Skip to main content

Advertisement

Log in

Simultaneous detection of various pathogenic Escherichia coli in water by sequencing multiplex PCR amplicons

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Waterborne diseases due to pathogen contamination in water are a serious problem all over the world. Accurate and simultaneous detection of pathogens in water is important to protect public health. In this study, we developed a method to simultaneously detect various pathogenic Escherichia coli by sequencing the amplicons of multiplex PCR. Our newly designed multiplex PCR amplified five genes for pathogenic E. coli (uidA, stx1, stx2, STh gene, and LT gene). Additional two PCR assays (for aggR and eae) were also designed and included in the amplicon sequencing analysis. The same assays were also used for digital PCR (dPCR). Strong positive correlations were observed between the sequence read count and the dPCR results for most of the genes targeted, suggesting that our multiplex PCR-amplicon sequencing approach could provide quantitative information. The method was also successfully applied to monitor the level of pathogenic E. coli in river water and wastewater samples. The approach shown here could be expanded by targeting genes for other pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  • Ahmed, W., Gyawali, P., & Toze, S. (2015). Quantitative PCR measurements of Escherichia coli including shiga toxin-producing E. coli (STEC) in animal feces and environmental waters. Environmental Science Technology, 49(5), 3084–3090. https://doi.org/10.1021/es505477n

  • Ahmed, W., Zhang, Q., Lobos, A., Senkbeil, J., Sadowsky, M. J., Harwood, V. J., Saeidi, N., Marinoni, O., & Ishii, S. (2018). Precipitation influences pathogenic bacteria and antibiotic resistance gene abundance in storm drain outfalls in coastal sub-tropical waters. Environment International, 116, 308–318. https://doi.org/10.1016/j.envint.2018.04.005

    Article  CAS  Google Scholar 

  • Boisen, N., Melton-Celsa, A. R., Scheutz, F., O’Brien, A. D., & Nataro, J. P. (2015). Shiga toxin 2a and enteroaggregative Escherichia coli – a deadly combination. Gut Microbes, 6, 272–278. https://doi.org/10.1080/19490976.2015.1054591

    Article  CAS  Google Scholar 

  • Bradshaw, J. K., Snyder, B. J., Oladeinde, A., Spidle, D., Berrang, M. E., Meinersmann, R. J., Oakley, B., Sidle, R. C., Sullivan, K., & Molina, M. (2016). Characterizing relationships among fecal indicator bacteria, microbial source tracking markers, and associated waterborne pathogen occurrence in stream water and sediments in a mixed land use watershed. Water Research, 101, 498–509. https://doi.org/10.1016/j.watres.2016.05.014

    Article  CAS  Google Scholar 

  • Canizalez-Roman, A., Velazquez-Roman, J., Valdez-Flores, M. A., Flores-Villaseñor, H., Vidal, J. E., Muro-Amador, S., Guadrón-Llanos, A. M., Gonzalez-Nuñez, E., Medina-Serrano, J., Tapia-Pastrana, G., & León-Sicairos, N. (2019). Detection of antimicrobial-resistance diarrheagenic Escherichia coli strains in surface water used to irrigate food products in the northwest of Mexico. International Journal of Food Microbiology, 304, 1–10. https://doi.org/10.1016/j.ijfoodmicro.2019.05.017

  • Cheng, X., Xu, J., Smith, G., Nirmalakhandan, N., & Zhang, Y. (2021). Metagenomic profiling of antibiotic resistance and virulence removal: Activated sludge vs. algal wastewater treatment system. Journal of Environmental Management, 295, 113129. https://doi.org/10.1016/j.jenvman.2021.113129

  • Cui, Q., Huang, Y., Wang, H., & Fang, T. (2019). Diversity and abundance of bacterial pathogens in urban rivers impacted by domestic sewage. Environmental Pollution, 249, 24–35. https://doi.org/10.1016/j.envpol.2019.02.094

