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Abstract  The salt-affected soils national map of 
Greece was recently made available within the initia-
tive of the Global Soil Partnership (GSP) of Food and 
Agriculture Organization of the United Nations FAO. 
The present study explores the development of higher 
resolution soil property maps included in this national 
scale product adopting a modified version of the FAO 
methodology and a logistic regression (LR) method 
based on ground and satellite data. Furthermore, it 
also investigates the correlation between saline soils 
and soil organic carbon (SOC) using geospatial analy-
sis methods. The island of Lesvos in Greece has been 
selected as a case study. A probabilistic model for 
saline soils in the agricultural land of Lesvos is pro-
duced by exploiting geoinformation technologies. As 
a result, the spatial distribution of saline soils in the 
croplands of Lesvos was obtained. Indicatively, areas 
with p > 0.80 for the occurrence of saline soils account-
ing for ∼20% of a total area of 169.51 km2 of the crop-
lands in Lesvos. The Nagelkerke R2 coefficient showed 

that the probabilistic model interprets 11.3% of the var-
iance of the dependent variable from the independent 
factors. The model accuracy was assessed adopting the 
receiver operating characteristic (ROC) curve, which 
showed a reasonable adaptability with area under 
curve (equal to 0.73). The methodological approach 
proposed herein can support decision-making on agri-
cultural land protection and planning activities which 
are key priority today due to environmental instability, 
food security, and climate change.
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Introduction

Soil salinity is considered worldwide as one of the most 
important soil health threats contributing to soil degra-
dation and halting agricultural productivity (Rengasamy, 
2016). Soil salinization is a restricting factor of agricul-
tural production, especially in arid and semi-arid areas, 
as the high concentration of salts affect soils’ quality, 
vegetation growth, crop diversity, and food production 
(Abdennour et al., 2020). The development of soil salin-
ity in an area is closely linked to its topographic and cli-
matic characteristics, unsustainable agricultural manage-
ment practices, and insufficient drainage (Dagar et  al., 
2019). Moreover, factors such as high temperature and 
low seasonal precipitation, humidity, and topographical 
features affect salinization in soil (Tomaz et  al., 2020; 
Hopmans et al., 2021).
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Previous research in salt-affected soils has revealed 
that salinization processes negatively affect a number 
of key soil properties such as soil structure and qual-
ity, microbial biomass, and activity as well as soil 
organic carbon (SOC) content and its decomposition 
rates (Wong et  al., 2010). The relationship between 
SOC and soil salinity has been investigated by numer-
ous studies. In salt-affected soils, SOC dynamics are 
contradictious, as on one hand, salinity hinders plant 
growth reducing above ground biomass and conse-
quently reducing soil organic matter content (Wong 
et  al., 2006). On the other hand, increased salinity 
levels hinder soil microbial activity reducing decom-
position rates and thus resulting to an increase in SOC 
content (Setia  et al., 2013). In a recent study, Enya 
et  al. (2020) examined the effect of heavy metals 
on organic matter decomposition in the Upper Mer-
sey estuarine floodplain, in Northwest England and 
reported significant relationships between soil organic 
carbon and salinity. The authors also highlighted the 
impact of electrical conductivity (EC) in soil carbon 
dynamics and microbial activity in organic matter 
decomposition. The effects of soil salinity in SOC are 
exacerbating, especially when salinity is developed in 
parallel with the adoption of unsustainable manage-
ment practices such as extensive tillage, use of pes-
ticide and fertilizers, and removal of crop residues. 
Those are common in Europe’s agricultural land, 
as increase the mineralization of soil organic matter 
(SOM) which results to SOC reduction (Lal, 2004).

In the purview of the above, but also due to the 
urgent need to develop strategies that will help miti-
gating climate change impacts, it is necessary to 
develop methods and approaches to detect, monitor, 
and evaluate the extent of salt-affected soils. This is 
particularly urgent in rural areas where inappropriate 
irrigation along with poor drainage and high evapo-
transpiration rates increases salinization risk. To 
monitor physical phenomena, such soil salinity, geoin-
formation technologies, and in particular remote sens-
ing (RS) and geographic information systems (GIS) 
provide a viable solution due to their advantages over 
conventional approaches (Srivastava et al., 2019). RS 
is a non-distractive approach that allows monitoring 
salt-affected soils at a variety of spatial and temporal 
extents cost and time effective manner (Abbas et al., 
2013; Tsatsaris et  al., 2021). The use of RS in map-
ping and monitoring salt-affected soils has been dem-
onstrated in an array of studies (e.g., Delavar et  al., 

2020; Suleymanov et  al., 2021; Wang et  al., 2019). 
These advantages constitute RS and GIS reliable tools 
to detect and monitor soil salinity (Aksoy et al., 2022; 
Gorji et al., 2017a, b). Different combinations of spec-
tral bands and their mathematical transformations, 
such as principal component analysis (PCA) and sat-
ellite radiometric indices, have been used successfully 
to determine salt-affected soils (e.g., Kumar et  al., 
2019). Satellite data from multispectral optical sensors 
such as Landsat TM have a high potential for moni-
toring the spatiotemporal extent of salts’ accumula-
tion in the top soil (Nguyen et al., 2020; Wang et al., 
2019). The combined use of satellite and ground truth 
data coupled with GIS techniques is the most com-
mon approach for mapping the extent of salt-affected 
soils due to the advantages offered by this synergis-
tic use (Gorji et  al., 2019; Taghadosi et  al., 2019). 
A significant milestone in the use of RS, GIS, and 
modeling approaches for mapping salt-affected soils 
is the recently launched Global Map of Salt Affected 
soils (GSAS) by FAO’s working group focusing on 
soil, Global Soil Partnership (GSP). GSAS modeling 
approach includes the combination of satellite, cli-
mate, geomorphological, geological, and soil legacy 
data along with the expertise of scientists to map the 
global extent of salt-affected soils (FAO, 2020).

