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Introduction

Macrophytes are one of the biological elements for 
assessing the ecological status of rivers in compliance 
with the EU Water Framework Directive (Directive 
2000/60/EC). As major primary producers, they play a 
crucial role in the trophic structure of river ecosystems, 
interacting with higher trophic levels by providing food 
and refuge for macroinvertebrates and fish (Elosegi 
et al., 2018; Ferreiro et al., 2011; Huggins et al., 2004). 
Macrophytes also affect water quality, through their 
involvement in nutrient cycling and sediment resus-
pension (Abrahams, 2008; Baattrup-Pedersen & Riis, 
1999; Kleeberg et al., 2010).

In Europe, several indices based on macrophytes 
have been developed to assess water quality (mainly 
trophic status), e.g., the British Mean Trophic Rank 
(MTR) (Holmes et  al., 1998), the German Trophic 
Index of Macrophytes (TIM) (Schneider & Melzer, 
2003), and the French Biological Macrophytes Index 
for Rivers (IBMR) (Haury et al., 2006). In Poland, the 
use of biological elements is defined by a Regulation 
of the Ministry of the Environment (Journal of Laws, 
2019), according to which the Macrophyte Index for 
River (MIR) (Staniszewski et  al., 2006; Gebler et 
el., 2018; Szoszkiewicz et  al., 2020) should be used 
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to assess water quality in rivers. MIR reflects river 
degradation, especially eutrophication. This method 
is consistent with most European methods, such as 
MTR, IBMR, and EU-STAR project methodology 
(Erba et al., 2006).

Macrophytes are widely used to assess the environ-
mental conditions of different types of river ecosystems 
(Hroudová & Zákravsky, 1999; Dodkins et  al., 2005; 
Demars & Edwards, 2009; Kopeć et  al., 2010; Kuhar 
et al., 2010; Ceschin et al., 2015, 2020; Papastergiadou 
et al., 2014). However, studies conducted so the role of 
macrophyte communities as indicators of the ecologi-
cal status of artificial (drainage ditches and canals) and 
heavily modified (rivers with rectified beds) water-
courses are scarce and insufficient.

Infrastructure development in river valleys causes 
severe modification of river channel form and pro-
cesses. The immediate hydrological alterations 
caused by dams and flow regulation alter the form of 
river channels and thus the composition and extent 
of aquatic vegetation (Bejarano et  al., 2018; Jansson 
et al., 2000; Jones et al., 2020; Merritt & Wohl, 2002; 
Ramos-Merchante et  al., 2021; Riis & Sand-Jensen, 
2001; Tombolini et al., 2014). Regulated rivers usually 
have significantly lower richness (Nilsson et al., 1997) 
and different floristic composition, with a higher num-
ber of sporadic species and annuals (Bejarano et  al., 
2020; Netten et al., 2011). Artificial watercourses such 
as drainage ditches and canals are typical for many 
countries (e.g., Germany, the Netherlands and Eng-
land). These artificial aquatic systems have an interme-
diate status between flowing and stagnant water bodies, 
with shallow, relatively clear water, a soft muddy bot-
tom and very low flow rates. These environmental con-
ditions favor the development of aquatic vegetation; 
therefore, canals are often a refuge for endangered and 
rare macrophyte species (Langheinrich et  al., 2004; 
Dodkins et  al., 2005; Caffrey et  al., 2006; Gething 
et al., 2020; Papastergiadou et al., 2014; Hachoł et al., 
2019).

In this article, we present the results of a case 
study of Western Polesie (eastern Poland) concerning 
the use of macrophyte communities to evaluate the 
trophic state of regulated rivers and drainage canals. 
These anthropogenic water ecosystems are typical 
for the landscape of the region. During the 1960s 
and 1980s, in order to enlarge the arable land area, 
the hydrological conditions in Western Polesie were 
significantly transformed, mainly through large-scale 

land reclamation, the creation of a very dense net-
work (3  km*km2) of drainage ditches, and regula-
tion of rivers (rectification of riverbeds). During the 
years 1955–1960 the Wieprz-Krzna Canal (WKC), 
the longest drainage canal in Poland (140  km), was 
built in the area. Part of the WKC system consisted 
of lakes converted into storage reservoirs and some 
artificial reservoirs. All drainage canals were main-
tained regularly until 1990, but since then have been 
completely neglected. The lack of maintenance activ-
ity in the last 25 years has enabled the development 
of abundant and diverse macrophyte communities 
(Chmielewski, 2009).

