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reference points in the previous years. Additionally, 
we conduct a multi-station analysis to get a holistic 
effect of the different climatic and emission regimes. 
In several places in eastern and coastal India, the sea-
sonally induced changes already pointed to a decrease 
in PM concentrations based on the previous year data; 
hence, the actual decrease due to lockdown would be 
much less than that observed just on the basis of dif-
ference of concentrations between subsequent peri-
ods. In contrast, northern Indian stations would nor-
mally show an increase in PM concentration at the 
time of the year when lockdown was effected; hence, 
actual lockdown-induced change would be in surplus 
of the observed change. The impact of wind-borne 
transport of pollutants to the study sites dominates 
over the dilution effects. Box model simulations point 
to a VOC-sensitive composition.

Keywords Meteorology · Seasonal change · 
Emissions · Lockdown effect · PM · Trace gases

Introduction

The year 2020 will forever be etched in the annals of 
time in memory of our (human beings) fight against 
coronavirus, and it came with one of the most impact-
ful changes in all our lives — the lockdown. As the 
novel coronavirus began settling itself in India and the 
number of positive cases reached nearly 500, a nation-
wide lockdown was announced by the honorable 

Abstract Most of the published articles which doc-
ument changes in atmospheric compositions during 
the various lockdown and unlock phases of COVID-
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bution of the COVID-mediated lockdown impact on 
atmospheric composition. In the present study, we 
offer a better attribution of the lockdown impacts by 
also considering the effect of meteorology and sea-
sonality. We decrease the temporal distance between 
the impacted and reference points by consider-
ing the difference of adjacent periods first and then 
comparing the impacted point to the mean of several 
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prime minister of India on 24 March 2020. In his 
order for the phase I of the Lockdown of 21  days, 
the prime minister mandated a restriction on all non-
essential travel and services. The phase 2 of the lock-
down was initiated from 14 April 2020, extending the 
ongoing nationwide lockdown until 3 May. In this 
second phase, all commercial and non-commercial 
activities were paused. After nearly 5  weeks of total 
nationwide lockdown, some relief came in phase 3 of 
the lockdown during 4–17 May 2020, characterized 
by partial reopening. Phase 4 of the nationwide lock-
down was announced on 17 May 2020 and extended 
until 31 May. The country was split into 3 zones: red 
(high coronavirus cases and a high doubling rate), 
orange (comparatively fewer cases than red zone), 
and green (without any cases during the past 21 days). 
Normal movement was permitted in green zones with 
buses limited to 50% capacity. Orange zones would 
allow only private and hired vehicles but no public 
transportation. Complete lockdown was maintained 
in red zones which were further divided into contain-
ment and buffer zones. The fourth phase instituted a 
slow reopening with several relaxations. The curb on 
anthropogenic activities during the lockdown includ-
ing restrictions on movement of people and vehicles 
had its repercussions on the concentrations of air pol-
lutants. In addition, several industries were shut down, 
vehicles on the road disappeared, and power plants 
were operating with reduced load, which resulted in 
a significant decrease in the concentration of atmos-
pheric pollutants as seen in many parts of India. As 
rising levels of air pollutants have been a major prob-
lem in India with repercussions on human health 
(Lelieveld et al., 2015) and economy (Lal et al., 2017), 
understanding the lockdown-mediated change in 
atmospheric pollutant concentrations would be helpful 
to frame policy decisions.

Emission sources

Emissions of pollutants comprising particulate matter 
(aerosols) and gases  (NO2 and CO) play a vital role in 
the environment and human health (Xu et al., 2020). The 
most commonly identified sources of primary air pollut-
ants comprising particulate matter (aerosols) and gases 
 (NO2 and CO) are vehicular emissions, manufacturing, 
power generation, manufacturing industries, construction 

activities, road dust, waste burning and combustion of 
oil, coal, and cooking activities in the households. Fig-
ure 1 shows the source apportionment for  PM2.5 for 11 
cities of India based on data from UrbanEmissions.info. 
UrbanEmissions.info was a program to build an emis-
sion inventory for the following pollutants (i) PM, (ii) 
 SO2, (iii) NOx, (iv) CO, (v)  CO2, and (vi) NMVOCs 
(Guttikunda et  al., 2019). The emission inventory was 
built at a spatial resolution of 1 × 1  km2 which included 
anthropogenic sources, large and small scale power gen-
erations, industries, domestic, open waste burning, and 
open fires and non-anthropogenic sources, such as sea 
salt, dust storms, biogenic, and lightning. While emis-
sions from vehicles contribute the maximum to  PM2.5 
in Guwahati (35%), Thiruvananthapuram (60%), Jaipur 
(38%), and Pune (35%), industrial emissions dominate 
the  PM2.5 sources in Nagpur (83%), Ahmedabad (63%), 
Kolkata (54%), Amritsar (32%), and Hyderabad (28%), 
while road dust is the major  PM2.5 contributor in Jodhpur 
(42%).

Guttikunda et  al. (2014) observed that one of 
the major sources of  PM10 is road dust, and it can 
account for up to 30–40% of the  PM10 pollution in 
most cities. Figure 1 also shows the sources of  PM10 
in 11 cities of India based on data from UrbanEmis-
sions.info. It can be seen that the major contribu-
tion to  PM10 is road dust and construction activi-
ties. In Guwahati, Hyderabad, Thiruvananthapuram, 
Pune, and Jodhpur, road dust constitutes more than 
60% in  PM10. In Kolkata, 37% of  PM10 comes from 
road dust and 38% from industrial emissions. The 
two major sources of  PM10 in Nagpur are indus-
trial emissions and road dust. They contribute 72% 
and 16%, respectively. In Ahmedabad, the major 
sources of  PM10 are road dust (45%) and industrial 
emissions (39%). In Delhi, the road dust and con-
struction activities contribute 45% of the  PM10, fol-
lowed by 17% from burning of waste (agricultural 
and domestic waste) and 14% from vehicular emis-
sions (Guttikunda et al., 2014).

The restriction on transport sector during the lock-
down in India, in addition to shutdown of factories 
and industries, induced a remarkable decrease in PM 
concentrations (Devara et  al., 2020; Mahato et  al., 
2020; Mitra et  al., 2020; Peshave & Peshave, 2020; 
Rahaman et al., 2021; Ramasamy et al., 2020; Sharma 
et  al., 2020). In Delhi, 14% of  PM10 is contributed 
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by vehicles (Guttikunda et al., 2014), so then we can 
expect some decrease in the concentration of  PM10 
during the lockdown just due to reduction in vehicu-
lar emissions neglecting effects of dilution, oxidation, 
and other seasonal/meteorological impacts. Further, 
the restriction on vehicular transport has an addi-
tional impact on road dust resuspension in addition to 
reduced tail-pipe emissions.

Similarly, 45% of total  NOx emissions in India is 
contributed by coal burning in thermal power plants 
(Garg et al., 2001). Road transport contributes another 
32% of  NOx emissions (Garg et al., 2001). As thermal 
power plants were running at reduced capacities and 
road transport came to a total halt, a reduction in  NOx 
is envisaged. However,  O3 being a secondary pollut-
ant, changes in  O3 would be much more difficult to 
unravel from direct observations, and the dependency 
on hydrocarbons,  NOx, and meteorological factors 
needs to be investigated. Coincidentally, xylenes were 
found the largest contributor to the  O3 formation fol-
lowed by toluene in Delhi (Hoque et al., 2008).

Some observations pertaining to COVID-induced 
changes in atmospheric constituents

Pathakoti et  al. (2020) studied the impact of nation-
wide lockdown on air pollution and observed that the 
aerosols/particulate matter over the country decreased 
by ~ 24% from the 5-year mean level with a marked 
reduction over the Indo-Gangetic plains (IGP) region. 
During the lockdown period, the world’s most pol-
luted city, Ghaziabad, showed a reduction of 57% 
in  PM10 and 48% in  PM2.5 compared to the average 
levels of 2019 (Kumari et  al., 2020). Kumari et  al. 
(2020) also observed reductions of 57% in  PM2.5 and 
58% in  PM10 in Patiala city.

Using the ratio of  NO2 and HCHO vertical column 
densities measured from MAX-DOAS in Mohali, 
it was found that the peak daytime  O3 production 
regime is sensitive to both  NOx and VOCs in winter 
but strongly sensitive to  NOx during summer (Kumar, 
Beirle, et al., 2020; Kumar, Pratap, et al., 2020). Chen 
et  al. (2020) pointed out that  O3 production is less 

Fig. 1  Average percent contributions of major sources to  PM2.5 pollution (UrbanEmissions.info)
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sensitive to solar radiation in summer compared to 
winter. Reducing  NOx  alone increases  O3, such that 
a 50% reduction in  NOx emissions leads to a 10–50% 
increase in surface  O3. In contrast, reducing VOC 
emissions can reduce  O3 efficiently, such that a 50% 
reduction in VOC emissions leads to a 60% reduction 
in ozone for Delhi (Chen et  al., 2020). The sensitiv-
ity of atmospheric oxidants on  NOx levels was also 
elaborately studied during the Cyprus Photochemical 
Experiment (Mallik et al., 2018). Kumar (2020) found 
37% reduction for  NO2 over India in comparison to the 
average value of 2017–2019. Jain et al. (2021) having 
studied the phase-wise variations in atmospheric con-
stituents during the COVID-19 lockdown over a tropi-
cal rural site (Gadanki in southern India) point out that 
trace gases, viz., NO,  NO2, CO,  SO2,  CO2, and  CH4, 
whose emission sources are dominated by predomi-
nantly anthropogenic origin have shown a reduction of 
over 50% due to COVID lockdown-induced emission 
reductions.

While a plethora of publications point to the reduc-
tions in primary pollutants as a result of lockdown-
mediated reduced emissions, we feel that comparison 
of direct year-to-year concentration change to esti-
mate the lockdown impact is inappropriate. There-
fore, we took up the following study analyzing data 
over twenty-four stations covering different parts of 
India (Fig. 2) with the following objectives:

a. Take up a more holistic approach to estimate the 
impact of lockdown over the Indian region by ana-
lyzing data from different environmental regions 
of India.

b. Use a multi-species approach to estimate the lock-
down impact as different species have different 
source contributions.

c. Estimate the expected change over each station 
for each species and compare it with the observed 
change to get the actual/effective change in pol-
lutant concentrations due to lockdown effect.