FAO’s GSAS map indicates that the global extent 
of salt-affected soils is more than 424 million ha of 
topsoil (0–30  cm) with ~ 85% of salt-affected top-
soil’s are saline, 10% are sodic, and 5% are saline-
sodic. More than two-thirds of the global salt affected 
soils can be found under arid and semi-arid climatic 
zones (FAO, 2021), such as those of the Mediterra-
nean region which is a global hotspot of salt-affected 
soils. According to FAO, ~ 25% of irrigated agricul-
tural land is affected by soil salinization (FAO, 2010). 
In Greece, salt-affected soils are mainly formed 
in arid or semi-arid irrigated lands and croplands. 
Lesvos island is one area in Greece where saliniza-
tion has been studied extensively over the recent 
years, induced not only due to climate conditions 
but also due to inappropriate fertilization and irriga-
tion systems in agricultural areas of the island (e.g.,  
Yassoglou & Kosmas, 2002).

In purview of the above, the present study pro-
poses a modified version of the FAO’s model for 
mapping saline soils that is based on combining 
field measurements and satellite data, which is eval-
uated in the crop areas of Lesvos Island in Greece. 
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In particular, the study objectives are (i) to develop 
a probability model for the spatial distribution of 
saline soils in cropland areas of Lesvos and (ii) to 
perform an exploratory analysis investigating the 
spatial correlation between the distribution of saline 
soils and the SOC stock contained in those soils. 
The methodology adopted to satisfy the objectives 
is developed in a GIS environment and is a modi-
fied version of FAO’s recently proposed approach 
for mapping salt-affected soils.

Study area

Lesvos island is the third largest island of Greece 
located in the northeastern part of the Aegean, extend-
ing from latitude 39° N to longitude 26° W (Fig.  1). 
Lesvos flora is particularly diverse ranging from natu-
ral grassland, shrublands, and forests to perennial 
orchards and annual irrigated crops. The island’s cli-
mate is characterized by seasonal patterns in rainfall 

and temperature with dry-thermal summers and humid 
winters. The average temperature is ~ 17  °C with sea-
sonal variations ranging up to ~ 15 °C. There is a strong 
spatial pattern with rainfall ranging from 725 mm to the 
eastern (wetland) to 415 mm to the western (semi-arid) 
island (Bakker et al., 2005). The xerothermic conditions 
characterizing the island, combined with the adoption 
of unsustainable agricultural practices followed by local 
farmers, create ideal conditions for the development of 
salt-affected soils. In western Lesvos, where the cli-
matic conditions are more arid, saline soils have been 
developed leading to the degradation and desertifica-
tion of the area (Kosmas et al., 1999, 2002).

Datasets

For this study, a number of geomorphological, climatic, 
and satellite data were collected and processed, summa-
rized in Table 1, and are briefly described below.

Fig. 1   The selected study site location in Greece and the land cover map of Lesvos for croplands according to the Corine Land 
Cover (CLC) 2018 program
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Field measurements

The field data used in this study was collected in 
2015 in scattered locations of eastern and central Les-
vos from topsoil. After their collection, the physical 
and chemical properties of the soil samples were ana-
lyzed using wet-chemistry procedures in a soil labo-
ratory. The electrical conductivity of saturated paste 
(ECe) contained in the derived dataset was used. The 
majority of the ECe measurements, with a percent-
age of 89.7%, in the used soil dataset, were character-
ized with values higher than 4 dS m−1, whereas 7.8% 
of soils had ECe values from 4 to 8 dS m−1. Finally, 
ECe values ranging from 8 to 15 or higher than 15 
dS m−1 appear in soils with a percentage of 1.7% 
and 0.9%, respectively. The soil data used herein 
was provided by the archive of the Soil Department 
of Athens–Institute of Soil and Water Resources, 
ELGO–DIMITRA (Misopolinos, 2015). In Fig.  2 is 
depicted the location of the used soil samples scat-
tered in areas of eastern and central Lesvos.

Satellite data

As inputs to the model developed herein, vegetation 
and salinity indices were estimated using Landsat 
8 OLI USGS Level 2 Collection 2 Surface Reflec-
tance (SR), Tier 1 multispectral imagery mean val-
ues for 2015 for the island of Lesvos at 30-m spatial 
resolution. Landsat 8 SR imagery was acquired using 

Google Earth Engine (GEE), a cloud-based platform 
that enables cost and time-effective accessing and pro-
cessing of RS data. Furthermore, the mean, maximum, 
and minimum temperature (°C) as well as the precipi-
tation values (mm) for 2015, were acquired from Terra 
Climate at 4-km spatial resolution (Abatzoglou et al., 
2018) using GEE. Furthermore, ASTER’s Digital Ele-
vation Model (DEM) of Lesvos was acquired at a spa-
tial resolution of 30 m from the USGS Earth Explorer 
platform. All datasets were acquired at no cost.

Soil organic carbon map

Soil organic carbon stock data were obtained at no cost 
from the European Soil Data Centre (ESDAC) (Panagos  
et  al., 2012). The Topsoil Organic Carbon (LUCAS) 
map was developed in 2014 with a spatial coverage of 25 
member states of the European Union and a spatial reso-
lution of 500 m. These data refer to the estimated reserves 
of soil organic carbon (SOC) of 0–20-cm soils’ depth, in 
g C kg−1 measurements. A generalized additive model 
(GAM) was fitted on 85% of the dataset (R2 = 0.29), using 
OC content as the dependent variable, while the model accu-
racy gave an overall R2 of 0.27 (de Brogniez et al., 2015).

