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Introduction

To date, there is a great challenge in the drivers for 
water change such as population growth, economic 
development, social, and technological change. These 
drivers have adversely negative impacts on water 
resources and climate change (Bassem, 2020). The 
unsustainable industrial development causes negative 
pressures on the environment. Industrial wastewater 
with high concentrations of pollutants (e.g., nitrate and 
phosphate) adversely affects the environment (Amoatey 
& Baawain, 2019). Declining the water quality in the 
countries with a scarcity of water resources reduces the 
country’s opportunity for sustainable industrial devel-
opment and threatens public health with spreading 
infectious diseases (PAHO, 2013).

Nanoparticles (NPs) were investigated for various 
processes of wastewater treatment. The NP properties 
(e.g., high surface-to-volume ratios and reduced size) 
enable them to be highly reactive with distinct charac-
teristics (Singh et al., 2019). Das et al. (2020) reported 
that NPs are highly effective in wastewater pollutants 
removal and are considered a promising method for 
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wastewater treatment. Nano-bioremediation achieve-
ments flourished the technologies of wastewater treat-
ment (Khan et al., 2019; Singh et al., 2020a, b).

Antioxidant nanomaterials such as cerium oxide 
 (CeO2) NPs had recently obtained good attention 
for their massive potential in biotechnology (Casals 
et al., 2020).  CeO2 NPs were used as catalysts, phys-
icochemical burnish mediators, coverings, and fuel 
additives (Hu et  al., 2018).  CeO2 NPs also obtained 
a lot of attention in solving many problems through 
displaying redox action, and biofilm restraint, etc. 
(Nyoka et al., 2020; Singh et al., 2020a, b).

The formation of  CeO2 nanoparticles was character-
ized using transmission electron microscopy (TEM) 
which used to assess the size and detailed morphol-
ogy of the  CeO2 NPs, X-ray diffraction (XRD), and  
zeta potential which applied to recognize the surface 
charge of  CeO2 NPs and to study the stability of nano-
particles. Ultraviolet-visible (UV-vis) spectroscopy  
was used for the visual observation of the NPs formation, 
and Fourier transform infrared spectroscopy (FT-IR)  
was applied to determine the existence of specific surface 
functional groups in the investigated NPs. The crystal-
line phase analysis using X-ray diffraction exposed the  
amorphous nature of  CeO2 NPs (Al-Ananzeh, 2021; 
García et al., 2012; Prabhakar et al., 2017).

CeO2 NPs were effective in the removal of differ-
ent pollutants from the wastewater (Contreras et  al., 
2015).  CeO2 NPs could improve the growth of some 
bacterial species that are shared in the bioremediation 
process. High concentrations of  CeO2 NPs could have 
negative effects on the bioremediation process of 
phosphate removal using an activated sludge (Kamika 
& Tekere, 2017).

Different industrial wastewater pollutants, particu-
larly with high nitrate and phosphate concentrations, 
were successfully removed using the biological treat-
ment processes. The wastewater treatment processes 
were highly developed to achieve this task with low 
input of energy (Ahammad et  al., 2013; Iloms et  al., 
2020). The efficiency of these processes can be referred 
to as the presence of key microorganisms in wastewa-
ter and activated sludge (Achmadulina et al., 2017).

High concentrations of nitrate perform adversely in 
oxygen transport procedures, leading to the hypoxia 
process and many human health problems (Cheng 
& Chen, 2001, 2002; Dutra et  al., 2020; Luo et  al., 
2020). In intensive systems, aquatic organisms could 
be exposed to high nitrate concentrations that could 

change the water quality and negatively affect the 
organism’s metabolism (de Farias Lima et al., 2020; 
Romano & Zeng, 2007, 2009, 2013). The nitrate bio-
accumulation in aquatic organism’s tissue can cause 
undesirable problems in humans after consumption 
(Wolfe & Patz, 2002). In addition, the ingestion of 
highly accumulated nitrates led to emerging of car-
cinogens in the digestive system (de Farias Lima 
et al., 2020; Song et al., 2015).

