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Abstract We estimated chlorophyll-a (Chl-a) concen-
tration using various combinations of routine sampling, 
automatic station measurements, and MERIS satel-
lite images. Our study site was the northern part of the 
large, shallow, mesotrophic Lake Pyhäjärvi located in 
southwestern Finland. Various combinations of meas-
urements were interpolated spatiotemporally using a 
data fusion system (DFS) based on an ensemble Kalman 
filter and smoother algorithms. The estimated concen-
trations together with corresponding 68% confidence 
intervals are presented as time series at routine sampling 
and automated stations, as maps and as mean values 
over the EU Water Framework Directive monitoring 
period, to evaluate the efficiency of various monitoring 
methods. The mean Chl-a calculated with DFS in June–
September was 6.5–7.5 µg/l, depending on the observa-
tions used as input. At the routine monitoring station 
where grab samples were used, the average uncertainty 
(standard deviation, SD) decreased from 2.7 to 1.6 µg/l 
when EO data were also included in the estimation. At 
the automatic station, located 0.9 km from the routine 

monitoring site, the SD was 0.7 µg/l. The SD of spatial 
mean concentration decreased from 6.7 to 2.9 µg/l when 
satellite observations were included in June–September, 
in addition to in situ monitoring data. This demonstrates 
the high value of the information derived from satellite 
observations. The conclusion is that the confidence of 
Chl-a monitoring could be increased by deploying spa-
tially extensive measurements in the form of satellite 
imaging or transects conducted with flow-through sen-
sors installed on a boat and spatiotemporal interpolation 
of the multisource data.

Keywords Chlorophyll-a · Water framework 
directive · Spatiotemporal interpolation · Satellite 
images · Automated measurements · Lake

Introduction

Monitoring of water quality of lakes has convention-
ally been carried out using manually acquired, grab 
water samples analysed in the laboratory. Due to lim-
ited resources, monitoring is often limited to one sta-
tion typically located at lake deep, with the assumption 
that this station represents the whole lake. The number 
of water samples per year in routine monitoring is typi-
cally low, and therefore, phytoplankton blooms can be 
missed. The EU Water Framework Directive (WFD) 
recommends a sampling frequency of twice per year 
for phytoplankton (Birk et  al., 2012), but some lakes 
are monitored more frequently, for example, once or 
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twice a month. Even more frequent sampling may lead 
to information gaps due to the occurrence of processes 
with a shorter temporal scale than the sampling fre-
quency (Dubelaar et  al., 2004). Moreover, it is neces-
sary to consider sample collection and handling method 
accuracy, the effect of laboratory methodology error, as 
well as how representative the data are for the objective 
of the study (EPA, 2002).

The temporal and spatial deficiencies of conventional 
monitoring can be reduced by using automatic sensors 
and satellite remote sensing (Earth Observation, EO). 
The automatic sensor measurements in lakes have been 
used to understand and predict the state of globally 
selected lakes (The Global Lake Ecological Observatory 
Network GLEON, http:// gleon. org/, Rose et  al., 2016). 
Furthermore, they can be used in lake management to 
estimate the eutrophic status of lakes in determining 
the environmental actions and legislation needed. Chlo-
rophyll-a (Chl-a) concentration is commonly used as a 
proxy for phytoplankton biomass and can be estimated 
by continuous fluorometer measurements. In the WFD, 
high frequency of Chl-a measurements are valuable for 
defining the required frequency of conventional moni-
toring so that the confidence levels for status assessment 
are high enough to estimate Chl-a in lakes with highly 
varying phytoplankton and in lakes which fluctuate 
between good and moderate ecological status (Marcé 
et al., 2016). However, automatic sensor measurements 
are costly, and high-quality estimations require continu-
ous maintenance of the sensors.

The availability of satellite images for lake monitoring 
has increased in recent years, particularly due to the Euro-
pean Copernicus Sentinel (https:// senti nels. coper nicus. 
eu) and NASA/USGS’s Landsat (https:// lands at. gsfc. nasa. 
gov/) programs. The spatial resolution of satellite images 
suitable for water quality estimations varies typically 
between 20 and 300  m. The EO-based Chl-a products 
have been used in estimating the status of WFD waterbod-
ies in lakes (Ansper & Alikas, 2019; Bresciani et al., 2011; 
Markogianni et al., 2022; Papathanaopoulou et al., 2019) 
and coastal waters (Attila et al., 2018; Gohin et al., 2008).

