characterization of samples

pH and humidity

The pH was determined at each point using the Corn-
ing pH-30 Sensor equipment, and deionized water 
was used throughout. The collected samples were 
then transferred in polyethylene bags and stored at 
4 °C in a cold room of the laboratory of Sanitary and 
Environment Engineering of Engineering Faculty of 
the UNAM. The humidity was later determined fol-
lowing the European standard UNE-EN ISO 17892–1 
(BS EN ISO 17892–1:2014, 2004).

Size of the particles and chemical characterization

Afterward, physical properties of the samples were 
determined: granulometry using the UNE-EN 933–1 
standard (BS EN 933–1:2012, 2012) and particle 
size using the Philips XL20 scanning electron micro-
scope to 20 kV of power with a 4-mm spot and BSE 
detectors (electro scattered electrons) located in the 
materials laboratory of the Mechanical and Electri-
cal Engineering Division (DIMEI) of the Faculty of 
Engineering, UNAM. For the chemical and struc-
tural properties, a punctual elemental analysis was 
carried out using an Oxford microprobe with 10 mm 
glass and Inca SL-20 software which is in the afore-
mentioned laboratory. The composition of samples 
was determined employing the Infrared technique 
(FTIR), the analysis was carried out in Laboratory of 
Environmental Molecular Geochemistry of Institute 
of Geology, UNAM with a Thermo Scientific Nico-
let iS10 brand FTIR spectrometer using a GladiATR 
accessory with a diamond crystal under the entire 
mid-infrared range (400–4000  cm−1). The reading of 
the samples consisted of 64 scans with a resolution 
of 4  cm−1, applying a background at the beginning of 
each analysis. All the samples were analyzed in nitro-
gen (NUAP type) to ensure the absence of moisture 
and  CO2.

Elemental characterization

To determine the total lead and arsenic concentra-
tion, digestion of the samples was carried out using 
a CEM microwave unit, model Mars 6.0. Ten millilit-
ers of aqua regia (25%  HNO3, Baker, 70% and 75% 
HCl, Baker, 36.5–38%) were added along with 0.5 g 
of sample in each tube of the microwave. Then, for 
20 min the temperature was increased until it reached 
200  °C and was held for another 15  min. Samples 
were then left to cool for 10 min and filtered with a 
nylon membrane with a pore size of 45 microns.

As and Pb were determined in digests using a 
GBC AVANTA atomic absorption spectrophotom-
eter equipped with a GBC HG 3000 peristaltic pump. 
The concentrations in digests and extracts were deter-
mined using Hydride Generation-Atomic Absorption 
Spectroscopy for As and Flame Atomic Absorption 
Spectroscopy for Pb, following the methodology 
described in literature (Environmental Protection 
Agency, 1994, 2007; García et  al., 2017). For all 
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the solutions de-ionized water 18 MΩ cm, Millipore 
Milli-Q system were used. Moreover, two calibra-
tion curves were prepared, one for As and one for Pb 
with a concentration range of 5 to 50 ng/L and 5 to 
30 mg/L respectively. All samples were analyzed by 
triplicate.

Air dispersion model

A dispersion air quality model was used to evaluate 
the impact of the mining tailings in the zone. The 
primary data in air quality systems are information 
of topography, meteorology, and pollutant emissions 
(González-Rocha et  al., 2015). In the following sec-
tion, these variables are described. To predict and 
model airborne concentrations of suspended particu-
late matter, AERMOD has been the dispersion model 
with promising results (Tartakovsky et al., 2013).

Wind direction

Due to the scarce meteorological information in the 
study area, it was decided to obtain the data through 
a meteorological model. The data obtained was input 
for the Weather Research and Forecasting (WRF) 
model. The results identified in the direction and 
speed of the wind (Figure S2, Supplementary Mate-
rials), showing the wind rose representative of the 
study area. The dominant wind direction comes from 
the northeast, with 31.5% of the frequency with max-
imum speeds of 11  m/s. According to the modeled 
database, the average wind speed is 3.69 m/s, and the 
calms are below 1.91% of the data.

AERMOD

AERMOD View (paid software) version 10 with the 
model code for AERMOD Version 22,112 (US EPA). 
The supplier company is Lakes Software. AERMOD 
is an air quality modeling system developed in the 
USA by the AMS and the EPA (American Meteoro-
logical Society and the Environmental Protection 
Agency EPA, respectively) (Kumar et al., 2016). The 
Gaussian dispersion model (Tran et  al., 2019) con-
tains building downwash algorithms and advanced 
meteorological calculations(Kalhor & Bajoghli, 
2017). One of the most important characteristics of 
the model is that it can execute with real or estimated 
meteorological information (USEPA, 2018).