Phosphates help in the blood oxidation in the 
biota and are involved in numerous biochemical 
procedures (Choi et  al., 2020; Naushad et  al., 2017; 
Wiemer, 2020). Despite phosphate is not poisonous, 
it is responsible for surface water eutrophication; 
therefore, remediation methods have been constantly 
investigated to eliminate it in aqueous environ-
ments (Luengo et al., 2017; McPherson et al., 2004). 
Chronic influences of phosphates such as expansion 
inhibition, reduced fertility, and gene expression were 
detected in aquatic organisms (Yuan et al., 2018).

This study aims to investigate the role of  CeO2 
NPs in the activation of microorganisms for the dairy 
effluent nitrate and phosphate bioremediation process. 
Specifically, the parameters such as the concentration 
of  CeO2 NPs and their impact on bacterial growth 
and nitrate and phosphate reduction were investigated 
and discussed in this study.

Materials and methods

Inoculum sample collection

Fresh inoculum samples of dairy wastewater and acti-
vated sludge were collected from a dairy wastewater 
treatment plant at Jumasa, Egypt. The samples were 
stored at 4 °C to maintain their inoculum properties.

Cerium oxide nanoparticles

A powder sample (5  mg) of NP  CeO2 (within a 
size: ≤ 25 nm) was obtained from Sigma-Aldrich® chem-
ical company, Ontario, Canada, and used in this study.

Experimental setup

The different inoculum source solutions (100  mL) 
were inoculated separately in a reactor including 
300 mL of culture media (d-glucose anhydrate, 2.5 g/L; 
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 MgSO4·7H2O, 0.5 g/L and  KNO3, 0.18 g/L; prepared 
in distilled water) (Kamika & Tekere, 2017). All the 
chemicals used in the experimental work were obtained 
from Sigma-Aldrich® chemical company, Ontario, 
Canada. The inoculum sources were separately treated 
with different concentrations of  CeO2 NPs to investi-
gate their impact on the microbial species in wastewater 
treatment plants.

The concentrations of  CeO2 NPs in the samples were 
adjusted to be 1 ×  10−8, 1 ×  10−9, 1 ×  10−10, 1 ×  10−11, 
1 ×  10−12, 1 ×  10−13, 1 ×  10−14, and 1 ×  10−15 ppm, and 
the non-treated was used as a control. The concentra-
tions’ adjustment was done after a pilot study aimed 
to obtain the bacterial growth enhancement  CeO2 NPs 
start concentration using 1 ×  10−1, 1 ×  10−2, 1 ×  10−3, 
1 ×  10−4, 1 ×  10−5, 1 ×  10–6, 1 ×  10–7, and 1 ×  10−8 ppm. 
Incubation condition for maximizing the bacterial 
growth was performed at 35 °C and pH 7.

X-ray diffraction analysis (XRD) and transmis-
sion electron microscope (TEM) were performed to 
determine the mineral composition and shape of the 
studied  CeO2 NPs. Zeta potential analysis was per-
formed to identify the surface charge of  CeO2 NPs. 
These analyses and nano-specifications were car-
ried out in Nano Science and Technology Institute at 
Kafrelsheikh University, Egypt. The aliquot samples 
were used to determine nitrate and phosphate concen-
trations (ppm) using ion chromatography (Thermo 
Scientific, Dionex ICS-1100) (Yi et al., 2020).

The microbial growth was measured at a wave-
length of 450 nm (Domínguez et al., 2001; Mauerhofer 
et  al., 2018), using Jenway Model 6800 Spectropho-
tometer. Triplicate tests were carried out, and the mean 
and change percentages to control were recorded.

X‑ray diffraction analysis

The XRD analysis was used to show the nano-size 
and peaks of the  CeO2 NPs to approve their crystalline 
structure and pattern (Arockia et al., 2019; Pillai et al., 
2020; Almessiere et  al., 2020; Aref & Salem,  2020). 
The XRD analysis was carried out in Nano Science and 
Technology Institute at Kafrelsheikh University, Egypt.