    Article  CAS  Google Scholar 

  • Duris, J. W., Reif, A. G., Krouse, D. K., & Issacs, N. M. (2013). Factors related to occurrence and distribution of selected bacterial and protozoan pathogens in Pennsylvania streams. Water Research, 47, 300–314. https://doi.org/10.1016/j.watres.2012.10.006

    Article  CAS  Google Scholar 

  • Farajzadeh-Sheikh, A., Savari, M., & Afzali, M. (2020). Distribution of genes encoding virulence factors and the genetic diversity of enteroinvasive Escherichia coli (EIEC) isolates from patients with diarrhea in Ahvaz, Iran. Infection and Drug Resistance, 13, 119–127. https://doi.org/10.2147/IDR.S235009

    Article  CAS  Google Scholar 

  • Goh, S. G., Saeidi, N., Gu, X., Vergara, G. G. R., Liang, L., Fang, H., Kitajima, M., Kushmaro, A., & Gin, K. Y. H. (2019). Occurrence of microbial indicators, pathogenic bacteria and viruses in tropical surface waters subject to contrasting land use. Water Research, 150, 200–215. https://doi.org/10.1016/j.watres.2018.11.058

    Article  CAS  Google Scholar 

  • Harismendy, O., Ng, P. C., Strausberg, R. L., Wang, X., Stockwell, T. B., Beeson, K. Y., Schork, N. J., Murray, S. S., Topol, E. J., Levy, S., & Frazer, K. A. (2009). Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biology, 10(3), R32. https://doi.org/10.1186/gb-2009-10-3-r32

    Article  CAS  Google Scholar 

  • Hsu, B. M., Wu, S. F., Huang, S. W., Tseng, Y. J., Ji, D. D., Chen, J. S., & Shih, F. C. (2010). Differentiation and identification of Shigella spp. and enteroinvasive Escherichia coli in environmental waters by a molecular method and biochemical test. Water Research, 44(3), 949–955. https://doi.org/10.1016/j.watres.2009.10.004

  • Huang, W., Hsu, M., Su, J., Ji, D., Lin, C., Chen, L., Shih, C., Kao, M., & Chiu, C. (2012). Occurrence of diarrheagenic Escherichia coli genes in raw water of water treatment plants. Environmental Science and Pollution Research, 19, 2776–2783. https://doi.org/10.1007/s11356-012-0777-4

    Article  CAS  Google Scholar 

  • Huang, W. C., Hsu, B. M., Kao, P. M., Tao, C. W., Ho, Y. N., Kuo, C. W., & Huang, Y. L. (2016). Seasonal distribution and prevalence of diarrheagenic Escherichia coli in different aquatic environments in Taiwan. Ecotoxicology and Environmental Safety, 124, 37–41. https://doi.org/10.1016/j.ecoenv.2015.09.040

    Article  CAS  Google Scholar 

  • Ishii, S. (2020). Quantification of antibiotic resistance genes for environmental monitoring: Current methods and future directions. Current Opinion Environmental Science & Health, 16, 47–53. https://doi.org/10.1016/j.coesh.2020.02.004

    Article  Google Scholar 

  • Ishii, S., Nakamura, T., Ozawa, S., Kobayashi, A., Sano, D., & Okabe, S. (2014). Water quality monitoring and risk assessment by simultaneous multipathogen quantification. Environmental Science and Technology, 48(9), 4744–4749. https://doi.org/10.1021/es500578s

    Article  CAS  Google Scholar 

  • Ishii, S., Segawa, T., & Okabe, S. (2013). Simultaneous quantification of multiple food- and waterborne pathogens by use of microfluidic quantitative PCR. Applied and Environment Microbiology, 79, 2891–2898. https://doi.org/10.1128/AEM.00205-13

    Article  CAS  Google Scholar 

  • Jikumaru, A., Ishii, S., Fukudome, T., Kawahara, Y., Iguchi, A., Masago, Y., Nukazawa, K., & Suzuki, Y. (2020). Fast, sensitive, and reliable detection of waterborne pathogens by digital PCR after coagulation and foam concentration. Journal of Bioscience and Bioengineering, 130, 76–81. https://doi.org/10.1016/j.jbiosc.2020.02.004

