Skip to main content

Advertisement

Log in

Measuring students’ exposure to particulate matter (PM) pollution across microenvironments and seasons using personal air monitors

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Particulate matter (PM) pollution is a significant concern in public health, yet children’s exposure is not adequately characterized. This study evaluated PM exposures among primary school-aged children in NYS across different microenvironments. This study helps fill existing knowledge gaps by characterizing PM exposure among this population across seasons and microenvironments. Sixty students were recruited from randomly selected public primary schools representing various socioeconomic statuses. Individual real-time exposure to PM2.5 was measured continuously using AirBeam personal monitors for 48 h. Children were consistently exposed to higher PM2.5 concentrations in the fall (median: fall = 2.84, spring = 2.31, winter = 0.90 µg/m3). At school, 2.19% of PM2.5 measurements exceeded the EPA annual fine particle standard, 12 µg/m3 (winter = 7.38%, fall = 2.39%, spring = 1.38%). In classrooms, PM1-4 concentrations were higher in spring and overnight, while PM7-10 concentrations were higher in fall and school hours. At home, 37.2% of fall measurements exceeded EPA standards (spring = 10.39%, winter = 4.37%). Overall, PM2.5 levels in classrooms and during transportation never rose above the EPA standard for any significant length of time. However, PM2.5 levels routinely exceeded these standards at home, in the fall, and the evening. More extensive studies are needed to confirm these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request. Importantly, the EPA prevents revealing identifiable information for students or schools.

References

  • Borghi, F., Spinazzè, A., Campagnolo, D., Rovelli, S., Cattaneo, A., & Cavallo, D. M. (2018). Precision and accuracy of a direct-reading miniaturized monitor in PM2.5 exposure assessment. Sensors (Switzerland), 18(9), 1–21. https://doi.org/10.3390/s18093089

  • Bruce, N., Smith, K. R., Balmes, J., Pope, D., Dherani, M., Zhang, J., Duan, X., Bates, M., Lin, W., Adair-Rohani, H., Mehta, S., Cohen, A., & Mccracken, J. (2014). WHO Indoor Air Quality Guidelines: Household Fuel Combustion - Review 4: Health effects of household air pollution (HAP). 1–104. http://www.who.int/indoorair/guidelines/hhfc

  • Caiazzo, F., Ashok, A., Waitz, I. A., Yim, S. H. L., & Barrett, S. R. H. (2013). Air pollution and early deaths in the United States. Part I: Quantifying the impact of major sectors in 2005. Atmospheric Environment, 79, 198–208. https://doi.org/10.1016/j.atmosenv.2013.05.081

    Article  CAS  Google Scholar 

  • Calderón-Garcidueñas, L., Engle, R., Antonieta Mora-Tiscareño, A. M., Styner, M., Gómez-Garza, G., Zhu, H., Jewells, V., Torres-Jardón, R., Romero, L., Monroy-Acosta, M. E., Bryant, C., González-González, L. O., Medina-Cortina, H., & D’Angiulli, A. (2011). Exposure to severe urban air pollution influences cognitive outcomes, brain volume and systemic inflammation in clinically healthy children. Brain and Cognition, 77(3), 345–355. https://doi.org/10.1016/j.bandc.2011.09.006

    Article  Google Scholar 

  • Carrion-Matta, A., Kang, C. M., Gaffin, J. M., Hauptman, M., Phipatanakul, W., Koutrakis, P., & Gold, D. R. (2019). Classroom indoor PM2.5 sources and exposures in inner-city schools. Environment International, 131(June), 104968. https://doi.org/10.1016/j.envint.2019.104968

  • Clifford, A., Lang, L., Chen, R., Anstey, K. J., & Seaton, A. (2016). Exposure to air pollution and cognitive functioning across the life course - A systematic literature review. Environmental Research, 147, 383–398. https://doi.org/10.1016/j.envres.2016.01.018

