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of quantifying and forecasting particulate matter. 
Several deterministic and deep learning models have 
been employed in the recent years to forecast the con-
centration of particulate matter. Among them, deep 
learning models have shown promising results when 
it comes to modeling time series data and forecast-
ing it. We have explored recurrent neural networks 
with LSTM model which shows potential to predict 
the particulate matter ( PM

2.5
 ) based on multi-step 

multi-variate data of two of the most polluted regions 
of South Asia, Beijing, China and Punjab, Pakistan 
effectively. The LSTM model is tuned using Bayes-
ian optimization technique to employ the appropriate 
hyper-parameters and weight initialization strategies 
based on the dataset. The model was able to predict 
PM

2.5
 for the next hour with root-mean-square error 

(RMSE) of 0.1913 (91.5% accuracy) and this error 
gradually increases with the number of time steps 
with next 24 hours steps prediction having RMSE 
of 0.7290. While in case of Punjab dataset with data 
recorded once a day, the RMSE for the next day fore-
cast is 0.2192. These multi-step short-term forecasts 
would play a pivotal role in establishing an early 
warning system based on the air quality index (AQI) 
calculated and enable the government in enacting pol-
icies to contain it.
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Abstract  Particulate matter is one of the key con-
tributors of air pollution and climate change. Long-
term exposure to constituents of air pollutants has 
exerted serious health implications in both humans 
and plants leading to a detrimental impact on econ-
omy. Among the pollutants contributing to air quality 
determination, particulate matter has been linked to 
serious health implications causing pulmonary com-
plications, cardiovascular diseases, growth retarda-
tion and ultimately death. In agriculture, crop yield is 
also negatively impacted by the deposition of particu-
late matter on stomata of the plant which is alarming 
and can cause food security concerns. The deleterious 
impact of air pollutants on human health, agricultural 
and economic well-being highlights the importance 
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Introduction

Due to their detrimental impact on climate change, 
human, and plant health, fine dust particles known as 
particulate matter (PM) in the ambient atmosphere 
are of significant importance in the research domain. 
The major source contributing to the production of 
particulate matter is anthropogenic activities which 
results in complex mixture of fine particles and water 
droplets. South Asian countries in particular have 
the most polluted cities in the world with particulate 
matter concentrations well above the standards set 
by WHO ( PM

2.5
 : 25 �g∕m3 24-hour mean, PM

10
 : 50 

�g∕m3 24-hour mean).
Particulate matter has been observed to have an 

adverse effect on human health by causing cardio-
vascular, pulmonary diseases and increase the risk 
of lung cancer. Evidence suggests that deleterious 
health effects are attributed to long-term exposure to 
combustion-derived nano-particles which augments 
atherogenesis and causes vascular and acute adverse 
thrombotic effects (Mills et  al., 2009). They have 
also been observed to impact food safety, since PM

2.5
 

acts as carrier for hazardous materials such as heavy 
metal, the accumulation of which causes organ dam-
age (Noh et al., 2019). The metallic and other chemi-
cal elements in PM

2.5
 can be attributed to cause health 

issues such as pneumonia, asthma, cardiovascular dis-
ease, and neurological diseases, the combined effect 
of which can be fatal (Park, 2021). Moreover, during 
the pandemic studies were carried out to find asso-
ciation between particulate matter ( PM

2.5
 and PM

10
 ) 

with some suggesting that these fine particles act as 
transportation agent for SARS-CoV-2 in the COVID-
19 pandemic (Nor et  al., 2021). Negative binomial 
mixed effect models were employed by (Solimini 
et  al., 2021) globally across 63 countries to observe 
the statistical correlation of climate, air pollution 
parameters on COVID-19 cases which were sugges-
tive of a link between them. Thus, the quantification 
and analysis of trends of air pollutants is of prime 
importance due to their pivotal role on the human, 
plant life and economy. Forecasting the air pollution 
and air quality index (Gul & Khan, 2020) would ena-
ble the government and the respective environmental 
protection agencies in enacting policies to contain the 
outbreak of airborne diseases and educate the masses 
about the potential hazards associated with the con-
centration of a particular pollutant.