Methodology

The air quality data for the selected cities have been 
taken from the Central Pollution Control Board (CPCB) 
of India. The CPCB monitors the ambient air quality 
across 233 stations spanning the entire Indian region 
with the help of the State Pollution Control Boards and 
other agencies under the National Air Quality Monitor-
ing Programme (NAMP) (http:// cpcb. nic. in/ air. php). 
The measurements are done for six criteria for air pol-
lutants (CPCB, 2020):

 (i) Particular matter (PM) of aerodynamic diam-
eter less than 2.5 μm  (PM2.5)

Fig. 2  Map of study 
locations selected for the 
present analysis. The details 
of the stations are provided 
in Table 1
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 (ii) Particular matter of aerodynamic diameter less 
than 10 μm  (PM10)

 (iii) Sulfur dioxide  (SO2)
 (iv) Nitrogen dioxide  (NO2)
 (v) Ozone  (O3)
 (vi) Carbon monoxide (CO)

The measurement techniques for  O3, CO,  NOx, 
 SO2,  PM2.5, and  PM10 are available from the technical 
specifications for continuous ambient air quality moni-
toring (CAAQM) (CPCB, 2019, https:// cpcb. nic. in/). 
The ultraviolet photometric  O3 gas analyzers work on 
the Beer Lambert’s principle on absorption of radiation 
at 254.7 nm by atmospheric  O3. The detection limit of 
the instrument is 1 ppb with a response time of 30 s or 
less. The CO instruments are based on gas filter correla-
tion technology and operate on the principle of infra-
red absorption at 4.67  μm vibration–rotation band of 
CO (Nedelec et  al., 2003). It has a detection limit of 
100 ppbv at a 60 s response time. The zero noise of the 
instrument is 20 ppbv root-mean-square (RMS) at 30 s 
averaging time. The NOx instruments are based on the 
detection of chemiluminescence produced by the oxida-
tion of nitric oxide (NO) by  O3 molecules, which peak 
at 630 nm radiation (Navas et al., 1997). The method is 
specific to NO only.  NO2 is measured by converting it 
into NO using a molybdenum convertor and then meas-
uring total NOx as NO. Unfortunately, the reduction 
of  NO2 to NO is not specific for  NO2, and other nitro-
gen species are also reduced to NO and act as interfer-
ences in the  NO2 measurements. The detection limits of 
these instruments are around 1 ppb at a response time 
of 120 s or less. The  PM10 measurements are based on 
the principle of β-ray attenuation. The particulate mat-
ter in ambient air is sampled through the instrument at 
a flow rate of 16 l/min and collected on fiberglass filter 
tape. Comparison of measurements of β-ray radiation 
by scintillation/G.M. counter before and after sampling 
gives a measure of the amount of  PM10. The  PM2.5 
measurements are similar to  PM10, but the particle size 
cutoff is in the range of 0–2.5 μm.

For this analysis, twenty-four stations are selected 
representing the different emission and climatic regimes 
across India. Initially, thirty-two stations were selected 
to derive a pan-Indian representativeness. However, 
based on data availability, the final number of stations is 
reduced to twenty-four such that at least five criteria pol-
lutant data are available for the lockdown period and the 
corresponding time in previous year. The study locations 

span north, east, west, and south India including the IGP 
and north-east. Together, the stations represent most of 
the major emission sources of PM and  NO2 across India. 
The stations also represent various climatic regimes 
ranging from the arid regions (e.g., Jodhpur) to tropi-
cal wet (Kolkata), from hilly (Aurangabad) to coastal 
(Visakhapatnam). The details of these stations are pro-
vided in Table 1, and henceforth, the stations are repre-
sented by their 3-letter station codes only.

In order to remove the outliers, the raw data were 
filtered station-wise and species-wise to remove values 
above 95 percentile and below 5 percentiles at every 
4-month interval. Since we are concerned with the 
average variation of the pollutants, the kind of filtering 
helps to remove the bias due to extreme events (meteor-
ological or chemical) and errors related to instruments, 
sampling, and human effects. Additionally, data was 
also checked manually for inconsistencies. The weekly/
fortnightly means before and after lockdown of 2020 
were compared to the corresponding difference of the 
average of the data for the year 2015 to 2019 for this 
analysis. The data availability is shown in Fig.  3. A 
robust regression analysis was performed to identify the 
dependence of  PM2.5 and  PM10 on the planetary bound-
ary layer (PBL) height for each of the stations. Hourly 
resolution PBL data at each measurement stations were 
taken from linear interpolation of 0.25° ERA5 reanaly-
sis dataset (Hersbach et al., 2020). The PBL in ERA5 
is estimated using the bulk Richardson number follow-
ing the methods proposed by Siedel et al. (2012). The 
dependence was tested for different levels of signifi-
cance using a two-tailed Student’s t test.

O3 simulations using Framework for 0‑D 
Atmospheric Modeling (F0AM) box model

A zero-dimensional atmospheric box model F0AM 
version 4.1 (Wolfe et  al., 2016) was set up for cal-
culating the  O3 concentrations as a result of atmos-
pheric photochemical processes for an example site 
over Ahmedabad. Ahmedabad was selected because 
of availability of VOC data. The model employs Mas-
ter Chemical Mechanism (MCM) 3.3.1 chemistry 
(Jenkin et al., 2015). The MCM setup included a total 
of 1363 species and 4205 chemical reactions (Kumar 
et al., 2018). The rate constants used in the model are 
taken from the reviewed rate constants published by 
Atkinson et  al. (2006). The model was constrained 
with hourly averaged concentrations of NO,  NO2, and 
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Table 1  List of stations selected for this study and site characteristics. CEPI represents the comprehensive environmental pollution 
index (https:// cpcb. nic. in/ compr ehens ive- envir onmen tal- pollu tion- index- cepi/)

Sl No Station name State Latitude (°N)
longitude ( °E) 
elevation

Climate type Data availability 
from (in table) to 
October 2020

Geographical 
characteristics/major 
industries in the region

1 Visakhapatnam 
(VKP)

Andhra Pradesh 17.72, 
83.30/45 m

Tropical wet & dry Jan 2017 East Coast of India
Steel, fertilizers, 

petrochemicals. Navy 
weapon, (CEPI 70.82)

2 Rajamahendravaram 
(Rjm)

Andhra Pradesh 16.98, 
81.73/14 m

Tropical hot & 
humid

Sep 2017 River Godavari
Textile, paper, gas

3 Tirupati (Trp) Andhra Pradesh 13.67, 
79.35/154 m

Tropical wet & dry Jun 2017 Biosphere reserve, Sri 
Vivekananda National 
Park, Low anthropogenic 
pollution

4 Guwahati (Gua) Assam 26.18, 
91.74/56 m

Tropical Monsoon 
climate

Feb 2019 Near River Brahmaputra

5 Sector 125 Noida 
(Noi)

Delhi 28, 77/200 m Humid subtropical 
with semi-arid

Jul 2017 PM10 average 3 times 
than normal, PM 2.5 
Avg 10 times than 
normal (CEPI 78.9)

6 IGI Airport Delhi 
(Del)

Delhi 28.6, 
77.2/217 m

Cwa & BSh Apr 2015 Capital of India, Fossil 
fuel combustion

7 Ahmedabad (Ahm) Gujarat 23.02, 
72.57/53 m

Semi-arid, extreme 
dry

Jan 2015 Textile, steel, marble 
slabs (CEPI 75.28)

8 Sonipat (Spt) Haryana 28.99, 
77.01/224 m

Arid to semi-arid 
average rainfall- 
355 mm

Dec 2018 Stubble burning,Khaddar 
sandy region

9 Thiruvananthapuram 
(Thv)

Kerala 8.51, 
76.94/10 m

Tropical savanna & 
monsoon climate

Jun 2017 Rubber, leather, polymer, 
pharma

10 Aurangabad (Aug) Maharashtra 19.838, 
75.24/568 m

Hilly upland terrain 
in Deccan traps, 
semi-arid

Sep 2017 Pharmaceutical factory 
(CEPI 77.44)

11 Chandrapur (Chp) Maharashtra 19.97, 
79.23/188 m

Hot &dry Aug 2016 Tadoba tiger 
reserve(national 
park),roofing tiles, Coal 
(CEPI 83.88)

12 Nagpur (Nag) Maharashtra 21.15, 
79.05/310 m

Tropical savannah 
climate with dry 
prevailing

Mar 2016 Western coalfield limited, 
mines

13 Pune (Pun) Maharashtra 18.50, 
73.81/560 m

Hot semi-arid Jun 2015 Leeward side of sahyadri 
mountain(WG) range, 
Fiberglass

Metropolitan area
14 Solapur (Slp) Maharashtra 17.65, 

75.90/457 m
Arid & semi-arid Mar 2015 Most polluted city in 

Maharashtra
15 Talcher (Tlc) Odisha 20.58, 

85.08/150 m
Tropical wet & dry Dec 2017 Coal fields

Most polluted city of 
Odisha (CEPI 82.09)

16 Gobindgarh (Gbd) Punjab 30.66, 
76.29/300 m

Semi-arid Mar 2017 Steel city 
(CO,SOx,NOx,PM2.5) 
(CEPI 75.08)

17 Jalandhar (Jal) Punjab 31.32, 
75.57/228 m

Humid subtropical 
climate

Feb 2018 Soil dust, wooden 
furniture, rubber goods
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CO from CPCB database and temperature, pressure, 
and relative humidity from wunderground.com for 
Ahmedabad site for 24 March 2020 as prelockdown 
and 31 March 2020 as lockdown period. Individual 
days were taken for comparing the simulation instead 
of the weekly mean because the average precursor 
ratios may not represent the true precursor composi-
tion for observed  O3. Therefore, days with relatively 
high  O3 were selected for the simulation. It should be 
noted that our purpose with these simulations is not 
to predict the observed  O3 concentrations but to get 
an idea of the VOC-NOx regimes operating during 
the period. The VOCs values used in the simulation 
are taken from published literature over Ahmedabad 
listed in Table  4. Hydrogen  (H2) mixing ratios are 
held constant at 550 ppb, respectively. The model 
calculated concentrations of secondary species at the 
end of each hour were used as the initial concentra-
tion of the model run for the second hour. The simu-
lations are performed in steady-state conditions with 
a spin-up period of 3 days.

