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northern portion of the study area. Total energy was 
the highest in mid-range distances from shore and in 
the north. Amphipoda energy density was higher than 
minimum energy estimates defining gray whale feed-
ing habitats (312–442 kJ/m2) in 13% of the nearshore 
feeding area whereas total prey energy density was 
higher than the minimum energy requirement in 49% 
of the habitat. Inverse distance-weighted interpola-
tions of Amphipoda energy provided a broader scale 
representation of the data whereas kriging estimates 
were spatially limited but more representative of 
higher density in the southern portion of the study 
area. Both methods represented the general trend of 
higher Amphipoda energy density nearshore but with 
significant differences that highlight the value of 
using multiple methods to model patterns in highly 
complex environments.

Keywords  Benthic ecology · Marine ecology · 
Ecosystem variability · Macrobenthos · Sea of 
Okhotsk

Introduction

Variations in water circulation, seafloor topography, 
and/or coastline geomorphology interacting with car-
bon delivery and benthic biological processes can 
create hotspots of energy accumulation in marine sys-
tems (Blanchard & Feder, 2014; Feder et  al., 2007; 
Grebmeier et  al., 2015). The spatial characteristics 

Abstract  Energy densities of six dominant benthic 
groups (Actinopterygii, Amphipoda, Bivalvia, Cuma-
cea, Isopoda, and Polychaeta) and total prey energy 
were modeled for the nearshore western gray whale 
feeding area, Sakhalin Island, Russia, as part of a 
multi-disciplinary research program in the summer 
of 2015. Energy was modeled using generalized addi-
tive mixed models (GAMM) with accommodations 
for zero-inflation (logistic regression and hurdle mod-
els) and regression predictions combined with kriging 
to interpolate energy densities across the nearshore 
feeding area. Amphipoda energy density was the 
highest nearshore and in the south whereas Bivalvia 
energy density was the highest offshore and in the 

This article is part of the Topical Collection on Western 
Gray Whales and Industry Seismic Operations

A. L. Blanchard (*) 
Blanchard Ecological, North Pole, AK 99705, USA
e-mail: blanchardecological@gmail.com

L. Ainsworth 
Phistat Research and Consulting, North Vancouver, BC, 
Canada

G. Gailey 
Cetacean EcoSystem Research, Lacey, WA 98512, USA

N. L. Demchenko · I. A. Shcherbakov 
A.V. Zhirmunsky National Science Center of Marine 
Biology, Far East Branch of Russian Academy of Sciences, 
Vladivostok, Russia

http://orcid.org/0000-0003-4574-7530
http://crossmark.crossref.org/dialog/?doi=10.1007/s10661-022-10018-7&domain=pdf


Environ Monit Assess   ( 2  0  2 2) 194 (Suppl 1):741	

1 3
Vol:. (1234567890)

of benthic communities can be controlled through 
variations in the processes, volumes, and quality of 
carbon delivered to the benthos driven by water cur-
rent characteristics, nutrient exchange, stability of 
water masses, and seasonal oceanographic patterns. 
Oceanographic characteristics (nutrient concentra-
tions, stratification, and related variables) largely 
define the amount and type of carbon produced while 
seafloor and coastal landscape features such as sub-
merged canyons, points, and straits and oceano-
graphic features influence how and where carbon is 
deposited. Topographic features can, however, modu-
late oceanographic conditions leading to altered pro-
duction patterns such as in polynyas (Ambrose & 
Renaud, 1995). As a result, large marine topographic 
features can be associated with long-term concentra-
tions of organic carbon and accumulations of energy 
in benthic systems (Ambrose & Renaud, 1995; Buhl-
Mortensen et al., 2012; Grebmeier et al., 2015). Tem-
porally, macroscale climate patterns may indirectly 
influence benthic communities through control of 
broad-scale circulation patterns influenced by, among 
other things, baryotropic circulation, freshwater dis-
charges, and winds (Blanchard, 2015; Blanchard 
et al., 2019; Kim, 2012). Temporally persistent ben-
thic energy concentration hotspots result in reliable 
prey resources for benthic-feeding marine mammals 
and have great ecological importance (Blanchard & 
Feder, 2014; Blanchard et  al., 2019; Brower et  al., 
2017; Grebmeier et  al., 2015; Pisareva et  al., 2015; 
Ray et al., 2006).

The drivers of complex ecological interactions are 
difficult to identify and measure. Inferences can be 
especially challenging in open marine systems where 
it is not possible to measure all components needed 
for modeling abiotic/biotic associations. Imbalances 
in designs, lack of repeated sampling events, mis-
matches between scales of sampling, drivers and 
interactions, and incomplete data collections lower 
power for detecting ecologically important patterns 
and can critically limit inferences (Blanchard & 
Feder, 2014). In the context of modeling and predict-
ing benthic characteristics, digital elevation models 
(DEMs) can provide cost-effective alternatives for 
describing abiotic/biotic associations in the absence 
of measured environmental covariates (Huang et al., 
2011; McArthur et al., 2010). DEMs can match land-
scape-scale patterns while also capturing small-scale 
complexity that affects benthic assemblages, and can 

successfully predict changes in biological communi-
ties when appropriate indices are used (Beatty et al., 
2016; Choi et  al., 2011; Knouft et  al., 2011; Lee 
et al., 2013; Sbrocco & Barber, 2013). DEM variables 
often covary with and can thus serve as proxies for 
habitat-related complexity associated with ecological 
interactions, such as prominent coastline characteris-
tics causing current variations that concentrate food 
for the benthos and influence sediment grain-size.

Seismic surveys to map subsurface geological char-
acteristics have been periodically conducted near the 
western gray whale (Eschrichtius robustus) feeding 
ground adjacent to the northeastern coast of Sakha-
lin Island, Russia, since 1996 (Bröker et  al., 2015; 
Johnson et  al., 2007; Weller et  al., 2006). Changes 
in gray whale behavior and distribution due to sound 
exposure were reported during earlier seismic surveys 
(Bröker et al., 2015; Gailey et al., 2007; Weller et al., 
2006; Yazvenko et al., 2007). Data were not, however, 
available to evaluate the potential influence of prey 
resource availability on whale responses (Gailey et al., 
2016; Muir et  al., 2016). Likewise, how changes in 
behavior or distribution would affect energy intake by 
whales had not been investigated. Changes in energetic 
intake would be particularly important for reproduc-
tive females (Villegas-Amtmann et al., 2015, 2017). It 
is not clear whether recent declines in prey biomass 
adjacent to Sakhalin Island in the western gray whale 
feeding ground (Blanchard et al., 2019; IUCN, 2019) 
might result in altered whale distributions, behavior, 
response patterns, or energy intake, nor is it clear how 
prey biomass declines might change whale responses 
to acoustical stress if distributions are conditioned on 
nearshore prey resources.