The advanced monitoring techniques bring additional 
information on temporal and spatial variation, but to 
optimize their joint use in conjunction with conventional 
methods requires proper tools. In spatiotemporal statisti-
cal interpolation, multisource observations are harmo-
nized and interpolated to fill in data gaps and provide 
an overview of the variation and uncertainty of the esti-
mated variables. Spatial interpolation provides combined 

spatial concentration estimates for the measurement days 
and has been used, e.g. in Chl-a estimation in coastal 
waters (Pulliainen et al., 2004) and the lake environment 
(Wilkie et  al., 2015). Spatiotemporal interpolation also 
provides spatial estimates for the periods lacking obser-
vation data and has been applied to lakes, for instance, 
to estimate harmful algal bloom probabilities (Fang 
et  al., 2019) and to assess dissolved inorganic nitrogen 
(Wang et al., 2019). The spatiotemporal algorithms used 
in water quality applications have varied (Gunia et  al., 
2022). Observations on the application of geostatistical 
methods have typically included two of three of the fol-
lowing information sources: (i) conventional water sam-
pling, (ii) automatic station measurements either station-
ary or from a moving ship, and (iii) EO images.

The objective of this study was to compare the spati-
otemporal variability and uncertainty in the estimated 
Chl-a concentrations of various combinations of observa-
tions. The study was conducted in the mesotrophic Lake 
Pyhäjärvi in Southwest Finland in 2009, and observations 
consisted of routine monitoring (grab water samples), 
automatic lake station sampling, and satellite measure-
ments. Interpolation was done using a data fusion sys-
tem based on an ensemble Kalman smoother algorithm. 
First, we present the interpolated Chl-a and its confidence 
intervals with various measurement combinations at rou-
tine and automatic measurement stations. Second, spatial 
variation of interpolated Chl-a is illustrated on maps. The 
mean concentration and its uncertainty at selected loca-
tions and areas are compared using various measurement 
combinations. We show that EO data decrease the uncer-
tainty of Chl-a considerably when the whole research area 
and WFD monitoring season are considered.

Description of Lake Pyhäjärvi

Pyhäjärvi is a large (155  km2), shallow mesotrophic lake 
in Southwest Finland (Fig. 1) with a mean depth of 5.5 m, 
the deepest point of which is 26 m (coordinates 61.0256° 
N, 22.2051° E). Its ecological status has been good to 
moderate during the WFD era, which began in the early 
2000s. Hydrological and hydrobiological research on the 
lake has been ongoing for decades, and it is one of the 
most studied lakes in Finland. Its water chemistry and 
plankton species composition have been monitored from 
the 1960s to the present. Nutrient and plankton commu-
nity monitoring efforts intensified starting in 1980, and 
since then, the state of the lake has been summarized 
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by Ventelä et al. (2007) and Ventelä et al. (2016). Lake 
Pyhäjärvi is a highly valuable lake in terms of water sup-
ply and recreational use. It also has exceptionally high fish 
productivity (Sarvala et al., 1998) making it an important 
lake for commercial fishing.

Two major rivers, Yläneenjoki (233  km2) and Pyhä-
joki (78  km2), discharge into the lake (Fig.  1). Agri-
culture in the catchment area consists mainly of cereal 
production and poultry husbandry (Pyykkönen et  al., 
2004; Rankinen et al., 2021). The Yläneenjoki catch-
ment is responsible for 53–57% of the external phos-
phorus load into Pyhäjärvi, while Pyhäjoki is respon-
sible for 10–12% (Ventelä et  al., 2007). Increased 
eutrophication became a major concern in the late 
1980s: between 1970 and 1992, the nitrogen concen-
tration in the lake increased by 30% (Ekholm et  al., 
1997), and the phosphorous concentration doubled, 
but the nutrient concentrations later decreased (Ventelä 
et al., 2007; Ventelä et al., 2016).

Lake Pyhäjärvi has served as the Finnish flagship 
area of several national and EU projects, such as Catch-
Lake (Lepistö & Huttula, 2008), REFRESH (Lepistö 
et al., 2013), and GISBLOOM (Malve et al., 2016). It 
is one of the most important pilot study lakes in Fin-
land where catchment and lake modelling (Huttula, 
1994; Lepistö et al., 2013; Malve et al., 2007; Rankinen 

et  al., 2021), automatic sensor measurements, tran-
sect measurements from a moving boat (Lepistö et al., 
2010), as well as satellite remote sensing (Kallio, 2012; 
Lepistö et al., 2010) and data assimilation (Mano et al., 
2015) techniques have been applied. The results of the 
Pyhäjärvi automated station (Fig. 1), described in detail 
below, have been used in such cases as the study of heat 
loss from lakes (Woolway et al., 2018) and the impact 
of episodic weather-induced events on lakes (Kuha 
et al., 2016).

Material and methods

Water sampling and laboratory determination methods

Lake Pyhäjärvi was routinely monitored at the lake deep 
by grab water samples and laboratory analyses once or 
twice a month during May–September in 2009. Chl-a 
samples were taken as composite samples from a depth 
of 0–2  m. In addition, nine water samples were taken 
during June–October at the automated station from 
a sensor depth of 1 m, for the calibration of the sensor 
measurements. The concentration of Chl-a was measured 
in the laboratory with a spectrophotometer after extrac-
tion with hot ethanol (ISO 10260, 1992, GF/C filter). 