To study the trends of pollutants and their impact on 
different domains, several deterministic and statistical 
models were explored (Bai et  al., 2018;  Javadinejad 
et al., 2021; Ostad-Ali-Askari et al., 2017 Reddy et al., 
2017). The conducive nature of meteorological param-
eters in the forecasting of air pollutants and their rapid 
change in concentration due to the former presents a 
challenge in accurately modeling the patterns. Deep 
learning models in particular were found to be prom-
ising due to the ability of recurrent neural networks 
(RNN) to emulate the trends in time series to predict 
pollutants.

In this article, we present the recurrent neural net-
work, long short-term memory (LSTM) model tuned 
by Bayesian optimization strategy to effectively learn 
the trends and model them. The network is trained on 
two unique datasets of different terrain belonging to 
two of the most polluted regions in the world, Beijing 
China and Panjab, Pakistan. A multi-step multi-variate 
model of LSTM is introduced which emulates the pat-
tern of particulate matter by effectively encapsulating 
the historical events and quantifies the air quality in a 
region. The proposed model would enable the air qual-
ity regulatory bodies to take timely decisions to con-
trol the emissions, inform the general public about the 
detrimental health implications and present solutions 
while monitoring the short-term trend of pollutants.

Literature survey

Worldwide Epidemiological and toxicological stud-
ies carried out have suggested a strong association 
between exposure to particulate matter and impend-
ing adverse health effects comprising of pulmonary 
disease, cardiovascular disease, lung cancer, and 
premature mortality (Dockery et al., 1994; Lelieveld 
et al., 2015; Pope et al., 1995).

Evidence from recent studies suggests that the 
most harmful effects of particulate matter are related 
to the size of the particle. Its exposure effectiveness 
level is greatly affected by weather, topography, con-
centration, and source. As the size of the particle 
decreases, there is an increase in their acidity and 
their ability to penetrate the lower pathway of res-
piratory system (Kim et  al., 2015). The short-term 
impact of fine particles and meteorological extremes 
on human health was carried out in Seoul, South 
Korea by observing their correlation with mortality 
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due to cerebrovascular diseases. It was observed that 
the impact of particulate matter on human health like 
asthma, pneumonia, neurological diseases was more 
pronounced under extreme weather conditions which 
can often lead to death (Park, 2021). The impact of 
long-term exposure to PM

2.5
 and its relation to mor-

tality rate was explored in (Wang et  al., 2020). The 
study comprised of 53 million senior Medicare ben-
eficiaries living across America. It was observed that 
exposure to PM

2.5
 is responsible for causing respira-

tory, cardiovascular, and certain variants of cancer. 
The data from the study showed that blacks, younger 
and urban beneficiaries were most vulnerable to the 
consequences of long-term exposure to PM

2.5
 . Meta-

analysis was carried out in (Farhadi et  al., 2020) to 
substantiate the relationship between exposure to 
PM

2.5
 and myocardial infraction hospitalizations. The 

investigation found that PM
2.5

 plays a key role in the 
development of myocardial infractions in humans. 
Airborne microorganisms are pervasive in the atmos-
phere and are vital constituent of particulate matter 
which can lead to wide range of diseases in micro-
organisms due to their pathogenic nature (Zhai et al., 
2018). A database for toxicity score for source spe-
cific particulate matter was constructed by (Park 
et al., 2018) to get an insight of their role in trigger-
ing adverse health effects and this information can 
assist the decision makers take steps to create appo-
site PM

2.5
 abatement policies. In (Gul & Khan, 2020) 

an LSTM inspired hazard level prediction system was 
developed using meteorological and pollutants data 
of two of the most polluted cities in the world. The 
hazard level of the next 24 hours of both cities was 
predicted with an average accuracy of 97%.

