
Vol.: (0123456789)
1 3

Environ Monit Assess (2023) 195:609 
https://doi.org/10.1007/s10661-023-11213-w

RESEARCH

Response of cross‑correlations between high  PM2.5 and  O3 
with increasing time scales to the COVID‑19: different 
trends in BTH and PRD

Bingyi Bao · Youping Li · Chunqiong Liu · 
Ye Wen · Kai Shi

Received: 7 September 2022 / Accepted: 3 April 2023 / Published online: 25 April 2023 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract The air pollution in China currently is 
characterized by high fine particulate matter  (PM2.5) 
and ozone  (O3) concentrations. Compared with sin-
gle high pollution events, such double high pollu-
tion (DHP) events (both  PM2.5 and  O3 are above the 
National Ambient Air Quality Standards (NAAQS)) 
pose a greater threat to public health and environ-
ment. In 2020, the outbreak of COVID-19 provided 
a special time window to further understand the  
cross-correlation between  PM2.5 and  O3. Based on 
this background, a novel detrended cross-correlation 
analysis (DCCA) based on maximum time series of 
variable time scales (VM-DCCA) method is estab-
lished in this paper to compare the cross-correlation 

between high  PM2.5 and  O3 in Beijing-Tianjin-Heibei 
(BTH) and Pearl River Delta (PRD). At first, the 
results show that  PM2.5 decreased while  O3 increased 
in most cities due to the effect of COVID-19, and 
the increase in  O3 is more significant in PRD than 
in BTH. Secondly, through DCCA, the results show 
that the  PM2.5-O3 DCCA exponents α decrease by an 
average of 4.40% and 2.35% in BTH and PRD respec-
tively during COVID-19 period compared with non- 
COVID-19 period. Further, through VM-DCCA, the 
results show that the  PM2.5-O3 VM-DCCA exponents  
�
VM

 in PRD weaken rapidly with the increase of time  
scales, with decline range of about 23.53% and 22.90% 
during the non-COVID-19 period and COVID-19  
period respectively at 28-h time scale. BTH is com-
pletely different. Without significant tendency, its �

VM
 

is always higher than that in PRD at different time 
scales. Finally, we explain the above results with the 
self-organized criticality (SOC) theory. The impact 
of meteorological conditions and atmospheric oxida-
tion capacity (AOC) variation during the COVID-19 
period on SOC state are further discussed. The results 
show that the characteristics of cross-correlation 
between high  PM2.5 and  O3 are the manifestation 
of the SOC theory of atmospheric system. Relevant 
conclusions are important for the establishment of 
regionally targeted  PM2.5-O3 DHP coordinated con-
trol strategies.
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Introduction

Despite the pollutant emissions that have been wit-
nessed significant reduction in recent years, there 
are still heavy fine particulate matter  (PM2.5) and 
ozone  (O3) pollution events in some regions of China 
(Chen et al., 2022; Qin et al., 2021). Qin et al. (2021) 
reported that the occurrence of  PM2.5-O3 double high 
pollution (DHP) events in China’s major city clusters 
were driven by a combination of the emissions of pol-
lution sources and regional meteorological factors. 
It clearly implies that an enhanced understanding of 
the cross-correlation between high  PM2.5 and  O3 in 
a city area has a primary significance to formulating 
regional targeted  PM2.5-O3 DHP coordinated control 
strategies.

PM2.5 and  O3 not only have common precur-
sors nitrogen dioxides (NOx) and volatile organic 
compounds (VOCs), but also interact with each 
other through a variety of atmospheric photochemi-
cal pathways, causing extremely complex non-linear 
responses (Chen et al., 2019a; Ding et al., 2013; Liu 
et  al., 2023; Wu et  al., 2021b). Firstly,  PM2.5 can 
influence the formation and thickness of cloud by 
acting as a cloud condensation nuclei and enhance 
atmospheric extinction capacity to alter the photoly-
sis rate, thus indirectly affect the formation of  O3. 
For instance, Zhu et al. (2019) discovered the strong 
negative correlation between  PM2.5 and  O3 in north-
ern China in winter, due to the influence of  PM2.5 on 
photolysis rate. Chu et  al. (2020) also reported that 
the increase in actinic flux owing to the reduction of 
air particles, leads to the rising of  O3 levels in China. 
Secondly,  O3 can enhance the atmospheric oxidation 
capacity and thus produce photochemical oxidants 
such as hydroxyl (·OH) radicals, hydrogen peroxide 
 (H2O2) and aldehyde (R-CHO). These oxidants can 
result in the rapid nucleation of secondary aerosol 
particles and boost the explosive growth of  PM2.5. 
For instance, Jia et  al. (2017) analyzed the interac-
tion between  PM2.5 and  O3 in Nanjing in different 
seasons and found that high  O3 levels in hot season 
could accelerate the formation of secondary particles. 
Fu et  al. (2020) revealed that atmospheric oxidizing 
capacity enhanced by high  O3 levels, played a key 
role in the conversion efficiency of NOx into nitrate 
(the main component of  PM2.5 in North China Plain). 
At last, some other studies highlighted that the het-
erogeneous reactions of chemicals on particle surface 