Fig. 1  Lake Pyhäjärvi with the locations of the routine moni-
toring and automated station (left panel) and the structure of the 
automated station (right panel, see text for details). The black 
line on the map indicates the northern part of the lake, on which 
we focus in this study. The River Yläneenjoki (southern shore) 

and River Pyhäjoki (eastern shore) inflows, as well as the River 
Eurajoki outflow (northern shore), are indicated by arrows. Back-
ground map:  © National Land Survey of Finland, licence no. 7/
MYY/06
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Phytoplankton samples (composite 0–2 m) taken at the 
routine monitoring station were preserved with acidic 
Lugol’s solution. Cells were enumerated by micros-
copy, and cell counts were converted to biovolumes as 
described in Räsänen et al. (2006).

Automatic station and sensor corrections

The Pyhäjärvi lake automatic station was founded close 
to the routine monitoring station (900  m apart, see 
Fig. 1) in August 2008. The station was constructed of 
a float (3 m × 3 m × 0.5 m) with four plastic pontoons 
and a rectangular wooden deck. The float with a steel 
case for dataloggers and other equipment was anchored 
to the lake bottom from each corner. The depth at the 
location was approx. 20 m.

Chl-a and phycocyanin fluorescence were measured 
with Trios’s Micro Flu fluorometer (470-nm excitation 
and 685-nm emission wavelengths) and Micro Flu blue 
fluorometer (620-nm excitation and 655-nm emission 
wavelengths). The phycocyanin fluorescence measure-
ments were utilized in the correction equation of the 
Chl-a fluorometer (see later). Both sensors were sus-
pended on the side of the float at a depth of 1 m. Other 
measured variables, not utilized in this study, were 
turbidity, nitrate and dissolved oxygen concentrations, 
and water temperature.

Dataloggers, other electronics, a compressed air tank, 
and batteries (two 60-Ah units) were mounted inside a 
steel/aluminium case (0.4 × 0.8 × 1.4 m). A Vaisala 500 
series weather station/transmitter was installed on the top 
of the case (about 2 m above the water level). Data from 
the station were transmitted via GSM network to Luode 
Consulting Ltd.’s database. The optical sensors were kept 
clean with compressed air, which was taken from 10-l 
200 bar divers’ tanks. The cleaning cycle was controlled 
by dataloggers. In addition, all sensors were manually 
cleaned during service visits, typically once a week.

Before the measurement season, the Chl-a and phy-
cocyanin fluorometers were calibrated with ultrapure 
water. The fluorescence measurements were trans-
formed to Chl-a during the measurement season using 
coefficients based on data from other Finnish lakes 
where the same fluorometer models have been used. 
The phycocyanin fluorometer readings were first con-
verted to wet weight of cyanobacteria with the empirical 
coefficients obtained from fluorometer and cyanobacte-
ria biomass measurements at Lake Hiidenvesi, which is 
located in Southern Finland. The cyanobacteria biomass 

measurements were fine-tuned using biomass measure-
ments (microscopic counting) at the routine measure-
ment station after the measurement season by multi-
plying the result with 0.41  (R2 = 0.94, N = 7, standard 
deviation SD = 0.13  mg/l, range 0.04–0.86  mg/l). The 
final calibration of Chl-a was made after the measure-
ment season based on the Chl-a concentration measured 
at the automated station and the routine monitoring sta-
tion. All Chl-a laboratory determinations were made in 
the Environmental Laboratory of the Water Protection 
Association of river Kokemäenjoki.

The fluorescence/Chl-a ratio usually varies accord-
ing to the phytoplankton species. In Lake Pyhäjärvi, 
this ratio was clearly lower in the late summer rather 
than in the early summer. In cyanobacteria most of the 
Chl-a is located in the non-fluorescing photosystem I, 
which leads to low Chl-a-specific fluorescence, when 
compared to eukaryotic algae (Campbell et al., 1998). 
The late summer phytoplankton in Lake Pyhäjärvi is 
usually characterized by cyanobacteria, which was 
confirmed in 2009 by microscopic counting. Therefore, 
we made the final calibration using multiple regression 
with Chl-a and cyanobacteria biomass as independent 
variables: Chl-acorrected = Chl-asensor + 3.3*CBsensor—0.8 
 (R2 = 0.93, N = 19, SD = 1.1  µg/l, relative SD = 16%), 
where CB is cyanobacteria biomass (wet weight), a 
and b are empirical coefficients, and relative SD is cal-
culated from the SD and the mean water sample Chl-a. 
The same type of correction with cyanobacteria as an 
additional variable has been applied to Baltic Sea data 
by Seppälä et al. (2007) and Lake Vesijärvi data in Fin-
land (Anttila et al., 2012). The corrected time series of 
Chl-a and cyanobacteria are presented in Fig. 2. Dur-
ing the Chl-a peak in June, phytoplankton was domi-
nated by diatoms.

