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Abstract  Production plantation forestry has many 
economic benefits but can also have negative environ-
mental impacts such as the spreading of invasive pines 
to native forest habitats. Monitoring forest for the 
presence of invasive pines helps with the management 
of this issue. However, detection of vegetation change 
over a large time period is difficult due to changes in 
image quality and sensor types, and by the spectral 
similarity of evergreen species and frequent cloud 
cover in the study area. The costs of high-resolution 
images are also prohibitive for routine monitoring in 
resource-constrained countries. This research investi-
gated the use of remote sensing to identify the spread 
of Pinus caribaea over a 21-year period (2000 to 
2021) in Belihuloya, Sri Lanka, using Landsat images. 

It applied a range of techniques to produce cloud free 
images, extract vegetation features, and improve veg-
etation classification accuracy, followed by the use of 
Geographical Information System to spatially analyze 
the spread of invasive pines. The results showed most 
invading pines were found within 100 m of the pine 
plantations’ borders where broadleaved forests and 
grasslands are vulnerable to invasion. However, the 
extent of invasive pine had an overall decline of 4 ha 
over the 21  years. The study confirmed that remote 
sensing combined with spatial analysis are effective 
tools for monitoring invasive pines in countries with 
limited resources. This study also provides informa-
tion to conservationists and forest managers to con-
duct strategic planning for sustainable forest manage-
ment and conservation in Sri Lanka.

Keywords  Google Earth Engine · Invasive pine · 
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Introduction

Forest plantations have been established worldwide 
to provide timber and firewood and have significantly 
contributed to local and global economies. However, 
most of these plantations were established using tree 
species with fast growth rates, which differ from 
many naturally regenerated forests in composition and 
structure, leading to different ecological processes 
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and functional outcomes (Subasinghe et  al., 2014). 
In some environments, these fast-growing exotic tree 
species have become invasive, replacing existing veg-
etation (Dash, 2020; Rejmánek & Richardson, 2013; 
Richardson et al., 2007).

Notably, plantations using pine species are the high-
est contributor to timber production globally (Burley 
& Barnes, 2004; McEwan et al., 2020). These species, 
however, can cause many adverse effects to the environ-
ment. For example, pine species native to North Amer-
ica and Europe have been introduced to New Zealand, 
South Africa, Argentina, Brazil, and Chile as a foun-
dation for exotic forestry enterprises (Pauchard et  al., 
2016a; Rejmánek, 2014; Singh et  al., 2018), but are 
now invading significant areas such as native forests, 
grasslands, catchments, and protected areas, causing 
a potential transformative effect on native ecosystems 
(Dash, 2020; Richardson et  al., 2007). Additionally, 
Medawatte et al. (2010) study shows that invasive pines 
can also contribute to an overall decrease in native bio-
diversity, suppress native plants, contribute to habitat 
loss for wildlife, decrease streamflow, cause changes in 
nutrient cycling, and affect groundwater supply levels.

Pinus patula and Pinus caribaea were introduced 
to Sri Lanka in 1967 to boost timber production and 
reduce the risk of soil erosion and landslides in the 
hilly regions due to their faster growth rates com-
pared with indigenous species (Subasinghe, 2007). 
In particular, Pinus caribaea was used extensively 
for the reforestation of degraded areas in the coun-
try’s wet and intermediate climatic zones with eleva-
tions ranging from 100 to 2000  m above mean sea 
level due to its fast establishment and growth under 
adverse conditions (Edirisinghe, 2017; Jayawardhane 
& Gunaratne, 2020; Perera, 2001). However, their 
invasive behavior in Sri Lanka’s mountainous region 
has negatively affected the soil biodiversity and 
regeneration of native flora, and increased the occur-
rence of wildfires during the dry season (Nissanka 
et al., 2005; Wijerathna et al., 2016). In 2008, Pinus 
caribaea was identified as a potentially invasive alien 
species in Sri Lanka because several areas in the mid-
country reported their spread (Wijesundera, 2008). 
As a result, the Sri Lankan government is planning to 
replace pine plantations with indigenous plant species 
(Office of the Cabinet of Ministers-Sri Lanka, 2017).