Methodology

An overview of the key steps included in the meth-
odology developed to satisfy the study objectives is 
presented below (Fig. 3). The spatial distribution of 

Table 1   Datasets used in this study

Data layers Data type
(cell size/scale)

Data source

Mean multispectral imagery data and 
salinity and vegetation indices

Raster grid
30 × 30 m

USGS Landsat 8 Level 2, Collection 2, Tier 1
https://​earth​explo​rer.​usgs.​gov/

DEM Raster grid
30 × 30 m

ASTER Earth Explorer–USGS
https://​earth​explo​rer.​usgs.​gov/

Climate parameters mean annual Raster grid
4 × 4 km

TerraClimate
https://​www.​clima​tolog​ylab.​org/​terra​clima​te.​html

Soil dataset with ECe measurements Polygon and point Soil data
(Mispopolinos, 2015 vía
ELGO–DIMITRA)

Corine Land Cover (CLC) Polygon (scale: 1:100.000) Corine Land Cover (CLC) 2018
https://​land.​coper​nicus.​eu/​pan-​europ​ean/​corine-​land-​cover/​

clc20​18
Topsoil Soil Organic Carbon (LUCAS) Raster grid

500 × 500 m
de Brogniez et al. (2015). European Soil Data Centre 

(ESDAC) https://​esdac.​jrc.​ec.​europa.​eu/​conte​nt/​topso​il-​
soil-​organ​ic-​carbon-​lucas-​eu25

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://www.climatologylab.org/terraclimate.html
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
https://esdac.jrc.ec.europa.eu/content/topsoil-soil-organic-carbon-lucas-eu25
https://esdac.jrc.ec.europa.eu/content/topsoil-soil-organic-carbon-lucas-eu25
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salt-affected soils came through the development 
of the probability model. Furthermore, the relation 
between salt-affected soils and SOC is examined 
using indicators of spatial autocorrelation.

Pre‑processing

All the drivers needed for the development of the 
probability model of salt-affected soils were stored in 
the spatial database with a defined spatial resolution 
of 30 × 30 m using the ArcGIS software. The acquired 
geospatial data was first georectified to a Universal 
Transverse Mercator (UTM) coordinate system, using 
the World Geodetic System (WGS) 1984 datum and 
UTM zone 34.

Topographic indices

The DEM of the study area was used to derive a 
series of topographical indicators, related to the pro-
cesses of soil salinization. Those included the slope, 
plan curvature, channel network base level, and topo-
graphic wetness index represent terrain attributes that 
have been previously used for modeling soil salinity 

(Omuto et  al., 2020; Shahrayini & Noroozi, 2022; 
Salcedo et  al., 2022). Those datasets were produced 
using the basic terrain analysis tool available in QGIS 
open source software. The produced factors were 
used as the independent variables in the development 
of the probability model of salt-affected soils.

Climatic parameters

The climatic parameters used in this study refer to 
the average value of rainfall and maximum/minimum 
temperature for the year 2015. Due to the lower spa-
tial resolution of the TerraClimate climatic param-
eters, the ordinary kriging geostatistical interpolation 
technique was used to downscale the needed climatic 
data (Davy & Kusch, 2021). Ordinary kriging esti-
mates the value in a specific point based on a linear 
combination of the measured values surrounding 
in this location (Srivastava et  al., 2019). The vari-
ogram determines the weights and provides informa-
tion about the spatial correlation of the data (Sluiter, 
2009). The ordinary kriging method assumes intrinsic 
stationarity in the distribution of parameters due to an 
unknown mean. Layers created by centroid values of 

Fig. 2   Spatial distribution of available field data within the extent of the study area
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each pixel in climatic products were obtained so as 
for applying the interpolation method. Interpolated 
surface models were created herein for each param-
eter of min/max temperature and precipitation using 
the ordinary kriging, where in both cases the spheri-
cal variogram model with sector number 4 with 45° 
offset was used. Statistics calculated using the cross-
validation method indicated a root mean square stand-
ardized (RMSS) error of 0.93 for annual rainfall, 0.89 
and 0.86 for minimum and maximum temperature, 
respectively. The spatial resolution of interpolated 
climatic parameters was defined as 30 × 30  m and 
adjusted to the model rather than the low resolution 
(4 km) prior to interpolation processes.

Vegetation and salinity indices

The satellite vegetation and salinity indices were 
developed from the Landsat 8 OLI SR satellite 
imagery. The following satellite indicators devel-
oped are SI (1), SI (2), SI (3), SI (4), SI (5), SI (6), 
NDVI, NDSI, SAVI, SR, CRSI, BI, and VSSI (see 
Table  2). These indicators are effective and have 
been used in various studies to monitor and detect 
salt-affected soils (Abuelgasim & Ammad, 2019; 

Allbed et al., 2014; Gorji et al., 2019; Nguyen et al., 
2020; Scudiero et al., 2017).

Principal component analysis (PCA) is a statisti-
cal image enhancement technique commonly used 
for spectral transformation and reduction of redun-
dancy information in datasets. The method allows 
the transformation of the original dataset into a 
smaller non-correlated which explains most of the 
total variation of the initial dataset. The set of PCs 
represents most of the information, and it is easier to 
use and analyzed for producing usable results. The 
PCA has been widely used in soil salinity assess-
ment in a variety of ways (Hihi et  al., 2019). For 
example, recently Abdelaal et  al. (2021) performed 
PCA for the assessment and mapping of manage-
ment zones in salt-affected soils of an arid region 
based on soil’s physical and chemical properties. 
Their results demonstrated the effectiveness of PCA 
for the identification of statistical differences in 
physical and chemical soil properties of salt-affected 
soils. In our study, the PCA was performed by using 
13 variables (salinity and vegetation indices from 
the RS data) for the main components’ exportation 
(Abbas & Khan, 2007; Abdi & Williams, 2010). 
The PC1 and PC2 factors, which account for 99.9% 
of the total variance, were used to develop the 

Fig. 3   Overview of the methodology adopted herein for estimating the salt-affected soils map and in exploring their relationship 
with soil organic carbon stock
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probability model. For the PCA analysis implemen-
tation, the ArcMap GIS software was used.

Soil salinity mapping

The model of soil salinity in the agricultural land 
(croplands) of Lesvos was developed using nine 
independent variables and a dependent variable using 
regression analysis technique (FAO, 2020). The spa-
tial distribution of salt-affected soils came through 
the development of the probability model. For the 
probability model development and the assessment 
of the spatial distribution of salt-affected soils, the 
logistic regression analysis was applied (Kumar 
et al., 2019).

