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forces of  PM2.5 emission in the Yangtze River Delta. 
It should be noted that the repercussion of wildfire on 
 PM2.5 was gradually prominent. When formulating 
air pollution control measures, the local government 
normally considers the impact of weather and traffic 
conditions. In order to reduce  PM2.5 pollution caused 
by biomass combustion, the influence of wildfire 
should also be taken into account, especially in the 
fire season. Meanwhile, high leaf area was conducive 
to improving air quality, and the increasing green area 
will help reduce air pollutants.

Keywords Yangtze River Delta · PM2.5 drivers · 
Spatial distribution · Random Forest · Spatial 
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Introduction

PM2.5 (equivalent diameter of particulate mat-
ter ≤ 2.5  μm in aerodynamics) is a major urban 
pollutant, which contributes to the occurrence of 
many diseases from cardiovascular and respiratory 
(Dominici et  al., 2006; Peng et  al., 2009), and has 
even been linked to fetal development (Guo et  al., 
2018). Although  PM2.5 has declined worldwide over 
the past 30  years, there is still no region below the 
recommended annual target  (PM2.5 < 10  μg/m3) set 
by the World Health Organization (Archer et  al., 
2020). Frequent wildfires in many regions all over 
the world have led to widespread air pollution in 

Abstract Understanding the drivers of  PM2.5 is crit-
ical for the establishment of  PM2.5 prediction models 
and the prevention and control of regional air pollu-
tion. In this study, the Yangtze River Delta is taken as 
the research object. Spatial cluster and outlier method 
was used to analyze the temporal and spatial distri-
bution and variation of surface  PM2.5 in the Yangtze 
River Delta from 2015 to 2020, and Random Forest 
was utilized to analyze the drivers of  PM2.5 in this 
area. The results indicated that (1) based on the spa-
tial cluster distribution of  PM2.5, the northwest and 
north of Yangtze River Delta region were mostly 
highly concentrated and surrounded by high concen-
trations of  PM2.5, while lowly concentrated and sur-
rounded by low concentrations areas were distributed 
in the southern; (2) the relationship between  PM2.5 
concentrations and drivers in the Yangtze River Delta 
was modeled well and the explanatory rate of driv-
ers to  PM2.5 were more than 0.9; (3) temperature, 
precipitation, and wind speed were the main driving 
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recent years (Pang et  al., 2020). This crisis is more 
alarming in the circumstances of the COVID-19 pan-
demic, because more inhalation of smoke particles 
increases the incidence of lung injury, which further 
aggravates the spread of the epidemic (Matz et  al., 
2020).

The serious  PM2.5 pollution has aroused great 
concern of the Chinese government and the pub-
lic recently, and triggered many researches on the 
mechanism of the impingement of air pollution on the 
ecological environment and human health (Guo et al., 
2018; Pang et al., 2020; Xue et al., 2017). An accu-
rate estimation of  PM2.5 exposure is hence essential 
for assessing its impact on health risks. However, a 
well-known problem with  PM2.5 data from air pol-
lutant monitors in ground is that it does not take into 
account the spatial change of  PM2.5 concentrations. In 
previous studies, the information of  PM2.5 concentra-
tions is often simply taken from a monitoring station 
or defined as a measurement index that is the mean 
of measurements obtained from several monitors (Liu 
et al., 2021; Miskell et al., 2017), which results in the 
loss of  PM2.5 spatial variation information. Therefore, 
it is of great importance to accurately estimate the 
spatiotemporal variation of surface  PM2.5 concentra-
tions at a large scale.

The Yangtze River Delta urban agglomeration has 
currently the most complete industrial system, the 
best urbanization foundation in China, and its eco-
nomic aggregate accounts for nearly a quarter of the 
whole country, playing a crucial role in the economic 
and social development of China (Ma et  al., 2019a, 
b). With the continuous improvement of industrial 
and economic development, the high-density popu-
lation and road traffic network make the pollution 
buffer distance among cities smaller, thereby bring-
ing serious air pollution problems to this region (Yun 
et al., 2019).

Many studies have been carried out on the  PM2.5 
exposure and its drivers in the Yangtze River Delta 
(YRD) region, which provide the theoretical basis for 
the scientific prevention and restriction of regional 
air pollutants (Guo et al., 2018; Pang et al., 2020; Xu 
et al., 2020; Xue et al., 2017; Yun et al., 2019). Socio-
economic factors as the direct pathogenic factors for 
environmental pollution have long been the focuses 
of researches on  PM2.5 influence factors (Zhou et al., 
2021). Environmental factors such as air temperature, 
wind speed, humidity, and topography are considered 

to be the indirect contributors to the concentrations 
of  PM2.5 in the air because they can affect the airflow 
and the spread of particle matters (Xu et  al., 2020). 
However, this response relationship in the context of 
climate change has been changing: Yun et al. (2019) 
found that environmental factors jointly contributed 
to  PM2.5 pollution in the YRD; Xu et al. (2020) also 
noted that the influence of environmental factors on 
the  PM2.5 concentrations was greater than the socio-
economic factors in the YRD region. Meteorological 
factors and land use are the common environmental 
drivers for predicting  PM2.5 exposure in the YRD 
(Liu et al., 2021; Yun et al., 2019; Zhou et al., 2021), 
while the impact of smoke produced by wildfire on 
 PM2.5, in particular, is rarely studied, to our knowl-
edge. Recent theoretical developments have revealed 
that about 50% of the carbon emissions worldwide 
are linked to wildfires, and approximately 3.3 mil-
lion people worldwide died prematurely from poor air 
quality, with 5–8% of which are attributed to air pol-
lution from fire emissions (Andela et al., 2017; Matz 
et al., 2020). Therefore, it is necessary to bring wild-
fire occurrence information into the analysis of  PM2.5 
driving factors.

