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we assessed the influence of meteorology, mobility, 
air mass transport, and biomass burning on  PM2.5 
using Google’s mobility data, back trajectory model, 
and satellite-based fire incident data. Average  PM2.5 
concentrations in Ghaziabad, Noida, and Faridabad 
decreased by 60.70%, 63.27%, and 60.40%, respec-
tively, during the lockdown. When compared with 
the preceding year (2019), the reductions during the 
shutdown period (25 March–31 May) were within 
the range of 36.34–44.55%. However, considering 
the entire year, this reduction in  PM2.5 is momentary, 
and a steady increase in traffic density and industrial 
operations within cities during post-lockdown reflects 
a potent recovery of aerosol level, during which the 
average mass of  PM2.5 three- to four-folds higher than 
the lockdown period. Back trajectories and fire activ-
ity results showed that biomass burning in the nearby 
states (Haryana and Punjab) influence aerosol load. 
We conclude that a partial lockdown in the event of 
a sudden surge in pollution would be a beneficial 
approach. However, reducing fossil fuel consump-
tion and switching to more environmentally friendly 
energy sources, developing green transport networks, 
and circumventing biomass burning are efficient ways 
to improve air quality in the long term.

Keywords HYSPLIT · PM2.5 · COVID-19 
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Abstract Recent studies concluded that air quality 
has improved due to the enforcement of lockdown in 
the wake of COVID-19. However, they mostly con-
centrated on the changes during the lockdown period, 
and the studies considering the consequences of de-
escalation of lockdown are inadequate. Therefore, 
we investigated the changes in fine particulate mat-
ter  (PM2.5) during the pre-lockdown, strict lockdown, 
unlocking, and post-lockdown scenarios. In addition, 
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Introduction

Severe acute respiratory syndrome coronavirus-2 
(SARS-CoV-2), a new coronavirus that has emerged 
in Wuhan, China, has created an emergency due to  
its global infection. On 30 January 2020, the World  
Health Organization’s emergency committee declared  
coronavirus disease 2019 (COVID-19) as a global  
health emergency due to the unrelenting growth rate of  
worldwide cases (WHO, 2020). Depending upon the  
extent of COVID-19 impact in each country and country- 
specific situations and capacities, governments around 
the world are taking different levels of interventions, 
including travel restrictions and lockdowns, to contain 
the spread of the highly contagious virus (MoHFW, 
2020). In India, a nationwide lockdown was imple-
mented from 24 March 2020 to contain the spread 
of the pandemic virus and preserve the health and 
safety of citizens (https:// www. mohfw. gov. in). Vehicle 
transport, including flights, was suspended; factories 
and industrial activities ceased; people were allowed 
to leave their homes only in emergencies following 
social distancing (Dasgupta & Srikanth, 2020; Ghosh 
& Ghosh, 2020). Following the first lockdown, dif-
ferent lockdown stages were put in place, with sub-
sequent relaxations based on the country’s number of 
COVID-19-positive cases (Gouda et  al., 2021). Even 
though enforcement of nationwide lockdown measures 
adversely influenced India’s economy (Jain & Sharma, 
2020; Nigam et  al., 2021), it played a vital role in 
controlling the spread of the pandemic virus, thereby 
avoiding life loss (Gulia et al., 2021).

In addition to controlling virus spread, limiting 
anthropogenic activities during the lockdown period 
also significantly improves the environmental com-
partments. A decline in air pollution due to curfews 
and restricted mobility in the wake of the COVID-19 
pandemic has been observed and reported worldwide 
(Todorović, 2020; Torkmahalleh et  al., 2021). Several 
studies have shown significant changes in the concen-
tration of the air pollutants during these blackout peri-
ods and have contributed to cleaner air quality and a 
better air quality index (AQI) across India. In general, 
a decrease in fine particulate matter  (PM2.5), respir-
able particulate matter  (PM10), nitrogen oxides  (NO2), 
carbon monoxide (CO), and sulfur dioxide  (SO2) was 
observed during the closure period (Bera et al., 2021; 
Kolluru et  al., 2021; Masum & Pal, 2020; Rahaman 
et al., 2021). Data from satellite and monitoring stations 

showed a considerable decrease in  PM2.5 in Mumbai, 
followed by Delhi, Kolkata, Chennai, and Bengaluru 
during the lockdown (Lal et al., 2020).