also affect the formation and consumption of  O3 (Qu 
et al., 2018; Xu et al., 2012). Thus, the complexity of 
the interaction mechanism between  PM2.5 and  O3 and 
the effectiveness of  PM2.5-O3 DHP coordinated con-
trol in city clusters are closely linked.

Due to the temporal variability of meteorology 
and pollution emissions, the time scale dependence 
can be observed in the dominant mechanism of the 
cross-correlation between  PM2.5 and  O3. The photo-
chemical mechanism by which photochemical oxi-
dants such as  O3 contribute to the rapid nucleation 
of secondary aerosol particles occurs mainly on the 
time scale of seconds to hours. For example, Wang 
et al. (2014) found that the explosive growth of  PM2.5 
levels in Beijing-Tianjin-Heibei mainly occurred at 
the time scale of several hours. At the same time, 
the photochemical mechanism by which particu-
late matter affects  O3 formation by scattering solar 
radiation occurs on daily, weekly, monthly and even 
longer time scales. For example, Xing et  al. (2017) 
studied the impact of aerosol direct effects (ADEs) 
on tropospheric  O3 in China and found that ADEs 
led to a decrease in the average  O3 concentrations 
at time scale up to 1  month. In addition, the corre-
lation between  PM2.5 and  O3 is also affected by the 
selection of research period. For example, Zhao et al. 
(2018) pointed out that the  PM2.5 was positively cor-
related with the daily maximum of  O3 at a 3-month 
scale in summer (from June to August 2016) and 
negatively correlated with it at a 3-month scale in 
winter (from December 2016 to February 2017). 
Conversely, Chou et al. (2011) discovered an inverse 
correlation between  PM2.5 and  O3 at the time scale of 
nearly 1 month during the Beijing Olympic Games in 
August 2008. During the city-lockdown period from 
January 23 to February 13, 2020 in northern China, a 
positive correlation between  O3 and  PM2.5 at the time 
scale of 22  days was observed by Le et  al. (2020). 
These ambiguous conclusions, which show both posi-
tive and inverse correlation between  PM2.5 and  O3, 
are largely related to the sampling periods. Finally, 
several studies have showed that the correlation 
between  PM2.5 and  O3 is also affected by meteoro-
logical factors (Chen et al., 2019b; Liu & Shi, 2021). 
For example, Chen et al. (2017) showed that the cor-
relation coefficients of  O3 and five other conventional 
pollutants (including  PM2.5) were less than 0.4 in 
warm seasons, while they were weak or negatively 
correlated in cold seasons. Therefore, it is essential to 



Environ Monit Assess (2023) 195:609 

1 3

Page 3 of 13 609

Vol.: (0123456789)

investigate the differences in the correlation between 
 PM2.5 and  O3 and evolution over time scales in differ-
ent climate zones.

It is generally believed that the differences in 
regional pollution emission will interfere with the 
assessment of the impact of meteorology on air pol-
lution. In 2020, with the outbreak of the COVID-19, 
the Chinese government adopted a series of nation-
wide compulsory measures such as city closure, travel 
restriction and plant shutdown to control the spread 
of the epidemic. As a result, primary pollutants were 
greatly reduced, which led to a similar initial atmos-
pheric condition in different regions (Bherwani et al., 
2021; Gautam, 2020; Gautam et  al., 2021). Kumar 
et  al. (2022) compared the air pollutant levels during 
the Christmas and New Year celebration in 2019, 2020 
and 2021 and found lower total concentration of air 
pollutants than the previous year when there was no 
pandemic situation in India. Such confinement served 
as a natural experiment for scholars to accurately eval-
uate the impacts on the formation of regional pollution. 
For example, Chelani and Gautam (2022) studied the 
correlation between  PM2.5 and  NO2 concentrations 
and indicated that the inherent temporal characteristics 
of the short-term air pollutant concentrations (APCs) 
time series do not change even after withholding the 
emissions. However, current studies have mainly con-
sidered the variations in pollutant concentrations dur-
ing COVID-19. The cross-correlation between second-
ary pollutants  PM2.5 and  O3 has rarely been studied.

