Skip to main content

Advertisement

Log in

Particulate matter exposure in biomass-burning homes of different communities of Brahmaputra Valley

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Biomass burning for cooking prevalent in the developing countries is an issue which has been a concern for the past several decades for the noxious emissions and subsequent effects on the health of women and children due to the exposure of particulate matter (PM) and other gases. In this study, PM (PM1, PM2.5, and PM10) were measured in biomass-burning households for different communities of Brahmaputra Valley region northeast India by a 31-channel aerosol spectrometer. The levels of emission of PM in the case of different community households were found to be significantly different. Also, the emission characteristics of different cooking time of the day were found to be different across communities. The emission levels in the biomass-burning households were compared with emission in household using “clean” LPG fuel, and it was found that the biomass fuels emitted 10–12 times more PM2.5 and 6–7 times more PM10. The number densities of the emission were found to be more with smaller sizes of particulates which could explain why such biomass-burning emissions can pose with greater health risks. The exposure doses were calculated and were found to be about three times higher in biomass-burning houses than “clean” LPG fuel. It is important to note that the exposure from biomass burning while cooking has a gender perspective. The woman of the house generally takes care of the activities in the kitchen and get exposed to the noxious PM and the gases. Children often accompany their mothers and face the same fate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data obtained in this work will be made available on request.

References

  • Akunne, A. F., Louis, V. R., Sanon, M., & Sauerborn, R. (2006). Biomass solid fuel and acute respiratory infections: The ventilation factor. International Journal of Hygiene and Environmental Health, 209(5), 445–450

    Article  Google Scholar 

  • Ansari, F. A., Khan, A. H., Patel, D. K., Siddiqui, H., Sharma, S., Ashquin, M., & Ahmad, I. (2010). Indoor exposure to respirable particulate matter and particulate-phase PAHs in rural homes in North India. Environmental Monitoring and Assessment, 170(1), 491–497

    Article  CAS  Google Scholar 

  • Balakrishnan, K., Dey, S., Gupta, T., Dhaliwal, R. S., Brauer, M., Cohen, A. J., Stanway, J. D., Beig, G., Joshi, T. K., Aggarwal, A. N., Sabde, Y., Sadhu, H., Frostad, J., Causey, K., Godwin, W., Shukla, D. K., Kumar, G. A., Varghese, C. M., Muraleedharan, P., … Dandona, L. (2019). The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: The Global Burden of Disease Study 2017. The Lancet Planetary Health, 3(1), 26–39

    Article  Google Scholar 

  • Balakrishnan, K., Ghosh, S., Ganguli, B., Sambandam, S., Bruce, N., Barnes, D. F., & Smith, K. R. (2013). State and national household concentrations of PM2.5 from solid cookfuel use: Results from measurements and modeling in India for estimation of the global burden of disease. Environmental Health, 12(1), 1–14

  • Balakrishnan, K., Sambandam, S., Ramaswamy, P., Mehta, S., & Smith, K. R. (2004). Exposure assessment for respirable particulates associated with household fuel use in rural districts of Andhra Pradesh, India. Journal of Exposure Science & Environmental Epidemiology, 14(1), S14–S25

    Article  CAS  Google Scholar 

  • Barman, N., Bhuyan, P., Chabukdhara, M., Deka, P., & Hoque, R. R. (2017). PM10 bound elements, ions, carbon and PAHs during festive biomass burning over the Brahmaputra Valley. Asian Journal of Water, Environment and Pollution, 14(2), 27–40

    Article  Google Scholar 

  • Behera, D., & Aggarwal, G. (2010). Domestic cooking fuel exposure and tuberculosis in Indian women. The Indian Journal of Chest Diseases & Allied Sciences, 52(3), 139

    Article  Google Scholar 

  • Behera, D., & Jindal, S. K. (1991). Respiratory symptoms in Indian women using domestic cooking fuels. Chest, 100(2), 385–388

    Article  CAS  Google Scholar 

  • Bhuyan, P., Ahmed, M. S., Hopke, P. K., & Hoque, R. R. (2020). Understanding the chemistry and sources of precipitation ions in the Mid-brahmaputra Valley of Northeastern India. Aerosol and Air Quality Research, 20