A deep understanding of the spatio-temporal dis-
tribution of  PM2.5 concentrations and its drivers will 
help to establish an effective prediction model and 
improve the accuracy of  PM2.5 concentration predic-
tion, which is of great significance to the establish-
ment of air pollution prevention and control meas-
ures. The main objectives of this study are as follows: 
(1) to identify the spatio-temporal distribution of 
 PM2.5 concentrations in the YRD in the period of 
2015 to 2020; (2) to understand the relative impor-
tance of environmental and human drivers affecting 
the  PM2.5 exposure, and their effects on  PM2.5 con-
centrations; and (3) to provide theoretical support for 
the effective prevention and control of  PM2.5 emission 
in the YRD.

Materials and methods

Study area

The YRD region on the eastern coast of China is 
within 118° 33′ ~ 123° 10′ E and 28° 0′ ~ 33° 52′ N, 
covering an area of 211,700  km2 (Fig. 1). Under the 
influence of the subtropical monsoon climate, its 
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annual average precipitation and temperature are 
804 ~ 2057  mm and 9.3 ~ 17.3  °C, respectively (Xue 
et al., 2017). As an alluvial plain of the Yangtze River 
to the Pacific Ocean, the YRD region is characterized 
of a high-density river network, and low-altitude ter-
rain whose altitude is mostly less than 10 m and grad-
ually decreases from southwest to northeast with low 
hills scattering around. The region embraces 26 major 
cities and has high rates of economic growth and 
urbanization (Xu et al., 2020). Thus, the population is 

dense, and the urban heat island effect is significant. 
 PM2.5 emissions in this region maintain high levels 
(Xue et al., 2017).

Data collection and process

PM2.5 data

As of 2020, 165 ground environmental monitoring 
sites were built by the Chinese government in this 

Fig. 1  Study area of the YRD region. Distribution of (a) elevation and monitor stations (black points), (b) road density, and (c) leaf 
area index in the YRD region
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region (Fig. 1a). The  PM2.5 concentrations data was 
collected from the monitoring daily data from 2015 
to 2020 of the ground air quality monitoring sta-
tion established by China’s Ministry of Ecology and 
Environment. To ensure consistency on the tem-
poral scale for all variables, these data were inte-
grated into the annual average  PM2.5 concentrations. 
Before discussing the spatial distribution of  PM2.5 
exposure in the YRD, the discrete values of ground 
observations were converted into continuous sur-
face raster data by spatial interpolation. The spatial 
interpolation techniques, including ordinary kriging 
(OK), universal kriging (UK) and inverse distance 
weighting (IDW) (Jerrett et  al., 2005; Ma et  al., 
2019a, b; Mercer et al., 2011; Xu et al., 2019), have 
been widely adopted in the field of the estimation 
for  PM2.5 concentrations, and can be found in Arc-
GIS10.4 software.

Environmental factors

Meteorological data were from ERA5-Land data 
available at Copernicus Climate Change Service 
(C3S) (https:// cds. clima te. coper nicus. eu). ERA5-
Land data is a reanalysis dataset produced by the 
ECMWF ERA5 reanalysis model, which combines 
observations from around the world into a globally 
complete and consistent dataset using the laws of 
physics. This dataset includes 50 dynamic monthly 
indicators representing temperature, wind speed, 
precipitation, and vegetation since 1981, with a spa-
tial resolution of 0.1° × 0.1° (about 9 × 9 km), which 
describes the past and the present climate condi-
tions (Zhang et  al., 2021). Detailed information, 
code, and summary statistics of all the variables are 
given in Tables S1 and S2, respectively.

Leaf area index (LAI) refers to the multiple of 
the total plant leaf area per unit land area. It deter-
mines the size of the interface for the exchange of 
energy (including radiation) and mass between the 
canopy and the atmosphere. This is an important 
structural parameter of the ecosystem, which is used 
to provide quantitative information for the descrip-
tion of material and energy exchange on plant can-
opy surface. LAI can make an influence on  PM2.5 
through various mechanisms (Berg & McColl, 
2021; Velásquez Ciro et  al., 2021). This data was 
also obtained from C3S Data Platform.

Anthropic factors

According to the existing researches on drivers of 
 PM2.5, we considered road and railway density, popu-
lation density, and the proportion of land use (farm-
land and forest land) as human-influencing factors of 
 PM2.5 (Joharestani et  al., 2019; Liu et  al., 2021; Xu 
et al., 2020; Yun et al., 2019).