Due to the non-linearity and complexity of evolu-
tion of secondary pollutants, existing atmospheric 
chemistry models are hard to meet the requests of 
high accuracy for research data and may result in 
deviations in the simulation of air quality under 
extreme conditions (Liu et al., 2020). In order to elim-
inate the misleading or non-robust effects caused by 
non-stationarity of nonlinear series, Peng et al. (1995) 
first proposed detrended fluctuation analysis (DFA), 
which is suitable for investigating the long-term auto-
correlation of non-stationary time series. Further, 
Podobnik and Stanley (2008) proposed a detrended 
cross-correlation analysis (DCCA) method suitable 
for studying the long-term persistence of cross-corre-
lations between two non-stationary time series. This 
method can effectively avoid the pseudo-correlation 
between the series due to non-stationary data, and 
analyze the time scale characteristics of the interac-
tion between two groups. DCCA has been efficiently 

applied in the analysis of the interaction between 
pollutants at multiple time scales. For example, Shi 
(2014) used the DCCA method to reveal that the rela-
tionship between ambient dioxins and precipitation 
(or  PM10) manifested a long-term cross-correlation 
at the time scale ranging from 1 month to 1 year. Du  
et al. (2021) applied DCCA method to report that the  
high-frequency mode of  NO2 between urban area and 
scenic spots in Zhangjiajie at different time scales 
showed long-term cross-correlation at 24-h time 
scale. He (2016) used DCCA method to find that 
there was a long-term cross-correlation between pol-
lutants and meteorology at a 10-year time scale, and it 
was more obvious in rural areas. DCCA method has 
been widely used in some other fields (Chen et  al., 
2018a; Liang et al., 2017; Rohit & Mitra, 2018; Yuan 
& Fu, 2014), and its scientificity and applicability 
have been proved by many scholars.

Taking Beijing-Tianjin-Heibei (BTH) and Pearl 
River Delta (PRD) as the study areas, this study estab-
lishes a new VM-DCCA method based on DCCA 
method to extract high pollutants, thus to compare 
time scale characteristics of the cross-correlation 
between high  PM2.5 and  O3. The primary objective is 
to consider the spatiotemporal evolution of the inter-
action between these two pollutants and attempt to 
provide a quantitative basis of devising sustainable 
coordinated control strategies of high  PM2.5 and  O3 in 
city clusters in different climate zones.

Materials and methods

Study areas

Both the Beijing-Tianjin-Hebei (BTH) and the 
Pearl River Delta (PRD) are the major city clus-
ters in China. The BTH (39°28′N-41°05′N, 
115°20′E-117°30′E) is located in the north of North 
China Plain, including two municipalities (Beijing 
and Tianjin) and 11 prefecture level cities (Baoding, 
Tangshan, Langfang, Shijiazhuang, Qinhuangdao, 
Handan, Zhangjiakou, Chengde, Cangzhou, Xingtai 
and Hengshui). This region belongs to temperate con-
tinental monsoon climate, with high temperature and 
rainy in summer due to the impact of the ocean water 
vapor and cold and dry in winter due to the impact 
of the cold inland air (Sun et  al., 2021). The PRD 
(21°31′N-23°10′N, 112°45′E-113°50′E) is located in 
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the south central part of Guangdong Province, China, 
including 9 cities (Dongguan, Foshan, Guangzhou, 
Huizhou, Jiangmen, Shenzhen, Zhaoqing, Zhong-
shan and Zhuhai). This region belongs to subtropi-
cal monsoon climate, with abundant rainfall and heat 
throughout the year. The rain and heat are in the same 
season, and the four seasons are relatively evenly dis-
tributed (Li et al., 2018). The total GDP of BTH and 
PRD were 8.69 and 8.95 trillion, accounting for about 
8.54% and 8.77% of the national GDP respectively by 
2020. There are a large number of advanced manufac-
turing bases and factories with global influence and 
developed industries in the two regions, which lead 
to intensive energy consumption and pollutant emis-
sion in the two regions, bringing serious atmospheric 
pollution to the local (Chen et  al., 2018b; Hu et  al., 
2021).