  • Bhuyan, P., Barman, N., Begum, S., Gogoi, D., Borah, S., Kumar, M., Sarma, K. P., & Hoque, R. R. (2016a). Spatial and seasonal variations of water soluble ions in PM 10 of mid-Brahmaputra plain of Assam valley. Asian Journal of Water, Environment and Pollution, 13(2), 69–81

    Article  CAS  Google Scholar 

  • Bhuyan, P., Barman, N., Bora, J., Daimari, R., Deka, P., & Hoque, R. R. (2016b). Attributes of aerosol bound water soluble ions and carbon, and their relationships with AOD over the Brahmaputra Valley. Atmospheric Environment, 142, 194–209

    Article  CAS  Google Scholar 

  • Bhuyan, P., Deka, P., Prakash, A., Balachandran, S., & Hoque, R. R. (2018). Chemical characterization and source apportionment of aerosol over mid Brahmaputra Valley, India. Environmental Pollution, 234, 997–1010

    Article  CAS  Google Scholar 

  • Chengappa, C., Edwards, R., Bajpai, R., Shields, K. N., & Smith, K. R. (2007). Impact of improved cookstoves on indoor air quality in the Bundelkhand region in India. Energy for Sustainable Development, 11(2), 33–44

    Article  CAS  Google Scholar 

  • Deepthi, Y., Nagendra, S. S., & Gummadi, S. N. (2019). Characteristics of indoor air pollution and estimation of respiratory dosage under varied fuel-type and kitchen-type in the rural areas of Telangana state in India. Science of the Total Environment, 650, 616–625

    Article  CAS  Google Scholar 

  • Deka, J., Baul, N., Bharali, P., Sarma, K. P., & Hoque, R. R. (2020). Soil PAHs against varied land use of a small city (Tezpur) of middle Brahmaputra Valley: Seasonality, sources, and long-range transport. Environmental Monitoring and Assessment, 192, 1–14

    Article  Google Scholar 

  • Deka, P., & Hoque, R. R. (2014). Incremental effect of festive biomass burning on wintertime PM10 in Brahmaputra Valley of Northeast India. Atmospheric Research, 143, 380–391

    Article  CAS  Google Scholar 

  • Deka, P., & Hoque, R. R. (2015). Chemical characterization of biomass fuel smoke particles of rural kitchens of South Asia. Atmospheric Environment, 108, 125–132

    Article  CAS  Google Scholar 

  • Deka, P., Bhuyan, P., Daimari, R., Sarma, K. P., & Hoque, R. R. (2016). Metallic species in PM 10 and source apportionment using PCA-MLR modeling over mid-Brahmaputra Valley. Arabian Journal of Geosciences, 9(5), 335

    Article  Google Scholar 

  • Desai, M. A., Mehta, S., Smith, K. R., & World Health Organization. (2004). Indoor smoke from solid fuels: Assessing the environmental burden of disease at national and local levels. World Health Organization

  • Dutta, A., Ray, M. R., & Banerjee, A. (2012). Systemic inflammatory changes and increased oxidative stress in rural Indian women cooking with biomass fuels. Toxicology and Applied Pharmacology, 261(3), 255–262

    Article  CAS  Google Scholar 

  • Dutta, K., Shields, K. N., Edwards, R., & Smith, K. R. (2007). Impact of improved biomass cookstoves on indoor air quality near Pune. India. Energy for Sustainable Development, 11(2), 19–32

    Article  CAS  Google Scholar 

  • Ezzati, M., & Kammen, D. M. (2001). Indoor air pollution from biomass combustion and acute respiratory infections in Kenya: An exposure-response study. The Lancet, 358(9282), 619–624

    Article  CAS  Google Scholar 

  • Gope, M., Masto, R. E., Basu, A., Bhattacharyya, D., Saha, R., Hoque, R. R., Khilare, P. S., & Balachandran, S. (2020). Elucidating the distribution and sources of street dust bound PAHs in Durgapur, India: A probabilistic health risk assessment study by Monte-Carlo simulation. Environmental Pollution, 267, 115669