Our study focuses on the response of macrophytes 
to hydromorphological and physicochemical condi-
tions of these artificial and heavily modified water-
courses. We expected to find a relationship between 
macrophyte composition, environmental parameters 
(temperature, pH, conductivity, total suspension, dis-
solved oxygen, planktonic chlorophyll-a and nutri-
ents), and the type of bottom substrate. The value of 
the paper is that it presents comprehensive monitor-
ing results concerning all the mentioned groups of 
parameters on selected drainage canals and regulated 
rivers. Thus, coupling macrophyte data, hydromor-
phology, and water quality and finding their rela-
tionships might present a novel approach. Another 
interesting moment is that it presents monitoring of 
abandoned/poorly managed canals (for 25 years) and 
regulated rivers.

Material and methods

Study area     

The study was conducted in the Parczew forests 
(PLB060006), a Nature 2000 Special Protected Area 
(SPA). The area was designated according to the Reg-
ulation of the Ministry of the Environment (Journal 
of Laws, 2004) on special bird protection areas. Mac-
rophytes were investigated in six watercourses: the 
Wieprz-Krzna Canal (start  51o31′34.3″ N,  23o04′14.5″ 
E; end  51o31′34.7″ N,  23o04′15″ E), the drainage 
ditches—Uhnin (start  51o34′51.4″ N,  23o05′00.0″ 
E;  51o34′51.8″ N,  23o05′00.6″ E), Sosnowica (start 
 51o31′33.8″ N,  23o04′41.4″ E; end  51o31′34.2″ N, 
 23o04′41.9″ E) and Ambona (start  51o33′55.1″ N, 
22° 52′43.0″ E; end  51o33′55.7″ N, 22° 52′43.3″ E), 
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two rivers with rectified beds—Ochoża River (start 
 51o33′48.3″ N,  22o52′37.6″ E; end  51o33′48.7″ N, 
 22o52′37.9″ E) and Piwonia River (start  51o31′34.7″ 
N,  23o04′25.6″ E; end  51o31′35″ N,  23o04′25.9″ 
E). For each of the watercourses, a representative 
100-m-long reach was chosen for the macrophytes 
survey.

Macrophytes survey

Macrophytes were collected during the vegetation 
season (June–August 2018  year) using the Mac-
rophyte Method for Rivers (Jusik et  al., 2020). At 
each site (watercourse), macrophytes were exam-
ined by wading along a 100-m reach. Macrophytes 
were surveyed every 10  m along transects connect-
ing the banks. It was assumed that one transect was 
equal to one sample; thus, we obtained 10 samples 
per watercourse. We identified all vegetation forms 
(submerged, free-floating, amphibious, emergent, fil-
amentous algae, liverworts, and mosses) and macro-
phytes rooted or attached to a river bank (submerged 
for more than 10  months of the year). The mean 
cover of a macrophyte species was estimated using 
a nine-point scale: < 0.1% (1), 0.1–1% (2), 1–2.5% 
(3), 2.5–5% (4), 5–10% (5), 10–25% (6), 25–50% (7), 
50–75% (8) and > 75% (9). The macrophytes were 
classified into six categories: emergent plants (helo-
phytes), floating-leaved rooted plants (nymphoides), 
floating-leaved unrooted plants (pleustophytes), sub-
merged plants (elodeids), mosses and liverworts (bry-
ophytes) and filamentous algae.

The Macrophyte Index for Rivers was calculated 
(Szoszkiewicz et al., 2020):

where N—number of species at the sampling site, Pi 
–% cover for the i taxon, Wi—weighting factor for the 
i taxon. This is a measure of ecological tolerance. Its 
values ranged from 1 (eurytopic species) to 3 (steno-
topic species). Li—indicator value for the i taxon.