Previous studies (Bjerreskov et al., 2021; Kaplan, 
2021; Liu et  al., 2022) have investigated the expan-
sion of broad leaf and conifer forests maintained and  

managed for commercial timber production in tem-
perate climates where the difference is very signifi-
cant due to seasonal and phenological changes. Fur-
thermore, it is relatively easy to recognize these two 
types of temperate forests when coniferous species are 
evergreen and broad leaf trees are deciduous. Com-
paratively, studies conducted in tropical environments 
are limited in their spatial extent and are focused on 
the simple classification of landscapes into major land 
cover classes (Petersen et  al., 2016). Furthermore, 
Pauchard et  al. (2016b) found that climate-induced 
invasion, or the latitudinal pattern of invasion, hap-
pened all around the world in both tropical and tem-
perate locations showing a growing need to monitor 
the spread of exotic species, and forecast future distri-
bution of such invasions. Most pinus invasion studies 
(Pauchard et al., 2016; Weisberg et al., 2007; Xu et al., 
2018), however, have been based on temperate region 
and largely on grasslands and shrublands. Additionally, 
although there are many records of exotic pines invad-
ing the natural vegetation in tropical regions (Afrin 
et al., 2010; Ayala et al., 2005), few studies have been 
performed with the use of remote sensing techniques 
(Amaral et al., 2015; Goncalves et al., 2022; Petersen 
et al., 2016). For example, only one recent study con-
ducted in Sri Lanka has used Geographic Information 
System (GIS) analysis (Medawatte et al., 2010). Map-
ping the expansion of invasions through field surveys 
is time-consuming and costly; hence, there is a need to 
develop remote sensing methods that are both reliable 
and affordable, especially in developing countries.

Remote sensing is a promising tool for mapping, 
detecting, and monitoring invasive non-native plants 
across broad geographic extents. The availability of 
satellite image archives permits mapping non-native 
invasive plants spread, retrospectively (Gavier-Pizarro 
et al., 2012). However, most existing studies (Amaral 
et al., 2015; Andrew & Ustin, 2008; Dash et al., 2019; 
Khare et  al., 2018; Piiroinen et  al., 2018) have used 
high-resolution hyperspectral imagery covering a 
relatively small area and analyses over a short period 
of time. From a management perspective, this limits 
their use for long-term assessments of invasive plant 
spread, particularly in developing countries where the 
lack of historical data further compounds manage-
ment efforts. On the other hand, multispectral sen-
sors with moderate resolutions offer an alternative 
for low-resourced countries because they enable both 
change detection and measurements of phenology 
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over multiple years (Petersen et  al., 2016; Signori & 
Ducati, 2019; Xu et al., 2018). Additionally, these data 
sets are mostly free or low cost (Bradley, 2014). In 
particular, the Landsat program has been extensively 
used for forest monitoring, providing a rich dataset to 
map the invasion of tree species at the landscape scale. 
The opening of the Landsat archive and its contin-
ued free and open access since 2009 has enabled the 
analysis of both larger areas and more extensive times 
series (Zhu & Woodcock, 2014).

The current study investigates the application of 
Landsat satellite information to map, quantify and 
assess spatio-temporal land cover change using a Sri 
Lankan study area, namely Belihuloya, over a two-
decade period (2000 to 2021). The selected study area 
is one of the few areas that manage pines for both con-
servation and commercial purposes in Sri Lanka. The 
Belihuloya region suffers from a shortage of ground-
water caused by the water uptake from pine plantations 
(Starkloff, 1998). This results in seasonal wildfires, 
so it is therefore important that pine forest expansion 
is monitored. This study contributes to knowledge 
development by analyzing the spread of Pinus carib‑
aea to neighboring landscapes over a 20-year period 
from plantations established and operated for soil con-
servation in Sri Lanka. Specifically, the paper seeks 
to answer the following research question: to what 
extend is the Landsat archive for Sri Lanka suitable 
for mapping and tracking land cover changes associ-
ated with the historical spread and invasion of coni-
fers? To this end, this study uses Landsat archive to 
distinguish unmanaged pine plantations from native 
forests in Sri Lanka’s tropical environment.