  • Grabow, K., Still, D., & Bentson, S. (2013). Test kitchen studies of indoor air pollution from biomass cookstoves. Energy for Sustainable Development, 17(5), 458–462

    Article  CAS  Google Scholar 

  • Grimm, H., & Eatough, D. J. (2009). Aerosol measurement: The use of optical light scattering for the determination of particle size distribution, and particulate mass, including the semi-volatile fraction. Journal of the Air and Waste Management Association, 59, 101–107

    Article  CAS  Google Scholar 

  • Hanbar, R. D., & Karve, P. (2002). National Programme on Improved Chulha (NPIC) of the Government of India: An overview. Energy for Sustainable Development, 6(2), 49–55

    Article  Google Scholar 

  • Holdren, J. P., Smith, K. R., Kjellstrom, T., Streets, D., Wang, X., & Fischer, S. (2000). Energy, the environment and health. United Nations Development Programme

    Google Scholar 

  • Hussain, K., & Hoque, R. R. (2015). Seasonal attributes of urban soil PAHs of the Brahmaputra Valley. Chemosphere, 119, 794–802

    Article  CAS  Google Scholar 

  • Hussain, K., Rahman, M., Prakash, A., & Hoque, R. R. (2015). Street dust bound PAHs, carbon and heavy metals in Guwahati city–Seasonality, toxicity and sources. Sustainable Cities and Society, 19, 17–25

    Article  Google Scholar 

  • Hussain, K., Rahman, M., Prakash, A., Sarma, K. P., & Hoque, R. R. (2016). Atmospheric bulk deposition of PAHs over Brahmaputra Valley: Characteristics and influence of meteorology. Aerosol and Air Quality Research, 16(7), 1657–1689.

    Article  Google Scholar 

  • ICRP (International Commission on Radiological Protection). (2006). Human respiratory tract model for radiological protection. ICRP Publication 66. Ann. ICRP, 1–3

  • IEA (International Energy Agency). (2016). Energy and Air Pollution. World Energy Outlook (Special report), Paris Cedex, France.

  • Jai Devi, J., Gupta, T., Tripathi, S. N., & Ujinwal, K. K. (2009). Assessment of personal exposure to inhalable indoor and outdoor particulate matter for student residents of an academic campus (IIT-Kanpur). Inhalation Toxicology, 21(14), 1208–1222.

    Article  Google Scholar 

  • Jetter, J., Zhao, Y., Smith, K. R., Khan, B., Yelverton, T., DeCarlo, P., & Hays, M. D. (2012). Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards. Environmental Science & Technology, 46(19), 10827–10834.

    Article  CAS  Google Scholar 

  • Johnson, P., Balakrishnan, K., Ramaswamy, P., Ghosh, S., Sadhasivam, M., Abirami, O., Sathiasekaran, B. W. C., Smith, K. R., Thanasekaraan, V., & Subhashini, A. S. (2011). Prevalence of chronic obstructive pulmonary disease in rural women of Tamilnadu: Implications for refining disease burden assessments attributable to household biomass combustion. Global Health Action, 4(1), 7226.

    Article  Google Scholar 

  • Joshi, M., Sapra, B. K., Khan, A., Kothalkar, P., & Mayya, Y. S. (2010). Thoron (220Rn) decay products removal in poorly ventilated environments using unipolar ionizers: Dosimetric implications. Science of the Total Environment, 408(23), 5701–5706.

    Article  CAS  Google Scholar 

  • Lakshmi, P. V. M., Virdi, N. K., Sharma, A., Tripathy, J. P., Smith, K. R., Bates, M. N., & Kumar, R. (2013). Household air pollution and stillbirths in India: Analysis of the DLHS-II National Survey. Environmental Research, 121, 17–22.

    Article  CAS  Google Scholar 

  • Leavey, A., Londeree, J., Priyadarshini, P., Puppala, J., Schechtman, K. B., Yadama, G., & Biswas, P. (2015). Real-time particulate and CO concentrations from cookstoves in rural households in Udaipur. India. Environmental Science & Technology, 49(12), 7423–7431.