Additionally, the model can estimate the concen-
tration of air pollutants: (1) the outputs of the model 
are 1-h average concentrations (Pandey & Sharan, 
2019), (2) and the recommendation that it applies to 
study areas less than 50 km from the source (Mokhtar 
et  al., 2014). The software requires meteorological 
and terrain inputs through two preprocessors, AER-
MET and AERMAP.

Regarding meteorology, the modeling system con-
siders variables such as temperature, dew point, pres-
sure, solar radiation (O’Shaughnessy & Altmaier, 
2011), wind speed, wind direction, total and low cloud 
cover, convective velocity scale, temperature scale, 
mixing height, and surface heat flux (Ma et al., 2013). 
The preprocessor results are directly introduced to 
AERMOD (Huang & Guo, 2019). AERMOD is com-
patible with many weather models which can ease pre-
dicting the particle dispersion (Seangkiatiyuth et  al., 
2011).

Given that the terrain is complex in the area of 
study, AERMOD calculates the concentrations and 
simulates a plume as a sum horizontally and vertically, 
taking into account the different elevations in the area 
(Zou et al., 2010). The database with the best resolu-
tion was obtained from the U.S. Geological Survey 
(USGS), while the digital model used was the Shuttle 
Radar Topography Mission (SRTM) with a resolution 
of 30 m.

In the case of the receptors used for calculating 
concentrations, a 50 × 50-km grid with 0.5  km of 
spacing (de Ferreyro Monticelli et al., 2020) generat-
ing a total of 10,201 receptors is considered to esti-
mate the airborne pollutants in the area. Having as a 
reference point the following UTM coordinate (Zone 
14): 459,922.05 m N, 2,292,568.0 m E.

Surface and vertical weather data can be obtained 
from meteorological stations near the study area. 
However, in Mexico and other countries, there 
are regions where it takes more work to install and 
operate weather stations to obtain surface and verti-
cal weather information. Therefore, it is essential to 
generate databases, protocols, guides, standards, and 
indexes to improve the accuracy of models and the 
diagnosis that would enhance air quality management 
(Mendoza-Lara et al., 2021).

In the present work, weather stations are distant, 
and their data may not be representative. Therefore, 
WRF was used, a state-of-the-art mesoscale numeri-
cal weather prediction model designed for both 
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atmospheric research and operational forecasting 
applications. This model helps attach weather param-
eters required for air quality models (Kesarkar et al., 
2007).

WRF modeling results were coupled using Mes-
oscale Model Interface (MMIF) developed by 
USEPA. Table  1 shows the parameters used in 
weather modeling.

Results and discussions

Mining tailings characterization

pH and humidity

The pH and humidity are shown in Figure  S3 and 
S4, Supplementary Materials. The samples have a 
slightly neutral-alkaline pH, this may be due to the 
fact that there are minerals with neutralization capac-
ity such as carbonates and a low concentration of 
acid-forming components such as pyrites (Armienta 
et  al., 2004; Corona Sánchez et  al., 2021; Espinosa 
et al., 2009). Due to these values, it can be said that 
there is also a low mobility towards aquifers of dan-
gerous toxic elements because it is necessary to have 
acid conditions in the environment for this to hap-
pen (Salas-Luevano et al., 2021; Salas Urviola et al., 
2020a, 2020b). It should be noted that the survey was 
carried out from the top to the base of the dam (Fig-
ure S1), beginning with point z-1 and as the number-
ing increases, it is closer to the base with point z-10. 
The average humidity of the site is 8% and there is 
greater humidity at point z-3 because it is the point 
of deposit of new tailings, and they come out in the 
form of sludge. However, over time the tailings dry 
up due to the environmental conditions of the site and 

become a loose, dry, and sandy form that is very easy 
to disperse in the air as it is the case at points of z-6 
to z-8 with the lowest humidity, where at first sight 
the tailings were found in that way (Figure S5, Sup-
plementary Materials).

Size of the particles and chemical characterization

The minimum opening in sieving by the mechani-
cal method was 37 microns, finding that the larg-
est particle size was 0.92 mm (Fig. 1). As shown in 
Fig. 1, between 0.5 and 1% of the samples have a size 
smaller than 37 microns. Given the very small meas-
urement of the particles, size was determined using 
the scanning electron microscope (SEM) (Fig.  2). 
Due to the above, it is very likely that the particles 
enter into the body. Those that are smaller than 100 
microns form aerosols when they are suspended in 
the air and can be inhaled. Given the particle size, all 
the samples can form aerosols. The sample z-3 which 
has the highest probability of forming it because 
69% of its composition has a smaller size than 100 
microns (Gavilán-García et  al., 2020). In addition, 
when they measure less than 10 microns, they can 
be accumulated in the respiratory system and cause 
physical damage if they are insoluble and toxicity if 
they are solubilized, especially breathable particles 
(< 4 microns) which can pass into the bloodstream 
(Gavilán-García et al., 2020; Puga et al., 2006).