Materials and methods

Study area

This study used images from the Landsat archive for 
the years 2000 and 2021 to monitor the historical 
spread and control of invasive exotic conifers (e.g., 
Pinus caribaea) in Sri Lanka’s intermediate climatic 
zone. Sri Lanka has traditionally been generalized 
into three climatic zones: the wet zone, dry zone, and 
intermediate zone, according to rainfall, soil, and veg-
etation types. The intermediate zone separates both 
the wet and dry zones and receives a mean annual 
rainfall between 1750 and 2500 mm with a short and 

less prominent dry season (Punyawardena, 2020). This 
intermediate climatic zone divides into three further 
zones based on altitude: low-country, mid-country, 
and up-country. According to the Sri Lankan climatic 
classification (Jayawardane & Weerasena, 2000), this 
study area lies in the intermediate mid-country, where 
the elevation ranges between 600 and 900  m above 
mean sea level and contains rugged topography. The 
study area is located in Southeast Sri Lanka and cov-
ers an area of 6234  ha. Administratively, this area 
belongs to the Balangoda region in the Sabaragamuwa 
province of Sri Lanka (Fig. 1). The area is densely for-
ested, containing a mixture of forest types, including 
montane broadleaf forest, pine plantations, and grass-
lands. This area was selected because it comprises 
both unmanaged pineland and densely forested native 
broad leaf species.

Methods

The following section describes the methodology 
developed for this research. As shown in Fig. 2, the 
study comprised five main steps: (1) data acquisition; 
(2) pre-processing; (3) feature extraction; (4) multi-
temporal classification; and (5) post-classification.

Step 1: Data acquisition

Landsat 7 Enhanced Thematic Mapper Plus (ETM +) 
and Landsat 8 Operational Land Imager (OLI) 
images from the Google Earth Engine (GEE) Landsat 
archive (https://​devel​opers.​google.​com/​earth-​engine/​ 
datas​ets/​catal​og/​lands​at) for the years 2000 and 2021 
were used to characterize vegetation changes. The 
advantage of Landsat as a moderate spatial resolution 
satellite collection is that the entire scene is captured 
at once with sun illumination, vegetative condition, 
and atmospheric conditions more likely to be con-
sistent across the scene (Labonté et  al., 2020). The 
study period 2000 and 2021 was chosen as it is dif-
ficult to validate the classification prior to 2000 due 
to the absence of high-resolution images in Google 
Earth Pro. In 2000, only six images of Landsat 7 that 
covered the study area were available in the Landsat 
archive, and in 2021, 21 images of Landsat 8 were 
available. The GEE cloud-based platform was used 
for image pre-processing and classification (Setiani 
et al., 2021), while ArcGIS Pro software was used to 
produce maps.
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Fig. 1   Study area

Fig. 2   Overall methodol-
ogy

Page 4 of 16347



Environ Monit Assess (2023) 195:347

1 3
Vol.: (0123456789)

The Shuttle Radar Topographic Mission (SRTM) 
provides digital elevation data (DEM) on a global scale. 
The SRTM Plus version (spatial resolution of 30  m) 
was acquired from GEE, and topographic features such 
as elevation, aspect, and slope were extracted.

Step 2: Pre‑processing

As the studied region is frequently cloudy, it is dif-
ficult to acquire cloud-free Landsat images. There-
fore, atmospheric correction, cloud/shadow masking, 
and image compositing were applied to construct a 
clean image time series. A cloud masking procedure 
was used to identify flagged cloud and cirrus pixels. 
After cloud removal, gap filling was applied using 
the median values of each pixel on the images. Then 
the median composite function in GEE was used to 
remove anomalous dark pixels (shadows) and bright, 
saturated pixels (Bjerreskov et  al., 2021) in the col-
lection and was used to create composite images for 
the years 2000 and 2021.

Step 3: Feature extraction

Feature extraction was carried out in GEE using veg-
etation indices derived from spectral data and tas-
selled cap transformation, which transforms spectral 
data into indicators (Dash, 2020).