The fluorescence yield of phytoplankton can be 
considerably lower in the middle of the day during 
clear sky conditions than at night due to light-induced 
fluorescence quenching (e.g. Rousso et al., 2021). This 
phenomenon was also observed at Lake Pyhäjärvi 
when hourly fluorometer measurements were com-
pared to the intensive global radiation measurement of 
a nearby weather station. Therefore, we used 9 o’clock 
(local time) automatic station fluorometer measure-
ments in the spatiotemporal calculation. The possible 
light-induced fluorescence quenching is negligible at 
this time, and in addition, the control measurements 
were usually taken around 9 o’clock.
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EO data and calibration

The satellite-based Chl-a data were generated from 
Envisat MERIS images (spatial resolution 300  m, 
https:// earth. esa. int/ eogat eway/ instr uments/ meris) pro-
vided by the European Space Agency (ESA). The fol-
lowing processing steps were applied to the Level 1b 
datasets from the years 2009 and 2011, after selecting 
the non-cloudy images:

1. Radiometry correction—This step performs the 
basic corrections (calibration, smile correction, 
and equalization) that ensure the data quality for 
the next steps.

2. ICOL 2.10 (Snapshot) adjacency correction proces-
sor—The processor reduces the effects of nearby 
land areas on the radiance data observed over water.

3. FUB/WeW 1.2.8 water quality processor (Schroeder 
et al., 2007)—This step converts the radiance values 
in the Level 1b datasets into concentrations of water 
quality parameters (including Chl-a) with the use of 

neural networks. In addition, the processor provides 
various flags that indicate the quality and usability 
of the pixel values.

4. Georeferencing into the Finnish coordinate sys-
tem—The observations made in satellite geom-
etry are matched with ground coordinates so it is 
possible to compare in  situ and EO values from 
the same location. The processing was done using 
the BEAM 4.10.3 software package (http:// www. 
brock mann- consu lt. de/ cms/ web/ beam/).

After processing the pixel Chl-a, related flag values 
were extracted from the location of the automatic sta-
tion using a 3 by 3-pixel window. The means of Chl-a 
concentrations within the windows were then com-
pared with the same-day fluorometer Chl-a measure-
ments from the automated station (see “Automatic sta-
tion and sensor corrections” section for details). The 
comparison showed that the FUB processor output 
(Chl-aSatellite) overestimated the Chl-a concentrations. 

Fig. 2  Corrected Chl-a concentration (a) and cyanobacteria biomass (b) measured with fluorometers (hourly data) at the Pyhäjärvi 
automated station in 2009, together with control samples measured in the laboratory
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Therefore, the following calibration equation for cor-
rected Chl-a (Chl-aCalib) was then formed:

After applying the calibration equation, the  R2 was 
0.658, and SD was 2.56 µg/l (N = 15). Finally, the cal-
ibration equation was used to generate the raster maps 
of Chl-a for eight cloudless days in 2009.

Data fusion

Algorithm

The calculations in the data fusion system are based on 
an ensemble Kalman filter and smoother algorithms. 
We will present the basic mathematics here, but an 
interested reader may refer to Gunia et  al. (2022) for 
more details. The basic description starts with the fol-
lowing state space equations:

These two equations describe the evolution of the 
multi-dimensional state, xk (the true Chl-a concen-
trations) at time indexed with k . Observation vector 
yk contain all (noisy) measurements at time k . The 
parameters of the model are stacked as θ, the evolu-
tion of the state is described with the function Mk(⋅, ⋅) , 
and the connection between the measurements and 
the true state is described by the function Hk(⋅, ⋅) . 
Both the evolution of the state and the measurements 
contain stochastic components �k and �k . In the algo-
rithm used here, the evolution of the model is given as 
Mk

(
xk−1,�

)
= �

(
x − �b

)
+ �b where α controls the 

speed of how fast the state returns to the mean value 
�b . In addition, with suitably pre-processed observa-
tions, we can assume Hk

(
xk,�

)
= xk , so that there are 

no transformations needed between the observations 
and the state.

The stochastic components �k and �k are assumed 
to follow multivariate normal distributions, where the 
means are zeros and correlation matrices Q (for state 
uncertainty) and R (for measurement uncertainty) are 
defined as follows. The current system uses an iso-
tropic spherical correlation structure

(1)Chl − aCalib = 0.346
∗ Chl − aSatellite + 3.76

(2)
xk = Mk

(
xk−1,�

)
+ �k

yk = Hk

(
xk,�

)
+ �k.

where hij is the distance between the locations where 
the states (true Chl-a) are estimated, �2

s
 is a param-

eter that controls the level of overall uncertainty, and 
l is a parameter that controls how state values which 
are far from each other affect one another (Gelfand et. 
al., 2010). The correlation matrix associated with the 
measurements is defined as a diagonal matrix

where �2

o
 is a parameter that defines the uncertainty 

of the observations.
When the operators Mk and Hk are linear, as in our 

case, the uncertainties are Gaussian, and we assume 
certain Markovian dependence structures. The estima-
tion of the state can be done with a classical Kalman 
filter and smoother algorithms. For each time k , the 
Kalman filter algorithm estimates the current state by 
considering the measurements of the current and past 
states. For spatiotemporal interpolation performed in 
the data fusion system, we use the Kalman smoother, 
which, in addition to the past observation, uses future 
observations when inferring the state of each time 
point. The size of the modelled region can be large, 
which makes the system computationally demanding. 
This is due to the storage and computational require-
ments when the model domain is large. For large spa-
tial domains, the usual remedy is to use an ensemble-
based Kalman filter and smoother, where the system 
state xk and error �k are represented by an ensemble 
(or collection) of possible realizations of the states and 
errors. In other words, the ensemble Kalman filter is a 
Monte Carlo approximation of the exact Kalman filter. 
The size of the chosen realizations in the ensemble is 
usually small compared to the number of states. In our 
experiments, we used 500 as the ensemble size.