Due to the detrimental effect of PM
2.5

 and PM
10

 
on human health, the determination of their concen-
tration is of great importance. In (Doreswamy et  al., 
2020), several machine learning models are evaluated 
to forecast the pollutant concentration of Taiwan with 
chronological data of 76 different stations recorded 
over a span of 5 years. It was observed that the gradient 
boosting regression algorithm was able to perform bet-
ter in comparison with other regression models on the 
TAQMN dataset. The seamless modelling of air qual-
ity forecast system would assist the decision makers 
to improve the quality of air and its associated impact 
on human health, agriculture, transport, economy, cli-
mate, and ecosystems. A novel SVR-based model is 
introduced in (Hu et al., 2016) and trained on static and 

dynamic data of air pollutants concentration in Sydney. 
In comparison with ANN model, it was observed that 
the SVR model developed was able to accurately fore-
cast the hourly concentration of air pollutants. Due to 
dissemination of air pollutants through wind direction 
and speed, the concentration of PM

2.5
 is strongly cor-

related with spatiotemporal characteristics. To leverage 
the spatial and temporal dependency of air pollutant for 
determination of air quality, weighted long short-term 
memory neural network extended model (WLSTME) 
was introduced in (Xiao et al., 2020). It was observed 
that based on the pollutant and meteorological data of 
Beijing, Tianjin, and Hebei over the period of 2015 to 
2017, the network showed exceptional performance 
in comparison with STSVR, LSTME, and GWR. A 
forecasting model using LSTM is introduced in (Han 
et al., 2018) which uses sensory data of Aerosol Opti-
cal Depth (AOD), particulate matter and meteorologi-
cal conditions. The network was observed to provide 
effective prediction of the concentrations of harmful 
gases with 80% PM

2.5
 variability. The system was suc-

cessfully installed in Beijing, China and these predic-
tion statistics have helped in reducing the air pollution 
in Beijing by 23%. Due to temporal characteristics of 
air pollutants, recurrent neural network that is LSTM is 
employed by (Reddy et al., 2017) to estimate the pollut-
ant concentration for 6 to 10 hours into the future. It was 
observed that the proposed network was able to predict 
the pollutant concentration for several future time steps 
with the same accuracy as forecast for a single future 
time step of 1 hour which exhibit the predictive robust-
ness of the network. A hybrid deep learning model is 
proposed in (Du et al., 2021) which employs Bi-LSTM 
to capture the temporal trends in data and a 1-D CNN to 
learn the spatial characteristics. The model was able to 
learn the non-linear co-relationships and model interde-
pendence of the multi-variate temporal data of pollut-
ants and produce effective results in forecasting PM

2.5
 

on two real-time datasets from Beijing, China.
LSTM models were observed to capture and learn 

the non-linear co-relationships of the highly variable 
data of pollutants more effectively than other deter-
ministic and statistical models. Thus, we propose an 
LSTM model tuned using optimization strategies to 
re-structure the network to learn the temporal charac-
teristics of multivariate pollutant data. The model was 
analyzed and evaluated on two real-world air quality 
datasets to access its forecasting performance and 
ability to generalize.
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Prediction model framework

Forecasting air pollutants through meteorological 
and pollutant data requires encapsulation of temporal 
trends and temporal characteristics are more accu-
rately modelled by recurrent neural networks (RNN) 
(Reddy et  al., 2017). A multi-step multi-variable 
LSTM model is introduced to capture the sequential 
trends in the data and effectively forecast particulate 
matter.