MIR values were applied according to the Regu-
lation of the Ministry of the Environment (Jour-
nal of Laws, 2019). The ecological potential of the 
watercourses was classified according to MIR val-
ues for artificial or heavily modified watercourses of 
Type 17 (small lowland peatland rivers) as follows: 

(1)MIR = [

N
∑

i=1

Li ∗ Wi ∗ Pi∕
∑N

i=1
Wi ∗ Pi] ∗ 10

MIR ≥ 46.8 (very good); ≥ 36.6 (good); ≥ 26.4 (mod-
erate); ≥ 16.1 (poor) and < 16.1 (bad).

Water sampling

Water samples for chemical analysis were collected 
simultaneously with as the macrophyte survey. Ten 
replicate samples were taken at each site on each 
occasion. Water temperature (T), pH, conductiv-
ity (EC) and dissolved oxygen (DO) were meas-
ured in  situ using a Multi-340i WTW microcom-
puter analyzer. The following were determined in 
the laboratory: total nitrogen (TN) and ammonium 
nitrogen (N-NH4)—PC AQUALYTIC spectropho-
tometer; nitrate nitrogen (N-NO3), total phosphorous 
(TP), phosphate (P-PO4)—LF-300 Slandi photom-
eter; chemical oxygen demand (COD)—bichromate 
method; total suspension solid (TSS)—gravimetric 
method (Grzywna et  al., 2015). Planktonic chloro-
phyll-a (Chl) as an indicator of phytoplankton bio-
mass was determined by spectrophotometry following 
24-h extraction with 90% acetone in the dark.

Hydromorphological River Index

The macrophyte studies were supplemented with 
the hydromorphological assessment of each site. 
Hydromorphological studies of rivers were carried 
out on the basis of the River Habitat Survey method 
(Szoszkiewicz et  al., 2017). It is a system for 
assessing the nature of the habitat and the quality of 
watercourses using morphological and hydrologi-
cal parameters. The analyzed parameters include: 
longitudinal profile, hydrotechnical structures, land 
use of the river valley, forest cover, communication 
with the river valley, physical attributes of the river 
bed (type of flow, morphological elements of the 
bottom and banks, bed material), types of vegeta-
tion in the river bed. Habitats were assessed by col-
lecting observational data over a 500-m-long river 
section and its corridor extending 50 m outside on 
each side. Observations are conducted at two differ-
ent scales: i) at perpendicular transects every 50 m, 
ii) continuously along whole the 500-m survey site. 
These studies provided a lot of environmental infor-
mation about the examined points. Based on the 
hydromorphological data, the Hydromorphological 
Index for River (HIR) was calculated.
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Data analysis

According to the Shapiro–Wilk normality tests, the 
macrophyte and environmental data follow a normal 
distribution; one-way ANOVA was used to verify the 
influence of habitat type (canal, drainage ditch, regu-
lated river) on the species richness and cover of mac-
rophytes and to determine the influence of the hydro-
morphological conditions on macrophyte species. 
Pearson`s correlation coefficients were calculated to 
determine the relationships between macrophyte spe-
cies and environmental parameters. The analysis was 
performed using STATISTICA 10.0.

Results and discussion

Hydromorphological characteristic

All studied watercourses are characterized by the fol-
lowing identical hydromorphological parameters: 
longitudinal profile, elements of the bottom, land use 
of the valley area. Border elements (Table  1). Most 
often, small hydraulic structures in the form of gates 
are located on the analyzed watercourses. Ditches and 
rivers are located in peat bogs. Only in the case of DC 
there is a weir on it and the water course does not run 
through the peat bog. The greatest differentiation of 
the characteristics occurs in the case of bottom mate-
rial, type flow, and cross-section. There are also slight 
differences in the case of tree plantings (Table 1).