Data source

According to the National Emergency Response Plan 
for Public Health Emergencies, control measures were 
implemented throughout the country on around Janu-
ary 24, 2020, and all work and production activities 

resumed in early May. In this study, January 24 to 
May 31, 2020 are set as the COVID-19 period and 
the same period in 2019 is set as the non-COVID-19 
period for comparison. Hourly observations of  PM2.5 
and  O3 are obtained from the China National Envi-
ronmental Monitoring Centre (http:// www. cnemc. 
cn/). Due to instrument calibration, power failure and 
some other factors, it is inevitable to cause the lack of 
individual data, accounting about 0.1%. These lack-
ing data have been replaced by the average of the 
two adjacent data. Besides, daily meteorological data 
including minimum temperature (T-Min), maximum 
temperature (T-Max), precipitation (Pre), relative 
humidity (HR), wind speed (WS) and atmospheric 
pressure (P) are obtained from the China Meteorolog-
ical Administration (http:// cma. gjzwfw. gov. cn/). The 
statistical analyses of these meteorological factors are 
shown in Fig. 1 (For each box, the upper and lower 
boundaries of the box represent the 75th and 25th per-
centile respectively, the horizontal line in the box rep-
resents the median, the beard represents the minimum 
and maximum respectively, and the square represents 
the average, which has been marked). According to 
Fig.  1, there are no significant differences between 

Fig. 1  The statistics of 
meteorological factors 
during the non-COVID-19 
period and COVID-19 
period in BTH and PRD

http://www.cnemc.cn/
http://www.cnemc.cn/
http://cma.gjzwfw.gov.cn/
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BTH and PRD in WS and P, while the other four 
meteorological factors are completely different. Dur-
ing the non-COVID-19 period, the T-min, T-max, Pre 
and HR in PRD are about 14.59℃, 8.75℃, 6.39 mm, 
38.3% higher than BTH respectively, and about 
13.15℃, 8.24℃, 4.39 mm, 25.9% higher respectively 
during the COVID-19 period. In this way, the great 
differences in meteorological factors between the 
BTH and PRD are conducive to the comparative anal-
ysis of the impacts of different meteorological factors 
on compound atmospheric pollution.

Methods

Detrended cross‑correlation analysis based 
on maximum time series of variable time scales

Compared with traditional method for correlation 
analysis, the advantage of DCCA related methods is 
that the scales characteristic of correlations can be 
quantified. Piao and Fu (2016) compared the Pearson 
method with DCCA method and reported that DCCA 
related methods can quantify scale-dependent cor-
relations and are robust to contaminated noises and 
amplitude ratio, but not Pearson method. The calcula-
tion process is as follows.

Firstly, the series 
{

xk
}

 and 
{

yk
}

 are calculated as 
follows:

where 
{

xt , t = 1, 2,⋯ , S} and 
{

yt , t = 1, 2,⋯ , S} are 
the original time series, x and y are the averages of 
them, respectively.

Secondly, the above series 
{

xk
}

 and 
{

yk
}

 are 
divided into equal segments with length s ( s rep-
resents the length of time scale), the least square 
method is used for linear fitting of each segment, 
thus, the local trend of data fluctuation at a specific 
time scale s is obtained. Then the trend of each data 
segment is combined as local trend xk,t , yk,t.

Thirdly, the trend signal is subtracted from the 
cumulative signal to obtain the residual signal, and 
the covariance of each residual signal is calculated as 
follows:

(1)

xk =

k
∑

t=1

(

xt − x
)

and yk =

k
∑

t=1

(

yt − y
)

, k = 1, 2,⋯ , S

The covariance of the whole time series is

Finally, repeat the above steps for each time scale 
s to obtain logarithmic relationship curves of F(s) 
and s . If ln s ∼ lnF(s) satisfy a linear relationship, a 
power-law relationship F(s) ∝ s� exists. A linear fit is 
performed at this point, and the slope is the DCCA 
exponent �.

For a specific time scale, � quantitatively represents 
the cross-correlation between the two groups of non-
stationary time series. 𝛼 > 0.5 represents that there  
is a lasting positive cross-correlation in a power-law 
form between the two groups of time series, that is, 
there is a trend of increase (or decrease) in a group of 
time series that will be followed by the same trend in 
the other group of time series at a certain time scale. 
The larger the � , the stronger the positive cross- 
correlation between the two groups of time series. 
𝛼 < 0.5 indicates that there is a continuous negative cross-
correlation between the two groups of non-stationary  
time series variables, and the specific meaning is 
opposite to that when 𝛼 > 0.5 . � = 0.5 indicates that 
there is no cross-correlation between the two groups 
of time series.

Due to the adverse effects of extreme pollution 
(Kumar et  al., 2023), the correlation between high 
 PM2.5 and  O3 should be further explored. The forma-
tion of high pollution strongly relies on the time scale, 
but the traditional DCCA method cannot identify the 
correlation between high pollutants at different time 
scales. So the simultaneous series of high  PM2.5 and 
 O3 at different time scales should be obtained first.