The prediction model framework comprises of an 
LSTM which is employed due to its ability to retain 
information over longer sequences (Gul & Khan, 
2020; Park, 2021; Reddy et  al., 2017). LSTM layer 
enables the model to capture the temporal trends in 
the data followed by two dense layers. The LSTM 
layer is provided with 128 nodes, an activation func-
tion, weight initializer and L2 regularizer (Fig.  1). 
Appropriate weight initialization is selected based 
on activation function to prevent the issue of vanish-
ing and exploding gradients during back propagation. 
L2 regularization is used to deal with the over-fitting 
problem described by Eq.  1. The dense layer com-
prises of 64 nodes followed by an output layer for 
forecasting particulate matter PM

2.5
 . The output layer 

can be extended to multiple configurations depending 
on the sequences of predicted time steps.

(1)L(x, y) ≡
n
∑

i=1

(yi − h�(xi))
2 + �

n
∑

i=1

(�i)
2

Employed datasets

We have evaluated our network performance on two 
datasets of the most polluted regions in South Asia. 
The first dataset covers the region of Beijing, China 
and is available publicly at UCI website (Beijing 
PM

2.5
 Data) (Liang et  al., 2015) with the dataset 

further extended by (Reddy et al., 2017). The modi-
fied Beijing air quality dataset comprises of pol-
lutant data of PM

2.5
 and meteorological parameters 

such as dew pint, temperature, pressure, cumulative 
hours of snow, combined wind direction, cumula-
tive wind speed, and cumulative hours of rain. The 
data is recorded over 35 different stations across the 
city of Beijing over a span of 7 years from 2010 to 
2017 with 43,825 samples (Table 2).

Data cleansing is performed and the aberrant val-
ues (High spikes in samples) of the sensors due to 
some defect or anomaly are removed (Reddy et al., 
2017). We have further modified the dataset by add-
ing the columns of AQI and hazard level accord-
ing the formula (Eq.  2) and standards set by EPA 
USA to visualize and understand the nature of the 
data (see Fig.  2). The formula for computing AQI 
is given by Eq. 2 (Kanchan et al., 2015) with PM

2.5
 

being used as a primary pollutant for quantifying air 
quality.

Where,

(2)Ip =
IHi − ILo

BPHi − BPLo

∗ (Cp − BPLo) + ILo

Fig. 1   Proposed Network Architecture
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Ip is index for pollutant p,
Cp is the rounded concentration of pollutant p,
BPHi is the breakpoint greater or equal to Cp,
BPLo is the breakpoint less than or equal to Cp,
IHi is the AQI corresponding to BPHi,
And, ILo is the AQI corresponding to BPLo.

The hazard levels are classified into seven categories 
according to the pollutant concentration as depicted in 
Table 1 with the level of health concern listed.

The t-distributed Stochastic Neighbor Embed-
ding (t-SNE) is used for non-linear dimensionality 
reduction of the modified Beijing air quality dataset 
described in Fig. 3 which represents the distribution 
of the data with respect to hazard levels calculated 
using Table 1.

The second dataset covers some regions across Pun-
jab with 4 stations across Lahore which is one of the 
most polluted cities of the world and one station each 
in Multan and Gujranwala respectively. The data-
set comprises of meteorological parameters acquired 
from Pakistan Meteorological Department and pollut-
ant concentration obtained from Environment Projec-
tion Department, Punjab described in Table 3 which is 
recorded over a span of 3 years over 6 different stations. 

Data cleansing is performed by removing rows of data 
with sensor failure. The columns of AQI are added to 
the datasets by employing Eq.  2 and health hazard is 
categorized into seven levels according to the PM

2.5
 

concentration in Fig. 2.
The visual description of data distribution of Punjab 

dataset based on hazard intensity is shown in the t-SNE 
plot (Fig. 4).

Network hyper‑parameters optimization

Hyper parameters of the deep neural network used to 
forecast particulate matter ( PM

2.5
 ) are optimized to 

deliver the best performance on a particular dataset 
with validation set used as a measure for evaluation. 
The search space is explored to find the optimal set of 
hyperparameters by using Eq. 3.

Where the score of the objective function that needs 
to be minimized is represented by f(x); x∗ represents 
the group of hyperparameters with the lowest score 
and x is any value from the range of X domain.