Although massive reductions in  PM2.5 have been 
reported across the country, 13 of the world’s 15 most 
polluted cities are still in India (IQAir, 2020). Best of 
our knowledge, most of the published studies have only 
looked at the implications of lockdown, and no past 
research has investigated the consequences of relax-
ing measures that may have the opposite effect on the 
existing environment. Relaxing lockdown would lead 
to a sudden surge in pollution levels, possibly increas-
ing morbidity and mortality attributable to air pollution. 
In addition, virus particles can stick to dust particles 
and travel further, which in turn potentially infecting 
more people (Comunian et al., 2020). In this context, a 
separate investigation is essential to determine whether 
pollution levels after lifting lockdown are coherent 
with the strict lockdown conditions. The comparison 
of pollutant concentrations before, during, and after 
lockdown is vital to determine whether lockdown is 
solely responsible for enhancing air quality. This paper 
aimed to present the changes in the  PM2.5 of three north 
Indian cities during four different circumferences (pre-
lockdown, lockdown, unlock, and post-lockdown) and 
compared the observations with the identical period in 
the previous year (under no lockdown restrictions). In 
addition, statistical (ANOVA, Tukey’s post-hoc test, 
correlation, and bivariate polar plots) and model-based 
approaches were applied for this study to assess the 
influence of meteorology, mobility, long-range air mass 
transport, and biomass burning on the  PM2.5 levels.

Materials and methods

Study cities

This study focused on three major north Indian cities: 
Ghaziabad, Noida, and Faridabad. These three cities 
were closely situated to National Capital Delhi and 
are areas of high population and economic activities 
and were among the most polluted cities globally in 
terms of  PM2.5. As per IQAir’s (2020) World Air Qual-
ity study, in the list of regional cities with the worst 
air quality, Ghaziabad (annual mean  PM2.5, 106.6 µg/
m3), Noida (94.3 µg/m3), and Faridabad (83.3 µg/m3) 
ranked 2nd, 6th, and 11th positions, respectively. Gha-
ziabad, located on the western edge of Uttar Pradesh, 

 618 Page 2 of 17

https://www.mohfw.gov.in


Environ Monit Assess (2021) 193: 618

1 3

is the second largest industrial city in the state with 
3.4 million inhabitants (https:// ghazi abad. nic. in). New 
Okhla Industrial Development Authority (Noida) is a 
planned city in the Gautam Buddha Nagar district of 
Uttar Pradesh with a populace of 6.4 lakhs (Census 
of India, 2011). Noida is classified as the special eco-
nomic zone and one of the fast-growing industrial hubs 
in the state. Faridabad, located in the Southeastern part 
of Haryana, covers a geographical area of 741  km2 
(Faridabad township, 18.1  km2) and has a population 
of 1.8 million (https:// farid abad. nic. in). The location 
of monitoring cities and the distribution of monitor-
ing stations for the air quality are shown graphically in 
Supplementary Fig. S1.