Logistic regression analysis

Logistic regression (LR) is a regression modeling 
technique defined as a process of modeling the prob-
ability of a discrete outcome by investigating the 
non-linear effect of a dependent categorical vari-
able on the action of many independent variables. 
LR is applied to analyze the possible dependence of 
a response variable on more than one explanatory 

variable. In LR, the probability (percentage) of the 
occurrence of the two categories in relation to the 
independent variables which function as explanatory 
factors in relation to the dependent variable is exam-
ined (Hosmer and Lemeshow, 2001; Hosmer et  al., 
2013). LR model can support either categorical or 
continuous variables with or non-normal distribution. 
Binary logistic regression (BLR) is a binomial equa-
tion in which the response variable Y is the result of 
one of two outcomes such as event/present. The gen-
eral expression of LR is given by the equation below:

where P is the probability of the event occurrence, z 
is a linear combination of the independent variables, 
b0 is the model intercept, b1…bi is the regression 
coefficient for explanatory variable I, x1…xi is the 
explanatory variable if.

LR analysis was used herein to estimate the occur-
rence of soil salinity in the croplands of Lesvos accord-
ing to independent factors (physical factors related 

(1)P =
1

1 + e−z

(2)z = b
0
+
∑n

i=1
b
i
x
i

Table 2   Indices for soil salinity assessment according to the technical manual of SAS mapping in the methodology adopted by FAO 
(2020)

Indices Formula Source

Salinity Index 1 SI =
√

Green × Red (Abbas & Khan, 2007)

Salinity Index 2 S2 =
√

Blue × Red (Abbas & Khan, 2007)

Salinity Index 3
S3 =

√

Green2 × Red2 (Douaoui et al., 2006)

Salinity Index 4
S4 =

NIR × SWIR − SWIR2

NIR
   (Douaoui et al., 2006)

Salinity Index 5 S5 = Blue∕
Red

   (Abbas & Khan, 2007)
Salinity Index 6 S6 = Red×NIR∕

Green
   (Abbas & Khan, 2007)

Soil-Adjusted Vegetation Index SAVI =
NIR − Red

(NIR + Red + 0.5)×1.5
   (Huete, 1988)

Normalized Difference Vegetation Index NDVI =
NIR − Red

NIR + Red
   (Khan et al., 2005)

Canopy Response Salinity Index
CRSI =

√

NIR × Red − Green×Blue

NIR × Red + Green × Blue   
(Scudiero et al., 2015)

Brightness Index
BI = 

√

Red2 + NIR2 + Gr
2 (Khan et al., 2005)

Salinity ratio SR =
Green − Red

Blue + Red
   -

Vegetation Soil Salinity Index VSSI = (2 × Green) − 5 × (NIR + Red) (Dehni & Lounis, 2012)

Normalized Difference Salinity Index NDSI = Red − NIR∕Red + NIR (Khan et al., 2005)
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to salinity formation in the soil). The LR method has 
been applied in many environmental studies (Lee, 
2005; Nandi & Shakoor, 2010; Sarkar & Mishra, 2018). 
Moreover, it has also been used successfully in previ-
ous studies aiming at to identifying the distribution 
of salt-affected soils and assess soil salinity risk maps 
(Apel et  al., 2020; Kumar et  al., 2019). The develop-
ment of the LR probability model follows a binary 
distribution, and the measurements of the dependent 
variable of the soil data were coded in values of 0 and 
1. Two categories, saline and non-saline soils, with a  
threshold of 4 dS m−1 were used, based on the clas-
sification USSL Staff (1954) system. The encoding of 
the dependent variable for the regression analysis was 
performed according to the spatial decision support 
system (USSL Staff, 1954) for the determination and 
evaluation of saline soils based on ECe using as thresh-
old the value 4 dS m−1. For ECe < 4 dS m−1, soils were 
considered non-saline and coded as 0 and for soils with 
ECe > 4 dS m−1 that considered to be affected by salts  
and therefore were coded as 1.

According to Richards (1954)—and as summarized 
in Table  3—for the distribution of saline soils, the 
electrical conductivity of saturation paste is defined 
as ECe > 4 dS m−1 with exchangeable percentage of 
sodium ESP < 15% and pH < 8.5. Sodic soil’s electri-
cal conductivity is defined with low ECe < 4 dS m−1 
and high exchangeable sodium percentage ESP > 15% 
and pH values (pH > 8.5). It is noted that for ECe 
measurements are taken and usually reported at a 
standard temperature of 25  °C and measured in mS/
cm. However, the field measurements of the available 
soil data within the study region showed an ESP value 
of < 6 in 98% of all field measurements and a pH > 8.5 
for only 2.6% of the soils. Therefore, ECe was used as 
a dependent variable for the determination of saline 
soils and the development of the model.

All factors were normalized using the min–max 
method prior fitting regression analysis due to differ-
ences in measuring scales among the datasets. The 
LR modeling was performed in the SPSS IBM Sta-
tistics processing package using the block model, 
where a probability threshold higher than 0.5 was 
set for salt-affected soil and if the probability is less 
than 0.5 as absence so 0. In the applied method, all 
variables are considered from the model regardless 
of whether they are statistically significant in relation 
to the dependent variable. Default settings of cut-off 
value (0.5) and maximum number of iterations (20) 

was used. The model was derived through the logis-
tic regression equation coefficients from the final 
stage output of the analysis (Table  5). Equation  (3) 
was applied in ArcGIS software through the raster 
calculator tool in order to compute the probability of 
salinity in soils, chosen, as it includes the basic expo-
nential function 10 (Exp10) to calculate the logistic 
regression equations as shown:

The spatial join tool was subsequently applied so 
that each polygon representing a specific agricultural 
area receives a specific estimated probabilistic value 
for occurrence of soil salinity. By spatially joining 
the attributes based on their spatial relationship (i.e., 
latitude\latitude), a layer of joined features spatially 
related is generated.