Macrophyte structure

In the ecosystems studied, we identified 22 macro-
phyte species (Table  2) representing four ecologi-
cal groups: pleustophytes (4 species), nymphoides 
(2 species), elodeids (4 species) and helophytes (12 
species). The total number of macrophyte species 
differed significantly (ANOVA, df = 5, F = 95.63, 
p < 0.001) between sites, ranging from 2 (DC) to 12 
species (DD_1). The percentage cover of the mac-
rophyte species clearly depended on the site (water-
course) (F = 5.11, p = 0.002). The highest cover, 
over 75% of the area of the site, was observed for the 
pleustophytes Lemna minor (DD_1, DD_2, RR_2) 
and L. trisulca (DD_2, RR_2), and for the elodeid 
Stratiotes aloides (DD_1). The lowest cover, between 
1% and 2.5%, was noted for the helophyte Rumex 
hydrolapathum (DD_2) and the elodeids Potamoge-
ton pectinatus (DC) (Table 2).

The observed species composition of macrophytes 
was typical for reservoirs of anthropogenic origin or 
subject to the inflow of nutrients from the catchment 
area. Phragmites australis is an indicator species for 
hypertrophic waters with periodic oxygen deficits. 
This species reacts very clearly to the increase in 
the concentration of biogenic compounds in water, 
increasing its biomass. Ceratophyllum demersum 
is a species that is not rooted in the bottom and is 
able to take up inorganic forms of phosphorus from 
the water, and therefore, it can compete with phyto-
plankton. The occurrence of Lemna minor is limited 

Table 1  Hydromorphological characteristic of the studied sites.

DC – Wieprz-Krzna Canal, DD_1 – drainage ditch Uhnin; DD_2 – drainage ditch Sosnowica; DD_3 – drainage ditch Ambona; 
RR_1 – regulated River Ochoża; RR_2 – regulated River Piwonia

Site DC DD_1 DD_2 DD_3 RR_1 RR_2

Longitudinal profile straight straight straight straight straight straight
Hydrotechnical structures medium small small small small no
Land use of the valley area grassland grassland grassland grassland grassland grassland
Communication with the valley no peatland peatland peatland peatland peatland
Type of flow fast slow slow slow fast laminar
Elements of the bottom no no no no no no
Border elements stable stable stable stable stable stable
Bottom material mud silt silt silt sand sand
Cross-section strengthened profiled profiled profiled mild steep
Tree plantings no shrubs shrubs shrubs no no
HIR 0.28 0.25 0.25 0.25 0.33 0.35

210   Page 4 of 12



Environ Monit Assess (2022) 194: 210

1 3
Vol.: (0123456789)

to water ecosystems with an increased content of bio-
genic elements. These species form a compact plant 
cover on the water surface, negatively affecting the 
oxygen concentration in the water (Grzywna et  al., 
2015).

The diversity of the macrophyte communities 
of the watercourses was low, at a level typical for 
human-impacted or heavily modified streams. Com-
parable species richness has been observed in Euro-
pean mountain streams in Slovakia (Hrivnák et  al., 
2010, 2012) and north-western Slovenia (Kuhar 
et al., 2010) as well in lowland rivers and ditches of 
southern England (Riley et al., 2018; Williams et al., 
2004). More macrophyte species have been observed 
in lowland streams in north-western Europe (Baatrup-
Pedersen et al., 2006; Halabowski & Lewin, 2020). In 

general, the diversity of macrophyte communities in 
natural and modified watercourses is the result of the 
synergistic effect of environmental and anthropogenic 
factors. In man-made canals, external factors, such as 
in canal and bankside maintenance, dredging, aquatic 
weed control and water flow regulation, influence 
plant composition and distribution (Demars et  al., 
2014; Hachoł et al., 2019). The watercourses we stud-
ied have not been maintained for the last 25 years. No 
plant management or weed control has been practiced 
in these ecosystems. Therefore, we assumed that the 
macrophytes of the drainage ditches, drainage canal 
and regulated rivers are affected by the gradients of 
hydromorphological and environmental conditions.