As we can see in Fig.  2, the different shades of 
gray can be observed, which indicates different den-
sities between the particles for which, a qualitative 
chemical analysis was carried out. Making a spot in 
different areas of the samples (Table  2) and finding 
that the dark parts are made up of silicates  (SiO4) 
and carbonates  (CO3) which are the least dense. The 
white parts are made up mainly of pyrites with higher 

Table 1  Weather modeling 
parameters

Element Parameter

Forecasting modeling system WRF
Resolution 12 km
Study area 50 km × 50 km
Period 365 days (1st of January to 31st of December)

of 2018
Database GRIB2 ds083.2

NCEP Climate Forecast System Version 2
Reference coordinates 459,922.05 m N, 2,292,568.0 m E., Zone 14
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Fig. 1  Granulometry of the different sampling points

Fig. 2  Different samples visualized and measured at × 100 under the scanning electron microscope (SEM). a z-2, b z-3, c z-9, and 
(d) z-10
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density. The existence of these phases was confirmed 
using the FTIR-ATR technique.

According to the Tables 2 and 3, there are poten-
tial toxic elements such as arsenic and lead pre-
sent in the samples. Furthermore, in some samples 
where sulfur was detected, however, analyzing 
the contrast of the images, it is noted that the sur-
rounding particles that contain this element are 
mostly carbonates (calcite, magnesite, smithsonite, 

principally), so in the presence of water, they can 
neutralize to sulfuric acid generated by sulfur and 
thus avoiding the formation of acid drainage and the 
leaching of toxic metals, which is also justified with 
the pH values obtained (García et  al., 2017; Salas 
Urviola et al., 2020a, 2020b).

According to various standards (World Health Organi-
zation, WHO; Environment Protection Agency, EPA 
and Mexican legislation (NOM-147-SEMARNAT/

Table 2  Elements identified by point elemental analysis

Table 3  Mineralogical compositions of tailings by FTIR-ATR 
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SSA1-2004))(Semarnat, 2007; US EPA, 2022; Guidelines 
for drinking-water quality, 2022), considered for residen-
tial land use, the concentration of As and Pb in all sam-
ples is higher than the allowable maximum limit (AML) 
(Fig. 3). For industrial land use, the AML of WHO and 
EPA legislation for As is exceeded, while for Mexican leg-
islation with a value of 260 ppm, some samples exceeded 
the limit, except for z-1, z-2, z-5, z-8, and z-10. All sam-
ples considered for industrial land use exceed the AML 
established by the three different legislations for Pb, except 
for sample z-8, which meets the limits established by EPA 
and Mexican legislation. The literature suggests that due 
to the measured particle size, both As and Pb can cause 
harm to the population and the environment through direct 

inhalation of the tailings. However, the measured pH val-
ues and sample characterization suggest that the abun-
dance of carbonates and the basic pH of the samples will 
result in low dilution of both As and Pb in bodies of water, 
forming insoluble species and not generating acid drainage 
(Armienta et al., 2016; Gavilán-García et al., 2020; Gavi-
lán García et al., 2017 et al., 2017; Kossoff et al., 2014; 
Salas Urviola et al., 2020a, 2020b).

AERMOD modeling

WRF and MMIF coupled data generated a sin-
gle grid cell (12  km) representative of the entire 
domain. Modeling took into account each hour and 

Fig. 3  Total concentration of hazardous toxic elements from the acid digestion of the samples, and their allowable maximum limit 
(AML) according to WHO, EPA, and Mexican Legislation (NOM-147-SEMARNAT/SSA1-2004) standard: a As and (b) Pb

Table 4  Emissions and impact on air quality for  PM10 related to mining processes by study area

highest contribution estimated considering the maximum concentration of the samples
1 Maximum (24 h)
2 The standard mentions that an average of 1 year should be considered; however, the maximum daily concentration calculated in the 
model was taken as a reference

Process Emissions (g/seg  m2) Impact to air  quality1

PM10 PM10 (µg/m3) Pb (µg/m3) As (ng/m3)

Wind erosion (exposed 
areas)

6.754 E − 07 10.15 0.04 10.90

EU AQS 50.00 0.502 6.002

Percentage (%)  − 79.70  − 92.00  + 81.63
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variable in a whole year (2018). The generated sur-
face and vertical meteorology files were input into 
AERMOD to estimate the dispersion of air pollutant 
emissions from mining tailings. With the application 
of the AERMOD model, the distribution of  PM10 

(plume forecast) over the urban area was obtained 
(Jayadipraja et al., 2020).