Transmission electron microscope

Transmission electron microscopy (TEM) was employed 
to show the size and morphological investigations of the 

NPs (Arockia et  al., 2019; Aref & Salem, 2020; Pillai 
et al., 2020). The TEM analysis was carried out in Nano 
Science and Technology Institute at Kafrelsheikh Uni-
versity, Egypt.

Zeta potential analysis

Zeta potential analysis was used to identify the sur-
face charge of  CeO2 NPs and their physical sta-
bility in the aqueous solutions (Ding et  al., 2018; 
Gaikwad et  al., 2019; Jiang et  al., 2009; Joseph & 
Singhvi, 2019; Selvamani, 2019). The particle sizes, 
ζ-potential, and polydispersity index (PDI) of nano-
particles had been determined through a Nano-ZS 
Zetasizer analyzer (Meng et al., 2020). The zeta anal-
ysis was carried out in Nano Science and Technology 
Institute at Kafrelsheikh University, Egypt.

Ultraviolet–visible spectroscopy

Ultraviolet–visible spectroscopy was used for the 
visual observation of the NP formation by monitoring 
the alterations in the solution color through incuba-
tion time (Arockia et al., 2019). The UV–Vis analysis 
using was carried out in Nano Science and Technol-
ogy Institute at Kafrelsheikh University, Egypt, using 
JASCO NIR Spectrophotometer/ model: V-770.

Fourier transform infrared spectroscopy

FT-IR spectrophotometer was employed in this study 
to determine the existence of specific surface func-
tional groups of the studied samples (Madubuonu 
et  al., 2020; Pillai et  al., 2020; Varadavenkatesan 
et  al., 2020). The FT-IR analysis was carried out 
in Nano Science and Technology Institute at Kaf-
relsheikh University, Egypt, using Infrared Spectrum 
Origin Jasco: model, FT-IR 6800typeA.

Results and discussion

CeO2 nanoparticle characterization

X‑ray diffraction analysis

Figure 1 shows the XRD pattern of  CeO2 NPs where 
well-defined peaks were obtained at 28.14°, 32.64°, 
47.16°, 56.00°, 58.84°, 68.96°, 76.24°, and 78.90° 
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corresponding to [346], [112], [218], [166], [38], [50], 
[76], and [50] planes of cubic  CeO2 lattice. This dif-
fraction pattern indicated that the NPs have very sharp 
peaks with ultrafine nature and high crystalline cubic 
spinel structure that confirm the purity and good for-
mation of the metal-oxide NPs (Romer et al., 2019).

Transmission electron microscope

TEM photomicrograph of the prepared  CeO2 NPs is 
shown in Fig. 2 and indicates that the particles have 
an isotropic shape (Forest et al., 2017), within a range 
of 20–40 nm in size.

Zeta potential analysis

The zeta potential analysis of  CeO2 NPs is shown 
in Fig.  3 indicating that the zeta potential value of 

 CeO2 NPs is 1.5 mV and confirming its negative sur-
face charge. Nanoparticles with zeta potential greater 
than + 25  mV or less than −25  mV have more col-
loidal stability with repulsive forces to avoid the 
agglomeration of NPs (Thakkar et al., 2016). Further-
more, the obtained results of  CeO2 NPs indicated that 
the nanoparticles have a suitable dispersion capability 
in an aqueous medium.

Ultraviolet–visible spectroscopy

Ultraviolet–visible analysis of  CeO2 NPs is shown in 
Fig.  4 where the UV–Vis spectra at wavelengths of 
200–800 nm were used to notice a powerful absorp-
tion peak, which related to superficial Plasmon exci-
tation (Aref & Salem, 2020). The sharp peak assumed 
by the UV–Vis spectrum at the absorption wave-
length is 340 nm (Fig. 4).

Fourier transform infrared spectroscopy

Fourier transform infrared (FT-IR) analysis of  CeO2 
NPs in terms of wavenumber vs transmittance (%) is 
shown in Fig. 5. The evaluation was performed by using 
FT-IR spectrometer; the spectra were scanned in the 
wavelength range of 400–4000  Cm−1 at a resolution of 
2  Cm−1 in KBr pellets (Aref & Salem, 2020; Sobhani-
Nasab et al., 2020), where the maximum transmittance 
is 38.75% and the minimum transmittance is 7.31%.