Vegetation indices  Throughout all wavelengths, 
coniferous leaves have lower transmittance than broad 
leaves (Lukeš et  al., 2013). Though the difference 
between visible (VIS) and near-infrared (NIR) spectral 
reflectance is not hugely evident, some studies (Roberts  
et  al., 2004; Williams, 1991) have reported that  
coniferous needles have slightly lower VIS reflectance 
and higher NIR reflectance than broadleaves. It is 
hard to classify land cover or identify specific species 
when the vegetation types are heterogeneous and often 
exhibit both spectral and seasonal similarities (Deng 
et  al., 2020). Therefore, several vegetation indexes 
were used as shown in Table 1. These were as follows: 
(1) normalized difference moisture index (NDMI); (2) 
normalized burn ratio (NBR); (3) enhanced vegetation  
index (EVI); (4) normalized difference vegetation 
index (NDVI); and (5) green chlorophyll index (GCI). 
These indices categorized vegetation changes related to 

moisture stress, colorization, and needle/leaf structure  
(Ye et al., 2021).

Tasselled cap transformation  Tasselled cap trans-
formation (TCA) was developed by Kauth and Thomas 
(1976) as a function for determining a crop’s life cycle. 
It recognizes the pattern found in the agricultural 
fields where there is a net increase in near-infrared and 
decrease in red reflectance based on soil color.

The tasselled cap transformation is a linear trans-
formation of Landsat MSS data that projects soil 
and vegetation information into a single plane in 
a multispectral data space. TCA has been broadly 
engaged in forestry studies of structure, condition, 
successional state, and change detection in vari-
ous forest environments (Gómez et  al., 2012). It 
is a special case of principal components analysis 
which transforms the image data into a new coordi-
nate system with a new set of orthogonal axes. The 
tasselled cap analysis reduces a multiband data set 
(4–6) to 3 channels as follows:

•	 Tasselled cap greenness (TCG) contrasts the 
near-infrared and visible bands, conveying infor-
mation concerning the abundance and vigor of 
living vegetation.

•	 Tasselled cap brightness (TCB) is a weighted 
sum of all four bands. Brightness is defined in 
the direction of the principal variation in soil 
reflectance and is associated with bare areas or 
partially covered soil.

•	 Tasselled cap wetness (TCW) is related to the 
canopy and soil moisture which differences the 
sum of the visible and near-infrared bands with 
the longer infrared bands.

Table 1   Bands and vegetation indexes

Index Equation Source

NDMI (NIR−SWIR1)

(NIR+SWIR1)
Shahfahad et al. (2022)

NBR (NIR−SWIR)

(NIR+SWIR2)
  Setiani et al. (2021)

EVI 2.5 ×
NIR−RED

(NIR+6×RED−7.5×BLUE+1)
   Senf et al. (2013)

NDVI (NIR−RED)

(NIR+RED)
Pu et al. (2008)

GCI
(

NIR

GREEN

)

− 1
 

Kumar et al. (2018)
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Step 4: Multitemporal classification

The supervised classification of both maps (the 
years 2000 and 2021) was carried out using the Ran-
dom Forest (RF) classifier because of its relatively 
high accuracy and computational efficiency (Zhu & 
Woodcock, 2014). Random Forest is an integrated 
learning method that has become increasingly com-
mon in remote sensing applications due to its nonpar-
ametric nature and ability to limit overfitting (Cheng 
& Wang, 2019). The Smile Random Forest function 
on the GEE platform (Liu et al., 2022) was used, and 
the number of decision trees was set to 500. A score 
was calculated using the RF algorithm for each com-
bination of parameters. The combination of param-
eters with the highest score was used for developing 
the vegetation classification maps.

Training and validation  Stratified random sam-
pling was used to obtain a sample population that best 
represents each landcover class. In these samples, 20 
polygons for each class were randomly identified by 
the visual interpretation of the Landsat images with 
the help of Google Earth (Mohamed & El-Raey, 
2019; Zhu & Liu, 2014). Then, five hundred training 
samples per class were generated to train the classifi-
cation for each year.