    Article  CAS  Google Scholar 

  • Madureira, J., Slezakova, K., Silva, A. I., Lage, B., Mendes, A., Aguiar, L., Pereira, M. C., Teixeira, J. P., & Costa, C. (2020). Assessment of indoor air exposure at residential homes: Inhalation dose and lung deposition of PM10, PM2. 5 and ultrafine particles among newborn children and their mothers. Science of The Total Environment, 717, 137293

  • Mahmood, T., Singh, R. K., Kant, S., Shukla, A. D., Chandra, A., & Srivastava, R. K. (2017). Prevalence and etiological profile of chronic obstructive pulmonary disease in nonsmokers. Lung India: Official Organ of Indian Chest Society, 34(2), 122.

    Article  Google Scholar 

  • Majumdar, D., Gajghate, D. G., Pipalatkar, P., & Rao, C. V. C. (2011). Assessment of airborne fine particulate matter and particle size distribution in settled chalk dust during writing and dusting exercises in a classroom. Indoor Built Environment, 000(000), 1–11.

    Google Scholar 

  • Mandal, S., Zaveri, A., Mallick, R., & Chouhan, P. (2020). Impact of domestic smokes on the prevalence of acute respiratory infection (ARI) among under-five children: Evidence from India. Children and Youth Services Review, 114, 105046

  • Masera, O., Edwards, R., Arnez, C. A., Berrueta, V., Johnson, M., Bracho, L. R., Riojas- Rodriguez, H., & Smith, K. R. (2007). Impact of Patsari improved cookstoves on indoor air quality in Michoacán. Mexico. Energy for Sustainable Development, 11(2), 45–56.

    Article  CAS  Google Scholar 

  • Massey, D. D., Kulsrestha, A., & Taneja, A. (2009, December). A study on indoor/outdoor concentration of particulate matter in rural residential houses in India. In 2009 Second International Conference on Environmental and Computer Science (pp. 218–223). IEEE

  • Matawle, J. L., Pervez, S., Shrivastava, A., Tiwari, S., Pant, P., Deb, M. K., ... & Pervez, Y. F. (2017). PM 2.5 pollution from household solid fuel burning practices in central India: 1. Impact on indoor air quality and associated health risks. Environmental geochemistry and health, 39(5), 1045–1058

  • McCarthy, C. E., Duffney, P. F., Wyatt, J. D., Thatcher, T. H., Phipps, R. P., & Sime, P. J. (2017). Comparison of in vitro toxicological effects of biomass smoke from different sources of animal dung. Toxicology in Vitro, 43, 76–86.

    Article  CAS  Google Scholar 

  • Menon, J. S., & Nagendra, S. S. (2018). Personal exposure to fine particulate matter concentrations in central business district of a tropical coastal city. Journal of the Air & Waste Management Association, 68(5), 415–429.

    Article  CAS  Google Scholar 

  • Mishra, V. (2003). Effect of indoor air pollution from biomass combustion on prevalence of asthma in the elderly. Environmental Health Perspectives, 111(1), 71–78.

    Article  Google Scholar 

  • Mishra, V. K., Retherford, R. D., & Smith, K. R. (1999). Biomass cooking fuels and prevalence of tuberculosis in India. International Journal of Infectious Diseases, 3(3), 119–129.

    Article  CAS  Google Scholar 

  • Mumford, J. L., He, X. Z., Chapman, R. S., Harris, D. B., Li, X. M., Xian, Y. L., ... & Chuang, J. C. (1987). Lung cancer and indoor air pollution in Xuan Wei, China. Science, 235(4785), 217–220

  • Naeher, L. P., Leaderer, B. P., & Smith, K. R. (2000). Particulate matter and carbon monoxide in highland Guatemala: Indoor and outdoor levels from traditional and improved wood stoves and gas stoves. Indoor Air, 10(3), 200–205.