Road and rail information used in this study is 
1:1 million terrain feature vector data provided by 
the National Geomatics Center of China, which was 
processed by line density analysis in ArcGIS 10.4 to 
obtain road and rail density raster data. The popu-
lation density with a resolution of 30 arc-seconds 
(approximately 1  km at the equator) was derived 
from the global population density data provided by 
WorldPop. By calculating the number of people in 
each pixel and proofreading it with the official pop-
ulation estimation data of the United Nations, the 
annual global population density data from 2000 to 
2020 were generated (these data can be downloaded 
from https:// www. world pop. org/) (Lloyd et al., 2017). 
This data has been used in many studies (Liu et  al., 
2020; Nethery et  al., 2021), such as in correcting 
some remote sensing data including nighttime light 
data (Liu et al., 2020).

Land-use variable has always been a conventional 
option in the research on  PM2.5 drivers, which repre-
sents the degree of landscape modification by human. 
C3S Data Platform provides access to the land-use 
information used in this research. The dataset pro-
vides a global land cover raster data from 2015 to 
2020, by dividing the land surface into 22 catego-
ries following the Land Cover Classification System 
(LCCS) of the Food and Agriculture Organization 
(FAO) of the United Nations. The advantages of long-
term consistency, annual renewal, and high resolution 
(300 m) on a global scale enable it for a wide range of 
applications and scientific researches, including land 
accounting, forest monitoring, and ecological envi-
ronments (Pesaresi et al., 2016).

Wildfire factors

In the present study, we used the active fire data dur-
ing 2015–2020 released by the National Aeronautics 
and Space Administration (NASA) (https:// earth data. 
nasa. gov), which is a 1-km global daily fire product 
(MCD14ML) retrieved from Moderate-resolution 
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Imaging Spectroradiometer (MODIS) on the Terra 
and Aqua satellites. Active fire data has been used 
in wildfire researches worldwide, and the data infor-
mation includes fire-point geographic coordinates, 
detection time, credibility, and information on other 
detected fire pixels. Due to the impact of cloud and 
smoke cover of satellite retrieval on fire points, we 
only utilized the fire points that have been detected 
with 75% confidence in the dataset (Ferreira et  al., 
2020). Furthermore, fire points in urban and rural 
areas, construction sites, and farmland were discarded 
based on the global 300-m resolution land cover data-
set from 2015 to 2020 (https:// cds. clima te. coper nicus. 
eu) (Su et al., 2021).

Scale of study cell

In order to have a unified spatial scale, ArcGIS10.4 
software was employed to divide the study area 
into 9040 hexagonal grid cells, each with an area of 
approximately 21.65  km2. Compared with the tradi-
tional rectangular grid, the main advantage of a hex-
agonal grid is that the coverage area of the generated 
cell is more uniform, the distance from the geometric 
center of mass to each edge is the same, and the dis-
tortion is also avoided (Ferreira et al., 2020). Subse-
quently, the annual average  PM2.5 concentrations of 
all cells in the research area and the corresponding 
fire density, environment, and human factors were 
extracted using “zonal statistics as table” in ArcGIS 
10.4.

Data analysis

PM2.5 spatial distribution

Spatial autocorrelation analysis was adopted to 
explain the spatial correlation of  PM2.5 in all cells of 
the study area. In our research, we utilized the “Spa-
tial autocorrelation (Moran’s I)” tool in ArcGIS 10.4 
software to conduct this analysis. The analysis result 
provides three indicators: Global Moran’s I, z-score 
and p-values. The Global Moran’s I is used to express 
the spatial correlation degree of  PM2.5 in all cells; 
z-score and p-values are employed to express the sig-
nificant level of spatial correlation. The calculation 
process is as follows (Getis & Ord, 1992; Mitchell, 
2005):

where I is the Global Moran’s I, xi and xj represent the 
attribute x of cell i and j, with i, j = 1,2,…,n, and n is 
the total number of cells. X is the mean for the attrib-
ute x of corresponding cell, wi,j is the spatial weight 
between cell i and j; S0 =

n
∑

i=1

n
∑

j=1

wi,j is the aggregation 

of all spatial weights. Generally, Moran’s I > 0 indi-
cates a positive spatial correlation, and the larger the 
value is, the more obvious is; Moran’s I < 0 indicates 
a negative spatial correlation, and the smaller the 
value is, the greater the spatial difference is; other-
wise, when Moran’s I = 0, the spatial distribution is 
random.

In addition, the z-score of global autocorrelation 
statistical data is calculated as follows:

where E[I] = −
1

n−1
 and V[I] = E[I2] − E[I]2 represent 

the expectation and variance of the global Moran’s I, 
individually.