Model validation

The logistic regression model prediction accuracy of 
saline soils was evaluated by calculating the receiver 
operating characteristic curve (ROC). The ROC is a 
fundamental tool for analyzing the performance of a 
model, plotted in a two-dimensional graph using true 
positive (sensitivity) rate on y-axis and false positive 
rate (1—specificity) on x-axis. The area under curve 
(AUC) value represents the quality of the probability 
model, describing its ability to predict the appearance 
or non-appearance of saline soils. In the ROC method, 
the value in the area below the curve between 0.5 and  

(3)

P(ECe)
=1.0∕(1.0 + Exp10(−(0.212 − 25.715 × DEM

+ 0.072 × TWI + 2.673 × slope + 17.220

× CNBL + plan curvature × 0.0001

+ 5.666 ×min temperature − 1.957

×max temperature + 6.771 × rainfall

−10.658 × PC1 − 1.942 × PCA2))

Table 3   Salt-affected soils classification systems according to 
United States Department of Agriculture (USSL Staff, 1954)

Soil
properties

Classification ECe dS m−1 ESP pH
Saline soils  > 4  < 15  < 8.5
Sodic soils  < 4  > 15  > 8.5
Saline–sodic soils  > 4  > 15  < 8.5



Environ Monit Assess (2023) 195:391	

1 3

Page 9 of 19  391

Vol.: (0123456789)

1 is used to evaluate models’ accuracy (Nandi &   
Shakoor et al., 2010). If the AUC value is close to 1, 
high accuracy of the probability model is indicated 
(Fawssett, 2006). For the validation, 220 sample points 
were randomly created and extracted within the study 
area polygons. The ROC methods were applied to 220 
independent ECe, used exclusively for the results vali-
dation of the analysis and therefore were not included 
for the development of the probability model.

Soil organic carbon map

A further study objective has been to investigate the 
spatial correlation between saline soils, as derived by 
the logistic regression model and the soil organic car-
bon stocks in the cropland areas of Lesvos. For this 
purpose, the pixel size was reduced using bilinear res-
ampling method during the data pre-processing. The 
data was adjusted to the boundaries of the agricultural 
areas of Lesvos as formed by the Corine Database in 
the Corine Land Cover (CLC) 2018 program. Specifi-
cally, from the CLC map obtained, were selected 431 
polygons representing agricultural areas. The spatial 

join tool was implemented for each polygon which 
represents a crop area receives a value of SOC. In the 
following figure (Fig. 4), the SOC content is presented 
only for the agricultural areas of the study area.

Spatial correlation between soil salinity and SOC

To understand the spatial trends in the data within the 
studied area, hotspot analysis (Getis-Ord Gi*) was 
also implemented among the Moran’s I global and 
local indicators. The correlation between the two soil 
parameters was performed after examining the autocor-
relation values of the two variables. Hotspot analysis 
(based on Getis-Ord Gi* statistic) and the cluster and 
outlier analysis (based on Anselin local Moran’s I) were 
used to analyze the distribution patterns. The Global 
Moran’s I reveals a general pattern within the data dis-
tribution while the local Moran’s I identifies the loca-
tion of these spatial patterns (i.e., low or high clustered 
values). Analysis of the spatial distribution patterns of 
each variable values allows assessing quantitatively 
the homogeneity and the differentiation in their spatial  
variation. In addition to estimating point densities in 

Fig. 4   Soil organic carbon map of Lesvos in agricultural areas
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each area, hot spot analysis techniques also measure the 
extent to which point events interact to understand spa-
tial patterns.

In our study, in calculating the Local Anselin 
Moran’s I, the Inverse Distance method was used. This 
method is suitable for continuous data or for modeling 
processes where the closer two adjacent features are in 
space, the more likely they are to interact or influence 
each other. As the distance method Euclidean Distance 
was selected, as it uses the straight line in connecting 
two points A and B. For the Threshold Distance param-
eter, the values of 1100  m and 2500  m were chosen 
for SOC and saline soils variable respectively, follow-
ing results of the applied Global Moran’s I. Hot spot 
analysis method (Getis-Ord Gi*) was implemented 
through the optimized hot spot analysis tool which is 
an upgraded version of hot spot analysis as through 
automated procedures, the tool determines an appropri-
ate scale of analysis using the distribution of weighted 
characteristics, makes corrections for spatial depend-
ency testing with the False Discovery Rate (FDR) cor-
rection method, and determines the appropriate settings 
that will produce optimal results.

Results

Probability model results

In this study, factors related to salt-affected soils for-
mation such as geomorphology, moisture, and other 
soil characteristics such as topographic indices, rain-
fall, temperature, and RS indices were used to estimate 
the spatial probability of salinity as well as to evaluate 
the distribution of soil salinity. For the topography of 
the study site, the elevation, slope, topographic wet-
ness index, plan curvature, as well as channel network 
base level were used. Average minimum and maxi-
mum temperature and annual precipitation were used 
as climatic parameters. Various vegetation and salinity 
indices namely SI (1), SI (2), SI (3), SI (4), SI (5), SI 
(6), NDVI, NDSI, SAVI, SR, CRSI, BI, and VSSI were 
also added to the model. Through the model imple-
mentation, the spatial distribution of probability ranges 
of soil salinity in croplands of Lesvos obtained.

Results of the soil salinity predicted by the model 
indicate that the overall accuracy of the model to pre-
dict whether the soil is classified as saline is 97.1%. 