Results

Meteorology during lockdown/unlock periods

A major objective of this paper is to decouple the emis-
sion changes during lockdown from meteorological 

impacts on atmospheric pollutant concentrations. Crilley 
et al. (2021) found that though the lockdown has brought 
down the local emission sources, the chemical processes 
in the atmosphere and weather events independently con-
tribute to the observed changes in the pollutant levels.

During winter in northern India, the winds are 
north-easterly and westerly with thick fog, low wind 
speeds, and low boundary layer height which can 
degrade air quality further (Tiwari et al., 2018). The 
year 2020 was the eighth warmest year in India since 
1901. The annual mean land surface air tempera-
ture averaged over the country was + 0.29  °C above 
normal of the average of 1981–2010. However, this 
value was very much lower than the highest warning 
year over India during 2016 (+ 0.71 °C anomaly from 
normal).The monsoon and post-monsoon seasons of 
2020 showed mean temperature anomalies + 0.43 °C 
and + 0.53 °C.

One significant meteorological feature of 2020 
was the higher numbers of western disturbances that 
continued even in the summer season. Due to the con-
secutive arrival of western disturbances in northern 
India, the ventilation and dispersion of pollutants can 
result in a better air quality. The wind system showed 
a major change in northern India and IGP during the 
first half of March bringing in the transition from 
winter to pre-monsoon. Also, Bhawar et  al. (2021) 
observed that the transport of dust from West Asia 
was lower compared to the previous years during the 

Table 1  (continued)

Sl No Station name State Latitude (°N)
longitude ( °E) 
elevation

Climate type Data availability 
from (in table) to 
October 2020

Geographical 
characteristics/major 
industries in the region

18 Patiala (Ptl) Punjab 30.33, 
76.38/351 m

Steppe climate Feb 2018 Biomass burning, 
agricultural implements

19 Jaipur (Jpr) Rajasthan 26.91, 
75.80/431 m

Mist Jun 2017 Increase vehicles, 
urbanization

20 Jodhpur (Jdp) Rajasthan 26.91, 
75.88/231 m

Dry hot semi-arid Jan 2016 Thar desert

21 Kota (Kot) Rajasthan 25.21, 
75.86/271 m

Semi-arid Oct 2017 Volcanic upland

22 Hyderabad (Hyd) Telangana 17.34, 
78.45/542 m

Tropical wet and 
dry

Sep 2015 Zoological park

23 Varanasi (Var) Uttar Pradesh 25.35, 
82.90/81 m

Humid subtropical Jan 2015 Dust from construction 
work

24 Kolkata(Kol) West Bengal 22.54, 
88.34/9.14 m

Tropical wet and 
dry

Jul 2016 High SPM, vehicular 
emission
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Fig. 3  Daily data availability for the study locations from 2015 to 2020
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lockdown period, in spring of 2020. This led to the 
reduction of dust aerosols over the Indian region.

The cyclone Amphan was the first pre-monsoon 
(20 May) super cyclone of the century (Kumar et al., 
2021). The year 2020 was also the third to record the 
highest precipitation during the last 30  years. The 
country received 109% rainfall of long period aver-
age (LPA) with June (118%), August (127%), and 
September (104%) witnessing above normal rainfall. 
Weather conditions and pollutant levels have a strong 
linkage that may obscure the variation in emission 
levels over different cities (Radaideh, 2017). Meteor-
ological variability was found to account for 40–70% 
of ozone variability and 20–50% of particulate mat-
ter variability in Southwestern USA (Wise & Comrie, 
2005).

Ventilation coefficient is another parameter used as 
an indicator of atmospheric dispersive capacity. It is 
the product of mixing layer height multiplied by aver-
age wind speed. It is an important factor for the deter-
mination of pollution potential over a region (Chan 
et  al., 2012). If VC < 6000  m2   s−1, the air pollution 
potential is considered to be high. In winter, the VC 
values are lower due to stable atmospheric conditions 
and lower wind speeds ranging 2–3  m/s. Similarly, 
VC is higher in summer due to unstable atmospheric 
conditions and increasing the wind speed. The coin-
ciding phases of lockdown implementation and tran-
sition from winter to summer, i.e., lower to higher 
VC, can also have effects on the concentration of 
atmospheric constituents and are analyzed here.

Estimating the role of emissions from weekly 
changes in atmospheric constituents

Weekly changes in surface concentrations 
of particulate matter (PM2.5 and PM10 average 
2015–2019 vs. average 2020)

Figure 4a, b show the weekly change (average 2015–2019 
vs average 2020) in the concentration of  PM2.5 and  PM10, 
respectively, over the study locations. The plots with red 
show the average of the data from the year 2015 to 2019, 
and the plots with blue represent the data of the year 2020. 
The vertical line in black color represents the start of the 
lockdown period, i.e., the 25 March 2020, and the verti-
cal line with blue color represents the beginning of unlock 
phase, i.e., 1 June 2020. The horizontal lines represent 
the permissible levels of pollutants based on the National 

Ambient Air Quality Standards given by CPCB (24  h 
averages of 60 µg−3 and 100 µg−3 for  PM2.5 and  PM10, 
respectively, while these are 80 µg−3 (24 h) and 100 µg−3 
(8 h) for  NO2 and  O3, respectively).

A significant decrease in  PM2.5 concentrations dur-
ing lockdown compared to the previous period is 
observed over in northern India, i.e., Jalandhar (47%), 
Gobindgarh (53%), Noida (59%), Patiala and Sonipat 
(67%), and Delhi (33%). Mahato et al. (2020) have also 
estimated a similar reduction of  PM2.5,  viz., 39%, in 
Delhi during the said time period. Chikara and Kumar 
(2020) also observed an appreciable decrease in the 
concentration of various pollutants  (PM2.5,  PM10) in 
Delhi, Mumbai, and Kolkata due to lockdown (Table 2).

PM2.5 concentrations have also decreased in west-
ern India; the decrease recorded just in comparison to 
similar period in previous year is as follows: Jaipur 
(49%), Jodhpur (44%), Kota (56%), Ahmedabad 
(65%), Pune (37%), Aurangabad (52%), and Solapur 
(29%). Navinya et  al. (2020) also mention a decline 
in  PM2.5 of about 68% over Ahmedabad. Similarly, a 
large decrease in  PM2.5 of about 58% is observed over 
Nagpur in Central India. However, other stations in 
this region do not exhibit such a large decline, viz., 
Chandrapur (17%) and Hyderabad (9%).

Mixed signals are observed in IGP with a 52% 
decrease in Varanasi and negligible decrease in Kol-
kata (1.5%) and, surprisingly, a large increase in 
Guwahati (75%). Singh and Chauhan (2020) observed 
that due to the dominance of westerly winds from 
arid and semi-arid regions, a lower boundary layer 
(due to lower temperatures) prevails over Delhi and 
central IGP cities compared to other major cities like 
Mumbai, Hyderabad, and Kolkata. In March, the aver-
age concentration of  PM2.5  in Delhi and central IGP 
remains higher in comparison to other regions.

Stations in coastal India also show variable fea-
tures, decrease in Visakapatnam (30%), Tirupati (33%), 
and Thiruvananthapuram (49%), while an increase is 
observed in Rajamundry (7%). About 60% of India’s 
mean population-weighted  PM2.5 concentrations come 
from anthropogenic source sectors, while the remain-
der are from other sources, wind-blown dust and extra-
regional sources (Venkataraman et al., 2018). As men-
tioned in Fig.  1 as well as studied by Venkataraman 
et al. (2018), leading contributors to  PM2.5 are residen-
tial biomass combustion, emissions from power plant 
and industrial coal combustion, and anthropogenic 
dust.
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Fig. 4  Weekly changes in a 
 PM2.5, b  PM10, c  NO2, and 
d  O3.The first vertical line 
in black color represents 
the start of the lockdown 
period, i.e., the 25 March 
2020, while the second 
vertical line with blue color 
represents the beginning of 
unlock phase, i.e., 1 June 
2020. The horizontal green 
line represents the standard 
air quality value given by 
CPCB

Environ Monit Assess (2022) 194: 274 274   Page 10 of 31



1 3
Vol.: (0123456789)

Like  PM2.5, a rapid decrease in  PM10 concentra-
tions is observed in northern India in comparison to 

previous period, viz., Jalandhar (68%), Gobindgarh 
(55%), Noida (64%), Patiala (74%), Sonipat (35%), and 

Fig. 4  (continued)
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Table 2  Comparison of lockdown effects from different studies across India. Results are for Delhi where not otherwise mentioned

Reference Data source/location Methodology Parameter/location results

(Bedi et al, 2020) CPCB
4 cities: Delhi, Mumbai, Kolkata 

& Chennai

Difference in the concentration 
in 2020 for 15 days before 
lockdown and 15 days during 
lockdown

PM25: − 63.9%
PM10: − 56.7%
NO2: − 63.9%
O3: + 50.9%

(Biswal et al., 2020) NASA Aura satellite OMI sensor 
over India

Comparison of data from 1 
March to 18 April 2020 vs. 
2019

NO2: − 65.9%

(Chikara & Kumar, 2020) CPCB
3 cities: Delhi, Mumbai, Kolkata

Difference of prelockdown (1–24 
March) and lockdown (25 March 
to 30 April) concentrations

PM25: + 5.76%
PM10: − 16.2%
NO2: − 42.27%
SO2: − 9.12%
NH3: − 66.29%

(Jain et al., 2020) NO2− OMI
Gadanki

1 Feb to 31 May 2020 compared 
to 2019 for the same period. 
Phase-wise analysis has been 
done here

Gadanki in Southern India
In 1st phase
NO2: − 58.3%
O3: − 9.4%
NO2 OMI: − 33.6%

(Kumari & Toshniwal, 
2020)