    Article  CAS  Google Scholar 

  • Cohen, A. (2010). Achieving healthy school siting and planning policies: Understanding shared concerns of environmental planners, public health professionals, and educators. New Solutions, 20(1), 49–72. https://doi.org/10.2190/NS.20.1.d

    Article  Google Scholar 

  • Csobod, É., Annesi-Maesano, I., Carrer, P., Kephalopoulos, S., Madureira, J., Rudnai, P., Fernandes, E. de O., Barrero-Moreno, J., Beregszászi, T., Hyvärinen, A., Moshammer, H., Norback, D., Páldy, A., Pándics, T., Sestini, P., Stranger, M., Täubel, M., Varró, M. J., Gabriela-Ventura, E., & Viegi, G. (2014). SINPHONIE – Schools Indoor Pollution and Health Observatory Network in Europe - Final Report (Issue January). https://doi.org/10.2788/99220

  • Delfino, R. J., Quintana, P. J. E., Floro, J., Gastañaga, V. M., Samimi, B. S., Kleinman, M. T., Liu, L. J. S., Bufalino, C., Wu, C. F., & McLaren, C. E. (2004). Association of FEV1 in asthmatic children with personal and microenvironmental exposure to airborne particulate matter. Environmental Health Perspectives, 112(8), 932–941. https://doi.org/10.1289/ehp.6815

    Article  CAS  Google Scholar 

  • D’Eon, J. C., Stirchak, L. T., Brown, A. S., & Saifuddin, Y. (2021). Project-based learning experience that uses portable air sensors to characterize indoor and outdoor air quality. Journal of Chemical Education, 98(2), 445–453. https://doi.org/10.1021/acs.jchemed.0c00222

    Article  CAS  Google Scholar 

  • DeWitt, H. L., Crow, W. L., & Flowers, B. (2019). Performance evaluation of ozone and particulate matter sensors. Journal of the Air and Waste Management Association (Vol. 70, Issue 3, pp. 292–306). https://doi.org/10.1080/10962247.2020.1713921

  • EPA. (2021). Particulate matter (PM) basics. https://doi.org/10.1007/978-1-4614-1533-6_100949

  • Fisk, W. J. (2017). The ventilation problem in schools: Literature review. Indoor Air, 27(6), 1039–1051. https://doi.org/10.1111/ina.12403

    Article  CAS  Google Scholar 

  • Fleming, S., Thompson, M., Stevens, R., Heneghan, C., Plüddemann, A., MacOnochie, I., Tarassenko, L., & Mant, D. (2011). Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: A systematic review of observational studies. The Lancet, 377(9770), 1011–1018. https://doi.org/10.1016/S0140-6736(10)62226-X

    Article  Google Scholar 

  • Folkerth, M., Adcock, K., Singler, M., & Bishop, E. (2020). Citizen science: A new approach to smoke-free policy advocacy. Health Promotion Practice (Vol. 21, Issue 1_suppl, pp. 82S-88S). https://doi.org/10.1177/1524839919883586

  • Gaffin, J. M., Petty, C. R., Hauptman, M., Kang, C. M., Wolfson, J. M., Abu Awad, Y., Di, Q., Lai, P. S., Sheehan, W. J., Baxi, S., Coull, B. A., Schwartz, J. D., Gold, Di., & R., Koutrakis, P., & Phipatanakul, W. (2017). Modeling indoor particulate exposures in inner-city school classrooms. Journal of Exposure Science and Environmental Epidemiology, 27(5), 451–457. https://doi.org/10.1038/jes.2016.52

    Article  CAS  Google Scholar 

  • HabitatMap. (2021). AirBeam. https://www.habitatmap.org/airbeam/buy-it-now

  • Hopke, P. K., Croft, D., Zhang, W., Lin, S., Masiol, M., Squizzato, S., Thurston, S. W., van Wijngaarden, E., Utell, M. J., & Rich, D. Q. (2019). Changes in the acute response of respiratory diseases to PM 2.5 in New York State from 2005 to 2016. Science of the Total Environment, 677, 328–339. https://doi.org/10.1016/j.scitotenv.2019.04.357