This paper applies the method proposed by Much-
nik et  al. (2009) to obtain the series of high pollut-
ants. Specifically, Fig. 2a shows typical hourly aver-
age concentrations series of  PM2.5 and  O3 for 48 
sequential hours. They are divided into several seg-
ments with interval length of 4 h, and the maxima of 
each interval are marked. Thus, Fig. 2b represents the 
maximum sequences of  PM2.5 and  O3 at a 4-h inter-
val. Similarly, by changing the length of the period, 

(2)f 2
DCCA

(s, t) =
1

s − 1

t+s
∑

k=t

(xt − x̃k,t)(yt − ỹk,t)

(3)F(s) ≡

√

√

√

√

N−n
∑

t=1

[
1

s − 1

t+s
∑

k=t

(xk − x̃k,t)(yk − ỹk,t)]
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maximum sequences of  PM2.5 and  O3 at different 
interval length can be obtained. At last, the VM-
DCCA exponent �VM can be further obtained by the 
same steps of DCCA, and the meaning of �VM is sim-
ilar to � . �VM varies with the interval length, which 
reflects the cross-correlation between high  PM2.5 and 
 O3 at different time scales.

Self‑organized criticality

Self-organized criticality (SOC) theory was proposed 
by Bak et  al. (1987), which explained the dynamic 
mechanism of the power-law distribution characteris-
tics of complex systems. In general, a complex system 
consists of many cells that have short-term correla-
tion. Under certain conditions, the system spontane-
ously evolves and reaches the critical state. At this 
state, a slight perturbation would lead to large-scale 

events through spatial association between each cell, 
and the “frequency-size” distribution of these events 
obeys a power-law relation.

The “sandpile model” is used to illustrate the 
physical significance of SOC theory. Individual 
grains are dropped and gradually form a small pile, 
and then simulate and calculate how many grains 
will slide when a grain falls. In the initial stage, the 
falling grains just add to the growing pile, but as the 
grains accumulate to a certain extent, it stops growing 
and reaches a critical slope in a statistically station-
ary state. At this moment, the result of adding grains 
is unpredictable. The addition of grains may cause 
either a small perturbation or even trigger a large ava-
lanche. Statistical analysis suggests that the frequency 
of avalanches is a power-law function with the size of 
the pile in the long-term grain adding process.

Results

Concentrations variations of  PM2.5 and  O3 during the 
COVID-19 period

Figure 3 shows the variations of  PM2.5 and  O3 dur-
ing the COVID-19 period compared with the non-
COVID-19 period. For BTH,  PM2.5 in most cit-
ies shows a downward trend, ranging from 4.72 to 
32.34%, and shows a slight increase in a small num-
ber of cities. By contrast,  O3 in most cities shows 
an upward trend, ranging from 1.25 to 6.36%, and 
declines slightly in a small number of cities. For 
PRD,  PM2.5 in all cities decreases significantly, 
ranging from 7.78 to 32.44%. Except Shenzhen, 
 O3 in other cities shows an upward trend, ranging 

Fig. 2  Maximum sequences of  PM2.5 and  O3 obtained from 
original sequence with interval length of 4 h

Fig. 3  Variations of  PM2.5 
and  O3 in each cities of 
BTH and PRD during the 
COVID-19 period com-
pared with the non COVID-
19 period
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from 2.60 to 33.99%. This result shows that  PM2.5 
decreased while  O3 increased in most cities due to 
the impact of COVID-19. The rise in  O3 is not only 
related to the decrease in  PM2.5, but is also influ-
enced by the decrease in the concentration of its 
precursors NOx, which reduced the titration of  O3.

Figure  4 shows the comparison of variances 
above of  PM2.5 and  O3 in BTH and PRD. In general, 
there is no significant difference in concentrations 
variations of  PM2.5 between BTH and the PRD. 
 PM2.5 decreases by 14.09% and 16.30% in BTH and 
PRD respectively. Comparatively, the increment of 
 O3 in PRD is much higher than that in BTH. The 
average  O3 concentrations increase by 1.72% in 
BTH, but 19.39% in PRD. This result suggests that 
there is obvious regional difference in the responses 
of  PM2.5 and  O3 to the reduction of primary emis-
sion. The increase of  O3 in the PRD is much larger 
than that in BTH, which may be influenced by  
meteorological differences between two regions.

Long-term cross-correlation between  PM2.5 and  O3 
during the COVID-19 period

In order to explore the long-term cross-correlation 
between  PM2.5 and  O3 in BTH and PRD, taking Bei-
jing and Guangzhou as examples, the DCCA result 
during the COVID-19 period is shown in Fig. 5. As 
shown in the figure, there is a linear relationship 
between the covariance fluctuation function F(s) and 
time scales s with logarithm. The � values are 0.84 
and 0.89 in Beijing and Guangzhou respectively, indi-
cating that the cross-correlation between  PM2.5 and 
 O3 during the COVID-19 period shows strong long-
term persistence characteristics.