CPCB data
For  NO2 European Space 

Agency (ESA)
Delhi, Mumbai and Singrauli

Difference in mean concentra-
tion before lockdown (1 March 
to 24 March) and during lock-
down (25 March to 15 April) 
for just 2020

PM10: − 55%
NO2: − 60%
PM2.5: − 49%
SO2: − 19%

Kumari et al., 2020) CPCB
OMI for  NO2
Patiala

24 March to 31 May in 2020 and 
compared with the same time 
period in 2019

PM10: − 58% (Patiala)
PM25: − 57% (Patiala)
NO2: − 79% (Patiala)

Mahato et al., 2020) CPCB, DPCC, SAFAR: IITM 
Pune over Delhi

24 March to 14 April 2020 
compared to average of 2017–
2019 for the same period

PM2.5: − 32.62%
PM10: − 56.55%

(Pathakoti et al., 2020) Satellite data
Aura/OMI for NO2
Terra/MOPITT for CO Aqua-

Terra/MODIS for AOD over 
India

Lockdown Period: 25 March to 
3 May 2020 compared with 
2015–2019 with same period

NO2: − 14.5%
CO: increase of 8% and 9% in 1st 

and 2nd phase of lockdown in 
India

(Rahaman et al., 2021) CPCB
Ahmedabad and Delhi

9 February 2020 to 23 March 
2020 (43 days before lockdown) 
and 24 March 2020 to 4 May 
2020 (after lockdown)

Ahmedabad
PM2.5: − 50%
PM10: − 54%
Delhi
PM2.5: − 19%
PM10: − 28%

(Ramasamy et al., 2020) CPCB
4 cities: Delhi, Kolkata, Mumbai, 

Chennai

1 Feb 2020 to 20 March 2020 
before lockdown compared 
to 23 March 2020 to 30 April 
2020

AQI
Delhi: − 58%
Kolkata: − 65.5%
Chennai: − 52%
Mumbai: − 66%

(Sharma et al., 2020) CPCB
East India

Average of 16 March to 14 April 
2017–2019 compared to 2020 
for the same period

East India
O3: + 89%

(Singh et al., 2020) CPCB
data over 134 sites in India

2017 to 2019 compared to 2020 
during lockdown period

(25 March to 3 May)

PM10: − 59%
NO2: − 56%
PM2.5: − 47%
CO: − 33%
SO2: − 23%
O3: + 23%
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Delhi (56%). The total emission of  PM10 from different 
sources was estimated using ISCS3 model as follows: 
industrial point sources (26%), vehicles (21%), domes-
tic fuel burning  (19%), paved and unpaved road dust 
(15%), and the rest as other sources (Behera & Sharma, 
2010). Mahato et  al. (2020) observed a 60% reduc-
tion in  PM10 during lockdown compared to the last 
year (i.e., 2019). In western India,  PM10 also shows a 
decrease like  PM2.5, viz., Jaipur (56%), Jodhpur (50%), 
Kota (49%), Pune (62%), Aurangabad (54%), and 
Solapur (48%). In Central India, Nagpur (61%) shows a 
large decrease. However, Chandrapur which had shown 
only 17% decrease in  PM2.5 now shows a 43% decrease 
w.r.t.  PM10. The coastal stations also show decrease 
in  PM10 during the lockdown, viz., Visakhapatnam 
(30%), Tirupati (50%), Thiruvananthapuram (28%), 
and Rajamundry (11%). Navinya et al. (2020) have also 
observed a decline of 71% in  PM10 over Delhi.

From Fig. 2, it is observed that the  PM2.5 and  PM10 
concentrations in the stations of northern India have 
started to increase in the later part of the lockdown. 
The regulation for movement of residents relaxed 
after the end of the first phase of the lockdown which 
might be the primary reason for the increase in emis-
sions, which could be attributed to automobiles, and 
a consequent increase in the concentrations of atmos-
pheric pollutants. During the second phase, the  PM2.5 
and  PM10 concentrations in Chandigarh increased 
by 7.7% and 22.3% respectively, as compared to the 
first phase (Mor et al., 2021). Mor et al. (2021) also 
observed that the air temperature in Chandigarh dur-
ing the first, second, and third phase of lockdown 
increased by 4.5 °C, 3.3 °C, and 1.6 °C, respectively, 
compared to the prelockdown period due to the onset 
of the summer season. Therefore, a slight decrease 
in pollutant levels during the lockdown period can 
be attributed to higher temperature. The increase in 

temperature increases the vertical mixing of pollut-
ants in the troposphere (Ravindra et al., 2019).

From Fig.  2, an increase in  PM2.5 is observed over 
Jaipur and Jodhpur in between the lockdown and unlock 
periods in the months of late March and April. This could 
be attributed to the prevailing upper air cyclonic circula-
tion and western disturbances that caused several dust 
storms with gust winds and thunderstorms over different 
parts of Rajasthan reducing the temperature to markedly 
below normal values (https://m. daily hunt. in/ news/ uae/ 
engli sh/ gplus+ engli sh- epaper- gpls/3+ fire+ incid ents+ 
repor ted+ across+ guwah ati- newsid- n2633 10294).

Studying the simultaneous changes in  PM2.5 and 
 PM10 over the different study locations, it is observed 
that in general,  PM10 and  PM2.5 changes over most of 
the locations in the pandemic year compared to the 
previous year(s) average are almost going hand in 
hand for the weekly time series. However, there are 
some exceptions like Delhi, where the  PM2.5 percent-
age change shows a stronger increase in the initial 
phase of lockdown compared to  PM10. This feature 
is also visible in Chandrapur and to some extent in 
Pune. This indicates that the lockdown measures 
were able to subdue the sustained natural tendency 
for PM increase during this period, both from emis-
sion sources and atmospheric chemical means. Here, 
we would like to point out that a source apportion-
ment study of  PM2.5 and  PM10 for Delhi NCR indi-
cates that biomass burning (BB) contributes 12% and 
15% to  PM10 and  PM2.5, respectively, during summer. 
The contribution of BB is slightly higher during win-
ter with 14% and 22% influence on  PM10 and  PM2.5, 
respectively (ARAI and TERI (2018).

Guo et al. (2017) observed that during 2015, SOA 
contributed a miniscule of 7% and 3% to  PM2.5 over 
Jaipur and Delhi, respectively. Behera and Sharma 
(2010) have estimated that SOA contributes about 

Table 2  (continued)

Reference Data source/location Methodology Parameter/location results

(Singh & Chauhan, 2020) US Environmental Protection 
Agency (EPA) for PM2.5

Delhi, Kolkata, Hyderabad, 
Mumbai, and Chennai

2020 compared to 2019 during 
lockdown period (22 March to 
31 March)

PM2.5: − 27.57%

(Vadrevu et al., 2020) TROPOMI
Data over 41 cities of India

Lockdown (25 March to 3 
May 2020) compared to the 
prelockdown (1 January to 24 
March 2020)

NO2: − 61.74%
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18% mass in winter and 12% mass in summer to 
 PM2.5 in Kanpur city in IGP. In Delhi and nearby 
regions, SOA was found to contribute 16 ± 6  µg−3 
(5.8 ± 2.6% of PM2.5 mass) in summer (Nagar 
et  al., 2017). The oxygenated organic aerosols 
(OOA) over Delhi are roughly 1.7 times lower dur-
ing spring compared to winter, with a distinct diur-
nal variation exhibiting around 15 µg−3 during peak 
photochemical periods, while values increase to 
over 30  µg−3 during night (Bhandari et  al., 2020). 
Organic aerosol, which contributes 55–75% of 
 PM1 over Ahmedabad, was measured to be about 
7.5 ± 8.2  µg−3 during early October, out of which 
OOA was found to constitute about 58% (Singh 
et  al., 2019). During lockdown, the light volatile 
(LV) and semivolatile (SV) components together 
constituted about 74% of the organic aerosol over 
Ahmedabad (Dave et al., 2021). From this paper, it 
is important to note that the decrease of hydrocarbon 
like organic aerosols during lockdown over prelock-
down was much larger compared to the decrease in 
volatiles and semi-volatiles. The daytime peak in 
LV-OOA was about 4.5 µg−3 before lockdown, while 
it decreased to around 3.5  µg−3 during lockdown, 
but the night-time values were identical.

Figure 5 shows the dependence of  PM2.5 and  PM10 
on PBL height. The association has been tested for 
significance using Student’s t test. The dependence 
of  PM2.5 on PBL is significant at 95% confidence 
level over Jalandhar, Guwahati, and Kota; at 90% in 
Gobindhgarh, Delhi, and Solapur; and at 99% con-
fidence level in Jaipur. The relationship between 
 PM10 and PBL is significant at 95% confidence level 
over Jalandhar, Guwahati, Thiruvananthapuram, and 
Tirupati; at 90% over Patiala and Kota; and at 99% 
in Jaipur and Solapur. It is further observed that 
PM changes are positively correlated with the PBL 
changes except for Visakhapatnam (Fig.  5). Positive 
association of PBL with PM indicates that dilution 
effects are negligible compared to the import of pol-
lutants by air masses. Of course for a site with strong 
marine influence, viz., Visakhapatnam, the role of 
PBL dilution comes into picture as increasing PBL 
height results in lower concentrations. Moreover, 
Visakhapatnam is bounded by the Eastern Ghats on 
three sides along with warm and humid climate, thus 
restricting the dispersion of particulate matter. But 

for all other sites, ventilation coefficient needs to be 
considered as transport effects dominate over dilution 
impacts.