The MIR ranged from 18.0 (DC) to 39.5 (DD_2), 
which allowed three different ecological statuses to 

Table 2  Cover of the 
macrophyte species

Sites DC DD_1 DD_2 DD_3 RR_1 RR_2

Pleustophytes
Hydrocharis morsus-ranae 3 4 4 7
Lemna gibba 1 6
Lemna minor 5 8 8 7 6 8
Lemna trisulca 4 8 7 6 8
Nymphoides
Nuphar lutea 1 5
Potamogeton natans 1 6
Elodeids
Ceratophyllum demersum 5 4 7 7 6 7
Elodea canadensis 2 6 5
Potamogeton pectinatus 1 3
Stratiotes aloides 1 8
Helophytes
Acorus calamus 1 4
Calla palustris 1 5
Carex rostrata 2 5 4
Carex vesicaria 1 5
Equisetum palustre 1 4
Glyceria maxima 2 4 4
Juncus effusus 1 5
Mentha aquatica 1 5
Phragmites australis 4 7 7 7 5
Rumex hydrolapathum 2 3 6
Typha latifolia 5 4 7 5 6 6
Veronica beccabunga 1 5
Number of species 2 12 11 8 7 7
MIR 18.0 39.3 39.5 36.6 27.6 27.9
Ecological status poor good good good moderate moderate
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be assigned to the ecosystems. The Wieprz-Krzna 
canal was classified as having poor ecological status, 
the Uhnin, Sosnowica and Ambona drainage ditches 
(DD_1, DD_2, DD_3) had good ecological status, 
and the ecosystems of the regulated rivers Ochoża 
and Piwonia (RR_1, RR_2) had moderate ecological 
status.

Environmental variables

Abiotic conditions displayed marked variability between 
watercourses (Table 3). The drainage ditches, drainage 
canal and regulated rivers differed significantly in con-
ductivity (ANOVA, df = 5, F = 24.41, p < 0.001), con-
centrations of total suspension (F = 16.15, p < 0.001), 
dissolved oxygen (F = 14.34, p = 0.002), N-NH4 
(F = 7.78, p = 0.009), N-NO3 (F = 69.57, p < 0.001), 
P-PO4 (F = 11.88, p = 0.003) and planktonic chlorophyll-
a (F = 15.73, p = 0.001).

Chemical parameters of surface water quality dif-
fered statistically between test points, which resulted 
from the type of water flow (Table 3). The reaction of 
water in the tested watercourses was neutral or slightly 
alkaline (pH 6.9–7.7). The electrolytic conductivity of 
rivers did not exceed 570 μS·cm−1, which is the limit 
value for the quality class II. In the case of ditches and 
the canal, it reached the values   of 704 and 809 μS·cm−1, 
respectively. There is a statistically significant relation-
ship between EC and TSS (Grzywna & Sender, 2021). 
Therefore, very high TSS concentrations were observed 
in the ditches and the canal (higher than 40  mg·l−1). 
In the canal and rivers, the COD value was below 
30  mg·l−1. In the ditches, the value of this parameter 

exceeded 60 mg·l−1, which is characteristic of anaero-
bic conditions. The high COD value was closely related 
to the low DO values, which in the ditches were lower 
than the value of 7.5 mg·l−1 (the limit for quality class 
II). A similar situation was observed in the case of 
nutrients. In the rivers and the canal, the N-NH4 con-
tent was lower than 0.42  mg·l−1, which allowed the 
water to be classified as quality class II. In turn, in the 
ditches it sometimes exceeded the value of 0.6 mg·l−1, 
which is characteristic of eutrophic waters. Low values   
of biogenic indicators in rivers resulted from extensive 
agricultural activity (semi-natural monotone meadows). 
The increase in their content resulted from the pro-
cesses of plant decomposition and peat mineralization 
in non-flow ditches.

Relationships between macrophyte species and 
abiotic characteristics

The relationships between macrophyte species and 
physical and chemical water parameters were widely 
disparate (Table  4). Overall, the most significant 
correlations were observed for EC, TSS and P-PO4, 
which suggests that these variables may play a cru-
cial role as determinants of the presence of macro-
phyte species in the anthropogenic watercourses. 
Helophytes, especially the species Acorus calamus, 
Calla palustris, Carex rostrata, Equisertum palustre 
and Glyceria maxima, showed significant correlations 
with most of the environmental variables. A substan-
tial influence of environmental parameters was also 
observed for two pleustophytes, Hydrocharis morsus-
ranae and Lemna minor.