The local spatial autocorrelation was used to 
describe the spatial association mode of  PM2.5 in dif-
ferent spatial positions, and the Clustering/Outlier 
analysis (Anselin Local Moran’s I) was employed 
in ArcGIS 10.4 software. The analysis has the abil-
ity to classify spatial clusters of high-value or low-
value cells, and can also identify spatial outliers (high 
values are surrounded by low values or low values 
are surrounded by high values). Clustering/Outlier 
analysis can also get Local Moran’s I, accompanied 
by z-score and p-value representing the statistical sig-
nificance of Local Moran’s I. The calculation process 
is as follows (parameter interpretation is the same as 
formula (1)) (Anselin, 1995; Mitchell, 2005):

In addition, the z-score of statistical data of local 
spatial autocorrelation is calculated as follows:

(1)I =
n

S0

n
∑

i=1

n
∑

j=1

wi,j(xi − X)(xj − X)

n
∑

i=1

(xi − X)2

(2)zI =
I − E[I]
√

V[I]

(3)

Ii =
xi − X

S2
i

n
�

j=1,j≠i

wi,j(xj − X), S2
i
=

n
∑

j=1,j≠i

wi,j(xj − X)2

n − 1

Environ Monit Assess (2022) 194: 284 Page 5 of 17 284

https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu


 

1 3
Vol:. (1234567890)

where E[Ii] = −

n
∑

j=1,j≠i

wi,j

n−1
 and V[Ii] = E[I2

i
] − E[Ii]

2 
represent the expectation and variance of the Local 
Moran’s I, respectively.

Random Forest Regression

Random Forest (RF) Regression was conducted for 
the analysis of the importance of variables in this 
study. RF regression is a nonparametric technique 
obtained from the regression tree. Its principle is 
that N sample units are randomly and replaceably 
extracted from the original data to generate a regres-
sion tree; m (< M) variables are randomly selected at 
each node and used as candidate variables for seg-
mentation nodes. Then, the results of each regres-
sion tree are integrated to generate predicted values 
and automatically calculate the relative importance of 
each independent variable (Cutler et al., 2007).

An important advantage of the RF is that there is 
no need to cross-validate it or use independent tests 
to obtain an unbiased estimate of the error. RF can 
be evaluated internally, which means that an unbi-
ased estimate of the error can be established during 
the generation process. RF is an optimized version 
of Bagging based on a tree model. In the Bagging 
method, about 1/3 of the samples will not appear in 
the training sample set collected by Bootstrap each 
time, so it will not participate in the establishment of 
tree. This 1/3 data is called out-of-bag (OOB), which 
is used to replace the test set error estimation method 
(Liaw & Wiener, 2002). Without verifying the data-
set, the OOB prediction error can be calculated (the 
predicted values of the sample points that are not used 
in tree generation can be estimated by the generated 
tree, and the OOB prediction error can be obtained 
by comparing predictor with the real values). This 
technology has been proved to have high prediction 
accuracy, high tolerance to outliers and “noises” 
(Breiman, 2001), and has been widely used in many 
different research fields in the past (Chen et al., 2021; 
Cutler et al., 2007), especially in the research related 
to the air pollution in recent years (Zhan et al., 2018). 
In this study, variables listed in Table S1 were used in 
the RF regression, and RF regression was carried out 
with the “randomForest” packages in R software.

(4)zIi =
Ii − E[Ii]
√

V[Ii]

When using RF for data fitting and prediction, 
the number of trees (ntree) and the number of each 
random variable at each node (mtry) must be param-
eterized. Liaw and Wiener (2002) suggests choosing 
mtry = M/3 for RF regression, where M is the number 
of variables. The parameter ntree is calculated after 
determining mtry. The ntree specifies the number of 
decision trees contained in a random forest. When the 
errors in the model are stable, the minimum value of 
ntree is used as the parameter to train the model (the 
calculation result is shown in Fig. S1).

Indicators of regression evaluation

In this study, the performance of the fitting models 
was evaluated by the indicators that have been widely 
used in previous studies, including RMSE (root 
mean squared error), MAE (mean absolute error), 
MSR (mean of square residual), and coefficient of 
determination (R square) of models (Su et al., 2021; 
Xue et  al., 2017). RMSE is the square root of the 
ratio between the sum of squares for error between 
predicted values and true values and the number of 
observations, and MAE is the average of absolute val-
ues of errors between observed values and true val-
ues. These two indicators were used to describe the 
errors between predicted values and true values. The 
difference between them is that RMSE amplifies and 
severely punishes large errors due to its process of the 
square. MSR measures the fitting degree of the model 
by measuring the ratio between the residual square 
and the sample size. The smaller value of RMSE, 
MAE, and MSR, the better accuracy of the predic-
tion model will be in describing experimental data. 
R2 represents the percentage of the total variation in 
the observed value that is explained by the regression 
model.

Results

Comparison between the prediction of different 
interpolation and observation

In order to evaluate the accuracy of the interpola-
tion algorithm, the tenfold cross-validation (CV) 
method was employed to verify the interpolation 
effect of OK, UK, and IDW, and the results are pre-
sented in Table  1. We created ten training sets and 
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the corresponding test sets, and then used the test 
data to extract the interpolation results of the train-
ing sets. The linear correlation coefficient between 
the observed values and the predicted values from 
interpolation for test sets described that IDW interpo-
lation is better than UK and OK methods (Table 1). 
We believe that the IDW interpolation method can 
better estimate the  PM2.5 concentration in the study 
area, and can reflect the change of  PM2.5 exposure. 
Therefore, we only consider  PM2.5 grid data obtained 
by the IDW interpolation method as the dependent 
variable for modeling analysis in our study.