For computational reasons, data (i.e. measurements) 
are often transformed before modelling with the Kalman 
filtering (or smoothing) approach. Here we took the 
logarithm of the data and model instead of the actual 

(3)Qij =

⎧
⎪⎨⎪⎩
𝜎
2

s

�
1 −

�
3

2

hij

l
−

1

2

�
hij

l

�3
��

, if hij < l

0, otherwise,

(4)Rij =

{
�2

s
, if i = j

0, otherwise
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data. This is done to make positive data (Chl-a measure-
ments) remain strictly positive when modelled. If this 
transformation was not done, physically invalid predic-
tions may arise (i.e. negative Chl-a concentrations).

Data fusion parameters

The data fusion algorithm is configured using param-
eters to be explained later in this section. The goal of 
this section is to provide an intuitive understanding of 
each of these parameters. For a detailed mathematical 
description of the model parameters, please refer to 
the previous section or Gunia et al. (2022).

All measured Chl-a concentrations (and estimated 
Chl-a) are tide to 60 m × 60 m cells, which are gen-
erated for the entire Pyhäjärvi lake. The final model 
domain was defined by removing a 500-m inward 
buffer from high-accuracy (10 m) lake shoreline data. 
The domain reduction was done to exclude poten-
tially inaccurate shallow water EO observations near  
the shoreline. Before using the algorithms, all data are  
transformed via natural logarithm.

The data fusion system interpolates observations 
in space and time onto a regular grid. The background 
value of Chl-a concentration is set to 6.2 µg/l ( �b , back-
ground mean), which is the median Chl-a concentra-
tion of routine monitoring measurements from June to 
September in 2004–2008 (computed from 25 measure-
ments). In the absence of observations from the sur-
rounding area, the predictions are drawn upon this value 
allowing them to coincide with past measurements. Sim-
ilarly, modelling uncertainty of Chl-a concentrations ( �s ) 
in the absence of data is aligned using the standard devi-
ation of past manual measurements. The upper bound 
confidence interval (68%) of the data fusion estimates 
are made to match the maximum value of past routine 
monitoring samples (from years 2004–2008), which is 
20 µg/l. In the absence of data, the predicted uncertainty 
coincides approximately with the overall variability of 
past measurements.

Measurement error standard deviations ( �o ) are 10% 
for routine monitoring, 16% for automatic measure-
ments, and 34% for EO. The routine monitoring error 
was estimated in the water laboratory that conducts the 
determinations and was available in the VESLA data-
base. The other two errors were estimated by compar-
ing the sensor estimations to in situ measurements (see 
“Automatic station and sensor corrections” section).

The correlation length, l , in the data fusion model 
is set to 8 km. The correlation length was selected by 
fitting a spherical variogram model to the EO data 
to describe its spatial continuity and by finding the 
length after which the values are not correlated. The 
temporal correlation (autocorrelation) of the EO data 
for Lake Pyhäjärvi is 3 days, which means that obser-
vations at the same location do not correlate after this. 
Model drift ( � ) is set to 0.97, which equals the mean 
estimate returning to the background mean in 3 days 
in the absence of any data. This behaviour equals the 
temporal correlation of Lake Pyhäjärvi.

Data fusion system

The data fusion system (DFS) is operated on SYKE’s  
premises on a physical server with Xeon E5-2667@ 
3.2 GHz and 64 GB RAM that runs Windows Server 
2016. The server hosts both the system database  
(PostgreSQL 9.5.13) and computational software 
(Python 3.6.9). Satellite data products are harmonized 
with the system directly from SYKE’s open access 
WCS-interface and with in situ data from the ODATA 
interface. As a result of harmonization, all observa-
tions and their uncertainties are presented as numeri-
cal values in the pre-defined discrete spatiotemporal  
grid. Data fusion is operated through command line 
programs, and the results can be analysed using QGIS 
3.4.2. The computational core is implemented as a 
general-purpose library called EnDAS (ensemble  
data assimilation system), and its source code is avail-
able under an open source licence (Gunia, 2018).

Results

Chl-a time series

We studied the temporal variation of interpolated Chl-a 
concentrations and its uncertainty using standard devi-
ation SD (68% confidence interval) at routine monitor-
ing and automated stations (Fig. 1). The routine moni-
toring station is the official monitoring site of WFD, 
with water sampling once or twice a month, while at 
the automated station, Chl-a concentrations were avail-
able daily.