Several optimization strategies such as grid 
search, random search and Bayesian optimization 

(3)x∗ = argminx∈Xf (x)

Table 1   Air Quality Index set by environment protection agency, US

O
3
 (ppm) PM

10
 (ug∕m3)  PM

2.5
 (ug∕m3)  CO (ppm) SO

2
 (ppm) NO

2
 (ppm) AQI Values Level of Health Concern

0.000–0.059 0–54 0–12 0–4.4 0.000–0.034 - 0–50 Good
0.060–0.075 55–154 12.1–35.4 4.5–9.4 0.035–0.144 - 51–100 Moderate
0.076–0.095 155–254 35.5–55.4 9.5–12.4 0.145–0.224 - 101–150 Unhealthy for sensitive groups
0.096–0.115 255–354 55.5–150.4 12.5–15.4 0.225–0.304 - 151–200 Unhealthy
0.116–0.374 355–424 150.5–250.4 15.5–30.4 0.305–0.604 0.65–1.24 201–300 Very Unhealthy

- 425–504 250.5–350.4 30.5–40.4 0.605–0.804 1.25–1.64 301–400 Hazardous
- 505–604 350.5–500.4 40.5–50.4 0.805–1.004 1.65–2.04 401–500 Hazardous

Table 2   Data-set Specifications Of Modified UCI Dataset

Modified Beijing air quality Database Details

City/Region Beijing, China
Time Span 2010–2017
Meteorological data Dew Point, Temperature, Pressure, Combined wind direction, 

Cumulated wind speed, Cumulated hours of snow, Cumulated 
hours of rain

Pollutants Data PM
2.5

 concentration (ug∕m3)

Number of Recording Stations 35
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are frequently employed for algorithmic optimiza-
tion (Bergstra et  al., 2011; Bergstra et  al., 2013). 
In grid and random search, all the experiments are 
mutually exclusive of each other which doesn’t 
not help in exploring the search space in an effec-
tive manner making it computationally expensive 
and time consuming. While Bayesian optimization 
is a sequential-based model optimization algorithm 
which instead of blindly exploring the search-
space makes decisions based on results from pre-
vious experiments. Thus, Bayesian optimization 

makes use of intuition through historical evidence 
to narrow down the search space to an optimal set 
of hyperparameters for selection (Bergstra et  al., 
2013). The Bayesian search uses Bayes rule (Eq. 4) 
to utilize the knowledge of previously known priors 
to direct the search towards combinations of hyper-
parameter which has higher probability to improve 
model performance.

(4)P(A ∣ B) =
P(B ∣ A) ∗ P(A)

P(B)

Fig. 3   t-SNE plot of the modified UCI Beijing air quality dataset

Fig. 2   PM
2.5

 Air Quality Index (AQI) Scale, EPA USA
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Where P(A ∣ B) is the posterior probability, P(B ∣ A) 
is the likelihood, P(A) is the class prior probability 
and P(B) is the predictor prior probability. Expected 
improvement (EI) is employed as an acquisition func-
tion which defines the criteria for selection of hyper-
parameters from the Gaussian process model which is 
used as a surrogate function for tuning (Eq. 5).

Here p(y ∣ x) is the Gaussian surrogate probability 
model, x describes the hyperparameter, y is the true 
objective function score and y∗ is the latest minimum 
score observed so far of the true objective function. 

(5)EIy∗ (x) = ∫
y∗

−∞

(y∗ − y)p(y ∣ x)dy

Fig. 4   t-SNE plot of Punjab dataset

Table 3   Data-set 
Specifications Of Punjab 
Dataset

Punjab Database Details

City/Region Punjab, Pakistan
Time Span 2017–2020
Metrological data wind direction, temperature, barometric pressure, humidity, and visibility
Pollutants Data PM

10
 concentration (ug∕m3) , PM

2.5
 concentration (ug∕m3) , Nitrogen 

dioxide (ppm), Sulphur dioxide (ppm) and surface ozone (ppm)
Number of Recording 

Stations
6
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To find the optimal hyperparameters under the surro-
gate model P(y ∣ x) , the expected improvement should 
be maximized with respect to x.