The goal of the validation was to assess the over-
all accuracy of the vegetation change map compared 
to available reference data. Validation was based 
on existing datasets and a combination of ancillary 
sources (Google earth, field plots) assembled using a 
human interpreter approach (Weng, 2018). High spa-
tial resolution images from Google Earth Pro were 
used to manually interpret the land cover classes and 
also help determine land cover change at longer inter-
vals (Kamga et al., 2020; Mohamed & El-Raey, 2019; 
Zhu & Woodcock, 2014). This research used high-
resolution images of 2021 and 2000 in Google Earth 
pro as reference data. Specifically, about 120 samples 
were used as ground reference data for each landcover 
class to train the random forest classifier except for 
the settlement class, which was smaller in 2000. The 
classification accuracy was tested using the over-
all agreement with reference data. In addition, the 
user and producer agreements for the five landcover 
types were calculated. The producer accuracy meas-
ures the percentage of given reference data correctly 
classified; in contrast, the user accuracy measures 

the percentage of the trained data correctly classified 
(April et al., 2015).

Step 5: Post‑classification

Following the classification of imagery for the two 
individual years, a post-classification approach of 
subtracting the classification maps was applied and 
used to produce a detailed change detection map using 
the ArcGIS Pro software. This map detects more 
subtle classes of change and determines the invasive 
pine and its spread over the selected landscape. An 
important aspect of change detection is determining 
what is changing to what category of land use type 
(Abebe et al., 2021). Therefore, a vegetation conver-
sion matrix was calculated to demonstrate the direc-
tion of change and the land use type that remains at 
the end of the study period. Quantitative data analysis 
of the overall land cover change as well as gains and 
losses in each category between 2000 and 2021 were 
compiled (Haregeweyn et  al., 2013; Kamga et  al., 
2020) and presented as a percentage of the area. In 
this manner, maps were created for the entire study 
area and provided insight into the areas affected by 
invasive conifer encroachment.

Buffer analysis: identification of invasive pine  In 
order to investigate the progressive spread of Pinus 
caribaea outside the original plantations, the distance 
from the perimeter of parental pine plantations was 
measured using six 50-m intervals between 0 and 
300 m demarcated. The buffer distance was based on 
the previous study by Medawatte et al. (2010) in Sri 
Lanka. The area of invading pines was measured in 
relation to the distance from the plantation edge.

Results

The vegetation maps for 2000 and 2021 are shown 
in Fig.  3 and Fig.  4, respectively. These maps col-
lectively show places with stable and changed veg-
etation areas appearing in the study area. Five major 
vegetation types were classified for 2000 and 2021: 
pine plantation, broadleaf forest, bare land, grassland, 
and invasive pines (settlements are also identified). 
The most prominent vegetation type found in both 
maps (2000 and 2021) is the broadleaf forest which 
is mainly distributed on the gentle slopes and the flat 
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regions of the study area. In contrast, pine plantations 
and grasslands are located on ridges and steep areas 
with a slope higher than 18%. The vegetation classifi-
cation for the year 2000 image shows that the major-
ity of the study area was under broadleaf forest, cov-
ering about 2690 ha (43%). Grassland and bare land 
cover an area of 1627  ha (26%) and 969  ha (16%), 
respectively. Broadleaf forest (3336 ha) still covered 
the largest area in 2021, which reflects the conversion 
of other classes to the natural forest for conservation 
purposes, while grassland, pine plantation, and bare 
land cover an area of 1284 ha, 1013 ha, and 244 ha, 
respectively. The land areas contain pine species out-
side the plantation boundaries, with an absence of 
planting patterns, and areas smaller than 0.5  ha are 
identified as invasive pines.

Overall agreement with reference data was com-
puted for both vegetation maps. The year 2000 

vegetation map produced a 72% overall accuracy, and 
the year 2021 vegetation map yielded an 81% overall 
accuracy. Vegetation groups were classified with pro-
ducer accuracy ranging from 20–84 and 55–100 for 
the year 2000 and 2021, respectively. In the year 2000 
map, the settlement had the highest user accuracy 
(Appendix 1). On the other hand, pine plantation had 
the highest user accuracy for the year 2021, whereas 
all other vegetation classes have more than 70% user 
accuracy except the grassland class (Appendix 2).