Table 3  Physical and 
chemical parameters of 
water

DC DD_1 DD_2 DD_3 RR_1 RR_2 Class II

T (oC) 18.4 21.4 19.4 21.3 22.4 21.1 -
pH 7.7 7.3 6.9 7.3 7.3 7.6 -
TSS (mg·l−1) 54.5 44.8 42.1 48.0 7.4 7.6 -
EC (µS·cm−1) 809 704 692 690 249 314  < 570
COD (mg·l−1) 14.9 68.3 80.5 64.3 12.2 26.5 -
DO (mg·l−1) 5.1 4.5 3.8 3.1 6.4 5.8  > 7.5
TN (mg·l−1) 1.5 2.3 2.4 2.5 1.5 1.9  < 3.5
N-NH4 (mg·l−1) 0.24 0.61 0.82 0.92 0.31 0.46  < 0.42
N-NO3 (mg  l−1) 0.56 0.77 0.76 1.01 0.42 0.45  < 2.10
TP (mg·l−1) 0.52 0.71 0.61 0.59 0.21 0.29  < 0.33
P-PO4 (mg·l−1) 0.31 0.51 0.44 0.38 0.13 0.19  < 0.10
Chl (µg·l−1) 33.4 36.0 35.6 52.7 7.9 9.6 -
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We observed a significant effect of width, canal 
modification, flow type and bottom substrate on the 
presence of macrophyte species (tab. 1). These vari-
ables define the physical niches in rivers and may exert 
a negative impact on macrophyte community structure 
(Baattrup-Pedersen et  al., 2006; O`Hare et  al., 2010; 
Zelnik et  al., 2020, 2021). In our study, the lowest 
abundance and species richness of macrophytes were 
observed in canal. The drainage canal was modi-
fied using flagstones, which prevent colonization by 
emergent macrophytes. We noted a significant effect 
of channel modification on the presence of two helo-
phytes, Typha latifolia and Phragmites australis. The 
highest cover of macrophytes was noted at ditches that 
were characterized by a muddy bottom, no percepti-
ble water flow and the lack of severe bank modifica-
tion (Table  1). Moreover, we noted positive relation-
ships between the presence of these species with the 
nutrient content (Table  4). Both species are common 
in shallow emergent zones along lakeshores and in 
ditches. Their rapid growth is usually observed in 
disturbed, high-nutrient environments (Wetzel & van 
der Walk, 1998; Obarska-Pempkowiak et  al., 2002; 
Tarkowska-Kukuryk, 2006, 2013; Swanson et  al., 
2017, Jóżwiakowski et al., 2018; Tarkowska-Kukuryk 
& Toporowska, 2021). Hydromorphological variables, 
flow type, channel modification and shading affected 
the presence of the pleustophytes Lemna minor and 
Lemna trisulca. The highest cover of these species was 
observed in drainage ditches. These ecosystems had 
high nutrient concentrations conducive to free-floating 
macrophyte dominance (Netten et  al., 2011). Moreo-
ver, these pleustonic species are able to create dense 
mats on the water surface and negatively affect the 
dissolved oxygen concentration in the water (Ceschin 
et al., 2020; Mäkelä et al., 2004; Rather & Dar, 2020; 
Takamura et al., 2003). In the ditches ecosystems, we 
observed very low oxygen concentrations (< 5 mg  l−1) 
at sites densely overgrown with Lemna spp. The effect 
of morphological parameters on the presence of elo-
deids was species-specific. Significant correlations 
with channel modification, flow type and shading were 
also observed for elodeids—Ceratophyllum demersum, 
Elodea canadensis and Potamogeton pectinatus. Shad-
ing by woody vegetation, a high proportion of artifi-
cial banks and current velocity have been stressed as 
the most important variables negatively affecting spe-
cies richness of macrophytes in streams (Lacoul et al., 
2006; Hrivnák et al., 2010, 2012; García-Girón et al., 