Time series plots are useful in demonstrating how 
individual observations affect estimation uncertainties. 
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At the routine monitoring station, the confidence 
interval of the DFS is wider the longer the time gap 
between two consecutive routine measurements 
(Fig. 3a). Maximum SD was reached at the beginning 
of July when the time between consecutive measure-
ments was almost 5 weeks (Fig. 1a). The uncertainty 
is presented at a 68% confidence interval, which can 
be interpreted as a central posterior interval that con-
tains the true values at a 68% probability. The interval 
is not symmetric since computations were done using 
a logarithmic scale. On a logarithmic scale, the inter-
val is equal to the mean ± one standard deviation.

By adding the EO observations to the DFS, we get 
more realistic Chl-a concentrations in the periods with 
no routine monitoring results (Fig.  3b). The impact 
is particularly clear in late June–early July when EO 
observations provide information on the decline of the 
Chl-a peak in the middle of June. The occasional EO 
observations also reduce the uncertainty, particularly 
when they occur during periods when routine water 
samples were unavailable.

At the automated station, the confidence interval 
remains low because of the availability of daily meas-
urements (Fig. 4a). The routine sample measurements at 
the lake deep are included in the DFS run in Fig. 4a, but 
they have no notable impact on the DFS result because 
of the distance (0.9 km) between the stations and low 
measurement frequency. Including EO observations in 
the DFS run has very little impact on the Chl-a (Fig. 4b). 
A small peak in the DFS result can be seen in the EO 
observation on the 8th of June.

The WFD ecological classification of Lake Pyhäjärvi 
is based on the mean concentration of Chl-a measure-
ments taken from the routine monitoring station in 
June–September, while the automated station and EO 
provide a lot of additional information. To distinguish 
the difference, we compared the mean Chl-a concen-
tration and confidence interval calculated by DFS with 
various data combinations from the routine monitor-
ing station and the automated station located nearby in 
June–September.

Fig. 3  Chl-a time series calculated by DFS at the routine monitoring station with a routine monitoring station measurements and b 
routine monitoring station and EO measurements as input

 465   Page 8 of 15



Environ Monit Assess (2023) 195:465

1 3
Vol.: (0123456789)

Mean Chl-a concentrations were quite similar 
amongst different data combinations, though slightly 
higher at the routine monitoring station (Table  1). 
One of the samples taken at the routine stations (June 
16, 2009) happened to be close to the Chl-a peak, 
but the sampling interval used (2–4 weeks) may miss 
phytoplankton periods. The duration of the Chl-a 
peak in June, for example, was only 2–3 weeks.

Automatic data markedly reduces the SD (from 34.6 
to 10.7%) compared to the routine monitoring data 
(Table 1). The inclusion of EO data decreased the SD 
from 34.6 to 23.7% at the routine monitoring station, 
but its effect on the automated station, with daily sen-
sor data, was very low. In DFS, which utilizes all types 
of available data, the Chl-a concentration at each sta-
tion was not only influenced by EO Chl-a pixel-derived 
concentrations from the automated station, but also by 
satellite image pixel-derived concentrations collected 
from the nearby area. Here, the SD of DFS was approxi-
mated by dividing the 68% confidence interval by two. 
This allows for the comparison of DFS SD with the SDs 

of normal distributions as the SD of the normal distri-
bution is also equal to half the confidence interval. For 
the automated station, the SD is less than the SD of the 
automatic measurements when only automatic measure-
ments are available (10.7% relative SD of DFS vs 16% 
relative SD of the automatic measurements). The auto-
mated station’s measurements are collected daily, which 
reduces the estimated SD as the autocorrelation length 
of Chl-a is 3 days.

Measurement and estimation uncertainties are sel-
dom included, e.g. in the WFD reporting. The accred-
ited water laboratories report uncertainties for their 
determination methods, which can be added to the WFD 
status reports. At the routine monitoring station, DFS 
estimates the SD for the whole WFD period (Fig. 3a). 
DFS represents the overall uncertainty of routine moni-
toring better than laboratory error alone as it consid-
ers the length of periods without routine samples. The 
longer the period, the higher the error becomes.

Through the inclusion of EO data in the DFS, in addi-
tion to routine monitoring data, we get shorter periods 

Fig. 4  Chl-a time series calculated by DFS at the automated station with a automated station and routine monitoring station meas-
urements and b automated station, routine monitoring station, and EO measurements as input
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containing no data. Although the uncertainty of EO 
is higher than that of routine measurements (due to the  
number of samples available daily when EO data are 
available), the overall DFS uncertainty at the routine mon-
itoring station is lower than that of DFS interpolation with  
routine monitoring measurements only.

Spatial Chl-a

The DFS calculates the daily spatial distribution of 
Chl-a in a 60  m × 60  m grid, which can be used to 
identify the differences between the various observa-
tion combinations and the resulting uncertainty across 
the study area. Here, we first present the results for the 
16th of June 2009 using (1) all observations and (2) 
manual and automatic measurements only. The date 
selected was a date on which samples were taken both 

at the routine monitoring station and the automated 
station. The next EO observations were from samples 
taken on the 18th and 21st of June, and the previous 
were taken on the 8th of June.