Bacteriological wastewater treatment

Microorganisms have a key role in pollutant degradation  
and biological systems maintenance and stabilization. 
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Fig. 1  XRD pattern of  CeO2 NPs

Fig. 2  TEM photomicro-
graph of  CeO2 NPs
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Applying the technologies of biological wastewa-
ter treatment compared to other treatment actions  
has many advantages such as low cost, low or with-
out secondary excretion of pollutants, and the most  
significant low adverse effects on the environment 
(Dadrasnia et  al., 2017). Physico-chemical meth-
ods that were used for treating nitrate in wastewater 
(e.g., reverse osmosis (RO), electrodialysis, and ion 
exchange) generate secondary wastes which made 
these processes less desirable (Yun et  al., 2016). In 
contrast, biological methods are more reliable and 
stable in wastewater treatment (McCarty, 2018). The 
presence of nitrate in polluted wastewater allows 

bacteria to obtain many metabolic capabilities enabling 
its adaptation to simulate nitrification-and denitrifica-
tion processes (Rajta et al., 2020; Sharma & Dwivedi, 
2017).

Numerous and diverse chemical, physico-chemical, 
and biological methods were used to remove phospho-
rus from wastewater. Chemical methods are less desir-
able due to their high cost and generate secondary 
pollution, while physico-chemical methods involve a 
high expenditure of the processes with a complex use. 
Furthermore, the biological methods of phosphorus 

Fig. 3  Zeta potential of  CeO2 NPs

Fig. 4  Ultraviolet–visible analysis of  CeO2 NPs
Fig. 5  Fourier transform infrared (FT-IR) analysis of  CeO2 
NPs
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removal are widely used worldwide (Ruzhitskaya & 
Gogina, 2017). There are series of technologies used 
for the biological removal of phosphorus such as 
phostrip, anaerobic/anoxic/oxic, activated sludge, and 
other technologies (Barnard, 2006).

The study results clearly explained the effec-
tiveness of using microbial consortia (wastewater 
inoculum and sludge inoculum) in biological nitro-
gen and phosphorous remediation, which agree with 
the results of Wu et  al. (2019), Zhang et  al. (2019), 
Al Ali et  al. (2020), Salama et  al. (2022), Liu et  al. 
(2017,  2018), Shomar et  al. (2020), and Guemmaz 
et al. (2019) indicating the high efficiency of micro-
bial consortia in simultaneous removal of nitrogen 
and phosphorous and particularly are more effective 
in bioremediation than using other pure microbial 
species.

Effect of  CeO2 nanoparticle concentrations on the 
bacterial growth

The growth properties of wastewater inoculum were 
investigated using a spectrophotometer with  CeO2 NP 
concentrations (from 1 ×  10−1 to 1 ×  10−8  ppm) that 
were used as a pilot study and were shown in Fig. 6a. 
While the growth properties of wastewater and sludge 
inoculum were investigated in presence of concentra-
tions from (1 ×  10−8 to 1 ×  10−15  ppm) as shown in 
Fig. 6b.

Figure  6a, b show bi-phase dose–response rela-
tionships. A positive effect of  CeO2 NPs on microbial 
growth was observed with a maximum of 1 ×  10−12 ppm 
for wastewater inoculum and 1 ×  10−10 ppm for sludge 
inoculum. However, a high-dose inhibition in biofilm 
formation was observed with  CeO2 NPs higher than 

Fig. 6  Absorbance pattern of microbial growth media at 
(450 nm) with wastewater as inoculum source (pilot study) a 
and using wastewater and sludge as inoculum source b. Reduc-

tion patterns of nitrate c and phosphate d concentrations (ppm) 
using different concentrations (ppm) of  CeO2 NPs
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1 ×  10−8  ppm as shown in the pilot study’s results, 
which indicated the antimicrobial effects of  CeO2 NPs. 
The statistical analysis of the studied data showed sig-
nificant variations (P < 0.01) in the absorbance pat-
tern of microbial growth media at 450 nm among dif-
ferent experimental factors (Table  1). These findings 
agree with those of Xu et  al. (2019) indicating that 
the impacts of  CeO2 NPs on microbial growth showed 
a typical effect, which was defined as a bi-phase 
dose–response relationship with low-dose stimulation 
and high-dose inhibition (Popov et al., 2017; Qiu et al., 
2016; Salama et al., 2021; Xu et al., 2019).