The cover and rate of changes in each vegetation 
type for the 21 years are summarized in Table 2. From 
2000 to 2021, the broadleaf forest and pine plantation 
area increased by 24% and 19%, respectively. In con-
trast, bare land and grassland showed a reverse trend, 
reduced by 75% and 21%, respectively, during the 
same period. This indicates that the increasing broad-
leaf forest area mainly emerged in the steep slope 

Fig. 3   Vegetation classification for the year 2000
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areas, meaning some grassland and bare land areas 
were converted to natural forests without disturbance.

The vegetation conversion matrix depicts the 
direction of change and the land use type that remains 
at the end of the period. Thus, the change matrix for 
each period was analyzed to understand the source 

and destination of significant vegetation changes. 
Over 21  years, 3476  ha out of 6234  ha of the total 
area has not changed, accounting for 56% of the study 
area (Table 3). In 2021, there was a significant settle-
ment build up activity, with an area of 269 ha or 4% 
of the region’s total area (Table 2).

Fig. 4   Vegetation classification for the year 2021

Table 2   Extent and rate of 
vegetation changes between 
2000 and 2021

Vegetation type 2000 2021 Change between 
2000 and 2021

Area (ha) % Area (ha) % Area (ha) %

Invasive pine 93 1 89 0  − 4  − 4
Pine plantation 854 14 1013 16 159    19
Broadleaf forest 2691 43 3336 54 646    24
Grassland 1627 26 1284 21  − 343  − 21
Bare land 969 16 244 4  − 725  − 75
Settlement 0.18 0 269 4 268.82
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Significantly, from 2000 to 2020, approximately 
705 ha of bare land and 663 ha of grassland have con-
verted to other vegetated areas. The increase in set-
tlement surfaces is coupled with the decline in these 
grasslands and bare land areas. Furthermore, approxi-
mately 80% of the area covered with broadleaf for-
est in 2000 was still the same in 2021. The remain-
ing 20% (536  ha) was transformed to other uses 
in 2021. Of the total pine plantation cover in 2000, 
53% remained unchanged, while the remaining por-
tion vastly changed to grassland (100 ha) and broad-
leaf forest (262  ha). Overall, there was a significant 
increase in the broadleaf forest from 2691 to 3336 ha. 
This gradual increase is attributed to the replanting 
programs carried out in the western part of the study 
area (Kumara, 2010).

The invasive pine areas during this period showed 
a 4% slight decline. Concurrently, 45 ha of invasive 
pine areas was converted to broadleaf forest, and 
15  ha was cleared. Furthermore, 26  ha of invasive 
pine in 2000 was identified as pine plantations in 
2021, whereas 19 ha of pine plantations in 2000 was 
recognized as invasive pine in 2021. This mispercep-
tion may be due to less aerial visibility of continuous 
clumps of pine cover over the area in 2000, with an 
identifiable canopy only appearing later.

As this study focuses on the dispersal of inva-
sive pine around the study area, the following sec-
tion emphasizes the extent of escaped pines from 
the pine plantations into the adjacent habitats. Fig-
ure 5 observes the conversion of pine plantations and 
broadleaf forests from 2000 to 2021. Moreover, an 

expansion of pine plantations was detected primar-
ily around the existing plantations of 2000. Broadleaf 
forests in more remote valley areas tended to retain 
extensive forest in 2021, and broadleaf forest expan-
sion or regeneration of the forest can be observed pri-
marily on grassland. During the 21 years, pine planta-
tions have increased by 159 ha, whereas invasive pine 
declined by 4 ha. Thus, invasive pines are more vis-
ible along with broad leaf forests managing the same 
borders as the pine plantations.

The extent of invading pines was measured with 
respect to the distance from the plantation edge. For 
the buffer analysis, three different vegetation types 
were selected: broadleaf forest, grassland, and bare 
land, which are adjacent to the pine plantations. The 
results showed that pines invaded broadleaf forests 
to a greater extent than the other two habitat types 
(Fig. 6). Furthermore, analysis showed that the highest 
scattering of pines was within 100-m buffer zone of 
the plantation, while encroachment of pines reduced 
beyond the 100-m buffer zone.