Spatial distribution analysis of  PM2.5

The global spatial autocorrelation analysis showed 
that the Global Moran’s I from 2015 to 2020 were 
greater than 0, and all of them passed the 5% signifi-
cance level test (Table 2), indicating that the spatial 
positive correlation of  PM2.5 exposure in this period. 
Meanwhile, the spatial correlation of  PM2.5 exposure 
in 2018 was the strongest, followed by 2017, while 
the weakest spatial correlation appeared in 2020.

In order to further explore the spatial correlation, 
difference, and aggregation distribution between 
 PM2.5 in each cell and surrounding areas, the Local 
Moran’s I scatter diagram and Local Indicators of 
Spatial Association (LISA) aggregation diagram were 
obtained to analyze the spatial pattern of  PM2.5 expo-
sure in the YRD (Fig.  2). A total of 97.94–99.21% 
cells were concentrated in HH and LL quadrants 
(Fig. 2a–f), while almost none of the cell fell into HL 
and LH quadrants during 2015–2020. The numbers of 
cells in the HH and LL quadrants are roughly equal in 
2015–2017; most of the cells are concentrated in the 
HH quadrant in 2018–2020. However, the scatter plot 
did not provide us with more detailed information Ta
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9 Table 2  Global Moran’s I of  PM2.5 exposure in the four study 
areas

Year Global Moran’s I z-score p-value

2015 0.958636 211.041863 <0.0001
2016 0.967905 213.165213 <0.0001
2017 0.972172 214.063621 <0.0001
2018 0.97572 214.79421 <0.0001
2019 0.964589 212.350493 <0.0001
2020 0.958581 211.026694 <0.0001
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Fig. 2  Spatial distribution of  PM2.5 in the study area based on 
cluster and outlier analysis (Ansel in Local Moran’s I). Scat-
ter plot of Moran’s I (a–f) and LISA agglomeration (g–l) of 
 PM2.5 in the study area. In a–f, the number of scattered points 
is 9040; the abscissa is the observed value of  PM2.5 of a spa-

tial unit (after standardization), and the ordinate is the “lagged” 
value of the spatial unit, that is, the average value of the 
observed  PM2.5 of adjacent units (after standardization). In g–l, 
the level of significance is p-value < 0.05
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about the statistical significance of spatial correlation 
for all cells.

In order to demonstrate the local correlation 
types and clusters and their statistical significance, 
the LISA cluster maps of  PM2.5 exposure during the 
2015–2020 period are illustrated in Fig.  2g–l. Not 
all cells of HH or LL clusters were statistically sig-
nificant (p-value < 0.05), and there were regions with 
insignificant spatial correlation during 2015–2020. 
The periods with the largest area of significant spa-
tial clustering effect appeared in 2017 (51.8%) and 
2018 (50.2%). Moreover, the LISA diagram demon-
strates that HH clusters were mainly concentrated in 
the north and northwest, and LL clusters were almost 
concentrated in the south of the research area. The 
maximum area of the significant HH concentrations 
occurred in 2017 and 2020 (24.8% and 24.6% of the 
research area, respectively).

Analysis of factors affecting  PM2.5

Comparison of all and optimal combination variables 
in RF

According to the data characteristics of  PM2.5 con-
centrations (continuous dependent variable), the RF 
regression model was used to study the relationship 
between  PM2.5 concentration and its drivers. Many 
studies on  PM2.5 emission drivers or model predictors 
found that  PM2.5 concentrations were non-linearly 
associated with drivers (Zhou et al., 2021), bringing 
challenges to the use of the traditional linear regres-
sion model. As shown in Table 3, the RF regression 
algorithm produced a good fitting in detecting the 
relationship between  PM2.5 and its driving factors. 

The variable explanation rate for all results was 
more than 90%, for an individual year from 2015 to 
2020 (92.19–98.31%) and the whole 6-year period 
(94.51%). It is worth noting that both the largest 
variable interpretation rate and the smallest mean of 
squared residuals occurred in 2020, followed closely 
by the fitting results for 2019.

RF regression provides the rank of the impor-
tance of 11 factors in influencing  PM2.5 concentra-
tions over the 6  years from 2015 to 2020 (Fig.  3). 
Figure  3a presents that the scores of the global 
importance of average temperature (AT), cumula-
tive precipitation (CP), average wind speed (AWS), 
and road density (DROAD) were much higher than 
the other variables. In addition, it can be seen from 
the local importance ranking diagram (Fig.  3c) that 
factors unimportant in the global ranking were also 
of the least importance in the local importance rank-
ing, such as proportion of crop (PCORP) and propor-
tion of forest (PFOREST). Based on this analysis, we 
believe that not all factors contribute equally to the 
accuracy of RF regression analysis. Some variables 
with less obvious characteristics may produce larger 
noise in the regression and bring bigger errors to the 
precision of the model (Breiman, 2001). Therefore, 
we further removed the factors with a low contribu-
tion to RF regression through the variable selection.