The low concentrations of  CeO2 NPs improved 
the surface hydrophobicity, the aggregating ability in 
addition to the protein (PRO), and the polysaccharide 
(PS) microbial production during the initial attach-
ment and differentiation process. The increased reac-
tive oxygen species (ROS), which are produced by 
 CeO2 NPs, promoted the production of the quorum 
sensing (QS) molecules by microbial organisms that 
resulting in the accelerated activation of QS systems 
(Xu et  al., 2018). The QS among bacteria promotes 
the formation of biofilms, improves the strains’ resist-
ance, promotes bacterial growth, and enhances the 
metabolic effects (Yang et al., 2020).

Effect of  CeO2 nanoparticle concentrations on dairy 
effluent nitrate and phosphate bioremediation

The bioremediation properties of dairy effluent were 
evaluated in terms of nitrate and phosphate examina-
tion. The role of different microbial inoculum sources 
on nitrate and phosphate decrease (ppm) was inves-
tigated using different concentrations of  CeO2 NPs 
(from 1 ×  10−8 to 1 ×  10−14 ppm) for wastewater inoc-
ulum, and (from 1 ×  10−8 to 1 ×  10−13 ppm) for sludge 
inoculum (Fig. 6c, d).

By comparing the results obtained from the micro-
bial growth with nitrate and phosphate reductions, 
it is noticed that the best microbial growth was at 
absorbance: 172.67 for wastewater inoculum, and 
1170.33 for sludge inoculum, which coincides with 
the highest nitrate reduction (5.81 and 9.19 ppm) and 
highest phosphate reduction (0.43 and 1.39 ppm) that 
were achieved using (1 ×  10−12 and 1 ×  10−10 ppm) of 
 CeO2 NPs, respectively, in the nutrient media (waste-
water and sludge inoculum separately) that were com-
pared to the control sample after 5 days of incubation 
at temperature 35  °C. Figure 6c, d show that nitrate 
and phosphate concentrations (ppm) linearly decrease 
with the increase of  CeO2 NPs concentrations from 

Table 1  General linear model test for variation in absorbance pattern of bacterial growth media at 450 nm, using different concen-
trations (ppm) of  CeO2 NPs

Growth media Source Degree 
of  
freedom

Sequential 
sums of 
squares

Adjusted 
sums of 
squares

Adjusted 
mean 
squares

F-value P-value

Bacterial growth media + different 
concentrations of  CeO2 NPs

Inoculum source 1 8,402,456 8,402,456 8,402,456 996.60 0.000
Conc. of NPs (ppm) 8 354,214 354,214 44,277 5.25 0.000
Error 44 370,971 370,971 8431 - -
Total 53 9,127,640 - - - -

Table 2  General linear model test for variation in nitrate (ppm) pattern, using different concentrations (ppm) of  CeO2 NPs

Growth media Source Degree 
of  
freedom

Sequential 
sums of 
squares

Adjusted 
sums of 
squares

Adjusted 
mean 
squares

F-value P-value

Bacterial growth media + different 
concentrations of  CeO2 NPs

Inoculum source 1 19,399.5 19,399.5 19,399.5 54.04 0.000
Conc. of NPs (ppm) 8 26,903.4 26,903.4 3362.9 9.37 0.000
Error 44 15,794.9 15,794.9 359.0 - -
Total 53 62,097.7 - - - -
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1 ×  10−8 to 1 ×  10−14  ppm for wastewater inoculum 
and from 1 ×  10−8 to 1 ×  10−13 ppm for sludge inocu-
lum. A higher concentration of  CeO2 NPs showed a 
lower bioremediation efficiency.