In order to verify whether DCCA method truly 
reflects the long-term persistence characteristics of 
the cross-correlation between non-stationary series, 
this paper applies the same way to analyze the ran-
dom shuffled series. According to Markov process 
theory, if the time series xi and yi of the two pollutants 

Fig. 4  Averaged varia-
tions of  PM2.5 and  O3 in 
BTH and PRD during 
the COVID-19 period 
compared with the non-
COVID-19 period

Fig. 5  DCCA plot of 
 PM2.5 and  O3 in Beijing 
and Guangzhou during the 
COVID-19 period
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are completely random, the correlation function will 
decay exponentially with time, and the correlation 
coefficient is 0 at a specific time. In this paper, the 
original  PM2.5 and  O3 are randomly shuffled and then 
analyzed by DCCA, which show an obvious power-
law relationship of the two cities at the whole time 
scale, and its � values are 0.53 and 0.51 respectively, 
which indicate that there is no correlation between 
the randomly shuffled series. The comparative result 
shows that DCCA method can effectively reveal 
the long-term persistence of the cross-correlation 
between original  PM2.5 and  O3 series at a long time 
scale.

Based on the above analyses, DCCA calculation of 
 PM2.5 and  O3 concentration series during COVID-19 
and non-COVID-19 period in BTH and PRD is fur-
ther carried out. It can be seen from Fig. 5 that the � 
values of BTH and PRD fluctuate between 0.78 and 
0.99, which means the correlation between  PM2.5 and 
 O3 series in each city shows strong long-term persis-
tence. Besides, the � values during the COVID-19 
period is lower than that during the non-COVID-19 
period in most cities. Table  1 shows the statistical 

analysis of � values during the COVID-19 and non-
COVID-19 period in the two regions.

The Shapiro–Wilk test is performed to test the 
normality of � values series. The results show that 
the � values obey the normal distribution. The 
T-test is used to compare the difference of � val-
ues between the two periods, which show that the P  
values of BTH and PRD are 0.02 and 0.02 respec-
tively, which are less than the set significance level 
(0.05). Therefore, the null hypothesis that there is 
no significant difference in � values between the 
COVID-19 and non-COVID-19 period is rejected, 
that is, the � values are significantly different dur-
ing the two periods. As shown in Fig. 6, the � val-
ues of most cities during the COVID-19 period 
decrease significantly compared with that in the 
non-COVID-19 period. The average � values are 
0.91 and 0.85 respectively in BTH (decreasing by 
4.40%), while are 0.87 and 0.83 respectively in 
PRD (decreasing by 2.35%). The results indicate 
that the long-term persistence of  PM2.5-O3 correla-
tion has weakened during the COVID-19 period in 
both regions.

Table 1  The main statistical values of DCCA exponents � during COVID-19 period and non-COVID-19 period in BTH and PRD

City clusters Mean 
value 
( �g∕m3)

Standard 
deviation

Skewness Kurtosis Shapiro–Wilk test T test

BTH Non-COVID-19 period 0.91 0.06 −0.12 1.53 Obey normal distribution Exist
significant differencesCOVID-19 period 0.87 0.02 0.12 1.91 Obey normal distribution

PRD Non-COVID-19 period 0.85 0.02 0.74 2.51 Obey normal distribution Exist significant differences
COVID-19 period 0.83 0.03 −0.68 2.24 Obey normal distribution

Fig. 6  Comparison of 
DCCA exponents � of 
 PM2.5 and  O3 between 
COVID-19 period and non-
COVID-19 period in each 
cities of BTH and PRD
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Long-term cross-correlation between high  PM2.5 and 
 O3 concentrations

The spatiotemporal distribution of  PM2.5 or  O3 high 
pollution events, in which the daily average concen-
tration of  PM2.5 is above 75 �g∕m3 , and the daily 
maximum 8-h average ozone (MDA8  O3) concentra-
tion is above 160 �g∕m3 , in BTH and PRD during 
the non-COVID-19 period and COVID-19 period are 
compared at first. As is shown in Fig. 7, the frequency 
of high pollution events in BTH is higher than that in  
PRD. Specifically, for  PM2.5, the frequency of high 
pollution events is higher during the non-COVID-19 
period. For  O3, the frequency of high pollution events 
is higher during the COVID-19 period.

Further, taking 1 h (original concentration series), 
4  h, 8  h, 12  h, 16  h, 20  h, 24  h and 28  h as inter-
val length, the cross-correlation between high  PM2.5 
and  O3 is analyzed by VM-DCCA method. Its VM-
DCCA exponents �VM varying with the intervals are 
shown in Fig. 8.