    Article  CAS  Google Scholar 

  • Kobayashi, M., Zhang, Q., Segawa, T., Maeda, M., Hirano, R., Okabe, S., & Ishii, S. (2022). Temporal dynamics of Campylobacter and Arcobacter in a freshwater lake that receives fecal inputs from migratory geese. Water Research, 217, 118397. https://doi.org/10.1016/j.watres.2022.118397

    Article  CAS  Google Scholar 

  • Kong, R. Y. C., So, C. L., Law, W. F., & Wu, R. S. S. (1999). A sensitive and versatile multiplex PCR system for the rapid detection of enterotoxigenic (ETEC), enterohaemorrhagic (EHEC) and enteropathogenic (EPEC) strains of Escherichia coli. Marine Pollution Bulletin, 38(12), 1207–1215. https://doi.org/10.1016/S0025-326X(99)00164-2

    Article  CAS  Google Scholar 

  • Kubomura, A., Misaki, T., Homma, S., Matsuo, C., & Okabe, N. (2017). Phenotypic and molecular characterization of enteroaggregative Escherichia coli isolated in Kawasaki Japan. Japanese Journal of Infectious Diseases, 70, 507–512. https://doi.org/10.7883/yoken.JJID.2016.387

    Article  CAS  Google Scholar 

  • Lääveri, T., Pakkanen, S. H., Antikainen, J., Riutta, J., Mero, S., Kirveskari, J., & Kantele, A. (2014). High number of diarrhoeal co-infections in travellers to Benin, West Africa. BMC Infectious Disease, 14(81). https://doi.org/10.1186/1471-2334-14-81

  • Li, B., Saingam, P., Ishii, S., & Yan, T. (2019). Multiplex PCR coupled with direct amplicon sequencing for simultaneous detection of numerous waterborne pathogens. Applied Microbiology and Biotechnology, 103, 953–961. https://doi.org/10.1007/s00253-018-9498-z

    Article  CAS  Google Scholar 

  • Martínez-Porchas, M., & Vargas-Albores, F. (2017). Microbial metagenomics in aquaculture: A potential tool for a deeper insight into the activity. Reviews in Aquaculture, 9(1), 42–56. https://doi.org/10.1111/raq.12102

    Article  Google Scholar 

  • McQuaig, S., Griffith, J., & Harwood, V. J. (2012). Association of fecal indicator bacteria with human viruses and microbial source tracking markers at coastal beaches impacted by nonpoint source pollution. Applied and Environment Microbiology, 78(18), 6423–6432. https://doi.org/10.1128/AEM.00024-12

    Article  CAS  Google Scholar 

  • Nataro, J. P., & Kaper, J. B. (1998). Diarrheagenic Escherichia coli. Clinical Microbiology Reviews, 11, 142–201. https://doi.org/10.1128/CMR.11.1.142

    Article  CAS  Google Scholar 

  • Oshiki, M., Miura, T., Kazama, S., Segawa, T., Ishii, S., Hatamoto, M., Yamaguchi, T., Kubota, K., Iguchi, A., Tagawa, T., Okubo, T., Uemura, S., Harada, H., Kobayashi, N., Araki, N., & Sano, D. (2018). Microfluidic PCR amplification and MiSeq amplicon sequencing techniques for high-throughput detection and genotyping of human pathogenic RNA viruses in human feces, sewage, and oysters. Frontiers in Microbiology, 9, 830. https://doi.org/10.3389/fmicb.2018.00830

    Article  Google Scholar 

  • Pasqua, M., Michelacci, V., Di Martino, M. L., Tozzoli, R., Grossi, M., Colonna, B., Morabito, S., & Prosseda, G. (2017). The intriguing evolutionary journey of enteroinvasive E. coli (EIEC) toward pathogenicity. Frontiers in Microbiology, 8, 2390. https://doi.org/10.3389/fmicb.2017.02390