    Article  CAS  Google Scholar 

  • Parikh, J., Balakrishnan, K., Laxmi, V., & Biswas, H. (2001). Exposure from cooking with biofuels: Pollution monitoring and analysis for rural Tamil Nadu. India. Energy, 26(10), 949–962.

    Article  CAS  Google Scholar 

  • Pokhrel, A. K., Smith, K. R., Khalakdina, A., Deuja, A., & Bates, M. N. (2005). Case–control study of indoor cooking smoke exposure and cataract in Nepal and India. International Journal of Epidemiology, 34(3), 702–708.

    Article  Google Scholar 

  • Prasad, R., Abhijeet, S., Garg, R., & Hosmane, G. B. (2012). Biomass fuel exposure and respiratory diseases in India. Bioscience Trends, 6(5), 219–228.

    Article  Google Scholar 

  • Rehfuess, E., & World Health Organization. (2006). Fuel for life: Household energy and health. World Health Organization

  • Saha, A., Kulkarni, P. K., Shah, A., Patel, M., & Saiyed, H. N. (2005). Ocular morbidity and fuel use: An experience from India. Occupational and Environmental Medicine, 62(1), 66–69.

    Article  CAS  Google Scholar 

  • Sapkota, A., Gajalakshmi, V., Jetly, D. H., Roychowdhury, S., Dikshit, R. P., Brennan, P., Hashibe, M., & Boffetta, P. (2008). Indoor air pollution from solid fuels and risk of hypopharyngeal/laryngeal and lung cancers: A multicentric case–control study from India. International Journal of Epidemiology, 37(2), 321–328.

    Article  Google Scholar 

  • Satsangi, P. G., Yadav, S., Pipal, A. S., & Kumbhar, N. (2014). Characteristics of trace metals in fine (PM2. 5) and inhalable (PM10) particles and its health risk assessment along with in-silico approach in indoor environment of India. Atmospheric Environment, 92, 384–393.

    Article  CAS  Google Scholar 

  • Siddiqui, A. R., Lee, K., Bennett, D., Yang, X., Brown, K. H., Bhutta, Z. A., Gold, E. B. (2009). Indoor carbon monoxide and PM2. 5 concentrations by cooking fuels in Pakistan. Indoor air, 19(1), 75–82

  • Singh, A. L., & Jamal, S. (2012a). A study of risk factors associated with indoor air pollution in the low income households in Aligarh city, India. Journal of Environmental Research and Management, 3, 1–8.

    CAS  Google Scholar 

  • Singh, A. L., & Jamal, S. (2012b). Assessing vulnerability of women to indoor air pollution. Research Journal of Environmental and Earth Sciences, 4(11), 982–989.

    CAS  Google Scholar 

  • Smith, K. R. (1993). Fuel combustion, air pollution exposure, and health: The situation in developing countries. Annual Review of Energy and the Environment, 18(1), 529–566.

    Article  Google Scholar 

  • Smith, K. R. (2000). National burden of disease in India from indoor air pollution. Proceedings of the National Academy of Sciences, 97(24), 13286–13293.

    Article  CAS  Google Scholar 

  • Smith, K. R., Dutta, K., Chengappa, C., Gusain, P. P. S., Masera, O., Berrueta, V., Edwards, R., Bailis, R., & Shields, K. N. (2007). Monitoring and evaluation of improved biomass cookstove programs for indoor air quality and stove performance: Conclusions from the Household Energy and Health Project. Energy for Sustainable Development, 11(2), 5–18.

    Article  CAS  Google Scholar 

  • Smith, K. R., Mehta, S., & Maeusezahl-Feuz, M. (2004). Indoor air pollution from household use of solid fuels. Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors, 2, 1435–1493.

    Google Scholar 

  • Sreenivas, V., Prabhakar, A. K., Badrinath, S. S., Fernandez, T., Roy, I. S., Sharma, T., & Sheh, B. (1999). A rural population based case-control study of senile cataract in India. Journal of Epidemiology, 9(5), 327–336.

    Article  CAS  Google Scholar 

  • Sreeramareddy, C. T., Shidhaye, R. R., & Sathiakumar, N. (2011). Association between biomass fuel use and maternal report of child size at birth-an analysis of 2005–06 India Demographic Health Survey data. BMC Public Health, 11(1), 1–10.