The statistical significance test of the model (Omnibus 
test) was found as �2(9) = 52.63 and at p < 0.05, which 
implies a statistically significant finding. The coef-
ficients of precipitation, annual temperatures, as well 
as soil geomorphology were significant to the devel-
opment of the regression logistic model and to the 
prediction of the result as revealed from the [Exp (b)] 
statistic values of factors. Table 4 depicts the magni-
tude of the dependence of the dependent variable that 
can be interpreted by the variables acting as independ-
ent factors. The coefficient of DEM variable is nega-
tive indicating that elevation is negatively related to 
soil salinity in contrast to channel network base level 
which is positively related to salinity occurrence. The 
coefficient Nagelkerke R2 showed that the prediction 
model interprets 11.3% of the variance of the depend-
ent variable from the independent variables. The R2 
value is expected to be low, as Nagelkerke values 
usually take low values in logistic regression even in 
models where the parameters show a strong correla-
tion with the result (Hu et al., 2006).

In evaluating the accuracy of a probabilistic 
model, the ROC curve method was used (Nandi & 
Shakoor, 2010). The ROC curve, which indicates the 
model fit quality, showed good results, suggesting 
that the model responds effectively to the data with 
area below the curve (AUC) of 0.73 (Table 5).

LR was applied for the development of the saline 
soil probability model. The equation with the regression 
coefficients (Table  4) for the model development was 
executed after the logistic regression analysis applied. 
The values for the distribution of the probability of 
saline soils were calculated for croplands of Lesvos. The 
spatial distribution of the saline soils obtained where 
croplands have values close to 1, indicating a high prob-
ability of salinity with (ECe > 4 dS m−1).

However, for better interpretation and analysis of the 
results from the probabilistic model, the value express-
ing the probability is classified into five classes in the 
interval [0, 1]. In each polygon of 431 total polygons, 
which represents a specific land under agricultural 
exploitation (such as crop lands), a probability value is 
given of whether the crop occurs saline or not. Conclu-
sions can be drawn regarding the interpretation of the 
distributed probabilities and the percentage covered by 
the agricultural areas with high probability of occur-
rence of saline soils, considering the intermediate val-
ues as presented in the following map (Fig. 5).
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According to the logistic regression model results, 
most of agricultural land which covers about half 
of the total area (almost 55%) represent areas with 
absent or very low probability for salinity occurrence. 
Although a large-scale area of 169.51 km2 (23.7%) 
in extensive areas located in the western and SE part 
of the island are characterized by high probability 
(p > .80) for soil salinity occurrence (Table 6).

In the agricultural soils of Lesvos, soil salinization 
occurs as a result of both human and climatic factors. 
The main drivers of soil salinity are the relatively low 
percentage of annual rainfall, the high rates of evapo-
transpiration, and high index of drought. However, the 
processes of soil salinity are accelerated due to irra-
tional and unsustainable soil management practices. 
Soils with a high probability of salinity are located in 
croplands of the western part, where there is a smaller 
amount of rain falling, with a decrease from east to 
west of over 45% (Kosmas et al., 1999). In our study 
area, crops that showed the highest probability and 
may be potentially affected by soil salinity are located 
in orchards with olive trees. Except for olive groves, 
non-irrigated areas are also prone to the occurrence of 

salinity and have shown a high probability of salini-
zation, as a result of seasonal rainfall and dry-thermal 
climatic conditions (Shahid et al., 2018).

Spatial correlation between SS and SOC

Indices of spatial autocorrelation, such as the Global 
Moran’s I and Anselin local Moran’s I and the Getis-
Ord G statistic which were used in this study, allowed 
a comparison of the soil parameters (Table 7). Indi-
cators of global and local spatial association were 
estimated to detect the different aspects of spatial cor-
relation between the soil salinity and the SOC con-
tent. Global and local Moran’s I indices applied for 
the identification of spatial autocorrelation and local 
patterns of the values. The Anselin Moran’s I allowed 
the detection of both positive and negative spatial 
correlations of data values; while the Gi* statistic 
can distinguish the clustering of high and low values 
around the region (Scrucca, 2005).

The cluster map and the local Moran’s scatter plot 
provide a classification of spatial association into five 
classes, corresponding to the location of the points 
in the four quadrants of the plot (Fig. 6). For spatial 
clusters representing low values nearby low values 
(LL) or high value nearby similarly high values (HH) 
is marked with lighter blue and red, respectively. Spa-
tial patterns which represent regions with low values 
nearby high values (LH or HL) and vice-versa are 
called outliers and are marked with dark blue and red, 

Table 4   Summary of logistic regression model and derived coefficients used for the evaluation of soil salinity model

a Estimation terminated at iteration number 8 because parameter estimates changed by less than .001

Model summary -2 Log likelihood Cox & Snell R square Nagelkerke R square

455.628a .026 .113
Factors (independent variables) Coefficient
Elevation −25.715
Topographic Wetness Index .072
Slope 2.673
Plan curvature .000
Channel network base level 17.220
Temperature min 5.666
Temperature max −1.957
Precipitation 6.771
Principal component (PC1) −10.658
Principal component (PC2) −1.942
Constant .212

Table 5   ROC analysis results and area under the curve

a Under the nonparametric assumption
b Null hypothesis: true area = 0.5

Area S.E.a Asymptotic Sig.b

.729 .073 .001
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respectively. The spatial distribution of the values 
among the two soil parameters revealed interesting 
spatial patterns, particularly so in case of probability 
ranges of soil salinity. Indeed, as can be observed, a 
positive spatial autocorrelation is noted that in both 
cases of soil parameters with low values surrounded 
by nearby low values (clustered) accounting for 
33.9% for salinity and 30.8% for SOC (Fig. 6).