In 2015, multiple seismic surveys were planned 
adjacent to the nearshore portion of the western gray 
whale feeding ground, prompting development of a  
comprehensive monitoring program with the pur-
pose of assessing impacts on gray whale behavior,  
distribution, and energetics from sound expo-
sure and vessel presence (Aerts et al., 2022; Gailey 
et al., 2022; Schwarz et al., 2022). Blanchard et al. 
(2022) determined that biomass concentrations of 
some prey groups in 2015 declined from early and 
mid-summer to late summer and fall. Total prey 
biomass concentrations, however, were largely 
homogenous (differences were statistically indistin-
guishable) within the nearshore feeding area. Com-
munities varied with water depth and sediment type 
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with amphipods numerically dominant in shallower  
water with finer sediments and bivalves dominant in 
deeper water with coarser sediments (Blanchard et al.,  
2022; Demchenko & Fadeev, 2011; Sobolevskii et al.,  
2000).

In this paper, we test the hypothesis that sampling 
period, water depth, and geographic/DEM vari-
ables were significant predictors of energy density 
for dominant benthic fauna within the western gray 
whale nearshore feeding area. Spatial regression was 
conducted to test the hypotheses with adjustments for 
zero-inflation using hurdle models. Regression krig-
ing was then used to interpolate energy distributions. 
The roles of environmental and physical complexity 
of the study area in defining characteristics of the 
regressions and interpolations of benthic energy den-
sity are discussed. The spatial regression modeling 
of benthic energy distributions using DEM variables 
provides complementary insights to the univariate 
and multivariate analyses documenting community 
trends for key organisms (Blanchard et al., 2022).

Materials and methods

Study area

The western gray whale feeding ground is located 
off the northeastern coast of Sakhalin Island, Russia 
(Fig.  1). The study area comprises ~ 200 km2 of the 
nearshore feeding area as represented by a 95% con-
tour of gray whale densities that encompasses ~ 600 
km2 (Muir et  al., 2015). Briefly, the northeastern 
Sakhalin coast is influenced in summer by freshwa-
ter from the Amur River via circulation around the 
northern tip of Sakhalin Island and outflows from 
Piltun Bay along the eastern Sakhalin shoreline. The 
nearshore feeding area is a turbulent, shallow water 
environment with strong environmental gradients 
and currents (Rutenko & Sosnin, 2014; SEIC, 2003). 
The macrobenthic community in the predominantely 
sandy sediments along the Sakhalin Island shoreline 
is influenced by strong ecosystem seasonality as well 
as by the physical dynamics of the nearshore area. 
Habitat characteristics include north to south envi-
ronmental gradients associated with the southward 
circulation of Amur River outflows through the area 
in summer. In winter, the Eastern Sakhalin Current, 
the Sakhalin polynya, and sea ice cover influence 

circulation. The mouth of Piltun Bay is a point of 
change and increased complexity along the gradient 
in terms of bathymetry and ecosystem characteris-
tics. The biomass-rich sediments in the study area are 
dominated by the amphipods Eogammarus schmidti, 
Monoporeia affinis, and Anisogammarus pugettensis, 
bivalves, the isopods Saduria entomon and Synidotea 
cinerea, and the sand lance Ammodytes hexapterus 
(Blanchard et al., 2022).

Study design

Benthic biomass was sampled in the nearshore gray 
whale feeding area in summer, 2015 (Fig.  1). An 
intensive sampling program (Blanchard et  al., 2022) 
was carried out encompassing three different geo-
graphic strata (North, Middle, and South Zones)  
during three sampling periods aimed at characteriz-
ing spatial and seasonal variation in benthic biomass. 
In addition to the detailed sampling, targeted benthic 
sampling was conducted in areas of observed whale 
feeding activity. Benthic samples collected from 
nearshore locations as part of a long-term survey were 
included when within or adjacent to the sampling grid 
(Blanchard et  al., 2019; Demchenko, 2010; Fadeev, 
2011, 2013a, 2013b). Three replicate grabs were col-
lected at each station of the intensive (n = 223 stations) 
and long-term (n = 5) surveys while 12 grabs were 
collected in targeted sampling locations (n = 12). The 
distance from shore of sampling locations ranged from 
0.86 to 3.56 km and water depth ranged from 6.7 to 
16.1 m. Further details on benthic sampling methodol-
ogy are discussed in Blanchard et al. (2022).

The biological data matrix included wet tissue 
biomass concentrations (g/m2) and conversions 
from biomass concentrations to energy density (kJ/
m2) of the six benthic groups that dominated ben-
thic biomass (Actinoptygerii, Amphipoda, Bival-
via, Cumacea, Isopoda, and Polychaeta) and total 
energy (the sum of energy density of the 6 groups; 
kJ/m2) as determined by bomb calorimetry (Maresh 
et  al.,  2022). Biomass was converted to energy 
density using multipliers of 5.2 for Actinoptygerii; 
5.2 for Amphipoda; 4.0 for Isopoda; 2.3 for Bival-
via; 4.8 for Cumacea; and 4.4 for Polychaeta. Clas-
sification factors from the study design included  
zone (North, Middle, and South) (Fig.  3) and 
period (Period 1: 19 June to 15 July; Period 2: 16 
July to 31 August; and Period 3: 1 September to 24  
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October). Dates were slightly modified from  
Blanchard et al. (2022) to accommodate the hotspot 
and long-term survey sampling that were placed  

into the closest detailed grid sampling period. Zone 
was confounded with the continuous geographic 
variable northing (UTM, m north representing 

Fig. 1   The 2015 benthic nearshore study area in the Sakhalin 
Island gray whale feeding area, Russia. The inset presents the 
geographic reference of the gray whale feeding area. See Aerts 

et al. (2022) for further details of the 2015 seismic mitigation 
and monitoring plan. The * marks the mouth of Piltun Bay

       741 Page 4 of 26



Environ Monit Assess   ( 2  0  2 2) 194 (Suppl 1):741

1 3
Vol.: (0123456789)

distance alongshore from south to north) and was 
not included in regression models but was used as 
a classification factor for energy density plots. Tide-
corrected water depths (m) and distance from shore 
(km) were determined from a GIS-based digital ele-
vation model (DEM) (Choi et al., 2011; Lee et al., 
2013). Other DEM variables (terrain, slope aspect, 
and roughness) were collinear with northing, dis-
tance to shore, or depth and were excluded.

Statistical approach

The physical and environmental complexity of the 
study area made use of standard geostatistical inter-
polation methods such as universal kriging inap-
propriate as regression relationships were of a form 
requiring nonparametric smoothers. Instead, a multi-
step analysis was conducted that included nonpara-
metric regression modeling to fit complex predictors. 
As applied here, regression is statistical modeling 
with continuous and categorical predictors and con-
tinuous response variables with the characteristics 
of the regression model based on assumption testing 
through residual analysis. Nonlinear data relation-
ships that do not fit a specific curve (multiple humps, 
very sharp changes, etc.) are data characteristics that 
can be addressed via nonparametric smoothing. Thus, 
the data features and residual analyses guided us to 
the specific form of regression applied (Zuur et  al., 
2009). We then conducted regression, kriging inter-
polation of regression residuals, model validations, 
and compilation of regression and kriging predictions 
to complete interpolated maps of benthic resources. 
Each of the steps is discussed separately.