It can be seen from Fig. 8 that �VM values during 
the non-COVID-19 period are always higher than 
that during the COVID-19 period at different inter-
val length both in BTH and PRD. It indicates that 
the long-term cross-correlation between high  PM2.5 
and  O3 during the COVID-19 period is weaker than 
that in the non-COVID-19 period. Secondly, the �VM 
values in BTH are always higher than that in PRD, 
which illustrates that the long-term cross-correlation 
between high  PM2.5 and  O3 in BTH is stronger than 
that in PRD. Moreover, with the increase of interval 
length, �VM values in BTH fluctuate between 0.91  

and 1.0 during the non-COVID-19 period, between 
0.85 and 0.90 during the COVID-19 period, while 
those in PRD continuously decreases from 0.85 to 
0.65 during the non-COVID-19 period, from 0.83 to 
0.64 during the COVID-19 period. It reveals that with 
the increase of interval length, the long-term cross-
correlation of the two high pollutants weakened in 
PRD, while remain stable in BTH.

Discussion

The SOC theory is used to explain the source of long-
term persistence in the evolution of complex systems 
from a perspective of macro integrity. In the previ-
ous studies, Shi and Liu (2009) explained the scale 
invariant structures in the long-term evolution of 
 PM10,  SO2 and  NO2 in Shanghai based on SOC the-
ory. Further, Shi et al. (2015) established a numerical 
sand pile model of pollutant evolution based on SOC 
theory to quantitatively explain the formation mecha-
nism of stable long-term persistence of  PM2.5 during 
a typical haze period in Chengdu. Besides, Chelani 
(2016) pointed out that the emergence of long-term 
persistence in the temporal evolution of air pollution 
can be absolutely explained by SOC theory.

The evolution of the cross-correlation between 
high  PM2.5 and  O3 is highly similar to the known 
SOC system. Firstly, the atmosphere is an open dis-
sipative system in which primary pollutants emitted 

Fig. 7  Days of high pollution in BTH and PRD during the 
non-COVID-19 period and COVID-19 period

Fig. 8  Variations of average VM-DCCA exponents �
VM

 with 
interval length in BTH and PRD during the non-COVID-19 
period and COVID-19 period
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from human production and life provide material  
and energy. For example, primary pollutants NOx  
and VOCs generate  PM2.5 and  O3 through various 
atmospheric photochemical reaction pathways, a pro-
cess analogous to the continuous input of sand grains 
into a sand pile. At the same time, some dissipative 
processes of these secondary pollutants through vari-
ous pathways happen in atmospheric system. For 
example, high  O3 enhances atmospheric oxidation 
and promotes photochemical reactions, which rap-
idly depletes  O3.  PM2.5 pollutants can be transported 
on microscopic scales by diffusion or convection 
through rainfall deposition or wind diffusion, etc. 
This process is analogous to sand grains slipping in 
a sand pile. Secondly, pollutant components in the 
atmosphere can form short-range interactions through 
a variety of physical and chemical mechanisms.  O3  
can influence the formation of  NO3

−,  SO4
2− and  

secondary aerosols by affecting the concentration of 
various oxidants. Correspondingly,  PM2.5 can affect 
 O3 formation directly or indirectly by influencing 
atmospheric dynamics, photolysis rates, cloud optical 
thickness and non-homogeneous reaction processes. 
This process is analogous to the mutual extrusion 
stress between sand grains. Thirdly, under stationary 
weather conditions, the interaction between  PM2.5 and 
 O3 will drive the entire atmospheric system to evolve 
spontaneously to a critical state and maintain it for a 
long time. Here, the short-term correlation between 
 PM2.5 and  O3 may cause a chain of forces involving 
the whole system, so as to evolve the long-term per-
sistence. This process is analogous to the spontaneous 
evolution of a sand pile system to a SOC state due 
to the action of localised extrusion stresses between 
sand grains in a sand pile. Finally, in a critical state, 
the temporal correlation function of the atmospheric 
system to dissipation of external material or energy 
is power-law. The critical state of air pollution will 
continue to be locked as long as the external mete-
orological conditions of the stationary weather do not 
change, which is determined by the long-term persis-
tent characteristics of the interaction between the pol-
lution components  (PM2.5 and  O3) in the air pollution 
complex. This process is analogous to the power law 
distribution between the magnitude and frequency of 
sand pile collapse.