Discussion

This research demonstrated that freely available 
Landsat images combined with topographical data 
can be used for mapping vegetation change over a 
twenty-year time period, confirming its applicabil-
ity for mapping and understanding the extent of pine 
invasion. The results have revealed that pine invasion 
is at a moderate level but is decreasing might be due 
to anthropogenic activities.

Table 3   Vegetation 
conversion matrix between 
2000 and 2021

V
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n
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y
p
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0
2
1
 (

h
a)

Vegetation type in 2000 (ha)

Invasive 

Pine

Pine 

Plantation

Broadleaf 

forest
Grassland

Bare 

land

Settlement
Total

Invasive 

pine
7 19 41 16 6 0 89

Pine 

Plantation
26 454 383 121 29 0 1013

Broadleaf 

forest
45 262 2154 525 350 0 3336

Grassland 11 100 72 780 321 0 1284

Bare land 3 17 19 124 81 0 244

Settlement 1 3 22 60 183 0.2 269

Total 93 854 2691 1627 969 0.2 6234

No change Total area 2000 Total area 2021
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The research has found that a combination of spec-
tral, textural, and topographical bands provides an 
effective solution for classifying the vegetation cover, 

similar to the findings of Yu et  al. (2020) on forest 
classification in subtropical regions, and the discrimi-
nating of urban forest types in a semi-humid monsoon 

Fig. 5   Pine and broadleaf forest change map 2000–2021

Fig. 6   Invasive pine 
expansion into the different 
vegetation types adjacent to 
pine plantations
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region in China by Zhou et al. (2019). Earlier works 
by Wang et  al. (2006) and Zhu and Liu (2014) had 
specified that using topographical data with spectral 
data improved the discrimination between conifers 
and broadleaf forests. Correspondingly, studies by 
Peterson (2005) and April et al. (2015) had found that 
model accuracy was slightly better using topographi-
cal parameters. In contrast, Bjerreskov et  al. (2021) 
found that the elevation did not improve accuracy 
when classifying broadleaf and conifer forest in the 
Danish landscape. However, it appears that elevation 
plays a big role in forest classification in mountain 
terrain or when the landscape is complex, as demon-
strated by this research.

This study obtained accuracies for the vegeta-
tion cover classification similar to those obtained by 
other studies using multi-year Landsat images (Coyle 
et al., 2020; Gómez et al., 2012), and the accuracies 
obtained for land classification using other higher res-
olution satellite images (Hantson et al., 2012; Perera, 
2001). The classification accuracy of forest types 
obtained in this study is higher that obtained studies 
by Akumu et  al. (2021), Senf et  al. (2013), and an 
investigation by Sá et al. (2017), which focuses on the 
invasion of Acacia longifolia in a pine forest. How-
ever, studies by Andrew and Ustin (2008); Bjerreskov 
et al. (2021); Fagan et al. (2018); Hestir et al. (2008); 
and Underwood et al. (2003) obtained higher classifi-
cation accuracies than the present study by using sat-
ellite imagery with a higher resolution.

Even though better results can be obtained with 
higher resolution images (Goncalves et  al., 2022), 
Landsat has been shown to provide long-term assess-
ments of invasive plant spread (Gavier-Pizarro et al., 
2012; Labonté et al., 2020; Sá et al., 2017). Further-
more, the freely available Landsat series of satellites is 
one of the most important data sources for developing 
countries that have budget constraints (Gavier-Pizarro 
et al., 2012; Haregeweyn et al., 2013). Liu et al. (2022) 
concluded that Landsat is better for detecting long-
term changes in Chinese pine tree species because of 
its availability over a long time period. For developing 
countries such as Sri Lanka, we conclude that Landsat 
images provide a vital low-cost solution for the fre-
quent monitoring of vegetation change.