Generalized additive mixed modeling

Generalized additive models (GAM) are general-
ized linear models using nonparametric smooth 
functions for predictors (Guisan et  al., 2002; Yee & 
Mitchell, 1991). As a form of nonparametric regres-
sion, GAMs allow modeling of functional regression 
relationships (e.g., data-driven, smoothed relation-
ships) among covariates, a particularly useful method 
for modeling biological processes (Ciannelli et  al., 
2008; Robertson et  al., 2015). Generalized additive 
mixed models (GAMM) include random effects in a 
mixed model setting and were used here (Zuur et al., 

2009). Regression models (GAMMs) were adapted 
as needed to accommodate the large proportion of 
zeros in the benthic biomass data. If 10% or less of 
biomass values were recorded as zero, a GAMM was 
used to determine regression models (unconditional 
regression) for biomass. Hurdle models were used 
to accommodate zero-inflation when more than 10% 
but less than 50% of the biomass values were zero 
for a group (Barry & Welsh, 2002; Cunningham & 
Lindenmayer, 2005; Lyashevska et  al., 2016; Welsh 
et  al., 1996). The hurdle model approach included 
two regression components: (i) a logistic GAMM of 
occupancy (regression of presence/absence data with 
a binomial error) and (ii) a GAMM of the charac-
teristic when present (conditional regression). Final 
unconditional predictions for the hurdle models were 
calculated as the product of the predicted probability 
of occurrence and the predicted conditional biomass 
at each prediction location. Two-step regression (hur-
dle) models have been applied elsewhere in marine 
ecology for zero-inflated data (Ciannelli et al., 2008; 
Murase et  al., 2009). If more than 50% of biomass 
values were zero, a logistic GAMM was fit to predict 
the probability of occurrence because there was not 
enough information in the positive biomass values to 
model.

Statistical models in this study included com-
binations of period, depth, distance to shore, and 
northing as predictor variables. Period was included 
in all models as a fixed factor covariate whereas 
splines (piece-wise polynomials as smoothed pre-
dictor values) were applied to water depth, distance 
to shore, and northing in GAMMs (Zuur et  al., 
2009). Station was included as a random effect. 
Two and three-way interactions were evaluated in 
the GAMMs via tensor products (Berhane et  al., 
2008; Wood, 2006). Tensors are products of splines 
of individual predictors permitting the evaluation of 
higher-order interactions not possible with stand-
ard regression techniques while also maintaining 
orthogonality and optimal convergence rates (e.g., 
prevents collinearity problems and convergence 
issues) as well as additivity. GAMMs using tensor 
products were applied here to flexibly fit the cur-
vilinear relationships resulting from the shoreline 
topography and bathymetric complexity across the 
study area. For computational stability, northing 
was divided by 1000. Some replicate locations had 
indistinguishable coordinates and coordinate pairs 
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were offset slightly (jittered). Water depth and dis-
tance from shore resulted in high variance inflation 
factor (VIF) values in preliminary regression diag-
nostics (VIF > 7). Thus, these latter two variables 
were not included in the same models but were 
tested separately.

Akaike’s Information Criteria (AIC) was used to 
select best-fitting models. A convenient means to rank 
regression models is the difference between a particu-
lar model’s AIC value and the minimum AIC for all 
models of an associated analysis (ΔAIC = AIC − AIC-
min). As a rule of thumb, a ΔAIC of 2 or less suggests 
the information captured by a model is equivalent to 
that of the lowest AIC model (Burnham & Anderson, 
2002). ΔAIC values between 3 and 7 indicate that a 
model captures less information than the model with 
minimum AIC and a model within this bracket may 
be selected if it provides substantially greater simplic-
ity. An ΔAIC of more than 10 indicates that the model 
does not fit the data well, compared to the model with 
the lowest AIC. Selection between models with simi-
lar AIC values (ΔAIC ≤ 2) was based on the principal 
of parsimony; the simpler model was chosen.

Initial model fitting revealed uncharacteristically 
large predictions for locations outside the range of 
observed distances from shore. Thus, distance from 
shore and depth were truncated to balance fitting 
within the range of observed data and extrapolating 
to locations on the margins of the study area. Trunca-
tion distances were determined by a sensitivity anal-
ysis; all distance from shore values below 0.75  km 
were set to 0.75 km and all values above 4 km were 
set to 4  km for regression and kriging predictions. 
Similarly, water depth was truncated at 6 m and 18 m. 
Energy values were ln(X + 0.5)-transformed prior to 
analyses.

For marine benthic studies, effect sizes (f) of small 
(fsmall = 0.2, percent variance accounted for or PV ≈ 
4%), medium (fmedium = 0.5, PV ≈ 23%), and large 
(flarge = 0.8, PV ≈ 40%) were proposed for evalua-
tion of chemical and physical disturbance to benthic 
communities (Blanchard et  al., 2002; Cohen, 1988; 
Murphy et  al., 2014). Here, the proportion of devi-
ance explained, the analog for GAMM models of the 
coefficient of determination R2, was compared to the 
PV criteria above to approximate an effect size for 
the models. For the present situation, effects were 
approximated as a small effect exceeding PV = 0.04, a 
medium effect exceeding PV = 0.23, and a large effect 

exceeding PV = 0.40. The nonparametric smooth-
ing used in GAMMs does not produce standard met-
rics of effect sizes (regression coefficients, standard 
errors, and associated effect size confidence intervals) 
and the approach here provides a reasonable approxi-
mation for testing effect sizes. The proposed effect 
size criteria have been applied to the interpretation of 
correlations (Blanchard et al., 2003, 2019) and were 
also applied to ANCOVA models of raw biomass for 
the Sakhalin Island study area using minimum-effects 
hypotheses (Murphy et al., 2014) in Blanchard et al. 
(2022). Power analyses are presented in Blanchard 
et al. (2022).

Kriging and final interpolation maps

A regression kriging approach (Webster & Oliver, 
2007) was applied for geostatistical interpolation 
(kriging) of energy densities to accommodate the 
complex data characteristics. The multi-step krig-
ing process included (1) fitting of unconditional and 
logistic GAMMs as appropriate; (2) determination of 
residuals from each GAMM; (3) kriging of residu-
als; and (4) the summation of regression and kriging 
predictions for each prediction location for a given 
model. The addition of kriging predictions to regres-
sion predictions incorporated local effects due to spa-
tial correlations. Spatial maps were directly available 
for unconditional and logistic regressions as summed 
predictions. An additional step was required for hur-
dle models where kriging predictions from the logis-
tic and conditional biomass regressions were multi-
plied to get the unconditional kriging predictions, as 
was also done for regression predictions to determine 
unconditional predictions. The unconditional regres-
sion predictions were then added to unconditional 
kriging predictions to interpolate an unconditional 
energy map. Interpolations are presented for Amphi-
poda, Bivalvia, Isopoda, and total energy.

The shape of the study area, a narrow shelf run-
ning north to south, meant that spatial correlations 
were generally much stronger in the east/west direc-
tion associated with the sharp depth gradient moving 
offshore, a violation of the assumption of isotropy 
(equal correlations in all directions). Geographic 
coordinates were transformed to correct for the ani-
sotropy by converting distance from shore to deci-
meters and northing to kilometers for use as spatial 
coordinates. Under the revised coordinate system, 
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movement in the north/south direction corresponded 
to moving linearly up and down the coast at a simi-
lar depth. A prediction grid with 20-m spacing was 
used for interpolation. Spatial correlations of regres-
sion residuals were fit with an exponential model 
except for logistic GAMM residuals for Cumacea and 
Isopoda, which were fit with spherical models. Final 
regression kriging predictions are averaged at a scale 
of 1 km2 to match the whale density scale used in 
Gailey et al. (2022).