Results and analysis

To capture the temporal characteristics of the air pol-
lution parameters LSTM, a recurrent neural network 
is employed. The features from the dataset are pre-
processed by normalizing the data with anomalous 
entries of sensor failure removed. The data is then 
rearranged in the form of cyclic packets with previous 
value of PM

2.5
 feed in addition to the meteorological 

data to predict the next time stamp. We start with a 
single step prediction of 1 hour and extend it gradu-
ally to 24 hour steps while increasing the number of 
output steps which gives us an insight about the net-
works performance on multi-step data.

After selection of appropriate network, the hyper-
parameters such as learning rate, optimizer and acti-
vation function are tuned using Bayesian optimiza-
tion. Expected improvement is used as a performance 

metric by Bayesian optimization to evaluate the selec-
tion of a suitable hyperparameter. The network perfor-
mance on each hyperparameter from the search space 
is gauged by the validation set which assists in guid-
ing the search in an appropriate direction as depicted 
in Fig. 5.

Robust initialization techniques are proposed in 
this section that removes the obstacles of training deep 
neural networks by solving the problem of vanishing 
and exploding gradients. Thus, weight initialization 
practices like Lecun, Glorot and He initialization are 
employed to effectively train the proposed network.

The network was optimized to improve the perfor-
mance by tuning the best activation function and opti-
mizer for each dataset followed by learning rate. The 
results of tuned hyperparameters based on their perfor-
mance on validation set for modified Beijing air quality 
dataset are described in Tables 4 and 5. MSE is used as 
a metric by the recurrent network during training and 
validation to gauge the performance of the network in 
the search space to find an optimal hyper parameter.

After selection of optimal hyperparameters, the 
network is reconstructed and trained with a boost in 

Fig. 5   Hyper-parameter tuning using Bayesian optimization
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performance observed. For weight initialization He/
Kaiming Initialization is selected (He et  al., 2015) 
based on the nature of the activation function. Since 
Relu is a non-differentiable function, Kaiming He 
(He et  al., 2015) proposed a weight initialization 
scheme that was tailored for deep neural networks 
that employ asymmetric and non-linear activation 
functions. The He normal initialization method is cal-
culated as a random number with a normal probabil-
ity distribution (U) having a mean of 0.0 and a stand-
ard deviation of (

√

2

fin
) , where fin describes the 

number of inputs to the node. While the He uniform 
comprises of weight samples taken from a uniform 
distribution (U) between the range −(

√

6

fanin
) and 

(
√

6

fanin
) , where fanin defines the number of input 

nodes.

(6)weight = U

(

−

√

6

fin
,

√

6

fin

)

Upon employing He, Glorot and Lecun weight initial-
izers to the network, it was observed that He uniform 
initialization was able to help the network in achiev-
ing appropriate weights for learning. Figures 6 and 7 
describes the training and validation performance of 
the network with ability to forecast PM

2.5
 level for 

the next hour and next day with RMSE of 0.1913 and 
0.6341 respectively on the test-set.

Forecasting air pollutants can helps in identify-
ing the long-term trends, impact of exposure and 
can enable the relevant bodies to devise strategies to 
contain the exponential growth of the pollutants and 
warn the sensitive groups. To cater for studying long-
term patterns of particulate matter, the model is fur-
ther modified to predict future time steps. It can be 
observed from Table  6 that the evaluation metrics 
used to gauge the performance degrades as the num-
ber of future hours increases. The root-mean-square 
error (RMSE) of the model increases gradually while 
the variance score R2 drops with prediction of addi-
tional steps into the future. The gradual degradation 
in performance is due to increase in number of future 
steps to predict while keeping the past steps constant 
which shows the robustness of the proposed LSTM 
model when it comes to multi-step prediction of long 
sequences.