The interpolated Chl-a at the routine monitoring 
station on the 16th of June 2009 was 15.3 µg/l when all 
observations were used as DFS input. Chl-a decreased 
with increasing distance from the area around both sta-
tions with the lowest Chl-a (about 10 µg/l) concentra-
tion occurring in the north (Fig. 5a). Correspondingly, 
SD was lowest near both stations (about 11% for both) 
and highest (about 22%) in the northern and eastern 
parts of the study area (Fig. 5b).

Interpolated Chl-a concentrations for the case with-
out EO data (Fig. 6) were 14.9 µg/l at the routine mon-
itoring station and lowered smoothly to 6–7 µg/l in the 
northern and south-eastern parts (Fig.  6a). The SD 

Table 1  Mean Chl-a concentration and SD at the routine monitoring and automated stations in June–September 2009. The results 
are calculated from daily DFS results with various data combinations

* Calculated from daily Chl-a and SD

Location Data in DFS Mean Chl-a
µg/l

SD
µg/l

Relative SD*
%

Routine monitoring station Routine sampling 7.32 2.67 34.6
Routine sampling and EO 7.10 1.63 23.7

Automated station Automated station and routine sampling 6.56 0.70 10.7
Automated station, routine sampling, and EO 6.64 0.65 9.9

Fig. 5  DFS calculated Chl-a concentration (µg/l) a and relative 
SD (SD/Chl-a ratio) b on the 16th of June 2009 with all data 
(routine sampling, automated station, and EO) as input. The 

routine sampling station is indicated by a circle and the auto-
mated station by a triangle
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increased dramatically from 23% at the routine station 
up to 120–130% (Fig. 6b). Figure 5 looks noisier than 
Fig. 6 due to EO noise being locally correlated, which 
also affects the fusion result. Figure  6 is generated 
with more data, which gives a smoother outcome.

Based on a comparison of spatial results, the EO 
data decreased the uncertainty of interpolation substan-
tially throughout the northern part of the lake. Without 
them interpolated Chl-a concentrations were averaged 
based on the given background mean concentration 
(6.2 µg/l), resulting in higher SDs in the Chl-a concen-
trations observed at locations far from the stations.

To compare the results for the WFD observation 
period, we integrated the daily spatial DFS results 
from June–September by calculating the mean and 
SD of Chl-a concentrations.

The mean Chl-a concentration of the June–September 
DFS simulations and the routine monitoring measure-
ments with and without automated station measurements 

varied only slightly (6.47 and 6.33  µg/l, Table  2). The 
mean Chl-a concentration was about 1 µg/l higher when  
EO data were included in the simulations. However, the SD  
was lower when EO data were included (approx. 3 µg/l vs 
approx. 7 µg/l, Table 2) which in turn decreases the uncer-
tainty of the status estimation. The use of daily automatic 
data in addition to the routine station data decreased the 
spatial error only slightly.

Discussion

The daily measurements of the automated station de-
creased uncertainty as compared to the routine sam-
pling station, where sampling frequency was that of the  
typical Chl-a monitoring used in the WFD. The num-
ber of water samples taken during the annual WFD 
monitoring period in Lake Pyhäjärvi in 2019 was 
eight compared to the mean frequency of EU countries 

Fig. 6  The DFS calculated Chl-a concentration (µg/l) a and 
relative SD (SD/Chl-a ratio) b on the 16th of June 2009 with 
routine sampling and automated station data as input. The rou-

tine sampling station is indicated by a circle and the automated 
station by a triangle. Note that the scale for SD in b is different 
to that of Fig. 5b

Table 2  Mean Chl-a concentration and error in the northern part of Lake Pyhäjärvi in June–September 2009. The results were cal-
culated from the daily DFS maps of Chl-a with various data combinations

* Calculated from daily Chl-a and SD

Data used in DFS Mean Chl-a
µg/l

SD
µg/l

Relative SD*
%

Routine station 6.47 7.22 112.1
Routine station and EO 7.33 2.97 43.6
Routine station and automatic station 6.33 6.73 106.4
Routine station, automatic station, and EO 7.38 2.86 41.6
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which was about six (Papathanaopoulou et al., 2019). 
The DFS results of the whole study area, however, 
showed the importance of spatial data in improving the 
confidence of monitoring and status estimation.

Satellites with sensors developed for water quality 
applications provide images daily (with two Sentinel-3 
OLCI instruments, 300-m resolution), and high-res-
olution images are available with a 2–3-day interval 
(with two Sentinel-2 MSI instruments, 10–20 m) situ-
ated on the same latitude as Lake Pyhäjärvi. Despite 
occasional cloud cover, the satellite sensors provide 
more temporal water quality observations than typi-
cal WFD station-based sampling. However, a globally 
valid EO algorithm for lake water quality estimations is 
not available (e.g. Pahlevan, et al., 2021). As a conse-
quence, regional algorithms and national portals have 
been developed (e.g. TARKKA portal, https:// wwwi4. 
ympar isto. fi/ i4/ eng/ tarkka).