Regression model validation

Model choices were made based on residual analyses. 
The excess numbers of zero values for some biomass 
variables resulted in severe violations of assump-
tions. Where there were enough data to effectively 
model positive biomass values, a hurdle model was 
used. Otherwise, where there were too many zeros, a 
logistic regression was applied. The decision to use 
GAMMs for regression was based on the structures of 
the predictor variables that demonstrated shapes that 
could not be modeled using standard linear or non-
linear regression but required nonparametric smooth-
ers. Model fits for all regressions were verified by 
residual analysis to validate homogeneity of variances 
and no patterns in residuals. Independence was not 
assumed, and kriging was applied to account for spa-
tial dependencies.

GAMM-fitted values were compared to compet-
ing models with correlation analyses. Models used for 
comparison and validation against regression models 
were inverse distance weighting (IDW) for all mod-
els and unconditional regressions for hurdle models. 
IDW is commonly used to map data and provides a 
descriptive presentation based on the maximum dis-
tance and number of neighbors allowed for estima-
tion. An advantage is that hotspots are readily visible 
but IDW can substantially increase prediction error 
(~ 20%) relative to kriging (Yasrebi et  al., 2009). 
Regression models, on the other hand, can over-
smooth areas with high complexity or give unrea-
sonable values at gradient edges. Model efficiencies 
were assessed by comparing fitted values among 
IDW, hurdle, and unconditional GAMMs. Where 
hurdle models were used, fitted values from uncon-
ditional GAMMs were determined using period and 
a smoothed tensor product for northing and distance 
to shore for comparison against conditional biomass 

models. IDW-fitted values for observed locations 
were determined by cross-validation and cross-valida-
tion prediction errors were determined for GAMMs.

Kriging and IDW comparisons

Regression kriging and IDW interpolations were 
compared for Amphipoda energy to understand their 
comparative strengths. Whereas regression kriging is 
limited by sampling constraints (mismatches between 
predictor combinations over space and time causing 
numerical instability and very large prediction errors), 
IDW estimates are not. Kriging and IDW predictions 
were mapped for their appropriate domains for each 
sampling period and fits compared to the observed 
data to clarify the strengths of each approach.

Software

All regression and spatial models were fit and 
assessed using the statistical software R (R Core 
Team, 2019). The gamm function in the mgcv pack-
age (Wood, 2011) was used to conduct GAMM 
regression and the aictab function in the AICcmo-
davg package (Mazerolle, 2017) was used to assess 
the fit of regression models. Spatial modeling was 
conducted using the geoR (Ribeiro et  al. 2020) and 
gstat packages (Gräler et al., 2016; Pebesma, 2004). 
ArcGIS 10.3 (Esri, 2011) was used to plot regression 
kriging components as IDW maps of spatial predic-
tions. GAMM model cross-validation was conducted 
using CVgam in the gamclass package (Maindonald, 
2018) and the function gstat.cv of the gstat package 
was used to cross validate IDW predictions.

Results

Regression

Unconditional regression

The unconditional GAMM (with all data) for Amphi-
poda (deviance explained = 0.53), Polychaeta (devi-
ance explained = 0.16), and total energy (deviance 
explained = 0.15) included period and the northing 
by distance interaction (Tables 1 and 2). Amphipoda 
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predicted energy density was the highest in Period 2 
and lowest in Period 3 as indicated by multiple com-
parisons (Fig.  2; Table  2). Amphipoda energy den-
sity was also high at ~ 5,860 km northing and in shal-
lower water depths. Polychaeta energy density was 
higher in Period 3 than Period 1 (Fig.  3; Table  2). 
Observed Polychaeta energy density increased 
slightly with higher northing values and was nearly 
constant with respect to distance from shore with 
a few points forming a peak at ~ 2  km. Total prey 
energy density increased with greater northing values 
and was slightly higher from 1 to 2  km from shore 
(Fig. 4; Table 2). Multiple comparisons demonstrated 
that total energy in Period 1 was significantly higher 
than Period 3. The regression for Amphipoda indi-
cated a large effect (deviance explained ≥ 0.4) and 
small effect sizes were noted for Polychaeta and total 
energy density (0.04 ≤ deviance explained < 0.23).

Logistic regression

A logistic GAMM (regression of presence/absence 
data) was conducted for Actinopterygii, the group 
for which the proportion of zero biomass values 
exceeded 60% (Table 1). The best-fitting model for 
Actinopterygii included period and the northing by 

distance interaction via a tensor product (deviance 
explained = 0.23; Table 2). Observed Actinopterygii 
energy density declined from north to south across 
all periods and multiple comparisons indicated that 
Period 2 was significantly higher than Period 1 
and Periods 1 and 2 were significantly higher than 
Period 3 (Fig.  3; Table  2). Actinopterygii energy 
density increased with northing and water depth 
and peaked ~ 2 km from shore. The logistic regres-
sion for Actinopterygii energy density represented 
a small effect.

Hurdle models

Hurdle GAMMs were fit for Bivalvia, Cumacea, and 
Isopoda. The best-fitting logistic and conditional 
GAMM regressions for Bivalvia energy included 
period and water depth (deviance explained = 0.16 
and 0.30; Fig. 5; Table 2). Observed Bivalvia energy 
density was the highest in Period 1 in the South 
Zone and lowest in the Middle Zone in Period 2 
with no differences noted among periods in multiple 
comparisons. Bivalvia energy increased with water 
depth. The best-fitting logistic model for Cumacea 
energy included period and northing with the addi-
tion of distance for the conditional GAMM (devi-
ance explained = 0.10 and 0.27; Table 2). Observed 

Table 1   Biomass 
concentrations and energy 
density for dominant prey 
groups and the total for 
all six groups for stations 
used in regression from 
the nearshore study area, 
Sakhalin Island, Russia. 
Minimum and maximum 
values are calculated 
using replicate grabs. % 
total is percent average 
prey biomass of total prey 
biomass

Biomass
(g m−2)

Mean Median Minimum Maximum % Total Zeros (%)

Actinopterygii 10.6 0.0 0.0 243.0 10.8 67.7
Amphipoda 29.7 22.1 0.0 295.6 30.4 0.5
Bivalvia 46.1 19.1 0.0 557.5 47.2 17.5
Cumacea 0.6 0.3 0.0 10.8 0.6 26.2
Isopoda 6.4 2.9 0.0 117.2 6.5 10.7
Polychaeta 4.4 2.3 0.0 136.0 4.5 5.7
Total Biomass 97.7 80.9 1.7 572.5 n/a 0.0

Energy
(kJ m−2)