The deep air model proposed by (Reddy et  al., 
2017) was used to predict the particulate matter 
( PM

2.5
 ) of Beijing, China and the model was trained 

and evaluated on the modified UCI Beijing air qual-
ity dataset. On comparison with our tuned model, 
we observed that for the same dataset, we were able 
to predict the particulate matter at single and multi-
step more effectively as described in Table 7. The low 
root-mean-square error (RMSE) and high variance 
score in Table 7 shows the robustness of our model in 
comparison with (Reddy et al., 2017).

The network is then re-tuned for Punjab dataset by 
observing the trend of MSE of the validation set. 
Bayesian optimization is used to intuitively go 
through the search space to find the learning rate, 
activation function and optimizer. Since Tanh is 
selected as an optimized activation function which is 
non-linear in nature, the best practice of weight ini-
tialization used to prevent vanishing gradients is 
Xavier or Glorot initialization as proposed by (Glorot 
& Bengio, 2010).The Glorot uniform initialization is 
calculated as a random number with a uniform  
probability distribution (U) between the range 

Table 4   Selection of Optimizer and Activation using Bayesian 
optimization on modified Beijing air quality dataset

The bold and italic emphasis is used to highlight the best 
parameter in each table

Optimizer Activation MSE

Adagrad tanh 0.041617
Adagrad linear 0.0416348
Adagrad linear 0.0416676
Adagrad tanh 0.0419074
Adadelta relu 0.0419169
Adagrad linear 0.0419371
Adagrad softsign 0.0420134
Adagrad tanh 0.04209329

Table 5   Optimal learning rate selection using Bayesian opti-
mization on modified Beijing air quality dataset

The bold and italic emphasis is used to highlight the best 
parameter in each table

Learning rate MSE

0.03 0.0411263
0.013885 0.0413445
0.00665 0.0415720
0.01271 0.0416139
0.009799 0.0416274
0.005592 0.0417381
0.011722 0.0418148
0.003004 0.0418748
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−(
√

6

fanin+fanout
) and (

√

6

fanin+fanout
) , where fanin defines 

the number of input nodes and fanout is the number of 
output nodes in the weight tensor.

While in-case of Glorot normal distribution, samples 
are drawn from truncated normal distribution which 

(7)

weight = U

[

−

(√

6

fanin + fanout

)

,

(√

6

fanin + fanout

)]

is centered on zero and has standard deviation of 
(
√

2

fanin+fanout
).

The Lecun uniform initialization is calculated by 
drawing random samples from a uniform probability 
distribution (U) between the range −(

√

3

fanin
) and 

(
√

3

fanin
) , where fanin defines the number of input 

nodes and fanout is the number of output nodes in the 
weight tensor.

Fig. 6   Actual Vs. Predicted 
PM

2.5
 values of employed 

architecture on Hourly data 
of modified UCI Beijing air 
quality dataset

Fig. 7   Actual Vs. Predicted 
PM

2.5
 values of employed 

architecture on 24 hour data 
of modified UCI Beijing air 
quality dataset
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While in-case of Lecun normal distribution, samples 
are drawn from truncated normal distribution cen-
tered around zero and has standard deviation of 
(
√

1

fanin
) . Though according to (Glorot & Bengio, 

2010), Glorot initialization performs better for Relu 
activation, but according to our validation set perfor-
mance based on MSE, Lecun normal initialization 
was able to achieve superior performance.

Tables 8 and 9 describes the results of tuned hyper-
parameters. These parameters are employed to retrain 
the network with a significant improvement in perfor-
mance observed. The performance of the network on 
the training and validation set is described in Fig. 8. 
The network can forecast the PM

2.5
 with RMSE of 

0.2192 respectively on the test set for 24 hour future 
time step. The reason for the higher RMSE in-case of 
Panjab dataset can be attributed to the data employed 
which is recorded daily due to which it shows high 
variance making it difficult for the network to cap-
ture the trends as compared to modified UCI dataset 
where parameters are recorded hourly.