2020). Moreover, the presence of these species was 
correlated positively with concentrations of phosphate 
and total nitrate in the water. As an unrooted macro-
phyte species, Ceratophyllum demersum requires nutri-
ent uptake directly from the water column and may 
compete successfully with phytoplankton (Amorim & 
Moura, 2020; Mjelde & Faafeng, 1997). This species 
is often present in hypertrophic waters, where it forms 
free-floating mats (Melzer, 1999; Seelen et al., 2021). 
Potamogeton pectinatus can tolerate eutrophic condi-
tions. The plant forms a canopy to exploit light near 
the water surface, but does not produce high biomass 
(Søndergaard et al., 2017). Elodea canadensis is typi-
cal of back-flowing and meso-eutrophic streams with 
medium-to-high nutrient load and higher water trans-
parency and oxygen content (Schneider & Melzer, 
2003; Šraj-Kržič et al., 2007; Zelnik et al., 2020), but 
the species also belongs to the group of macrophytes 
tolerant of habitat degradation. Elodea canadensis 
is also tolerant of other types of human impact, such 
as organic pollution and weed cutting (O’Hare et  al., 
2010). We also noted that the presence of the elodeid 
species Stratiotes aloides has not been significantly 
affected by any of the hydrological parameters. Stra-
tiotes aloides showed a positive correlation with total 
phosphorus and a negative relationship with chloro-
phyll-a concentration. The species is regarded as an 
important indicator of the ecological conservation 
state of ditch ecosystems (Zantout et  al., 2011) and 
has potential as a conservation surrogate, since plant 
aggregations maintain diverse macroinvertebrate com-
munities (Ceschin et  al., 2020; Tarkowska-Kukuryk, 
2006, 2013). Stratiotes aloides forms typical associa-
tions with Hydrocharis morsus-ranae and with plant 
species such as Lemna trisulca and Potamogeton spp 
(Strzałek & Koperski, 2009; Strzałek et al., 2019).

In Poland, in 1989, there was a change in the polit-
ical system, which contributed to a sharp reduction 
in cattle breeding in small farms. The decline in live-
stock production resulted in the abandonment of the 
use of meadows and the lack of exploitation of water 
systems (Cegielska et al., 2018; Swinnen & Vranken, 
2010). The lack of maintenance of the ditches con-
tributed to the succession of the Salix viminalis, 
Urtica dioica L. and Phragmites australis as well as 
silting of the watercourses. These factors significantly 
contributed to the subsidence of peatlands and the 
simplification of the species composition of vegeta-
tion. In our study, the average number of species was 
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7 and ranged from 2 to 12. The most common were: 
Ceratophyllum demersum, Lemna minor, Phragmites 
australis, and Typha latifolia. For this reason, con-
trary to expectations, no rare or endangered plant spe-
cies were found. The current conditions in the studied 
sections of the watercourses are not suitable for the 
succession of endangered plant species. Unfavorable 
conditions for plant development result from large 
fluctuations in water levels in watercourses and min-
eralization of peatlands (Grzywna, 2017; Grzywna & 
Kowalczyk-Juśko, 2018). Due to the large distances 
from the place of residence and the use of ready-
made fodder in cattle breeding, there are no artificial 
watercourses subject to intensive conservation in the 
Western Polesie. In this region, all ditches and canals 
have been abandoned by people and are undergoing 
spontaneous succession.

Conclusions

MIR values showed high variability among the anthro-
pogenic watercourses studied (regulated rivers, drain-
age ditches, and drainage canal). The results of our 
study showed that the drainage ditches had favorable 
habitat conditions (good ecological status) for macro-
phyte communities in comparison with the regulated 
rivers and drainage canal. Both the species richness 
and percentage cover of macrophyte species were 
highest in the ditches ecosystems. The favorable con-
ditions for macrophytes in the drainage ditches, who 
demonstrated that ditches can support high diversity 
of macrophyte species.

Overall, macrophyte species respond very clearly 
to variations in hydromorphological and environ-
mental conditions (nutrients, oxygen and planktonic 
chlorophyll-a) with changes in their abundance and 
richness. The results indicate that macrophyte com-
munities should be recognized as indicators of the 
ecological status of artificial and modified water-
courses (ditches, canals and regulated rivers). The 
relevance of the methods used in the study should be 
verified on a larger number of sites.
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