Mean Median Minimum Maximum % Total Caloric conversion

Actinoptygerii 55.1 0.0 0.0 1263.6 15.2 5.2
Amphipoda 154.2 114.9 0.0 1537.0 42.4 5.2
Bivalvia 106.1 44.0 0.0 1282.3 29.2 2.3
Cumacea 2.9 1.4 0.0 51.6 0.8 4.8
Isopoda 25.6 11.4 0.0 468.8 7.0 4
Polychaeta 19.2 9.9 0.0 598.4 5.3 4.4
Total -Energy 363.7 307.5 6.6 1662.8 n/a n/a
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Cumacea energy density demonstrated low values 
in the south in Period 1 and in the north in Periods 
2 and 3 while multiple comparisons demonstrated 

that Cumacea energy density was higher in Period 
1 and 2 than in Period 3 (Fig. 3). Cumacea energy 
was nearly constant across all values of northing 

Fig. 2   Amphipoda energy (kJ/m2) for the nearshore feeding 
area, Sakhalin Island Russia, 2015. Observed energy density is 
presented by a sampling period and zone, b densities by north-
ing with a smoothed regression, and c densities by distance to 

shore with a smoothed regression. d Presents kriging predicted 
energy density by sampling period. Northing (m north) and lat-
itude (degrees north) are presented on the vertical scale
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with a slight increase around 5,840  km north and 
was higher closer to shore. The best predictors of 
Isopoda occupancy were period and northing while 
the interaction of northing and period was the best 
predictor of conditional Isopoda energy (deviance 
explained = 0.17 and 0.48; Table 2). Isopoda energy 
density increased with greater northing values in 
Period 1 and peaked at ~ 5,480–5,860  km north 
in Periods 2 and 3 (Fig.  6). No differences were 
detected in multiple comparisons for period in the 
logistic GAMM for Isopoda though each element of 
the 3-way tensor product interaction was significant 
for the conditional GAMM (Table  2). The effect 
sizes for the hurdle model regressions were small 
for logistic regressions with Bivalvia and Cumacea 
conditional GAMMs having medium-sized effects 
(0.23 ≤ deviance explained < 0.4) and Isopoda con-
ditional GAMM having a large-sized effect.

Interpolation

Amphipoda energy densities were the highest in 
period 1, close to shore in shallow water, and south 
of the mouth of Piltun Bay (Fig.  2). Interpolations 
compare well with observed patterns as Amphipoda 
energy density declined from Period 1 to Period 3 
and with greater distance from shore though the peak 
in energy in the middle of the study area in Period 
3 from the observed data was not captured in the 
interpolations. Scatterplots of observed Amphipoda 
energy density suggested that value peak in the mid-
dle of the study area and predicted energy density was 
the highest just south of the mouth of Piltun Bay.

Total energy density was the highest in Period 1 
and to the north and declined over the study period 
(Fig. 4). Predicted total energy increased with north-
ing, declined with greater distance to shore, and was 

Fig. 3   Average energy density (kJ/m2) by period and zone and 
scatterplots of northing (km) and distance from shore (km) for 
Actinopterygii, Cumacea, and Polychaeta for the nearshore 

feeding area, Sakhalin Island, Russia, 2015. Smoothed regres-
sions are presented on scatterplots
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Fig. 4   Total energy (kJ/m2) for the nearshore feeding area, 
Sakhalin Island, Russia, 2015. Observed energy density is 
presented by a sampling period and zone, b northing with a 
smoothed regression, and c distance to shore with a smoothed 

regression. d Presents kriging predicted energy density by 
sampling period. Northing (m north) and latitude (degrees 
north) are presented on the vertical scale
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the highest in the northern portion of the study area 
where Actinopterygii energy was high.

Bivalvia predicted energy concentrations were the 
highest in deeper water farther from shore and in the 
southern and northern portions of the study area (Fig. 5). 

Bivalvia energy predictions (maximum value of 1,555 kJ/
m2) were the highest along the eastern (deeper) edge of 
the prediction grid where they exceeded the observed 
maximum (1,282 kJ/m2; Table 1) representing an overes-
timation of Bivalvia energy along the eastern boundary.

Fig. 5   Bivalvia energy (kJ/m2) for the nearshore feeding 
area, Sakhalin Island Russia, 2015. Observed energy density 
is presented by a sampling period and zone, b northing with 
a smoothed regression, and c depth with a smoothed regres-

sion. d Presents kriging predicted energy density by sampling 
period. Northing (m north) and latitude (degrees north) are 
presented on the vertical scale
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Fig. 6   Isopoda energy (kJ/m2) for the nearshore feeding area, 
Sakhalin Island Russia, 2015. Observed energy density is 
presented by a northing and sampling period with smoothed 

regressions. b Presents kriging predicted energy density by 
sampling period. Northing (m north) and latitude (degrees 
north) are presented on the vertical scale
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Isopoda energy density was predicted to be high-
est in Period 1 nearshore in the south and farther 
from shore in deep water in the northern portion of 
the study area (Fig. 6). Predicted Isopoda energy den-
sity declined over the study period with low density 
across the whole study area in Periods 2 and 3.

Regression model validation

Fitted energy densities were similar to observed aver-
ages for most models with some exceptions (Table 3). 
Actinopterygii probability of occurrence and fitted 
energy density values increased where observed data 

Table 3   Means (kJ/m2) of observed data and fitted values for 
GAMMs and IDW by period (Per) and sampling strata (zone: 
Zn) for Sakhalin Island, Russia, 2015. Data, observed data; 
Hur, hurdle model; GM, unconditional GAMM; IDW, inverse 

distance weighting; Act, Actinopterygii; Amp, Amphipoda; 
Biv, Bivalvia; Cum, Cumacea; Iso, Isopoda; Poly, Polychaeta; 
and Total, total energy. Correlations are between fitted values 
and observed data

*Logistic regression fitted values (probability of occurrence) are presented under column H

Group Per Zn Data Hur GM IDW Group Per Zn Data Hur GM IDW

Act.* One S 5.2 0.1 0.5 5.4 Cum Two N 1.6 1.5 1.4 1.5
M 28.6 0.2 4.3 32.6 Three S 3.9 1.6 1.9 4.1
N 45.3 0.4 13.9 44.6 M 5.0 3.1 2.6 4.4

Two S 32.7 0.2 8.4 39.1 N 0.9 1.2 1.3 0.7
M 52.8 0.4 17.7 52.2 Corr 0.61 0.53 0.97
N 189.0 0.7 40.2 199.2 Iso One S 10.2 10.2 7.4 8.1

Three S 0.7 0.0  − 1.7 0.8 M 37.6 21.2 21.9 34.4
M 0.3 0.1 0.6 0.5 N 40.7 37.3 24.3 39.2
N 9.2 0.2 6.6 9.1 Two S 7.6 5.6 5.6 7.5

Corr 0.68 0.65 0.91 M 21.8 12.7 13.9 21.0
Amph One S 116.0 – 73.5 112.6 N 17.4 14.6 15.2 17.9

M 177.8 – 169.3 183.2 Three S 5.7 3.8 4.1 5.6
N 149.8 – 127.4 153.8 M 48.6 20.3 13.8 43.7

Two S 104.9 – 79.6 101.0 N 8.6 8.5 14.9 8.8
M 187.0 – 149.9 193.4 Corr 0.73 0.60 0.97
N 141.5 – 115.7 146.9 Poly One S 19.5 – 15.0 16.4