    Article  CAS  Google Scholar 

  • Huxley-Reicher, B., Folger, M., & Casale, M. (2021). Trouble in the air: Millions of Americans breathed polluted air in 2020. https://doi.org/10.1038/251178b0

  • Johnston, J. E., Juarez, Z., Navarro, S., Hernandez, A., & Gutschow, W. (2020). Youth engaged participatory air monitoring: A ‘day in the life’ in urban environmental justice communities. International Journal of Environmental Research and Public Health, 17(1). https://doi.org/10.3390/ijerph17010093

  • Korto¸ci, P., Motlagh, N. H., Zaidan, M. A., Fung, P. L., Varjonen, S., Rebeiro-Hargrave, A., Niemi, J. V., Nurmi, P., Hussein, T., Pet¨aj¨a, T., Kulmala, M., & Tarkoma, S. (2021). Air pollution exposure monitoring using portable low-cost air quality sensors. Smart Health, 100241. https://doi.org/10.1016/j.smhl.2021.100241

  • Kumar, N., Chu, A., & Foster, A. (2008). Remote sensing of ambient particles in Delhi and its environs: Estimation and validation. International Journal of Remote Sensing, 29(12), 3383–3405. https://doi.org/10.1080/01431160701474545

    Article  CAS  Google Scholar 

  • MacNaughton, P., Eitland, E., Kloog, I., Schwartz, J., & Allen, J. (2017). Impact of particulate matter exposure and surrounding “Greenness” on chronic absenteeism in Massachusetts public schools. International Journal of Environmental Research and Public Health, 14(2). https://doi.org/10.3390/ijerph14020207

  • Mazaheri, M., Clifford, S., Yeganeh, B., Viana, M., Rizza, V., Flament, R., Buonanno, G., & Morawska, L. (2018). Investigations into factors affecting personal exposure to particles in urban microenvironments using low-cost sensors. Environment International, 120, 496–504. https://doi.org/10.1016/j.envint.2018.08.033

    Article  CAS  Google Scholar 

  • Met One Instruments. (2014). AEROCET 531S Manual. https://metone.com/wp-content/uploads/2019/10/AEROCET-531S-9800-Rev-H.pdf

  • Mohai, P., Kweon, B. S., Lee, S., & Ard, K. (2011). Air pollution around schools is linked to poorer student health and academic performance. Health Affairs, 30(5), 852–862. https://doi.org/10.1377/hlthaff.2011.0077

    Article  Google Scholar 

  • Morawska, L., Ayoko, G. A., Bae, G. N., Buonanno, G., Chao, C. Y. H., Clifford, S., Fu, S. C., Hänninen, O., He, C., Isaxon, C., Mazaheri, M., Salthammer, T., Waring, M. S., & Wierzbicka, A. (2017). Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure. Environment International, 108(July), 75–83. https://doi.org/10.1016/j.envint.2017.07.025

    Article  CAS  Google Scholar 

  • Mukherjee, A., Stanton, L. G., Graham, A. R., & Roberts, P. T. (2017). Assessing the utility of low-cost particulate matter sensors over a 12-week period in the Cuyama valley of California. Sensors (Switzerland), 17(8). https://doi.org/10.3390/s17081805

  • Nguyen, N. H., Nguyen, H. X., Le, T. T. B., & Vu, C. D. (2021). Evaluating low-cost commercially available sensors for air quality monitoring and application of sensor calibration methods for improving accuracy. Open Journal of Air Pollution, 10(01), 1–17. https://doi.org/10.4236/ojap.2021.101001

    Article  CAS  Google Scholar 

  • Rabinovitch, N., Adams, C. D., Strand, M., Koehler, K., & Volckens, J. (2016). Within-microenvironment exposure to particulate matter and health effects in children with asthma: A pilot study utilizing real-time personal monitoring with GPS interface. Environmental Health, 15(1), 1–10. https://doi.org/10.1186/s12940-016-0181-5