Based on the ranking of importance from high to 
low after estimating the importance score of all the 
variables to the dependent variable by RF regres-
sion, we discarded the variables that had smaller 
values and retained the factors that contributed 
more to the model by the tenfold cross-validation 
(CV) method. CV method was used to deal with 
the problem that the individual test results are too 

Table 3  Fitting results of 
 PM2.5 and drivers based on 
Random Forest regression

Year Complete variables Optimal combination of variables

Mean of squared 
residuals

Variables 
explained (%)

Mean of squared 
residuals

Variables 
explained 
(%)

2015 1.2510 96.51 1.1367 96.83
2016 3.1576 93.48 2.1904 95.48
2017 4.6360 92.19 3.7074 93.76
2018 1.3065 97.2 0.9826 98.23
2019 0.4423 98.05 0.3251 98.56
2020 0.4302 98.31 0.3169 98.75
2015–2020 4.4114 94.51 3.6382 95.42
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unilateral. The calculation of CV provided a curve 
about cross-validation shown in Figs. 3b and 4c dis-
playing the relationship between the model error and 
the optimal number of variables used for fitting. The 
error decreased sharply as the number of variables 
increased at the beginning, when the number of vari-
ables reduced to 6, the decline became neglectable, 
and then began to climb slowly (Figs. 3b and 4c). The 
error appeared to be minimal when the six impor-
tant variables were kept to get the desired regres-
sion result. The calculated results demonstrated that 
better results and less complexity for model dimen-
sions were obtained using these six more important 
variables (CP, AT, AWS, DROAD, FIRED, LAI) in 
RF regression models than all variables (Figs. 5 and 
S2, Table 3). The indexes of fitting values, including 
variable explained, mean of square residual, RMSE, 
MAE, and R2, all revealed the interpretation advan-
tage of the optimal combination for variables to  PM2.5 
by the elimination of unimportant or high-noise 

variables. Taking the whole 6  years data (2015 to 
2020) as an example, the explain rate of overall vari-
ance and modeling R2 in of CP, AT, AWS, DROAD, 
FIRED, and LAI to  PM2.5 concentrations were 
95.42% and 0.992%, higher than 94.64% and 0.991 
provided by all variables. Meanwhile, the computed 
results of each year are also consistent with those 
from the 6-year period. After removing the influence 
of noise from some variables, all the fitting parame-
ters were improved at varying degrees. These results 
are presented in Fig. S2 and Table 3.

Drivers of  PM2.5 exposure

Figures 3 and 4 also illustrate the absolute advantage 
of meteorological factors in affecting  PM2.5 expo-
sure in the YRD region, whether for the analysis of 
the 6-year period or the individual annual analysis. 
As can be seen from Fig.  3, that CP took the lead-
ing position in affecting  PM2.5 concentrations, 

Fig. 3  a Global variable importance of  PM2.5 influencing fac-
tors in six years from 2015 to 2020 based on Random Forest. a 
“%IncMSE” is to increase in mean squared error, by randomly 
assigning values to each predictive variable. If the predictive 
variable is more important, then the error of the model predic-

tion will increase when its value is randomly replaced. There-
fore, the greater the value, the greater the importance of the 
variable. b The optimal number of independents selected by 
tenfold cross-validation. c Local variable importance
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followed closely by AT and AWS in the recent 
6  years. DROAD was the only human factor with a 
large impact on  PM2.5 in the YRD region. Among the 
local importance ordering, the above four variables 
also exhibited the same dominant status trend. As 
expected, FIRED followed by LAI contributed to the 
 PM2.5 concentrations, but to a much lesser extent than 
the four variables mentioned above.

Figure 4 provides that the information of the influ-
ence degree of annual independent variables on  PM2.5 
concentrations was generally consistent with the 
results of 6-year aggregation. The influence degree of 

AT, CP, and AWS on  PM2.5 exposure was very strong 
yearly. However, it is worth noting that CP had less 
control over the annual  PM2.5 concentrations than AT. 
DROAD was as important to  PM2.5 as meteorological 
factors, even more important than AWS and CP. Fur-
thermore, the biggest difference was observed from 
Fig.  4b that FIRED’s contribution to  PM2.5 was not 
always very high but signs of growth for the influence 
on  PM2.5 over the period 2018 to 2020, which was 
unlike the results of 6-year consolidated data.

Variable importance provides only an order of how 
important explanatory variables are in consequence 

Fig. 4  The effect of annual variable factors by Random Forest 
on  PM2.5 concentration. a The importance ranking of annual 
variable factors on  PM2.5 concentration. b The heatmap of 

annual variable importance. c Selection of the optimal number 
of variables per year
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of response variable, while partial dependence plots 
give a graphical depiction of the marginal effect of a 
variable on the response (regression), i.e., how each 

independent variable affects the dependent variables. 
The partial dependence plots of the six most impor-
tant variables after variable selection are shown in 

Fig. 5  Scatterplots of the observed and predicted  PM2.5 from the RF regression modeling (a) all the variables and (b) optimal vari-
ables during 2015–2020

Fig. 6  Partial dependence plots for variables predicting  PM2.5, selected using Random Forests. Partial plots show the dependence of 
the concentration of  PM2.5 on one predictor variable after averaging out the effects of all other predictor variables in the model
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Fig.  6. The effect of the six drivers on the range of 
 PM2.5 concentrations was different and there was no 
linear relationship.