Several water quality interpretation algorithms are 
publicly available (e.g. https:// earth. esa. int/ eogat eway/ 
tools/ snap) for satellite image processing. Their appli-
cation to new lakes and regions requires validation 
and/or calibration of the water quality estimations. 
EO is a relatively new method to many lake monitor-
ing and reporting authorities. Wider use of EO, e.g. in 
WFD monitoring, requires promotion and support as 
indicated in the White Paper of the EOMORES pro-
ject (Papathanaopoulou et  al., 2019). One of its rec-
ommendations was to create an EO expert group to 
harmonize metrics in EU countries and advise mem-
ber states on the best practices.

Another technique to improve the spatial accuracy 
of monitoring is to measure transects with flow through 
sensors from a moving boat (Kallio et  al., 2015; 
Koponen et al., 2007; Lindfors et al., 2005; Scheinin & 
Asmala, 2020). These measurements can be made at a 
speed of 15–20 knots, i.e. 37 km at maximum can be 
covered in an hour, with a typical spatial resolution of 
10’s metres. The required devices for transect measure-
ments are compact, and the boats used for routine water 
sampling can be easily equipped with them. A few tran-
sects at a time could be measured each time a lake is 
visited for routine water sampling. Transect measure-
ments can be easily added to DFS as it accepts any type 
of observations.

DFS of multisource data is based on parameters, 
which enable estimation of water quality and Chl-a-based  
status estimation of a desired spatiotemporal scale. These 

parameters include, e.g. the initial mean and uncertainty 
of the state estimates. Excluding these parameters, the 
other system parameters are hard to optimize using the 
available data. First, the amount of available data is not 
very large. Without regularizing the optimization, the 
parameter optimization would lead to overfitting and 
poor extrapolation and interpretability of the results. 
Secondly, making a prediction with a single param-
eter configuration takes more than an hour. This makes  
optimizing the parameters with gradient-based methods 
inherently slow. The chosen parameters are well aligned 
with the previous application of DFS (Gunia et al., 2022).  
However, some parameters, such as correlation length, 
can differ substantially between sites that are different in 
terms of size, water depth, location, or other properties 
(e.g. Fang et al., 2019). The authors changed the param-
eters by factors of approx. 0.5–1.5 to see if there was a 
meaningful impact on the simulation results but detected 
none. If EO data (which is the most complete spatially) are  
available, the computed estimates are very robust to devi-
ations in the model parameters. However, in the absence 
of EO data, model drift was found to markedly affect the 
results. In addition, the correlation length computed from 
the EO measurements considerably affects the estimates 
in the absence of EO data. In such cases, special care 
should be taken when selecting these parameter values.

The DFS interpolation is unable to consider dynamic 
processes such as a rise in Chl-a concentration due to 
phytoplankton blooms if observations are lacking. One 
solution to better estimate the temporal variation is to 
apply the data assimilation technique, in which a hydro-
dynamic water quality model is utilized to simulate the 
variable for periods without observations. Measurements 
are used to improve model simulations whenever availa-
ble. Assimilation of the measurements is often based on, 
e.g. Kalman filtering, and measurement and model errors 
can be taken into account. Data assimilation has been 
applied particularly to eutrophication and algal bloom 
modelling (see the review by Cho et al., 2020).

Conventionally, sampling location, frequency, statis-
tical survey design, and sampling protocols are designed 
to minimize the uncertainty of lake monitoring pro-
grams. Here, novel analysis and interpolation methods 
provided the information necessary to estimate and 
illustrate spatiotemporal variability of Chl-a and corre-
sponding uncertainty in the study area and to guide the 
spatial and temporal allocation of multisource monitor-
ing resources.
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Conclusions

EO provides spatially extensive water quality obser-
vations with limited frequency, whereas automated 
stations provide temporally frequent data from few 
locations. The information value of these observa-
tions has rarely been evaluated in comparison to con-
ventional monitoring, which is mainly based on infre-
quent water sampling at lake deeps.

The spatiotemporal interpolation of multisource 
Chl-a observations in our research made it possible 
to compare the information value of various observa-
tion types in estimating the ecological status of the 
research area and quantified the uncertainty of the 
information from Lake Pyhäjärvi. In addition, the con-
tribution of different measurement types to the uncer-
tainty of interpolation estimates was studied. The 
method described can be applied to any water quality 
variable in a lake or coastal environment, and the sys-
tem accepts any type of observation.

We showed that satellite observations substantially 
reduced the uncertainty of the estimated interpolation 
throughout the study area. The deployment of spa-
tial Chl-a observations is recommended either as EO 
observations or flow-through fluorometer measure-
ments from a moving boat as supplementary material 
to conventional monitoring. The interpolation method 
presented can be used to allocate multisource moni-
toring resources in space and time to reduce uncer-
tainties in the status estimation of a lake.
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