Three S 76.7 – 62.5 73.6 M 22.9 – 11.3 15.1
M 210.1 – 125.1 218.9 N 31.4 – 16.4 18.2
N 126.5 – 88.2 120.9 Two S 13.6 – 12.1 9.8

Corr 0.81 0.98 M 13.2 – 10.2 10.0
Biv One S 161.0 98.2 68.3 202.6 N 28.1 – 14.0 22.3

M 111.5 43.3 40.2 117.5 Three S 39.8 – 24.0 30.6
N 104.9 78.7 81.9 115.7 M 30.9 – 18.8 18.4

Two S 68.4 56.3 35.8 82.0 N 40.6 – 25.7 33.1
M 50.6 34.1 27.2 54.9 Corr 0.47 0.94
N 93.6 43.9 43.5 110.2 Total One S 330.8 – 232.0 346.8

Three S 97.9 75.5 47.7 116.8 M 393.5 – 326.9 388.6
M 72.9 43.0 34.3 83.1 N 383.4 – 375.0 376.2
N 107.5 70.5 60.8 129.1 Two S 236.5 – 219.4 242.8

Corr 0.68 0.72 0.96 M 333.3 – 299.6 335.8
Cum One S 1.7 2.7 2.5 1.6 N 478.9 – 339.3 499.8

M 4.9 4.0 3.6 5.2 Three S 228.7 – 193.9 231.6
N 3.7 2.2 2.1 3.7 M 370.5 – 258.9 368.9

Two S 2.7 2.0 2.1 2.8 N 298.8 – 295.2 302.3
M 3.2 3.0 2.7 3.3 Corr 0.48 0.95
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were high in the north zone in Period 1 and particu-
larly in Period 2. Amphipoda energy density fitted 
values closely followed the peak in energy in the mid-
dle of the study area but declined over time whereas 
observed energy increased in the middle area across 
periods. The unconditional and hurdle (without cor-
rection for zero-inflation) model fitted values for 
Bivalvia energy were all lower than the observed data 
suggesting a downward model bias. Cumacea, Isop-
oda, Polychaeta, and total energy density fitted val-
ues were generally similar to but slightly lower than 
the observed data. Overall, IDW energy density fitted 
values were close to the observed data and usually 
the closest to the observed means of all the methods. 
IDW-fitted values had the highest correlations with 
observed data (Spearman’s � ranged from 0.91 to 0.98) 
for all groups indicating that IDW maps were more 
faithful to observed patterns. GAMM-fitted values for 
Amphipoda were highly correlated with the observed 
data ( �  = 0.81) and had the highest correlation for 
GAMMs among all groups (0.47 ≤ �≤ 0.72 for other 
groups). Hurdle model fitted value correlations with 
the observed data ranged from � = 0.61 to � = 0.73 for 
Bivalvia, Cumacea, and Isopoda. The unconditional 
GAMM for Bivalvia had a slightly higher correlation 
with the observed data than fitted values from the hur-
dle model, despite the accommodation of zero values 
in the latter method. GAMM predictions of Polychaeta 
and total energy had lower correlations, with values of 
� = 0.47 and 0.48. The latter two groups comprise mul-
tiple trophic guilds and life histories and lower fits can 
be expected given the narrow ecological conditions 
in the study area and wide environmental tolerances, 
particularly for polychaetes. Cross-validation errors 
for each GAMM model were less than 10% of model 
error and for the most part less than 5% (Table 2).

Kriging and IDW validation

Kriging and IDW interpolations were compared for 
Amphipoda energy to understand their comparative 
strengths. Observed data patterns indicated higher 
Amphipoda energy densities in the middle of the 
study area, close to shore and in Period 1 with energy 
density declining over time though very high val-
ues were apparent in the middle of the study area in 
Period 2 (Figs. 2 and 7). High observed Amphipoda 
energy density also occurred in the south (Fig.  7). 
Kriging interpolations were higher nearshore in the 

south and in Period 1 with the peak of energy was 
just south of the mouth of Piltun Bay (Fig. 2). Kriged 
Amphipoda energy predictions declined with greater 
distance to shore. IDW energy interpolations demon-
strated higher Amphipoda energy density north of the 
mouth of the lagoon in Period 1, a peak adjacent to 
the mouth in Period 2, and an area of elevated energy 
density throughout the middle of the study area in 
Period 3 (Fig. 8). The IDW prediction maps encom-
pass a larger area reflecting a representative spatial 
domain often used for descriptive maps, rather than 
the restricted domain of the kriging predictions that 
was limited by spatial–temporal mismatches in pre-
dictor value combinations. As a result, IDW predic-
tions extend further offshore and Amphipoda energy 
interpolations were elevated offshore in Period 2 indi-
cating overprediction of energy relative to distance to 
shore. Otherwise, IDW and kriging predictions were 
generally agreeable with higher Amphipoda energy 
density close to shore and lower values with greater 
distance to shore. The regression kriging interpola-
tions had larger smoothed areas of high energy den-
sity whereas the IDW interpolations more closely 
reflected localized changes.

Discussion

Energy density distributions

Energy content of northern amphipods is low in 
spring but increases very quickly with the onset of the 
spring phytoplankton bloom, with smaller changes 
over mid- to late summer (late July–August) and 
fall (September–October). Biomass of Monoporeia 
affinis, a dominant in the nearshore Sakhalin Island 
area, increased sharply ~ 4  weeks after the spring 
bloom in the northern Baltic Sea and peaked in late 
July/August with higher biomass into September 
(Lehtonen, 1996; Lehtonen & Andersin, 1998), a pat-
tern also observed for energy density for Ampelisca in 
the northern Bering Sea (Highsmith & Coyle, 1992). 
Although early spring changes in energy content 
occurred prior to the first sampling period of the pre-
sent study, seasonal patterns of change and presumed 
peaks in energy content of amphipods and other ben-
thic animals in the nearshore area coincided with sea-
sonal increases in predation (Blanchard et  al., 2022; 
Maresh et  al., 2022). Significant variation in energy 
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distributions among the three sampling periods was 
evident in every regression model in the present 
study, even though sampling missed the early spring 
period. In addition to seasonal energy accumulation 
and growth, temporal differences among sampling 

periods reflected distributional changes (e.g., migra-
tion of sand lance into the study area in Period 2; 
Blanchard et al., 2022). Except for Polychaeta, Period 
3 had the lowest energy densities for all groups with 
Period 2 highest for Actinopterygii and Amphipoda 

Fig. 7   Amphipoda energy 
density (kJ/m2) in the 
2015 nearshore study area, 
Sakhalin Island, Russia. 
Bubble plots of energy 
density by sampling period 
represent replicate values at 
individual sampling points. 
The shoreline is added for 
geographic context and is 
not an accurate representa-
tion of distance from shore
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and Period 1 highest or equal to Period 2 for Cuma-
cea, Isopoda, and total biomass. The declines in 
energy density across seasons may reflect the influ-
ences of respiration and growth combined with sum-
mer predation by invertebrates, fishes, and marine 
mammals, particularly for Amphipoda (a group 

targeted by gray whales). The one group less likely 
to be preyed upon, Bivalvia, showed no significant 
differences among periods while depth effects were 
very strong, indicating that spatial drivers of variation 
were dominant for this group. Benthic-feeding preda-
tors including fishes and marine mammals regularly 