Statistical analysis of the data showed significant 
variations at P < 0.01 in nitrate and phosphate con-
centrations (ppm) between different experimental fac-
tors (microbial inoculum sources with different  CeO2 
NPs) (Tables 2 and 3).

CeO2 NPs have delivered promising approaches 
in the bioremediation process. The physico-chemical 
properties of  CeO2 NPs (e.g., size and surface charge) 
play key roles in the ultimate interactions of the nano-
particles with target cells (Charbgoo et  al., 2017). 
Based on this,  CeO2 NPs could enhance the metabolic 
activity of some microbial species while inhibiting 
those of others (Kamika & Tekere, 2017; Pelletier 
et  al., 2010), depending on the enzymes that play a 
key role in the bacterial bioremediation (Jaiswal & 
Shukla, 2020).

Nitrification and denitrification are two major 
processes for biological nitrogen removal that 
organize the global nitrogen cycle. Four key 
enzymes carried out the denitrification process: 
nitrate reductase, nitrite reductase, nitric oxide 
reductase, and nitrous oxide reductase (Rajta et al., 
2020). Furthermore, bacterial growth, which stim-
ulates nitrate and phosphate removal enzymes, is 
a result of maximizing the bacterial count (Deng 
et al., 2020; Wang et al., 2020). According to Farias 
et  al. (2018), the effect of  CeO2 NPs on microbial 
count and activity is concentration dependent. The 
bacterial count and metabolic activity of some 
strains were enhanced by sub-lethal concentrations 
of  CeO2 NPs exposure (Martínez et  al., 2019; Xu 
et al., 2019).

The obtained results agree with those of Feng et al. 
(2019) and summarizing that exposure to higher con-
centrations of  CeO2 NPs caused a sharp decrease in 

nitrogen and phosphorus removal efficiencies that 
were consistent with the tendencies of key enzymes 
(Feng et al., 2019). Specifically,  CeO2 NPs at concen-
trations of 0.1, 1, and 10 ppm decreased the secretion 
of tightly bound extracellular polymeric substances to 
0.13%, 3.14%, and 28.60%, respectively in compari-
son to the control. According to Wang et al. (2016), 
the removal rates of nitrate and phosphate show simi-
lar variation trends to the microbial enzymatic activi-
ties. Additionally, the variations of ROS and lactate 
dehydrogenase (LDH) indicated that a high concen-
tration of  CeO2 NPs could result in biotoxicity to 
the activated sludge (Wang et al., 2016). Overall, the 
high concentrations of  CeO2 NPs could cause adverse 
effects on microbial richness and diversity of the acti-
vated sludge.

Conclusions

Enhancing the reduction of nitrate and phosphate 
using bioremediation nanotechnologies is a major 
challenge.  CeO2 NPs with sub-lethal concentra-
tions have attracted interest due to their ability to 
produce higher bacterial growth, metabolic activity, 
and accordingly accelerate the nitrate and phosphate 
reduction. The bacterial growth together with nitrate 
and phosphate reduction were linearly correlated 
with the increase of  CeO2 NP concentration. Nitrate 
and phosphate reduction’s efficiency, using sludge 
as an inoculum source, was improved up to 89.01% 
(for nitrate) and 68.12% (for phosphate) compared to 
control. In the case of using wastewater as an inocu-
lum source, the nitrate and phosphate reduction was 
improved up to 83.30% and 87.75%, respectively, 
compared to control. The study findings concluded 
that using various inoculum sources together with 
the  CeO2 NP concentrations is an efficient method for 
nitrate and phosphate reduction from dairy effluent.

Table 3  General linear model test for variation in phosphate (ppm) pattern, using different concentrations (ppm) of  CeO2 NPs

Growth media Source Degree 
of  
freedom

Sequential 
sums of 
squares

Adjusted 
sums of 
squares

Adjusted 
mean 
squares

F-value P-value

Bacterial growth media + different 
concentrations of  CeO2 NPs

Inoculum source 1 34.10 34.10 34.10 31.86 0.000
Conc. of NPs (ppm) 8 153.15 153.15 19.144 17.89 0.000
Error 44 47.09 47.09 1.070 - -
Total 53 234.34 - - - -
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