    Article  Google Scholar 

  • US Environmental Protection Agency. (2012). National Ambient Air Quality Standards (NAAQS) for particulate matter (PM)

  • USEPA (U.S. Environmental Protection Agency). (2003). Draft Report on the Environment. http://epa.gov/indicators/roe/html/roePDF.htm 

  • USEPA. (2002). Polycyclic Organic Matter, US Environmental Protection Agency

  • WHO (World Health Organization). (2006). Air Quality Guidelines Gobal update 2005. WHO Regional office for Europe, Copenhagen, Denmark.

  • World Health Organization. (2002). Indoor air pollution. World Health Report. Available at: World Resources Institute (WRI), 1998–99. United Nations Environment Programme, United Nations development programme and World Bank. 1998–99 World Resources: A Guide to the global environment, Oxford University Press, Oxford

  • World health organization. (2020). World Health Statistics; monitoring health for the Sustainable Development Goals

  • Yackerson, N. S., Zilberman, A., Todder, D., & Kaplan, Z. (2014). The influence of air-suspended particulate concentration on the incidence of suicide attempts and exacerbation of schizophrenia. International Journal of Biometeorology, 58(1), 61–67.

    Article  Google Scholar 

  • Zhang, T., Gao, B., Zhou, Z., & Chang, Y. (2016). The movement and deposition of PM2. 5 in the upper respiratory tract for the patients with heart failure: an elementary CFD study. Biomedical engineering online, 15(2), 517–530

  • Zhang, Y., Shao, M., Lin, Y., Luan, S., Mao, N., Chen, W., & Wang, M. (2013). Emission inventory of carbonaceous pollutants from biomass burning in the Pearl River Delta Region, China. Atmospheric Environment, 76, 189–199.

    Article  CAS  Google Scholar 

  • Zhou, W., Tian, D., He, J., Zhang, L., Tang, X., Zhang, L., Wang, Y., Li, L., Zhao, J., Yuan, X., & Peng, S. (2017). Exposure scenario: Another important factor determining the toxic effects of PM2. 5 and possible mechanisms involved. Environmental Pollution, 226, 412–425.

    Article  CAS  Google Scholar 

  • Zhou, T., Hu, Y., Wang, Y., Sun, C., Zhong, Y., Liao, J., & Wang, G. (2019). Fine particulate matter (PM2. 5) aggravates apoptosis of cigarette-inflamed bronchial epithelium in vivo and vitro. Environmental Pollution, 248, 1–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Ministry of Earth Sciences (MoES), GoI for the grant to Raza R. Hoque (Grant No. MoES/16/16/10-RDEAS), and the aerosol spectrometer was procured under that project. However, MoES does not have any role in the experimental designs and interpretation of results of this study. Authors thank the participating households and woman who did the cooking — Monju Devi, Harima Chetry, Saraswati Devi, Shanti Devi, Kabita Sharma, Nazia Begum, Reshma Sultana, Ammena Begum, Ruksana Khatun, Salima Begum, Maloti Das, Shibani Dutta, Geeta Das, Rumirani Sutradhar, Shimpi Das, Monju Sarma, Beena Deka, Purnima Devi, Joya Gogoi, Mamoni Deka. Special thanks to Dr. Nirmali Gogoi for allowing us to measure PM at her kitchen where in LPG fuel was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raza R. Hoque.

Ethics declarations

Ethics approval

There was no use of animals or animal products at any stage of this work.

Consent to participate

There was no involvement of human subjects at any stage of this work; however, members of the participating household agreed and allowed to take air samples from their kitchens.

Consent for publication

The paper has not been published in any language and not under consideration elsewhere. Authors have agreed to publish the work.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogoi, D., Sazid, A., Bora, J. et al. Particulate matter exposure in biomass-burning homes of different communities of Brahmaputra Valley. Environ Monit Assess 193, 856 (2021). https://doi.org/10.1007/s10661-021-09624-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09624-8

Keywords

Navigation