  • Rooks, D. J., Libberton, B., Woodward, M. J., Allison, H. E., & McCarthy, A. J. (2012). Development and application of a method for the purification of free shigatoxigenic bacteriophage from environmental samples. Journal of Microbiol Methods, 91, 240–245. https://doi.org/10.1016/j.mimet.2012.08.017

    Article  CAS  Google Scholar 

  • Silkie, S. S., Tolcher, M. P., & Nelson, K. L. (2008). Reagent decontamination to eliminate false-positives in Escherichia coli qPCR. Journal of Microbiol Methods, 72, 275–282. https://doi.org/10.1016/j.mimet.2007.12.011

    Article  CAS  Google Scholar 

  • Sunderland, D., Graczyk, T. K., Tamang, L., & Breysse, P. N. (2007). Impact of bathers on levels of Cryptosporidium parvum oocysts and Giardia lamblia cysts in recreational beach waters. Water Research, 41, 3483–3489. https://doi.org/10.1016/j.watres.2007.05.009

  • Tang, Y., Liang, Z., Li, G., Zhao, H., & An, T. (2021). Metagenomic profiles and health risks of pathogens and antibiotic resistance genes in various industrial wastewaters and the associated receiving surface water. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.131224

    Article  Google Scholar 

  • Toze, S. (1999). PCR and the detection of microbial pathogens in water and wastewater. Water Research, 33(17), 3545–3556. https://doi.org/10.1016/S0043-1354(99)00071-8

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency. (1996). Environmental indicators of water quality in the United States, EPA-841-R-96–002., U.S. Environmental Protection Agency., Office of Water 4503F.

  • Walk, S. T., Alm, E. W., Gordon, D. M., Ram, J. L., Toranzos, G. A., Tiedje, J. M., & Whittam, T. S. (2009). Cryptic lineages of the genus Escherichia. Applied and Environment Microbiology, 75, 6534–6544. https://doi.org/10.1128/AEM.01262-09

    Article  CAS  Google Scholar 

  • World Health Organization. (2001). Water quality: Guidelines, standards and health: Assessment of risk and risk management for water-related infectious diseases, 289–316.

  • World Health Organization. (2019). WHO global water, sanitation and hygiene annual report 2018, WHO/CED/PHE/WSH/19.147.

  • Zhang, Q., Al-Ghalith, G. A., Kobayashi, M., Segawa, T., Maeda, M., Okabe, S., Knights, D., & Ishii, S. (2018). High-throughput flaA Short variable region sequencing to assess Campylobacter diversity in fecal samples from birds. Frontiers in Microbiology, 9, 2201. https://doi.org/10.3389/fmicb.2018.02201

    Article  Google Scholar 

  • Zhang, Q., Eichmiller, J. J., Staley, C., Sadowsky, M. J., & Ishii, S. (2016). Correlations between pathogen concentration and fecal indicator marker genes in beach environments. Science of the Total Environment, 573, 826–830. https://doi.org/10.1016/j.scitotenv.2016.08.122

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Tetsuya Hayashi and Professor Yoshitoshi Ogura for their advice on experimental design. We also thank Tomoko Fukudome, Yasuhiko Kawahara at the Miyazaki Prefectural Institute of Public Health and Environment for providing us with a DNA standard solution containing the target gene. The Bioengineering Lab. provided various information and suggestions for the sequencing data analysis.

Funding

This publication was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number JP 21H0362021.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, supervision, investigation, writing—original draft, Y.S.; investigation, formal analysis, methodology, validation, H.S.; visualization, writing—review and editing, S.T.; methodology, Y.H., T.M.; validation, writing—review and editing, K.N; validation, A.I, Y.M.; formal analysis, software, validation, visualization, writing—review and editing, S.I. funding acquisition, Y.S. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yoshihiro Suzuki.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, Y., Shimizu, H., Tamai, S. et al. Simultaneous detection of various pathogenic Escherichia coli in water by sequencing multiplex PCR amplicons. Environ Monit Assess 195, 264 (2023). https://doi.org/10.1007/s10661-022-10863-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10863-6

Keywords

Navigation