(8)weight = U

[

−

(√

3

fanin

)

,

(√

3

fanin

)]

Since, the data of pollutants is highly variable 
and changes rapidly with meteorological param-
eters, thus the forecasting capability of the model 
drops gradually for prediction of extended future 
time steps as observed. From Tables 4 to 9, the per-
formance of the model shows an ability to general-
ize well and emulate the trend of particulate matter 
PM

2.5
 for multi-step multivariate data of different 

regions.

Table 6   Test RMSE for multi-step prediction of PM
2.5

 on 
modified Beijing air quality dataset

Model RMSE R2

3 future hours 0.2598 0.932526
6 future hours 0.3475 0.879228
9 future hours 0.4096 0.832258
12 future hours 0.5578 0.688855
15 future hours 0.5195 0.730129
18 future hours 0.5020 0.748015
21 future hours 0.5408 0.707541
24 future hours 0.7290 0.468538

Table 7   Comparison of 
test RMSE with Deep Air 
for various future time lags 
on modified Beijing air 
quality dataset

Model Time Steps RMSE R2

Our Model 1 future hour/single step 0.1913 0.963402
Deep Air (Reddy et al., 2017) 1 future hour/single step 12.78 0.96
Our Model 5 future hours 0.3229 0.895758
Deep Air (Reddy et al., 2017) 5 future hours 44.15 0.689
Our Model 10 future hours 0.4086 0.833078
Deep Air (Reddy et al., 2017) 10 future hours 74.8 0.588

Table 8   Selection of Optimizer and Activation using Bayesian 
optimization on Punjab dataset

The bold and italic emphasis is used to highlight the best 
parameter in each table

Optimizer Activation MSE

Nadam relu 0.6396949
Nadam relu 0.7275196
Nadam relu 0.7335685
Nadam relu 0.7343104
Nadam relu 0.7576756
Nadam relu 0.7613520
Nadam relu 0.7674339
Nadam relu 0.7830696

Table 9   Optimal learning rate selection using Bayesian opti-
mization on Punjab dataset

The bold and italic emphasis is used to highlight the best 
parameter in each table

Learning rate MSE

0.0199939 0.5433736
0.0032243 0.6428966
0.0035615 0.6451763
0.0145944 0.6503993
0.0046863 0.6523746
0.0013331 0.6587814
0.0013885 0.6672297
0.0129494 0.6792039
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Conclusion

A deep learning model was proposed for quantifica-
tion of hazard level by predicting the particulate mat-
ter concentration and evaluated on two of the most 
polluted regions in the world: Beijing, China and Pun-
jab, Pakistan. Hyper-parameter tuning and weight ini-
tialization strategies were adopted to tune the network 
by exploring the search space effectively. The tuned 
LSTM model was used to learn and effectively model 
the temporal trends of the particulate matter and 
meteorological data to predict concentration of future 
instances of PM

2.5
 . Hourly concentration of PM

2.5
 of 

Beijing was predicted with an RMSE of 0.1913 and 
based on the average 24-hour data, the RMSE drops 
to 0.6341 with state of the art performance observed. 
While the 24-hour PM

2.5
 prediction of Punjab has an 

RMSE of 0.2192, this degradation in performances 
of the model can be attributed to drastic variance in 
the recorded data over a span of 24 hours. By feeding 
the historic data in hourly time stamps, the degrada-
tion in performance was observed to be subtle. The 
forecasting model using LSTM helps in mapping the 
AQI level and identifying the health concerns asso-
ciated with it. This would enable the general public, 
government and environmental protection agencies 
to quantify the risk associated with air quality index 
and enable the authorities to take effective measures to 
minimize the consequences and assist the environment 

protection agencies to enact policies towards reduc-
ing the health and economic risk associated with high 
concentration of particulate matter.
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