Fig. 8   Inverse distance weighting predictions of Amphipoda energy density for the nearshore feeding area Sakhalin Island Russia, 
2015
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crop bivalve necks and consume smaller bivalves 
whole (Harris et  al., 2009; Jewett & Feder, 1980; 
Paul et al., 1979) but there appears to be fewer preda-
tors (e.g., bearded seals and walrus) that target larger 
bivalves (the older animals usually comprising a large 
proportion of benthic biomass) in the study area. 
Polychaeta energy density was the highest in Period 
3, but without species information it is not possible 
to draw inferences because of the numerous life his-
tories within that class. Benthic larvae were found in 
the water column in June adjacent to Sakhalin Island 
demonstrating that the timing of early benthic com-
munity life history stages is tuned to spring water pri-
mary production (Tok et al., 2017).

The scale of spatial structuring in benthic com-
munities and their oceanographic and environmen-
tal controls are key influences on predictive power 
and model fits. Where benthic community patterns, 
environmental gradients, and spatial correlations 
are large and smooth over moderate to large spatial 
scales (oceanographically smooth habitats), model-
based kriging can be a powerful and informative tool 
to model community parameters and uncover patterns 
(Blanchard, 2015; Blanchard et al., 2013; Grebmeier 
et  al., 2015; Schonberg et  al., 2014). It is common, 
however, for mismatches between spatial scales of 
change, heterogeneity, sampling, spatial correlations, 
and predictors to result in significant analytical gaps 
(Blanchard & Feder, 2014). Gaps are particularly 
prevalent in oceanographic studies where field sea-
sons are limited and balancing costs with multidis-
cipline sampling needs can limit data collections. 
Additionally, exposed habitats such as the nearshore 
area adjacent to Sakhalin Island can be particularly 
difficult to model due to high community-level and 
environmental variability at all spatial scales, as also 
shown for the coastal North Sea (Armonies, 2000). 
Here, the GAMMs accommodated the high environ-
mental complexity adjacent to Sakhalin Island associ-
ated with distance to shore, water depth, and north-
ing. The complexity was particularly important for 
Actinopterygii, Amphipoda, Polychaeta, and total 
biomass where northing by distance interactions were 
noted. The interactions in the unconditional regres-
sions reflected the changes in bathymetric and sea-
floor complexity moving alongshore as distance from 
shore was highly correlated to water depth and other 
DEM indices of complexity along the narrow shelf. 
The significant interaction effect for Actinopterygii 

reflects seasonal migration (higher energy density in 
the north where they aggregate and particularly in 
period 2) as well as responses to interannual differ-
ences in oceanographic conditions (Fadeev, 2011). 
For Amphipoda, the interaction reflects the influence 
of discharges from and oceanographic conditions 
around Piltun Bay on production with higher energy 
densities adjacent to the mouth of the bay. Condi-
tional regressions were not as effective in capturing 
the interactions, as the simple effects of northing and 
distance were significant for two Cumacea and Isop-
oda and depth and northing for Bivalvia. The only 
interaction effect for a conditional regression was the 
period by northing interaction for Isopoda. The sim-
ple effect of depth in the conditional and hurdle mod-
els for Bivalvia reflects the strength of the water depth 
gradient (and associated variations in carbon delivery 
and sediment structure) on bivalve communities.

The two-part hurdle model was useful for man-
aging zero-inflation of Cumacea and Isopoda where 
zero values define habitat associations. Substantial 
improvements in fitted values for hurdle models rela-
tive to unconditional GAMMs (models that do not 
account for the large proportion of zero biomass val-
ues) for Cumacea and Isopoda suggested that positive 
biomass values defined habitats and zeros delimited 
unsuitable environments (Barry & Welsh, 2002). In 
contrast, the similarity of the fitted values from the 
hurdle and unconditional regressions for Bivalvia 
suggests that zero values occurred within bivalve 
habitat and no habitat combination was unsuit-
able. As a result, there was a slight improvement of 
the unconditional regression over the hurdle model, 
despite stronger assumption violations (variance het-
erogeneity due to zero values) with the unconditional 
approach. Isopods and cumaceans tend to occur less 
frequently and in patches while bivalves are numer-
ous, the group diverse, and species occur throughout 
the varying nearshore habitat. Thus, the zero-inflated 
models appear useful where zero values define habi-
tat characteristics related to patchy biomass distribu-
tions, but not where zeros represent within-habitat 
variability.

The patterns in energy density predictions were 
similar to biomass patterns noted by Blanchard 
et  al. (2022). Amphipod energy density was higher 
in the shallow waters (< 13 m) closer to shore while 
Bivalvia energy density was higher in deeper waters 
(~ 13–15  m) and at a greater distance to shore.  
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Actinopterygii energy density increased with the 
seasonal migration of sand lance into the northern  
portion of the nearshore feeding area during the 
middle of summer. The latter patterns also repre-
sented the strongest trends in the raw biomass anal-
yses of the 2015 data and in prior studies as well  
(Blanchard et al. 2022; Fadeev, 2011). In contrast to  
total prey biomass that varied by season and sam-
pling zone (Blanchard et  al.,  2022), total energy 
density declined over time across all the study area. 
The difference arises from correcting for bivalve 
shell weights in energy density estimates compared 
to raw wet weight biomass estimates that included 
shells. Although bivalves are not likely to be a pre-
ferred target of grey whales, they are part of the 
benthic habitats utilized by gray whales and pro-
vide a substantial contribution to the energetic land-
scape of the Sakhalin Island nearshore study area. 
Finally, the faunal difference in energy associated 
with the geographic predictors were large, despite 
the small depth range of ~ 10  m. Demchenko and 
Fadeev (2011) also demonstrated strong community 
differences associated with water depth, sediment 
grain-size, and salinity adjacent to Sakhalin Island  
(Blanchard et al., 2019; Sobolevskii et al., 2000).

Modeling

The complexity driving ecological interactions can 
vary from one area to another within a habitat and can 
be difficult to model because habitat complexity con-
tributes to ecosystem heterogeneity (de Souza et  al., 
2013). Spatial–temporal interactions of biological, 
hydrographic, and oceanographic characteristics with 
seafloor and shoreline topography can be significant 
ecosystem influences affecting benthic community 
characteristics, long-term maintenance of benthic 
energy hotspots, and thus marine animal distribu-
tions (Blanchard et  al., 2013; Buhl-Mortensen et  al., 
2012; Grebmeier et  al., 2015). Such variations were 
expected in the complex nearshore environment adja-
cent to Sakhalin Island. Potential influences associated 
with Piltun Bay (e.g., discharge of nutrients from the 
bay), for example, coincide with increased complexity 
of the shelf and change in slope. The environmental 
and physical complexity was reflected in distance to 
shore, water depth, and the geographic variable north-
ing. As opposed to linear models, GAMMs can better 
accommodate adjustments for complexity in predictor 

variables (Guisan et  al., 2002; Murase et  al., 2009) 
and particularly for complex interactions that can be 
modeled through tensor products. Comparisons of 
GAMMs to multiple linear regression models with 
two- and three-way interactions suggested a greater 
simplification, avoidance of collinearity with interac-
tions, and better fits associated with GAMMs using 
smoothed terms (A. Blanchard unpublished model 
validation results).