The digital elevation model is represented in Fig-
ure S6, Supplementary Materials, and the mesh was 
used to calculate the number of receptors considering 
a spacing of 0.5 km. The final number of receptors in 

Fig. 4  Worst case atmospheric scenario for  PM10 (24 – hour mean), the maximum concentration is located close to the emission 
source. a Dispersion plume of PM10. b Estimate of the dispersion plume of As. c Estimate of the dispersion plume of Pb
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the study area was 10,201. With the help of the AER-
MAP module, the images were generated.

According to the emission factors, the WRF mete-
orology, and the 365-day modeling for the year 2018; 
the estimated impact on air quality by  PM10, Pb, 
and As was generated for the study area. These val-
ues are shown in Table 4. Pb and As concentrations 
were estimated based on the highest concentrations 
measured in samples from mining tailings. Regard-
ing the maximum permissible limits allowed for Pb 
and As concentrations in  PM10 particles, AML was 
searched both in the Mexican regulations, as well as 
in the USEPA and in the World Health Organization 
(WHO), and no limits for As were found. For this rea-
son, it was decided to use the values established in the 
European Union. The calculated values are compared 
with the thresholds recommended by Europe Union 
Air Quality Standards (EU AQS). Figure 4 shows the 
concentrations for the worst modeled scenario, the 
maximum average concentration (24-h) of  PM10 is 
close to the study area.

Considering the direction and speed of the wind as 
well as the concentrations of the particles, the disper-
sion cloud travels to the opposite side of the highest 
concentration of human settlements. However, there 
is an impact on the population. According to the esti-
mation of the concentration of the particles from the 
dispersion model, it was calculated that this site could 
contribute up to 10.15  μg/m3 of particles to the air 
quality of the zone.

Other emission sources are not considered; how-
ever, in the study area, other companies are engaged 
in mining, generating tailings exposed to dispersion.

Since the study area is characterized by its min-
ing activity and the wind direction coming from the 
northeast, the particles generated by the different 
activities and mining processes can be dispersed and 
deposited in human settlements.

The study area does not have an air quality moni-
toring system; however, monitoring and measure-
ments of TSP,  PM2.5, and  PM10 concentrations in 
the air have been carried out. For  PM10, 70 samples 
were measured and collected at five sites during Feb-
ruary–March 2017. The range of measurements for 
 PM10 was 23.6 to 80.1 µg/m3 (Corona Sánchez et al., 
2021). This data suggests that if we take the 99th per-
centile (5.36  µg/m3) concentration of the study area 
and compare it with the maximum value monitored 

(80.1  µg/m3), it contributes 6.69% to the air quality 
levels at the site.

According to the results of the meteorological 
modeling with WRF, the AERMOD air quality mod-
eling system (365  days of the year 2018), and the 
emission factors of particles (wind erosion), it is esti-
mated that the study area (mining activity) generates 
an impact on air quality due to the dispersion of  PM10 
with airborne concentrations of 0.28  µg/m3 annual 
average (24  h), 5.36  µg/m3 for the 99th percentile 
(24 h) and 10.15 µg/m3 the maximum concentration 
(24 h). Compared to the Mexican Standard Levels, it 
represents 0.70, 7.15, and 10.15% of the threshold, 
respectively.

It is essential to mention the practical implications 
and difficulties of air quality modeling (Huertas et al., 
2012), for example, when there is no air quality moni-
toring system.

Conclusions

This research evaluated the exposure to the popula-
tion and the danger of tailings belonging to an active 
mine in Mexico through the characterization of its 
tailings and using a dispersion model. The modeling 
results estimated that the dispersion of particles from 
the tailings dam can contribute up to 10.15 µg/m3 of 
 PM10 to the air quality of the site, which, according 
to the characterization of the samples obtained, it 
could be dangerous for human health and due to esti-
mated concentration superior of 0.04 µg/m3 of Pb and 
10.90 ng/m3 of As. In this way it is recommended that 
different treatments be applied to the tailings in order 
to mitigate potential emissions.

It is suggested that in the urban area, the instal-
lation of an air quality monitoring station be pro-
moted, specifically for particles  (PM10 and  PM2.5). 
In addition, it is recommended to carry out parti-
cle monitoring for at least 1 year in the study area 
to analyze the concentrations of these atmospheric 
pollutants and take biological samples to analyze 
the concentrations of Pb and As.
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