In Fig.  7, �VM shows lower values during the 
COVID-19 period and varies with the interval length 
in BTH and PRD, which can be explained by the SOC 

behavior. Driven by the input of primary and second-
ary pollutants, the cross-correlation of high  PM2.5 and 
 O3 experiences a stable internal dynamic process. In 
this case, external interference may destroy the short-
term correlation between pollutants, thus affecting the 
long-term persistence of the cross-correlation between 
high  PM2.5 and  O3. At this time, critical state may be 
damaged and instability may occur. Regional mete-
orological factors and COVID-19 outbreak can be 
regarded as the external interference of atmospheric 
system. In general, higher temperature is accompanied 
by stronger solar radiation, resulting in stronger oxi-
dation capacity and more active atmospheric photo-
chemical reaction. In the PRD region, despite higher 
 O3 concentrations, the rapid depletion of  O3 itself and 
its precursors makes it difficult to maintain a lasting 
influence in the atmosphere. At the same time, higher 
RH and Pre may accelerate the coagulation and sedi-
mentation of particulate matters, making it difficult 
for  PM2.5 to maintain a lasting impact in the atmos-
phere. The rapid consumption of high  PM2.5 and  O3 
results in low �VM values in PRD and decreases con-
tinuously with the increase of time scales. Besides, 
the increase of atmospheric oxidation capacity (AOC) 
caused by the rise of  O3 levels during COVID-19 may 
lead to low �VM values. That is, the enhanced AOC 
accelerates the depletion of  PM2.5 and  O3 themselves 
and their precursors in atmospheric oxidation reac-
tions, making it difficult to have lasting impacts in 
the atmosphere. Previous references have drawn some 
conclusions that can support this view. For example, 
Wang et al. (2020) found that the average  O3 concen-
trations increased by 20.1 �g∕m3 during the COVID-
19 period in China. Huang et al. (2021) showed that 
the significant emission reduction of NOx during the 
COVID-19 promoted the increase of  O3 and the for-
mation of  HNO3 free radicals at night, resulting in the 
increase of AOC. Qin et  al. (2022) reported that the 
enhancement of AOC greatly affected  PM2.5 and  O3 
and their relationship. Therefore, the long-term persis-
tence of the cross-correlation between high  PM2.5 and 
 O3 during the COVID-19 period has weakened.

The greater the long-term persistence, the longer 
the cross-correlation between two pollutants. In this 
way,  PM2.5  (O3) at a certain time will inevitably affect  
the formation of high  O3  (PM2.5) at a certain time 
scale. This irresistible effect will increase the diffi-
culty of coordinated control of  PM2.5-O3 DHP in the 
future. The low �VM values in PRD are conducive to 
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achieve the coordinated control of  PM2.5-O3 DHP 
in some extent. Wu et  al. (2021a) and Zhang et  al. 
(2022) also found that  PM2.5-O3 coordinated control 
is easier in Guangzhou, due to different meteorologi-
cal factors, which is consistent with our results.

Therefore, the long-term persistence in  PM2.5-O3 
cross-correlation is closely related to the feasibility of 
coordinated control strategies. The relevant conclu-
sions of this paper are helpful to the risk assessment 
and coordinated control of  PM2.5-O3 DHP in different 
city clusters, which is of great significance in com-
pound pollution prevention.

Conclusions

Based on the COVID-19 outbreak, this paper estab-
lishes a novel VM-DCCA model to study the long-
term persistence of the cross-correlation between the 
high  PM2.5 and  O3 BTH and PRD.

The results show that the  PM2.5 levels are observed 
to have a decrease in most cities while the  O3 lev-
els increased during the COVID-19 period, and the 
increase range of  O3 in the PRD (19.39%) is signifi-
cantly greater than that in BTH (1.72%). Secondly, 
the DCCA results indicate that the cross-correlation 
between  PM2.5 and  O3 shows strong long-term per-
sistence. The average DCCA exponents � of BTH is 
higher than PRD, and the non-COVID-19 period is 
higher than COVID-19 period. Finally, the VM-DCCA 
exponents �VM between high  PM2.5 and  O3 during 
the COVID-19 period are generally higher than non-
COVID-19 period, and BTH are higher than PRD. The 
average VM-DCCA exponents �VM in PRD experience 
a significant downward trend with the increase of inter-
val length, while remaining stable in BTH.

The above results showed that the spatiotemporal 
evolution of cross-correlation between high  PM2.5 
and  O3 can be regarded as a typical SOC case. Based 
on the dynamic mechanism of SOC, the different 
response characteristics of  PM2.5 and  O3 pollutants 
in different regions during the COVID-19 period can 
be scientifically explained. The construction of VM-
DCCA method related to high  PM2.5 and  O3 at differ-
ent interval length is helpful to achieve coordinated 
control of pollutants.
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