Figure  6 shows the weekly change of  PM2.5 and 
 PM10 for the selected locations. In the 1st phase of lock-
down, the capital city of India experienced a decrease 
of around 30% in the concentrations of  PM2.5. Noida, 
Jaipur, Jodhpur, and Kota experienced a decrease of 
around 50% in  PM2.5 concentration. Some stations in 
central India (e.g., Nagpur and Aurangabad) also saw 
a decrease of more than 50% in the initial phase of 
the lockdown. Some of the stations in Coastal India, 
Visakhapatnam and Tirupati, also recorded a decrease 
of 30% and more. A decrease of 50–60% is observed 
in the cities of Punjab and Haryana. Varanasi recorded 
a decrease of 50% in  PM2.5 concentration. The lowest 
change in the concentration of  PM2.5 during 1st phase 
of lockdown was seen in Kolkata, and it was esti-
mated to be around 1.5%. Stations in northern India, 
i.e., Delhi, Gobindgarh, Patiala, and Noida, all experi-
enced a decrease of more than 50% in the concentra-
tion of  PM10 during the 1st phase of lockdown. A 
similar reduction in  PM10 concentration was seen in all 
the stations in Western and Central India. All the sta-
tions in coastal India experienced a reduction of around 
30–40%. An increase of only 2% in  PM10 concentration 
was seen in Kolkata.

Guwahati was the only among the selected sta-
tions which showed an increase of around 70% in 
both  PM2.5 and  PM10 concentrations. An increase in 
fire counts around Guwahati was observed during 
March 2020 from MODIS (Fig.  7). The fire events 
were observed both around the city and within the 
city. Among the many fire events within the city was 
a major fire during 30 March 2020 near Lalmati near 
Games Village, Guwahati, and fires during March 19 
at Guwahati’s Fancy Bazaar area (Web Ref 1, Web 
Ref 2). Further, according to Guttikunda et al. (2014), 
80% of the households here have non-gas cookstove. 
Increased residential emissions in Guwahati might 
also add to an increase in the concentration of PM 
from fires. Therefore, the impact of lockdown, viz., 
closure of vehicular traffic in the 1st phase, is not seen 
in Guwahati, instead a spike is observed because of 
possible enhancement in fires and residential activi-
ties. Hari et al. (2021) observed a shift in the peak fire 
counts over Patiala to the end of May of 2020 instead 
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Fig. 5  Dependence of PM concentrations a PM2.5 and b PM10 on PBL height
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Fig. 5  (continued)
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of the beginning of May which occur during the 
normal periods due to the imposition of lockdown. 

Hence, Patiala experiences a positive change after a 
delay when compared to the normal years.

Fig. 6  Percentage change 
of  PM2.5 and  PM10

Fig. 7  Comparison of fire counts in and around Guwahati during March between 2019 (left panel) and 2020 (right panel)
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Weekly changes in surface concentrations of NO2 
and O3 (average 2015–2019 vs. average 2020)

One of the largest impacts of the lockdown was the 
restriction in movement of vehicles leading to large 
decrease in  NO2 concentrations. In northern India, 30% 
decrease in  NO2 was observed over Delhi, while Jaland-
har (20%), Patiala (80%), Gobindgarh and Noida (20%), 
and Sonipat (60%) all show a decline in the initial phase 
of lockdown compared to same period in previous years. 
Chikara and Kumar (2020) pointed to a reduction of 
42.27%, 69.28%, and 74.80% in concentration of  NO2 
in Delhi, Mumbai, and Kolkata, respectively, based on 
the difference of prelockdown (1–24 March) and lock-
down (25 March to 30 April) concentrations. Bedi et al. 
(2020) also observed significant fall (63.9%) for  NO2 
over Delhi using a slightly different comparison period 
of 15 days before and after lockdown (Table 2). Even 
satellite observations showed a reduction in  NO2 col-
umns, while the average tropospheric  NO2 column was 
214.4 ×  1013 molecules  cm−2 over India during March; 
it subsequently decreased by 12.1% due to lockdown 
(Biswal et al., 2020). Satellite-based seasonal variations 
of tropospheric  NO2 concentrations show a maximum 
during winter–summer month and a minimum during 
the monsoon seasons, with the change between maxima 
and minima being 2–4 times in various regions of India 
(Ghude et  al., 2008). Mallik and Lal (2014) estimated 
a 20–40% enhancement in  NO2 in winter compared 
to pre-monsoon months. Thus, the lockdown-induced 
decrease in  NO2 is comparable to the seasonal change in 
 NO2 over Delhi. Chimurkar et al. (2020) show that the 
northern Indian region showed nearly 100% decrease 
for  NO2 during lockdown compared to prelockdown, 
while this value was 38% in 2019. During the lockdown 
period starting from 22 March 2020, a sudden drop in 
tropospheric  NO2 concentrations over IGP was observed 
(Singh & Chauhan, 2020).  NO2 reductions were also 
observed in our study locations of IGP: Varanasi (5%) 
and Kolkata (10%). Strangely enough, Guwahati showed 
an increase of 40% in  NO2 during the lockdown period.

NO2 reductions were also observed in Western India: 
Jaipur (60%), Jodhpur (20%), Kota (30%), Ahmedabad 
(50%), Solapur (80%), and Pune (40%) show a decrease, 
while a 50% increase was observed in Aurangabad. 
 NO2 decreases were also observed in coastal India: 
Visakhapatnam (20%), Tirupati (80%), Rajahmundry 

(20%), and Thiruvananthapuram (20%). Chimurkar 
et al. (2020) have also observed a decline of 63% in  NO2 
over Nagpur in Central India.

In contrast to other pollutants,  O3 concentrations 
showed varied features not only in India but across the 
world. The mixed signal was observed in  O3 concen-
trations in northern India: Delhi (50%) and Jalandhar 
(40%) showed an increase, while Gobindgarh (20%), 
Noida (20%), and Sonipat (60%) show a decrease 
in  O3. Most of the stations in western India show an 
increase in  O3: Jaipur (20%), Jodhpur (20%), Kota 
(60%), Ahmedabad (40%), Aurangabad (20%), and 
Solapur (15%). However, Pune shows a 20% decline 
in  O3. For most places during the lockdown, an 
increase in concentration of  O3 can be related to a cor-
responding decrease in  NOx under VOC-limited con-
ditions  (Sharma et  al., 2020). For stations in coastal 
India, decrease in  O3 was observed: Visakhapatnam 
(20%), Tirupati (20%), Thiruvananthapuram (10%), 
and Rajahmundry (20%).

Singh et al. (2020) point out that  O3 also showed 
a mixed variation with a mild increase in IGP and a 
decrease in the south. Das et al. (2021) point out that 
average concentration of  O3 increased by 28% during 
lockdown in comparison to 30 days average prior to 
lockdown.

Figure  8 shows the difference between the mean of 
the data from 11 to 24 March 2020 and 25 March to 7 
April 2020. In Fig. 8 (left panel), the black bar shows the 
change in PBL. The red and blue bar represents  PM2.5 
and  PM10, respectively. In all the stations in northern 
India, the decrease in PM concentration is seen coincid-
ing with the increase in PBL. Similar behavior is seen 
in Western India except for Solapur. However, regres-
sion analysis (Fig. 5) clearly indicates that PBL dilution 
may not be the major cause of decrease in PM levels as 
import of pollutants could have a much stronger effect. In 
Solapur,  PM2.5 increases along with an increase in PBL 
indicating import of  PM2.5 to the site. The increase in PM 
concentration is observed in Varanasi and Guwahati with 
an increase in PBL. A similar change can be observed 
in Chandrapur and Talcher. This could be because of 
the transport of particles (VC is very high here). The 
decrease in PM concentration is seen with decreasing 
PBL in Visakhapatnam and Thiruvananthapuram. These 
regions may have an overwhelming influence of the sea 
which led to the dilution of the PM concentration.
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In Fig.  8 (right panel), the black bar shows the 
change in VC. The red and blue bar represents  NO2 
and  O3, respectively. In coastal India with a decrease 
of VC,  NO2 concentration also decreases, and  O3 con-
centration increases. In the IGP region of Varanasi 
with an increase of VC,  NO2 also increases, whereas 
 O3 decreases. This means that the increase in  NO2 is 
brought about by atmospheric transport, while this 
same  NOx-rich air influx leads to decreased  O3 due 
to titration effects. But for Guwahati, variation is the 
opposite, and with an increase of VC,  NO2 concen-
tration decreases and  O3 increases. In western India, 
Jaipur, Jodhpur, Pune, and Ahmedabad show the 
same variation of decrease of  NO2 and  O3 with a 
decrease in VC, but in Kota and Aurangabad,  O3 con-
centration increases with decreasing VC.

Computing actual lockdown-induced changes

Although published literature deals with a compari-
son of the lockdown phase with similar phases dur-
ing previous years to estimate the impact of lock-
down, it is observed that the concentration of aerosols 
in some stations of northern India and northwestern 
India started to decrease even before the imposition 
of lockdown. The reasons for this decrease can be 
specific to different pollutants, but an overarching 

effect of reduction/closure of emission sources must 
be normalized to the impact of change in air mass 
trajectories (Meteorology during lockdown/unlock 
periods section, Fig.  10) to make a real estimate of 
the lockdown-induced changes. Further, the change 
in prevailing wind direction is not a sharp point in 
space and must be estimated judiciously station-wise. 
Also, fairly widespread rainfall/thunderstorm activ-
ity was observed over Western Himalayan region and 
Northwest India in the month of March 2020 IMD 
reports (a, b). The precipitation occurring due to the 
western disturbances removes some of the aerosols 
over the region by wet deposition, and the wet con-
ditions reduce the introduction of fresh aerosols into 
the atmosphere. One way to resolve this cocktail of 
effects is to derive an expected change in concentra-
tion of pollutants and compare it with the observed 
change in the lockdown year; the difference would 
indicate the actual lockdown-induced change. For 
this analysis, the expected change is calculated based 
on the difference of subsequent fortnights before and 
after the imposition of lockdown. Fortnight is taken 
instead of week to subdue effects of sudden changes 
on a particular day, and a longer averaging period 
would make the mean more robust. The difference 
of subsequent fortnights is calculated for 2015–2019 
(depending on data availability) for each station and 

Fig. 8  Observed percent-
age changes in PM,  NO2, 
 O3, PBL, and VC between 
the lockdown fortnight with 
the prior fortnight
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then averaged to produce the final expected change 
station-wise which is then compared to the observed 
change in the lockdown year:

Actual Change = Observed Change – Expected 
Change

Table  2 shows a comparison of lockdown effects 
on air pollutants from different studies in India. As 
can be observed from Table  2, there have been two 
popular approaches to nail the impact of lockdown. 
One approach is to compare data from the start of 
lockdown (week, fortnight, month) to the period 
before lockdown from the same year. The second 
approach is to compare the data from the lockdown 
period to the data from the same period of previous 
year/years. The problem with the first approach is 
that the effect of meteorology will not be accounted 
for in the difference between subsequent weeks as it 
is highly likely that the impact of temperature, pbl, 
and moisture have continued to change during the 
subsequent periods which are being compared. Simi-
larly, the second approach is also problematic as the 
comparing periods are too distant in time to elimi-
nate the impact of other factors apart from lockdown-
induced emission changes. Our approach of esti-
mating the actual lockdown impact aims to improve 
upon the previous approaches while still maintaining 
the simplicity in approach and attribution. First, we 
compare the percentage changes between subsequent 
weeks/fortnights. This takes care of the fact that we 
are not comparing too distant times. Next, we make 
an average of percentage changes during 2015–2019 
to ensure we are not taking 1 year but accounting for 
the effect of different meteorological changes over 
years. Ideally, a much longer average would be prefer-
able here, but availability of data from different sta-
tions limits us to this period only. Next, we compare 
the average difference of subsequent weeks/fortnights 
to the similar difference during lockdown year, hop-
ing that the effect of meteorology will be taken care 
by the average percentage change and the differ-
ence between average and the lockdown year will be 
mainly the lockdown impact.