According to this study’s findings, broadleaved for-
ests and grasslands are vulnerable to invasion. Previous 

researchers (Dash et al., 2019; Higgins & Richardson, 
1998; Medawatte et  al., 2010) found that grasslands 
were more prone to invasion than other areas. How-
ever, Goncalves et  al. (2022), Förster et  al. (2017), 
and Ayala et al. (2005) identified forest habitats as the 
most vulnerable to the pine invasion. Forest habitats 
become vulnerable to pine invasion when exposed to 
disturbances such as wildfire (Medawatte et al., 2010). 
Moreover, most invading pines were found within 
a 100-m buffer zone for all types of habitats, while 
encroachment declined sharply beyond the 50–100-m 
buffer zone. These results are in line with those of 
Ayala et al. (2005).

An important finding in this research was the 
decline in invasive pine in the Belihuloya region. 
Wijesundera (2008) had stated that Pinus caribaea 
had spread rapidly in several mid country areas and 
predicted that it could be a potential invasive alien 
in the near future. Due to social pressure from local 
communities, pine planting was stopped (Edirisinghe, 
2017), and the country has identified pines an inva-
sive species (Medawatte et al., 2010). In 2017, the Sri 
Lankan government implemented a project to plant 
indigenous plant species to develop an under-storey 
in the existing pine plantations (Office of the Cabi-
net of Ministers-Sri Lanka, 2017). This research gives 
insight into the invasion of pines in the intermedi-
ate zone and helps inform management strategies to 
maintain this downward trend.

While the study could have obtained better classifi-
cation accuracy using higher spatial or spectral resolu-
tion images, these are not free and are only available 
for recent years. Extending the study period to before 
2000 could also have reduced its limitation, but it 
would have been difficult to validate a classification 
prior to 2000 due to the absence of high-resolution 
images in Google Earth Pro.

Future research could seek to understand the spa-
tial variation in vegetation change and the reasons the 
invasive pines spread to certain areas. For example, 
the relationship between pine invasion and distur-
bances such as forest fires could be explored. Areas 
impacted by forest fire could be remotely sensed 
using satellite images. Furthermore, mapping and 
monitoring invasive pines in other climatic regions 
would also be relevant for forest management and 
conservation planning.
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Conclusion

This study demonstrated the extent of pine invasion 
in the Belihuloya region, Sri Lanka. Remote sensing 
has enabled the mapping of vegetation change in the 
study area between 2000 and 2021 using freely avail-
able Landsat data. A combination of spectral, tex-
tural, and topographical bands provided an effective 
solution for detecting the spread of invasive Pinus 
caribaea. This study provided evidence that pines 
have invaded the natural habitat in the intermediate 
climate areas of Sri Lanka, especially native forests, 
and grasslands but the extent of this invasion has 
declined between 2000 and 2021.

It is clear that remote sensing is a valuable tool 
for monitoring and understanding forest dynamics, 
and the use of freely available satellite images, such 
as Landsat, is particularly important for developing 
countries such as Sri Lanka. The availability of the 
Google Earth Engine platform and its extensive range 
of analysis functions and free processing power is also 

very beneficial for countries with limited financial 
resources.
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Appendix 1 Confusion matrix for the year 2000

Classification

Land cover Pine  
plantation

Broadleaf 
forest

Grassland Bare land Settlement Total

Reference Pine plantation 90 14 12 4 0 120
Broadleaf forest 0 96 24 0 0 120
Grassland 13 3 87 17 0 120
Bare land 6 5 30 79 0 120
Settlement 0 4 4 8 4 20
Total 109 122 157 108 4 500
User accuracy (%) 82 79 58 73 100
Producer accuracy (%) 75 84 72 66 20
Overall accuracy (%) 72
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Open Access  This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any 
medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Crea-
tive Commons licence, and indicate if changes were made. The 
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otherwise in a credit line to the material. If material is not 
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intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit 
http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Appendix 2 Confusion matrix for the year 2021

Classification

Land cover Pine  
plantation

Broadleaf 
forest

Grassland Bare land Settlement Total

Reference Pine plantation 116 4 0 0 0 120
Broadleaf forest 0 120 0 0 0 120
Grassland 0 4 104 12 0 120
Bare land 0 0 30 84 6 120
Settlement 0 18 18 18 66 120
Total 116 146 152 114 72 600
User accuracy (%) 100 82 68 74 92
Producer accuracy (%) 96 100 86 70 55
Overall accuracy (%) 81
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