In northern regions, clusters with high values of 
salinity probability occurred where clusters of low 

SOC values appeared (Table  8). Respectively, in 
the eastern part, clusters of high values in salinity 
probability are observed in regions with clusters of 
low values in SOC. In regions where both values 
of similar low or high clusters in salinity probabil-
ity and SOC are appeared, the outliers indicated the 
existence of dissimilar nearby values. Most of the 
outliers are observed inside in region with clus-
tered patterns. Indeed, HL outliers in the eastern and 
southern part of the island and LH outliers mainly 
in central and western part can be linked to regions 
where clusters with statistically significant values of 
two variables occurred. High soil salinity probabil-
ity values are clustered in agricultural areas of west-
ern part in land principally occupied by agriculture 
with small areas of natural vegetation and in non-
irrigated arable land. In central and southern rural 
areas, high clusters correspond to arable land with 
significant areas of natural vegetation and extended 
areas of olive groves. Respectively, the signifi-
cant low values of salinity probability clustered in 
central agricultural areas correspond in areas with 

Fig. 5   Model predictions indicating the likelihood of soil salinity at the depth 0–30  cm for the agricultural areas within Lesvos 
Island in 2015

Table 6   Probability ranges of salt-affected soils (ECe > 4 dS 
m−1) in Lesvos Island

Probability Area (��2) Area 
(%)

0–.20 501.23 54.70
.20–.40 74.4 8.60
.40–.60 32.44 6.00
.60–.80 49.22 7.00
.80–1 169.51 23.70
Total 826.80 100
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sclerophyllous vegetation and complex cultivation 
patterns. An extended cluster of low values for both 
soil parameters shows a correspondence to a large 
land of olive groves, which also caused the effect of 
the HL outliers’ appearance. On the other hand, the 
southern and central clusters of low values in SOC 
are located in extended areas with non-irrigated ara-
ble land and olive groves.

According to the local Moran’s I scatterplots 
(Fig. 6), an overall clustered pattern of positive spa-
tial autocorrelation is indicated, which is statistically 
significant for both soil parameters of soil salinity 
probability (Moran’s I = 0.55) and soil organic carbon 
(Moran’s I = 0.37).

The Getis-Ord Gi* statistic was calculated using 
the hot spot analysis (Getis-Ord Gi*). Statistically 

Table 7   The positive spatial autocorrelation between the values of the two variables derived from Global Moran’s I index indicates 
spatial clusters of high and low values of soil salinity and organic carbon parameter

Soil property Index Index value z score p value

Soil salinity Global Moran’s I 0.490 110.428 0.0000
Soil organic carbon Global Moran’s I 0.360 53.139 0.0000

Fig. 6   The cluster and outlier analysis of Anselin Local Moran’s I index derived the cluster map and scatterplot for (left) saline soils 
variable and (right) SOC variable
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significant spatial patterns are identified from the 
classification of local Getis Gi* indicators within the 
study region. Hot spots of salinity are observed in the 
southeastern and the central parts of the study area 
on the contrary of SOC that cold spots are observed 
mainly in the southeastern part. Correspondingly, this 
phenomenon appears to be the case in the northern 
section. For the probability of soil salinity occurrence 
values, the clusters where there is a concentration of 
high values appear in central and northern part of the 
island, where they are mainly covered by olive groves 
as well as in areas in the eastern part in lands prin-
cipally occupied by arable land. Clusters of low val-
ues are observed along the eastern and southeastern 
parts in the region where complex cultivation systems 
and agricultural land with significant areas of natu-
ral vegetation dominate. Conversely, the concentra-
tion of low values of soil organic carbon reserves 
extends mainly along the central and southern part of 
the island. High SOC levels are found in the northern 
part where mostly natural and sclerophyllous vegeta-
tion can be found. This also appears to be the case 
in the eastern and southeastern parts of the island. 
However, in some cases, SOC levels can be found to 
be inversely high in areas with a high probability of 
being saline. This could be linked to the heterogeneity 
of the croplands which consists of significant areas of 
natural vegetation. It is noted that the local Moran’s I 
index revealed outliers of LH and HL values in many 
areas with similarities in clustered values of both soil 
parameters. In the following figure are presented the 
hotspots analysis results concerning the examined 
variables (Fig. 7).

Discussion

In this study, a probabilistic method based on logistic 
regression (LR) has been developed for mapping the 
spatial distribution of soil salinity in cropland areas 
of Lesvos, adopting geoinformation technologies. 
The LR method has been applied previously in a wide 

range of environmental studies including, for exam-
ple, soil erosion and landslides (Sarkar & Mishra, 
2018). LR has also been successfully used before to 
identify and classify salt-affected soils. For example, 
Kumar et al., (2019) using Landsat 8 OLI multispec-
tral satellite data developed a model to identify salt-
affected soils, and in comparisons, they performed 
versus corresponding field survey data reported the 
model to somehow overestimate the occurrence of 
saline soils in cropland areas.

The model developed in our study showed quite 
satisfactory results in predicting saline soils in agri-
cultural areas. The Nagelkerke R2 coefficient indicates 
that the probability model interprets 11.3% of the vari-
ance of the dependent variable from the independent 
variables. The climatic factors of annual temperatures 
and rainfall added in the model (annual temperature—
p < .05 and rainfall—p < .005) as well as the topogra-
phy (DEM—p < 0.001 and channel network base level 
p < .008) were statistically significant and contributed 
as factors in the development of the model and the 
evaluation of the results. In contrast to some predictors 
such as the topographic curvature index (Sig. .954) 
and the second principal component (Sig. .254) were 
not found to be statistically significant in the model, 
although the PC1 was a statistically significant factor 
in the analysis (p < .009). The ROC curve was used 
to verify the model’s prediction accuracy. The model 
showed good adaptability and responds well to the 
data with the area value under the ROC curve was 
found to be (AUC) .73.

Similar studies that have been conducted previ-
ously at different settings have also underlined the 
influence of the aforementioned predictors in soil 
salinity. For example, Nie et al. (2021) evaluated the 
effectiveness of terrain factors such as DEM, slope, 
and TWI using kriging regression techniques in order 
to predict the extent of secondary salinization, in a 
setting of northeast China. Later, Sahbeni (2021) used 
field data and spectral salinity and vegetation indi-
ces derived from Landsat 8 OLI for developing soil 
salinity prediction maps in the Great Hungarian Plain 

Table 8   Percentage of 
clustering patterns for soil 
salinity and soil organic 
carbon point metrics by 
Anselin local Moran’s I

Soil property Index HH LL HL LH NS Total
(%) (%) (%) (%) (%)

SS Anselin local Moran’s I 25.9 33.9 2.8 4.4 33.0 100
SOC Anselin local Moran’s I 12.3 30.8 2.5 4.2 50.1 100
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using regression modeling. This study demonstrated 
the efficiency of the elevation factor which was statis-
tically significant for soil salinity prediction, with a p 
value equal to 0.002, as in the case of this study.