The GAMMS and kriging interpolations in the 
present study were hindered by the lack of sampling 
across the full environmental gradient in each sam-
pling period at prediction grid boundaries, a com-
mon problem associated with logistical considera-
tions for field studies. IDW maps are not as limited 
by design mismatches but can produce erroneous 
and unconstrained estimates outside of observed data 
or where data points are far apart. While regression 
approaches provide information concerning the influ-
ences of predictors on a response and the ability to 
make predictions for new covariate values, model-
based analyses may not always capture specific, local-
ized changes due to over-smoothing. In contrast, IDW 
maps can present data patterns for any collection 
of data points and capture local variations but may 
not perform well under other circumstances and are 
descriptive in nature. Here, inverse distance weighted 
(IDW)–fitted values were faithful for the patterns 
of the observed data and, in most cases, were more 
strongly correlated with observed data than other 
model fitted values. Nevertheless, IDW predictions 
overestimated energy density for Amphipod in period 
2 offshore whereas kriging interpolations were con-
strained by the water depth gradient. The latter did 
not, however, express the peak biomass in period 2 as 
well as the IDW interpolations. The very high inter-
polated energy content for Bivalvia along the deeper 
margin of the feeding area represents an overestima-
tion of energy density where energy should decline 
with greater water depth. Regression predictions are 
less reliable at boundaries, data extremes, and curve 
endpoints, all of which can exacerbate edge effects in 
spatial interpolations. More data points were needed 
in the present study to correctly shape the relation-
ship at the edge for Bivalvia due to the strong depth/
energy density covariance, as noted by Sobolevskii 
et al. (2000). Poor fits along boundary margins were 
not noted for other groups. For both methods and 
as a general rule, the distances among neighboring 
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sampling points need to be small enough and the 
sampling frame broad enough to correctly model pat-
terns and prevent bullseyes due to too few neighbors 
or extrapolations with unreliable estimates.

Prey energy density

Amphipod biomass declines in the Sakhalin Island 
nearshore feeding area have been large, represent-
ing > 30% reductions in energy availability from 2001 
to 2015 (Blanchard et al., 2019). Declines are of con-
cern as decreased prey energy density in the nearshore 
feeding area could adversely affect reproductive 
female and calf survival, especially when other stress-
ors, like the acoustic stress in 2015, are present. A 
minimum average Amphipoda wet weight biomass 
defining a gray whale feeding area appears to range 
from 60 to 85  g/m2 or, using the caloric conversion 
factor of 5.2, ~ 312–442 kJ/m2 (Blanchard et al., 2013, 
2019; Brower et al., 2017). Approximately 13% of the 
nearshore habitat adjacent to Sakhalin Island in 2015 
supported amphipod energy densities above 312  kJ/
m2 and ~ 5% supported amphipod energy densities 
above 442 kJ/m2 in 2015, with about 49% of the habi-
tat having ≥ 312 kJ/m2 total energy and 29% ≥ 422 kJ/
m2. While the nearshore feeding area in 2015 had 
significantly lower prey biomass than in prior years, 
juveniles (≤ 8  years of age including calves) appear 
to be the only demographic group of whales persist-
ing in the nearshore feeding area (Sychenko, 2011). 
Adults can feed offshore where prey resources are 
higher and declines have not been as great as in the 
nearshore area. Average Amphipoda energy density 
in the offshore feeding area was ~ 688  kJ/m2 with a 
maximum value of ~ 4,706 kJ/m2 in 2015 (Blanchard 
et al., 2019; Demchenko et al., 2016).

Data gaps

While most gray whales appear to regain adequate body 
condition during the summer feeding period, there is 
some concern for unidentified environmental factors 
that may influence interannual differences in condi-
tion (Bradford et  al., 2012). Interannual prey biomass 
declines and spatial variations are particular factors of 
concern (IUCN, 2019). Stress on arctic marine animals 
and habitats is highly seasonal and encompasses physi-
cal, environmental, biological, and chemical stress-
ors that can be local or widely dispersed (Bard, 1999; 

Boesch & Rosenberg, 1981; Gray, 1989; Hoekstra et al., 
2003; Naidu et al., 2012; Pearson, 1981). In the context 
of cumulative effects, benthic prey biomass and energy 
variations in the Sakhalin Island marine environment 
reflect the aggregate influences of local to broad-scale 
biological, climatic, environmental, and oceanographic 
disturbances and stresses (Blanchard et  al., 2019). 
Data are not, however, available to determine the sig-
nificance of each factor nor their potential effects in the 
ecosystem. Climate-related effects, for example, influ-
ence gray whales through the control of the length of 
feeding seasons by ice cover that may limit feeding and 
energy gains (Gailey et al., 2020; Salvadeo et al., 2015) 
while also driving changes in benthic biomass. Separa-
tion of individual drivers, determination of their effects 
on the benthos, and clarification of strengths of influ-
ences on higher trophic levels would be necessary to 
predict long-term ecosystem changes and could be ena-
bled by targeted oceanographic research programs. The 
effects of multiple stressors expressed through benthic 
community variations can also contribute to the aggre-
gate impacts of the stressors for all benthic predators, 
from commercially important fishes to gray whales. 
Additionally, how the spatial characteristics of benthic 
communities in the nearshore, such as patch extents 
and persistence, relate to gray whale distributions and 
use by different whale age groups is unknown. Limited 
information is available to define prey energy density 
characteristics spatially or temporally, particularly for 
water depths of < 8 m, which remains a significant data 
gap.

Conclusions

High ecosystem complexity is advantageous for ben-
thic communities but difficult to model. Biomass 
hotspots are driven by interactions of oceanographic 
characteristics, complex topographies, and life his-
tory characteristics of benthic fauna. Energy densities 
of dominant macrobenthos in northeastern Sakhalin 
Island varied by sampling period, the latitudinal gra-
dient (northing), and distance offshore/water depth. 
The interactions in unconditional regression mod-
els provide the clearest view of the spatial interac-
tions, with Amphipoda communities peaking around 
the mouth of the Piltun Bay and Actinopterygii 
peaking in the northern portion of the study area in 
period 2 likely due to seasonal migration as well as 
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interannual oceanographic variations. Total energy 
density reflected the changing energy distributions 
of Amphipoda and Actinopterygii. A key benefit of 
the spatial-regression approach applied here was the 
incorporation of GAMMs to better model complex 
relationships providing the means to incorporate 
smoothed-functions for predictors while accommo-
dating zero-inflation in model-based kriging. This 
GAMM-based approach was useful for accommodat-
ing the high environmental and biological complex-
ity often encountered in marine biological communi-
ties. As a complementary statistical analysis, spatial 
regression modeling provides a fuller picture of bio-
mass changes, compared to community-level analyses 
alone.
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