CP, AT, and AWS had similar magnitude of influ-
ence on  PM2.5 concentrations over the period 2015 
to 2020 in the YRD region (roughly 37–49  μg/m3, 
36–47 μg/m3, and 37–47.5 μg/m3, respectively). With 
the increase of CP value, the exposure of  PM2.5 expe-
rienced a sharp downward trend, after that began to 
rise slightly at around 1.83  m. Likewise, with the 
increase of AT, its effect on  PM2.5 decreased in a fluc-
tuating way. At first, the decline was modest and the 
mutation appeared at 10℃; after that, the exposure of 
 PM2.5 dropped dramatically to 36 μg/m3. It is noting 
worthy that the influence range of AWS < 0 on  PM2.5 
concentrations (about 40–46 μg/m3) was greater than 
that of AWS > 0 (about 37–40 μg/m3).

In contrast to the three meteorological factors 
above, DROAD, LAI, and FIRED did not perform 
well, and their repercussions on  PM2.5 exposure were 
only in a small range (43–44 μg/m3, 41.5–44 μg/m3, 
and 43–43.6  μg/m3, respectively). Even so, as one 
of the important variables, the effect of DROAD on 
 PM2.5 rose with a large variation observed during the 
increase of DROAD (Fig. 6). We can also learn that 
the DROAD in low concentration of  PM2.5 area was 
quite low, while some areas with high concentrations 
of  PM2.5 fell into high DROAD (Figs. 1b and 2g–l). In 
the process of increasing LAI, there were two stages 
of rapid decline (0–0.5  m2·m−2 and 2–2.5  m2·m−2, 
respectively). The  PM2.5 increased enormously at the 
low value of FIRED, decreased slightly, and then sta-
bilized by about 43.45 μg/m3.

Discussion

In this study, spatial autocorrelation techniques were 
used to analyze the spatial and temporal distribu-
tion characteristics of  PM2.5 concentrations in the 
YRD region over the period from 2015 to 2020. 
Spatial clustering analysis shows that  PM2.5 in the 
YRD region displays a significant spatial clustering 
state and HH cluster areas were located in the north 
and northwest. Some cities from Jiangsu and Anhui 
province in the northern part of YRD are more heav-
ily industrialized than those cities from Zhejiang 
in the YRD’s south (Chen et  al., 2017), which may 
explain why  PM2.5 concentrations in the northern 

part of YRD remained high in recent years. Yang 
et  al. (2020) also confirmed the concentration of 
high concentration  PM2.5 in the north and northwest 
of the Yangtze River Delta and the concentration 
of low concentration  PM2.5 in the south through the 
positive spatial correlation between night time light 
(NTL) and high concentration  PM2.5. The combined 
repercussions from the western Pacific subtropical 
high and tropical cyclone system are another reason 
for the distribution of high concentrations of  PM2.5 in 
the north and northwest (Liao et al., 2017; Xu et al., 
2020). Moreover, the LL cluster areas were found in 
the south part of the YRD steadily because of low 
emissions and favorable meteorological conditions 
for clean air, such as land wind and sea breeze in the 
southeast YRD coastal cities (She et  al., 2017); the 
forest coverage in the southern YRD, on the other 
hand, is far higher than the northern region (Fig. 1), 
conducive to improve air quality (Feng et  al., 2017; 
She et al., 2017).

In the drivers affecting the  PM2.5 concentrations 
of the YRD, it has been widely observed in current 
researches that meteorological factors are dominant 
(Xu et al., 2020; Yun et al., 2019). The YRD region 
has a subtropical monsoon climate with obvious sea-
sonal characteristics for precipitation. Some studies 
reveal that raindrops can absorb the dust in the air. 
When raindrops and dust fall to the ground by grav-
ity, the number of particles matter in the air decreases 
accordingly (Hu et  al., 2020). The weakening effect 
of the increase of rainfall on the concentrations of 
 PM2.5 in a certain range was also found in our study. 
Our results also reveal that temperature played a sig-
nificant role in  PM2.5 exposure. The impingement 
of low temperature on high concentrations of  PM2.5 
was stronger, which decreased with increasing tem-
perature. A similar pattern of results was found by 
Xu et al. (2020). It is widely accepted that the rising 
temperature increases the height of the mixing layer 
which helps the vertical diffusion of the atmosphere, 
thereby providing more space for the dilution of sur-
face pollutants (Murthy et al., 2020). Simultaneously, 
the turbulent mixing effect from the thermal and 
dynamic forces of the underlying surface has a direct 
impact on the migration and transformation of pollut-
ants in the mixed layer (Ma et al., 2019a, b). Tempera-
ture is positively associated with open sources of pol-
lution, including soil dust and transport and industrial 
emissions, and has been used to successfully account 

Environ Monit Assess (2022) 194: 284 Page 13 of 17 284



 

1 3
Vol:. (1234567890)

for the change of  PM2.5 (Xu et al., 2020). Wind plays 
a vital role in the transport, dilution, and diffusion 
of  PM2.5 (Xue et  al., 2017). It is interesting that the 
influence range of westerly (land breeze) speed on 
 PM2.5 concentrations (about 40–46 μg/m3) was larger 
than that of easterly (sea breeze) (about 37–40  μg/
m3) in this study. One reasonable explanation for this 
situation is that the YRD is a coastal region, which 
is greatly affected by sea and land breeze, and the 
easterly gradually weakens from east to west with 
the help of the terrain, while the westerly from inland 
encounters more resistance because of the hinder of 
high land. In the process, its effect on  PM2.5 exposure 
becomes gradually smaller (Xu et al., 2020).