The salinization of soils is a significant threat to 
the environment and to soils’ fertility and quality. In 
addition, soil salinization reduces crop yields and 
food security globally (Shrivastava & Kumar, 2014; 
Gorji et al., 2015). As the climatic conditions of the 
study area promoted the formation of soil saliniza-
tion, agricultural management practices and irrigation 
supply systems should be adjusted in order to mitigate 
the effects of the reduction of agricultural production 
and the fertility of soil resources. The saline soils in 
the agricultural areas of Lesvos are mainly due to the 
relatively low percentage of rainfall, the high index of 
bioclimatic drought, and the unsustainable manage-
ment practices applied in agricultural areas (Kosmas 
et  al., 2000, 2002). Specifically, in the western part 
of the island, a smaller amount of rainfall is recorded. 
It is observed that croplands with a higher probabil-
ity of soil salinity mainly occur in agricultural areas 
where the vegetation consists mainly of olive groves, 
which correspond to most of the island (Kosmas  et 
al., 1999). There is also a high probability of saline 
soils occurring in non-irrigated arable land (mainly in 
the western and SE part), as a result of dry-thermal 

climatic conditions because of the increased evapo-
transpiration of soil (Shahid et  al., 2018). Lastly, 
according to the results in the study area, it must be 
noted that agricultural areas corresponding to arable 
and non-irrigated arable land as well as olive groves 
are more prone to the soil salinization process.

Several studies have also attempted to study SOC 
content by applying spatial analysis and GIS methods 
(Bhunia et  al., 2015; Bhardwaj et  al., 2019;  Zhang 
et  al., 2020). In recent years, more studies have 
focused on the exploration of SOC stocks and saline 
soils, mainly in areas under agricultural development 
(Emran et al., 2020; Sakai et al., 2020). In our study, 
the spatial investigation of soil salinity and organic 
carbon stocks in croplands of Lesvos attempted, using 
geoinformation technologies. Cluster mapping tech-
niques which were used to establish the spatial distri-
bution of soil parameters, revealed that soils with high 
probability of salinity and high SOC content in these 
soils follow a different spatial pattern. High values of 
soil salinity probability are clustered mainly in areas 
where low values of SOC are clustered, or outliers 
occurred. Due to assumptions that high probability 
of soil salinity could potentially affect SOC content, 
outliers are expected to be found in regions where 
similarities in high and low clusters of two parameters 
occurred. As indicated in the obtained results, the two 

Fig. 7   Hot spot analysis (Getis-Ord Gi*) for variables of soil salinity probability (left) and SOC (right)
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variables appear to be potentially correlated, which 
indicates that the soils with high probability of salin-
ity occurrence may affect soil organic carbon content 
in those soils. Application of the geospatial analysis 
techniques of the two soil parameters as performed in 
this study suggested the negative effects of soil salin-
ity in areas where an increased probability occurs in 
soil organic carbon content. Notably, previous studies 
have indicated that salt-affected soils tend to minimize 
carbon dioxide inflows and contain a limited amount 
of SOC, while increasing its carbon release rates into 
the atmosphere through soils degradation (Setia et al., 
2011, 2013; Wong et al., 2010; Zhao et al., 2017).

Conclusions

In this study, the likelihood of salinity for agricultural 
areas in Lesvos was estimated through the develop-
ment of a probabilistic model using geoinformation 
technologies including RS and GIS. In addition, an 
attempt was made to investigate the relationship 
between SOC and saline soils using geospatial data 
analysis methods. The main conclusions drawn are 
summarized below:

	 (i)	 The logistic regression model predicted cor-
rectly 97.1% of the observations. Nagelkerke R2 
coefficient interprets 11.3% of the variance of 
the dependent variable from the factors set as 
independent. The Omnibus test fit test showed 
that the overall model is statistically significant 
with �2(9) = 52.63, p < .005. The area under 
the ROC curve was (AUC) 0.73. Thus, this 
method can be used as an approximate method 
with efficient results for the prediction of salin-
ity in agricultural soils and may be sufficiently 
applied in other areas with similarities in envi-
ronmental conditions.

	(ii)	 The western part of Lesvos island covers agri-
cultural areas with the highest probabilities of 
soil salinity which may be associated with envi-
ronmentally sensitive areas where salt-affected 
soils or soils prone to salinization have been 
recorded from previous studies (Kosmas et al., 
1999, 2002). A total of ∼20% of the agricul-
tural areas are characterized by a high probabil-
ity of soil salinity (p > .80). Approximately, a 
total area of 169.51 km2 mainly in the western 

and south-eastern parts indicating high prob-
ability of soil salinity occurrence (with ECe > 4 
dS m−1) which indicates the need for further 
investigation of the results of this study.

	(iii)	 Geospatial analysis findings suggested that a 
small variation of SOC content is shown in soils 
where an increased probability of soil salinity 
occurs. Different spatial distribution patterns of 
two variables indicated the negative spatial cor-
relation patterns of the two soil parameters, as 
a result of the adverse effects of saline soils or 
soils prone to salinity in SOC accumulation.

Our study provides a methodological framework 
approach that has a promising potential to support deci-
sion making on agricultural land protection and agri-
cultural planning in general. There are also numerous 
pathways that can be followed in taking this study fur-
ther. Among the key priority ones include the develop-
ment of models for the study of different variations of 
salts concentration in salt-affected soils and the quan-
tification of the correlation between the examined soil 
parameters. Such models, if available, could signifi-
cantly improve the interpretive capacity of the results 
for the study area as the two soil parameters are not 
constant and change in space and time.
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