In Fig. 9, the blue bar shows the difference between 
the mean of the data for 11–24 March 2015–2019 
and 25 March to 7 April 2015–2019, and the red 
bar shows us the difference between the mean of the 
data for 11–24 March 2020 and 25 March to7 April 
2020. Here, the blue bar gives us an understanding 
about the expected change, and the red bar shows the 

observed change. The actual change can be calculated 
by taking the difference of the observed change and 
the expected change. Table 3 also shows the change 
in values between fortnight prelockdown and the fort-
night of the lockdown.

In case of  PM2.5, for all the stations in northern 
India, a negative change is observed during the lock-
down fortnight. This is also evinced in Figs. 2 and 3, 
as well as several earlier studies for different stations 
in India. Here, we would like to point out that for sta-
tions like Delhi, Noida, and Patiala, a decrease dur-
ing this time is visible even before the lockdown for 
2020 as well as the mean of previous years (Fig. 6). 
Surprisingly, for these stations, our calculations point 
to an expected positive change. This is corroborated 
by the fact that this is the season of widespread bio-
mass burning in this region, but the observed change 
in all these stations is negative. This means the actual 
lockdown-induced change is much larger than what 
a simple difference of corresponding periods shows, 
a method that has been used in many earlier studies. 
Similarly, in a dust-dominated western India, viz., 
Jaipur, Jodhpur, Kota, and Ahmedabad, a positive 
change was expected, but observed change was nega-
tive. The expected change in  PM2.5 over Talcher, East-
ern India (east of Chotta Nagpur Plateau), was − 27%, 
but we observed a positive change of 22%. Thus, the 
actual lockdown-induced change in Talcher gives us 
an increase of 49%, much higher than the observed 
value. Similar behavior is seen in Rajamundry. In 
coastal India, in most cases, expected changes are neg-
ative (due to increasing marine influence) and aligned 
with the observed change. In Thiruvananthapuram, no 
change was expected, but the actual change was seen 
to be a decrease of 27%. In Guwahati, the expected 
change was negative (− 41%), but the observed change 
was a mere 3%. Thus, the actual lockdown-induced 
change in  PM2.5 over Guwahati cumulates to + 44%.

In the case of  PM10, for all the stations in north-
ern India, a positive change was expected, but the 
observed changes in all the stations were negative. 
Thus, the accentuated COVID-induced lockdown 
effect was actually much more significant in this 
region. In the dust-dominated western India, Jaipur, 
Jodhpur, Kota, and Ahmedabad, as well as Solapur, 
a positive change was expected, but observed 
change was negative. Dust is a major contributor to 
both  PM2.5 and  PM10 (Emission sources section, 
Fig.  2). Increasing wind speeds in March compared 
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to February also increase the amount of wind-blown 
dust, accumulating to the total PM loading. In bio-
mass burning-dominated Guwahati valley in the east 
of IGP, the expected change in  PM10 was − 40%, but 
the observed change was 4%; hence, the actual change 
in Guwahati is + 44%. The negative expected change 
would be an effect of boundary layer dilution, while 

observed increase in PM (both 2.5 and10) could be 
due to an increase in residential activities including 
residential cooking along with increased fire events 
(Fig.  7). The expected change in Talcher in Eastern 
India (east of Chotta Nagpur Plateau) was − 28%, 
but we observed a positive change of 35%; thus, 
the actual change in Talcher gives us an enhanced 

Fig. 9  Observed, expected, 
and actual changes for 
 PM2.5,  PM10,  NO2, and  O3
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lockdown impact of 63%. However, in coastal India, 
change in air masses with higher marine influence 
would decrease the relative amount of wind-blown 
dust. In Thiruvananthapuram, only 3% of positive 
change was expected, but the observed change was 
a decrease of 13%, and the total change was − 16%. 
This can be associated with complete change in air 
mass trajectories after the start of lockdown such that 
the northwesterly trajectories coming from along west 
coast of India were replaced by completely marine 
trajectories from the east (Fig. 5).

The expected  NO2 change is positive for the northern 
part of India, but the observed change is negative (Fig. 9). 
The expected increase in  NO2 during this period is con-
tributed to some extent due to change in air masses con-
necting the study locations to pollution plumes (Fig. 10). 
The observed decrease in  NO2 is very much on the 

expected lines as local traffic emission is the major con-
tributor to  NO2 in cities across India. For the IGP region, 
expected change for Kolkata and Guwahati was negative 
due to lower influence from IGP and increasing marine 
influence (Mallik et  al., 2014). The observed change 
for Kolkata and Guwahati was − 64.03 and − 34.45, 
respectively, but it must be noted that the whole − 64.03 
and − 34.45% decrease cannot be attributed to lock-
down, only the difference, i.e., 64.03–47.09 = − 16.94% 
is the actual lockdown influence for Kolkata and 
34.45–21.29 = 13.16% for Guwahati. For Varanasi, the 
expected change was positive (2.59%), and observed 
change was positive (69.63%), indicating impact of lock-
down. In western India for Jaipur and Kota, expected 
change and observed change are both negative. However, 
for Ahmedabad, Jodhpur expected change was posi-
tive, while the observed changes were negative. Similar 

Table 3  Comparison of the observed and actual lockdown-induced changes

Station PM2.5 PM10 NO2 O3

Observed 
change 
(%)

Actual 
change 
(%)

Observed 
change 
(%)

Actual 
change (%)

Observed 
change 
(%)

Actual 
change (%)

Observed 
change 
(%)

Actual 
change 
(%)

North 
India

Jalandhar  − 42.91  − 49.94  − 42.69  − 57.13 32.14 40.58  − 40.59  − 70.67
Gobindgarh  − 52.24  − 76.88  − 56.16  − 71.48 1.45 74.21 9.88 44.40
Patiala  − 48.26  − 64.52  − 51.39  − 86.67  − 35.52  − 59.57  − 11.60  − 69.60
Sonipat  − 32.6  − 78.88  − 31.57  − 76.39 0.28  − 9.79  − 16.66  − 40.81
Delhi  − 32.62  − 33.96  − 38.44  − 46.54  − 50.92  − 55.98 25.68  − 5.55
Noida  − 42.99  − 51.59  − 41.17  − 72.02  − 69.00  − 76.12  − 32.64  − 61.71

IGP Guwahati 3.87 44.9 4.05 44.28  − 34.45  − 13.16 79.30 85.43
Varanasi 11.7 13.47 NaN NaN 69.63 67.03  − 63.71  − 80.75
Kolkata  − 16.45 21.08  − 33.40  − 4.52  − 64.03  − 16.94 17.48 41.61

Western 
India

Jaipur  − 29.36  − 43.59  − 33.36  − 54.09  − 63.96  − 60.93  − 18.23  − 21.31
Jodhpur  − 20.57  − 36.41  − 27.05  − 41.51  − 56.53  − 49.32  − 5.39 2.80
Kota  − 35.23  − 65.32  − 20.17  − 24.54  − 51.34  − 52.59 7.54  − 2.30
Ahmedabad  − 20.63  − 40.76 NaN NaN  − 4.89 1.88  − 8.90 4.60
Pune  − 17.69  − 13.85  − 50.59  − 36.89  − 17.31  − 10.86  − 42.76  − 29.98
Aurangabad  − 41.1  − 35.63  − 39.03  − 47.13 4.17 15.72 NaN NaN
Solapur 9.07 0.87  − 27.03  − 33.70  − 91.51  − 92.68 NaN NaN

Central 
India

Nagpur 6.61 0.25  − 13.73  − 21.38 0.96  − 14.33  − 9.24  − 0.80
Chandrapur 41.82 21.29 16.45 14.19 NaN NaN NaN NaN
Hyderabad 10.07 8.57  − 13.06  − 10.04  − 41.05  − 42.74 41.25 28.67
Talcher 22.37 49.04 35.71 63.39 NaN NaN 50.86 45.38

Coastal 
India

Visakapatnam  − 22.15  − 2.43  − 22.14  − 2.43  − 16.28 4.79 12.21 33.11
Rajamundery 11.96 46.72  − 1.79 22.75  − 51.80  − 24.03 16.15 13.17
Tirupati  − 6.69 4.44  − 16.40  − 21.04  − 71.11  − 60.84 47.99 46.18
Thiruvananthapuram  − 26.64  − 27.48  − 13.08  − 15.95  − 45.81  − 34.40  − 12.01  − 7.34
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to PM for coastal India, expected and observed changes 
in  NO2 are negative and aligned. This can be attributed 
to increasing marine influence as well as dilution. But it 
would be important to note that the actual change in this 
case would be much lower than the observed change.