    Article  Google Scholar 

  • Rovelli, S., Cattaneo, A., Nuzzi, C. P., Spinazzè, A., Piazza, S., Carrer, P., & Cavallo, D. M. (2014). Airborne particulate matter in school classrooms of northern Italy. International Journal of Environmental Research and Public Health, 11(2), 1398–1421. https://doi.org/10.3390/ijerph110201398

    Article  Google Scholar 

  • Sánchez-Soberón, F., Rovira, J., Sierra, J., Mari, M., Domingo, J. L., & Schuhmacher, M. (2019). Seasonal characterization and dosimetry-assisted risk assessment of indoor particulate matter (PM10–2.5, PM2.5–0.25, and PM0.25) collected in different schools. Environmental Research, 175(May), 287–296. https://doi.org/10.1016/j.envres.2019.05.035

  • Sousan, S., Koehler, K., Hallett, L., & Peters, T. M. (2017). Evaluation of consumer monitors to measure particulate matter. Journal of Aerosol Science, 107, 123–133. https://doi.org/10.1016/j.jaerosci.2017.02.013

    Article  CAS  Google Scholar 

  • Stabile, L., Dell’Isola, M., Russi, A., Massimo, A., & Buonanno, G. (2017). The effect of natural ventilation strategy on indoor air quality in schools. Science of the Total Environment, 595, 894–902. https://doi.org/10.1016/j.scitotenv.2017.03.048

    Article  CAS  Google Scholar 

  • Stranger, M., Potgieter-Vermaak, S. S., & Van Grieken, R. (2008). Characterization of indoor air quality in primary schools in Antwerp Belgium. Indoor Air, 18(6), 454–463. https://doi.org/10.1111/j.1600-0668.2008.00545.x

    Article  CAS  Google Scholar 

  • Widiana, D. R., Wang, Y. F., You, S. J., Yang, H. H., Wang, L. C., Tsai, J. H., & Chen, H. M. (2019). Air pollution profiles and health risk assessment of ambient volatile organic compounds above a municipal wastewater treatment plant. Taiwan. Aerosol and Air Quality Research, 19(2), 375–382. https://doi.org/10.4209/aaqr.2018.11.0408

    Article  CAS  Google Scholar 

  • World Health Organization Regional Office for Europe. (2013). Review of evidence on health aspects of air pollution - REVIHAAP Project. https://apps.who.int/iris/bitstream/handle/10665/341712/WHO-EURO-2013-4101-43860-61757-eng.pdf?sequence=1&isAllowed=y

  • Zhang, Q., Gangupomu, R. H., Ramirez, D., & Zhu, Y. (2010). Measurement of ultrafine particles and other air pollutants emitted by cooking activities. International Journal of Environmental Research and Public Health, 7(4), 1744–1759. https://doi.org/10.3390/ijerph7041744

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the previous researchers who conducted the in-school field sampling and measurements. Sincere gratitude is also extended to the teachers, principals, and superintendents of the primary schools and university departments that participated in the study. Lastly, the authors thank the United States Environmental Protection Agency for funding this vital project. This work will help protect children’s health and could not have been completed without your help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao Lin.

Ethics declarations

Human subjects’ approval statement

The University at Albany Institutional Review Board (IRB) approved the methods in this study, protocol number: 16-X-323–01. Each adult (college student, teacher) involved in the study and each participating child’s parental guardian signed a consent form.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Fig. 4
figure 4

Comparison between Aerocet and AirBeam measurements during school hours by season

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryan, I., Deng, X., Thurston, G. et al. Measuring students’ exposure to particulate matter (PM) pollution across microenvironments and seasons using personal air monitors. Environ Monit Assess 195, 103 (2023). https://doi.org/10.1007/s10661-022-10624-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10624-5

Keywords

Navigation