Road density is the only anthropogenic variable 
that has a relationship with  PM2.5 exposure in the 
YRD area. It is a greatly useful index to character-
ize the urban traffic operation and measure the level 
of regional social and economic development and 
the richness of human activities (Zhang et al., 2015). 
Although we observed a small range of repercussions 
on  PM2.5 concentrations, there was still a positive 
sign. It is obvious that the developed economy and 
frequent production activities in the YRD region have 
resulted in the dense traffic trunk line, which reduces 
the buffer distance between the cities and makes 
 PM2.5 diffusible (Yun et  al., 2019). In Figs.  1b and 
2g–l, the concentration of  PM2.5 was not high in some 
high-density road. At higher  PM2.5 concentration, the 
effect of high road density became stable, which is 
due to the stronger influence of meteorological factors 
(Fig. 6).

A promising finding is that wildfire played an 
important role on affecting the  PM2.5 exposure in the 
YRD region. It has been confirmed that wildfire has 
a positive impact on the chemical composition and 
concentrations of  PM2.5 emitted in the air. Fire season 
in the YRD region is from November to April. The 
dry weather in fall and winter increases the risk of 
wildfire. The smoke and particulate matter produced 
by biomass combustion increase the concentrations of 
 PM2.5 in some local areas (Hu et al., 2014). High fre-
quency and/or severe wildfire bring smoke from bio-
mass burning, which not only affects the total amount 
of pollutants in the local air, but also with the help 
of the wind, often brings troubles to the surrounding 
areas (Liu et  al., 2015). Besides, the relatively late 
appearance of the effect of wildfire on  PM2.5 exposure 

was a characteristic worthy of attention (Fig.  4b). 
This is an important finding in understanding the sig-
nificantly negative effects of smoke and particulate 
matter emitted by large-scale wildfires on air quality 
in recent years (Fann et  al., 2018; Landguth et  al., 
2020).

Leaf area index can reflect plant coverage, can-
opy structure changes, plant community vitality, 
and its environmental effects (Ferreira et  al., 2020). 
The results of our study showed a negative response 
between LAI and  PM2.5 concentration. As can be 
seen from Figs. 1c and 2g–l, areas with low concen-
trations of  PM2.5 are areas with high LAI values. A 
popular explanation is that vegetation can effectively 
reduce the number of  PM2.5 sources by fixing the soil. 
At the same time, new findings verify that larger leaf 
area, branch, and stem surface enhance the efficiency 
of intercepting or capturing  PM2.5 in the subtropical 
broad-leaved or coniferous and broad-leaved mixed 
forest, thereby inhibiting effectively the concentra-
tions of  PM2.5 in the air (Liu et al., 2014; Zhang et al., 
2020).

Limitations of this study

However, our research still has some limitations. 
First of all, the interpolation results from the data of 
monitoring stations were associated with the num-
ber of monitors. The shortage of stations has a cer-
tain impact on the interpolation results; at the same 
time, our investigation of the relationship between 
wind speed and  PM2.5 needs to be improved. Second, 
we are aware of the important influence of the social 
economy on  PM2.5, but few social and economic 
factors were considered in this study. In the future 
related research, we will make a more comprehen-
sive consideration, including GDP (gross domestic 
product), and POI (point of interest) density. Addi-
tionally, attention should be put on more different 
categories of land-use information in future research. 
Finally, the RF regression analysis employed in this 
study is different from the traditional linear regres-
sion model or land-use regression model. The lat-
ter analysis models can give the positive and nega-
tive correlation of variables. We will hence further 
improve the analysis method of  PM2.5 concentra-
tions and establish a more comprehensive prediction 
model in the future.
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Conclusion

In conclusion, we have reasons to believe that (1) from 
the spatial cluster distribution of  PM2.5 concentrations, 
the northwest and north of the YRD region from 2015 to 
2020 are mostly highly concentrated and surrounded by 
high concentrations of  PM2.5, and these areas will be the 
focus of work related to pollution control. In the future, 
the local governments need to prevent  PM2.5 invasion 
while strengthening the local air prevention and control; 
(2) RF regression has a high degree of explanation in the 
simulation of the relationship between  PM2.5 concentra-
tions and driving factors in the YRD region; (3) mete-
orological factors are the main drivers of  PM2.5 emis-
sions in the YRD region over the period 2015 to 2020. 
It should be noted that the impact of wildfire on  PM2.5 
concentrations was gradually prominent. When formu-
lating air pollution prevention and control measures in 
the future, the improvement of wildfire management 
should be taken seriously by YRD’s governments and 
indigenous people, especially in fire season, which will 
help to reduce  PM2.5 pollution caused by biomass com-
bustion. At the same time, higher leaf area contributes to 
improving air quality, and the increasing green area will 
help reduce air pollution for environmental protection.
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