For stations like Nagpur, Chandrapur, Solapur, and 
Hyderabad, the observed and the actual changes for 
 PM2.5 were positive. For  PM10, Chandrapur in the 
Central India experienced a positive actual change. 
Pandey and Vinoj (2021) observed that reduction in 
wind speed, because of converging northwesterly and 
southeasterly over Central India during the lockdown 
period, provided a conducive environment for the 
stagnation of pollutants over the region which led to 
the increase in AOD (+ 10%, + 20%, and + 18% from 
Terra, Aqua, and MERRA2, respectively). Madineni 
et  al. (2021) also found that long-range transport 
and stagnant conditions over Central India led to the 
increase in AOD during lockdown. Also, local bio-
mass burning and fires associated with agricultural 
activities led to the enhancement of aerosol concen-
tration over Central India (Bhawar et al., 2021).

An aerosol source apportionment study in Varanasi by 
Kumar et al. (2020a), Kumar et al. (2020b)) showed that 
during the months of post-monsoon and winter periods 
from October to February, the particles are mainly from 

biofuel and vehicular emissions. With the imposition of 
lockdown, the main emission source was cut down lead-
ing to the observed reduction in ambient concentration of 
particulate matters. In Varanasi, during March to May, 
coarse-mode particles dominate, whereas during the 
months of August and September, transported particles 
mix along with local emissions.

For coastal regions like Visakhapatnam and 
Trivandrum, the influence of synoptic features and 
mesoscale circulations, especially the land and sea 
breeze circulations, is vital to the advection and dis-
persion of the pollutants (Remiszewska et al., 2007). 
Rajeevan et  al. (2019) showed the relationship 
between wind direction and the aerosol concentra-
tion over Trivandrum in the presence of an active sea 
breeze circulation.

The largest intricacies regarding the impact of 
lockdown on atmospheric pollutants were observed 
for  O3. Because  O3 is a secondary pollutant and its 
concentrations depend on non-linear chemical inter-
actions, the changes in  O3 were not unidirectional due 
to lockdown-induced reductions in  NO2 and VOCs. 
Out of 21 stations analyzed for  O3, the observed 
change was positive for only 10 stations, and in the 
remaining stations, the observed changes were nega-
tive. Among these 10 stations, 6 stations are from 

Fig. 10  Comparison for 
5-day backward trajectories 
before and after lockdown 
over a few selected study 
locations in India
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central and coastal India, including Kolkata close to 
the Bay of Bengal. Among these 10 stations, 5 sta-
tions showed an observed positive change of greater 
than 25%, these being Delhi, Guwahati, Hyderabad, 
Talcher, and Tirupati. When we compare the 
observed change to the actual change, in 8 out of 10 
stations, the observed positive changes translate into 
actual positive changes.

Expected  O3 percentage change is positive in 
the northern part of India due to production from 
precursors; a significant amount of which can be 
sourced to biomass burning (Kumar et al., 2011), but 
observed changes are negative for most part of north-
ern India except Gobindgarh. But for Delhi expected 
and observed change, both were positive. For IGP 
region, expected change for Kolkata was − 24.12, but 
observed change showed 17.48% enhancement, and 
for Varanasi, expected change was positive (17.03%), 
while actual change aligned with observed negative 
change (− 63.71%). In western India for Ahmedabad, 
Jodhpur, and Pune, expected changes and observed 
changes, both were negative, and for Kota, expected 
and observed change, both were positive. For coastal 
India, Rajamundry and Tirupati expected and observed  
changes, both were positive, and for Thiruvanantpuram, 
both were negative. For Visakhapatnam, expected 
change was negative, but the observed is positive.

The largest actual positive change in  O3 is over 
Guwahati where 85% enhancement in  O3 occurred. 
This can be a result of higher  O3 production due to 
increase in precursors from increased fire counts 
(Fig.  10). The actual change is also above + 40% in 
Gobindgarh, Kolkata, Talcher, and Tirupati. For Gob-
indgarh, a positive change in  O3 is associated with a 
positive change in  NOx. However, over Kolkata and 
Tirupati, positive changes in  O3 are associated with 
negative changes in  NOx. This would be possible if 
the decrease in  NOx over had been sufficient to reach 
the  NOx-sensitive (limited) region where  O3 is not 
much sensitive to VOCs but increases with increasing 
NO and increasing  HOx. On the other hand, if  NOx 
did not decrease sufficiently and we are in the VOC-
sensitive regime,  O3 would increase with decreasing 
 NOx and/or increasing VOCs. It is highly likely that 
most of the  O3 increases occurred in VOC-sensitive 
regimes. Soni et al. (2021) studied the changes in  O3 
in Ahmedabad due to lockdown using a photochemi-
cal box model and found that  O3 production was 

enhanced during the lockdown period due to lower 
 NOx conditions and higher solar irradiance.

The model simulations are described in Table  4. 
The average  O3 concentration during peak photo-
chemical period (1300–1500 IST) is also shown in 
this table. Simulation 1 is a base simulation with only 
observed concentrations of NO,  NO2, and CO for 
24 March 2020 with  CH4 fixed at 1.85 ppmv. Mete-
orological parameters for simulation 1 are based 
on the observed meteorology for the same day over 
Ahmedabad. Simulation 2 takes all input values of 
simulation 1 but adds in the effect of C2–C5 anthro-
pogenic VOCs. In this case, we observed an increased 
 O3 concentration by 20.7%.

Simulation 3 adds in more traffic-related aromatic 
hydrocarbons (benzene, xylene, toluene); however, 
these increase  O3 concentration by a further 30.9%, 
cumulating to 57.9% enhancement over simulation 
1. The addition of 1 ppbv isoprene in simulation 4 
increases the average peak  O3 by only 8.7% further. 
However, the addition of pinenes in simulation 5, 
based on Tripathi and Sahu (2020) PTR-MS meas-
urements over Ahmedabad, increases  O3 by 1.9%. 
The addition of PAN,  H2O2, and HCHO in simula‑
tion 6 increases  O3 further by 192.4% and takes  O3 
closest to the observed prelockdown average peak  O3 
of 120 μg−3, the simulation values being only 15.3% 
lower compared to observed values. The greater  O3 
production from biogenic VOCs is due to their higher 
OH reactivity potentially leading to greater OH recy-
cling  (HO2 → OH) and hence NO →  NO2 →  O3.

To understand the effect of  NOx in this air mass 
composition over our example city Ahmedabad, we 
changed the  NOx values (maintaining the NO to  NO2 
ratio) in our best obtained simulation 6. Decreas-
ing  NOx by a factor of 2 in simulation 7 causes a 
(14.9%) increase in  O3. Surprisingly, increasing  NOx 
by a factor of 2 decreased  O3 by 13.8% pointing to 
a VOC-sensitive composition. Simulations 9 is the 
same as simulation 6 but with anthropogenic hydro-
carbons (C2-C5, BXT) reduced by 0.5; this led to a 
decrease of  O3 by 9.2%. Simulations 10 and 11 are 
the same as simulation 9, but additionally, biogenic 
hydrocarbons (isoprene, apinene, bpinene) reduced 
by 50% and 25%, respectively, leading to 0.15 and 
5% increases, respectively, in  O3. If anthropogenic 
hydrocarbons are not decreased, but only biogenics 
are decreased, decrease of  O3 is insignificant. This 
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Table 4  Simulations for Ahmedabad using date for prelock-
down (24 March 0.2020) and lockdown (31 March 2020). The 
concentration values shown are the average of 13:00–15:00 
IST. For simulations of 31 March 2020 (1a–6a during lock-
down), all CxHy, benzene, toluene, PAN, and HCHO were 

multiplied by the factor 0.42. This constant 0.42 is the ratio of 
the average value of HCHO during lockdown (25 to 31 March 
2020) to the average value of HCHO before lockdown (18 to 
24 March 2020)

Simulation Concentrations (ppbv) Avg  O3 (μg−3) 
24 March 2020
Simulations 1–11

Avg  O3 (μg−3) 
31 March 2020
Simulations 
1a–11a

Reference

Observed  O3 120.16 93.7
Simulation 1
Simulation 1a

NO, NO2, CO
T, RH, PBL
CH4: 1850 ppbv

20.14 19.84 Observed CPCB
Observed wunderground
Fixed

Simulation 2
Simulation 2a

Simulation 1 + 
C2H6:10; C2H4: 5
C3H8: 15; C3H6:2
i-C4H10:5
i-C5H12,n-C5H12:10

24.3 22.66 (Tripathi & Sahu, 2019)

Simulation 3
Simulation 3a

Simulation 2 + 
Benzene: 5
Toluene: 2

31.8 28.04 (Tripathi & Sahu,2020)

Simulation 4
Simulation 4a

Simulation 3 + 
C5H8: 1

34.56 31.26 (Tripathi & Sahu, 2019)

Simulation 5
Simulation 5a

Simulation 4 + 
Apinene: 0.5
Bpinene: 0.50

35.22 31.98 (Chutia et al., 2019)

Simulation 6
Simulation 6a

Simulation 5 + 
PAN: 1
HCHO: 1
H2O2: 0.5

103 96.86 (Zhang et al., 2014)

Simulation 7
Simulation 7a

Same as simulation 6/6a but
NO = NO/2
NO2 = NO2/2

118.34 106.34 Anthropogenic & biogenic not 
reduced

Simulation 8
Simulation 8a

Same as simulation 6/6a but
NO = NO × 2
NO2 = NO2 × 2

88.74 89.92 Anthropogenic & biogenic not 
reduced

Simulation 9
Simulation 9a

Same as simulation 6/6a but
Anthropogenic VOCs reduced by 0.5

93.5 92.68 Anthropogenic reduced

Simulation 10
Simulation 10a

Same as simulation 9/9a but
Apinene = apinene × 0.5
Bpinene: bpinene × 0.5

93.36 92.6 Anthropogenic & biogenic 
reduced

Simulation 11
Simulation 11a

Same as simulation 9/9a but
Apinene = apinene × 0.75
Bpinene: bpinene × 0.75

98.16 92.64 Anthropogenic & biogenic 
reduced

Simulation 12
Simulation 12a

Same as simulation 6/6a but
Apinene = apinene × 0.5
Bpinene: bpinene × 0.5

102.88 96.78 Anthropogenic not reduced
Only biogenic reduced

Simulation 13
Simulation 13a

Same as simulation 6/6a but
Apinene = apinene × 0.75
Bpinene: bpinene × 0.75

102.94 96.82 Anthropogenic not reduced
Only biogenic reduced

Simulation 14
Simulation 14a

Same as simulation 11/11a
but NO = NO/2
NO2 = NO2/2

105.64 99.78 Anthropogenic & biogenic 
reduced
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is evinced in simulations 12 and 13 which are the 
same as simulation 6 but with biogenic hydrocarbons 
(isoprene, alpha-pinene, beta-pinene) reduced by 
50% and 25%, respectively, leading to 0.1 and 0.05% 
decreases, respectively, in  O3 compared to simulation 
6. To understand how changes in  NOx impact  O3 in 
this reduced VOC scenario, we multiplied  NOx by 
0.5 and 2 in simulations 14 and 15, maintaining other 
conditions of simulation 11, i.e., anthropogenic × 0.5 
and biogenics × 0.75 (scaled as per CO ratio between 
prelockdown and lockdown). Now we see that 
decreasing  NOx by 0.5 increases  O3 by 7.6% in this 
reduced VOC scenario. In the reduced VOC scenario, 
increasing  NOx by twice decreased  O3 by a negligible 
14.7% pointing to a VOC-sensitive regime.

Simulations 1a–15a are similar to simulations 
1–15 but using the observed NO,  NO2, and CO val-
ues for 31 March instead of 24 March, thus represent-
ing the lockdown period. In both simulation 1 and 
simulation 1a, the values were 80.24% and 78.8% 
lower compared to the observations. The NO,  NO2, 
and CO values are 39.6, 10.3, and 34.45% lower on 
31 March 2020 compared to 24 March 2020. Adding 
C2–C5 hydrocarbons has a similar effect in simula‑
tion 2a over simulation 2 by increasing  O3 by 14.2%; 
however, adding BTX increases  O3 by 23.7% more 
in simulation 3a. Adding isoprene in simulation 4a 
increases  O3 by 11.5% more, which is much higher 
than 8.7% increase in prelockdown simulation 4. Add-
ing apinene and bpinene in simulation 5a increases 
 O3 by 2.3%. Adding PAN,  H2O2, and HCHO actu-
ally now increases  O3 by a whopping 202.9%. Nev-
ertheless, simulation 6a is closer to the observed  O3 
compared to previous simulations of this series for 31 
March 2020. Decreasing  NOx by 0.5 increases  O3 by 
9.8% (simulation 7a), while increasing  NOx by 0.5 in 
simulation 8a decreases  O3 by 7.2% again pointing to 
a VOC-sensitive region.

Reducing anthropogenic VOCs by 0.5 reduces  O3 
by 4.4% in simulation 9a. Reducing biogenic VOCs 
by 50% and 25% in simulations 10 and 11, respec-
tively, with anthropogenics still kept reduced by 
50% reduces  O3 by insignificantly. Similarly, reduc-
ing only biogenics by 0.5 and 0.25 without reducing 
anthropogenic changes  O3 negligibly in simulations 
12a and 13a. Between 1 and 11a, simulation 9a is the 
closest to observations on 31 March 2020 with only 
a difference of 1% on the lower side, while simula-
tion 6a was 3.4% more than observed  O3. However, 
simulation 13a with reduced biogenic VOCs is also 
quite closer to observed  O3, the difference being 
3.3% only. Reducing  NOx in a reduced VOC scenario 
(anthropogenic × 0.5, biogenic × 0.75) reduces  O3 by 
7.7% in simulation 14a, while increasing  NOx by 2 
has a decrease of 5.2% in simulation 15a. It is highly 
plausible that the reduced biogenic composition rep-
resents more appropriate lockdown conditions due to 
reduced emissions and dilution in an increased PBL. 
This could be the reason that the reduced VOC com-
position resulted in a much closer representation to 
the observed lockdown  O3.

Conclusion

Lockdowns were a hallmark of the year 2020 having 
several ramifications including changes in concentra-
tions of atmospheric pollutants. The lockdown-induced 
changes in atmospheric constituents have been docu-
mented at local and regional scales based on surface 
and satellite measurements. However, the lockdown 
period in India also coincided with a seasonal change 
from winter to pre-monsoon. A major shortcoming 
in several published literature for the Indian region 
was the overlooking of this seasonal change leading 
to a spurious attribution of the lockdown effect on 

Table 4  (continued)

Simulation Concentrations (ppbv) Avg  O3 (μg−3) 
24 March 2020
Simulations 1–11

Avg  O3 (μg−3) 
31 March 2020
Simulations 
1a–11a

Reference

Simulation 15
Simulation 15a

Same as simulation 11/11a but 
NO = NO × 2

NO2 = NO2 × 2

83.72 87.86 Anthropogenic & biogenic 
reduced
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atmospheric constituents. A major objective of this 
paper is to decouple the emission changes during lock-
down from meteorological impacts on atmospheric 
pollutant concentrations. PM,  NO2, and  O3 from 24 
urban regions spanning different emission and climatic 
regimes in India are studied to estimate the actual 
impact of lockdown. The actual lockdown-induced 
change is calculated from the difference of expected 
and observed changes.

For PM, the expected change in North India is 
positive; meaning in absence of any external forc-
ing like lockdown, the PM concentrations would be 
enhanced during this period of the year (first fortnight 
starting with lockdown) compared to the previous 
period (last fortnight ending before lockdown) as a 
result of increased biomass burning emissions. How-
ever, the lockdown brought down the pollutant lev-
els as outdoor emissions were curbed. The observed 
decrease is though not the actual impact of lockdown. 
If the natural increase of concentrations during this 
period is taken into account, the actual lockdown 
effect would be much stronger than the observed 
effect. Similarly, in the dust-dominated western India, 
a positive change was expected due to enhanced dust 
loading during this period, but observed change was 
negative, indicating an accentuated COVID-induced 
lockdown effect than was observed. In coastal India, 
in most cases, expected changes are negative (due 
to increasing marine influence) and aligned with the 
observed change, so actual lockdown-induced change 
would be much milder than observed.

For species like  NOx which have strong local 
sources and short residence times, the reduction is 
much more dramatic. The observed decrease in  NO2 is 
very much on the expected lines as local traffic emis-
sions are the major contributor to  NO2 in cities across 
India. For eastern endpoint of IGP, e.g., for Kolkata, 
the expected change was a decrease (− 47.09%) due 
to lower influence from IGP as well as reduction in 
local emissions and increasing marine influence. 
The observed change for Kolkata is also a negative 
(− 64.03%), but it must be noted that the whole 64% 
decrease cannot be attributed to lockdown, only the 
difference, i.e., − 16.94%, is the actual lockdown influ-
ence. An enhancement in  O3 was observed at many 
stations immediately after lockdown, viz., Patiala, 
Delhi, and Guwahati. This can happen in a VOC-
sensitive regime, where a decrease in  NOx would 
lead to enhancement in  O3 for the same VOC level. 

VOC-sensitive regimes generally occur in urban areas 
where the rate of  NOx production is much larger com-
pared to the OH production rate. In other places like 
Kolkata, Talcher, Jalandhar, Hyderabad, and Tiru-
pati,  O3 was already increasing before the lockdown. 
This is aligned with the expected positive percent-
age changes in  O3. In the Northern part of India, the 
positive expected change is a result of production from 
biomass burning, but observed changes are negative 
for most part of northern India due to lower levels 
of  NO2 except Delhi and Patiala, where  NO2 levels 
are higher compared to other north Indian stations 
selected for this study.

Box model simulations for an example station 
(Ahmedabad) using available  NOx and CO data 
and approximating hydrocarbon data from differ-
ent years showed that anthropogenic VOCs (C2–C5, 
BZT) increase  O3 by 57.9% during prelockdown and 
41.3% during lockdown. However, C2-C5 VOCs 
have a lower contribution in lockdown  O3 enhance-
ment compared to BZT. Biogenic hydrocarbons like 
isoprene and pinenes do not have much impact on 
increasing  O3 during either prelockdown or lock-
down. The addition of PAN, HCHO, and  H2O2 also 
increases  O3 significantly both during prelockdown 
and during lockdown.

Using simulation 6 and 6a as base for prelockdown 
and lockdown, i.e., keeping the original level of VOCS, 
increasing  NOx by a factor of 2 causes significant  O3 
decrease during both prelockdown (13.8%) and lock-
down (7.1%), while decreasing  NOx by a factor of 2 
increases prelockdown  O3 by 14.9% and lockdown  O3 
by 9.8%, indicating slightly higher response to  NOx 
during prelockdown period. Similarly, decreasing 
anthropogenic VOCs by a factor of 2 reduces prelock-
down  O3 by 9.2% and lockdown  O3 by 4.3%. Reduc-
ing biogenic VOCs by half reduces  O3 negligibly both 
during prelockdown and lockdown. Increasing  NOx by 
2 and decreasing  NOx by 0.5 at a reduced VOC com-
position caused prelockdown  O3 to change by − 14.7% 
and 7.6%, respectively, while lockdown  O3 changed 
by − 7.2% and 9.8%, respectively. The fact that increas-
ing  NOx promotes  O3 reduction (opposing effect) both 
for the prelockdown (24 March) and lockdown (31 
March) for Ahmedabad example while changing VOCs 
had an accompanying impact on  O3 points to a VOC-
sensitive composition. In the absence of actual hydro-
carbon measurements, detailed simulation of chemis-
try to understand the  O3 changes during the lockdown 
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period would be a challenging task, and any attribution 
of causes to the  O3 results remain speculative at best at 
this point.

In the end, it can be concluded that the actual 
lockdown-induced changes in atmospheric pollut-
ants are different from what is represented by simple 
dent in a time series. For pollutants like PM and  O3 
in North India, the natural enhancement due to bio-
mass burning which camouflaged the severity of 
lockdown-induced decreases. For coastal stations like 
Visakhapatnam, the lockdown effect is much milder 
due to prior dilution and ventilation effects.
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