PM2.5 data collection and statistical analysis

Daily average (24-h) concentrations of  PM2.5 data from 
ground-based Continuous Ambient Air Quality Monitor-
ing Stations (CAAQMS) were obtained from the Central 
Pollution Control Board (CPCB) web portal (https:// app. 
cpcbc cr. com/ ccr/#/ caaqm- dashb oard- all/ caaqm- landi ng). 
Data from four CAAQMS (Indirapuram, Loni, Sanjay 
Nagar, and Vasundhara) of Ghaziabad, four CAAQMS 
(Sector-125, Sector-62, Sector-1, and Sector-116) of 
Noida, and four CAAQMS (new industrial town, Sector- 
11, Sector-30, and Sector-16A) of Faridabad, which is 
maintained by the respective State Pollution Control 
Boards and CPCB were collected. CAAQMS of the 
study cities, nature of the location, and geographical 
coordinates are provided in Supplementary Table  S1. 
 PM2.5 data for 2019 and 2020 were retrieved and cat-
egorized based on the lockdown guidelines given by 
the Ministry of Health and Family Welfare (MoHFW, 
2020), Government of India, as (i) pre-lockdown (Pre-
LD): 01/01/2020 to 24/03/2020; (ii) lockdown (LD): 
25/03/2020 to 31/05/2020; (iii) unlock (UL): 01/06/2020 
to 31/10/2020; and (iv) post-lockdown (Post-LD): 
01/11/2020 to 31/12/2020. The different phases of lock-
down and unlock and their time periods are listed in Sup-
plementary Table S2. For the periods mentioned above, 
descriptive statistical analyses (central tendency and dis-
persion measures) were carried out to assess the pollut-
ant events over time and compare their relative changes. 
Pairwise comparisons were made by ANOVA and Tuk-
ey’s post-hoc test using Statistical Package for the Social 
Sciences (SPSS) software version 21.  PM2.5 level in 
lockdown phases (of 2020) compared with the concen-
trations observed during the same periods of the previous 

year (2019). Data before 2019 were not included in the 
present investigation due to large inconsistencies.

Community mobility data

Mobility data utilized in this study was collected from 
Google COVID-19 Community Mobility Reports 
(Google, 2020), consisting of district-wise time series 
data from 15/02/2020 to 31/12/2020. These data 
contain six categories of mobility: retail and recrea-
tion, grocery and pharmacy, parks, public transport, 
workplaces, and residential. Variations in mobility 
were presented as percentage change compared to the 
baseline value (i.e., the median value, for the corre-
sponding day of the week, during the period: 3 Janu-
ary 2020–6 February 2020) (Google, 2020). For a 
better understanding,  PM2.5 changes for each day are 
also calculated using a similar method defined in the 
COVID-19 Community Mobility Reports. Therefore, 
the daily changes of the fine aerosols compared with 
the equivalent baseline weekday, for example, data on 
a Monday compared to corresponding data from the 
baseline series for a Monday. In addition, Pearson’s 
correlation analysis was performed between mobility 
changes and  PM2.5 variations to assess the influence 
of people’s mobility on  PM2.5 levels.

Meteorology analysis

Daily meteorological data, namely ambient air tem-
perature, relative humidity (RH), wind velocity (WS), 
and wind direction (WD) for 2020, were retrieved 
from the CPCB web portal (https:// app. cpcbc cr. com/ 
ccr/#/ caaqm- dashb oard- all/ caaqm- landi ng). The rela-
tionship between the pollutant concentrations and the 
corresponding wind speed and wind direction was 
examined through bivariate polar plots. Changes in 
the concentration of a species regarding WS and WD 
were graphically illustrated in polar coordinates. It can 
provide directional information about sources and the 
WS dependence of concentrations by means of which 
emissions sources can be effectively distinguished 
(Grange et al., 2016; Hama et al., 2020; Uria-tellaetxe 
& Carslaw, 2014). Statistical software R programming 
language (R Core Team, 2018) and its package “ope-
nair” (Carslaw & Ropkins, 2012) were applied to per-
form data analysis and develop bivariate polar plots. 
The openair website at http:// www. opena ir- proje ct. 
org provides more information concerning the project 
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and a comprehensive manual supporting the package. 
The details of the statistical procedure have been dem-
onstrated previously by Carslaw and Ropkins (2012), 
hence not repeated here. In order to investigate the 
relationship between  PM2.5 and four meteorological 
variables (temperature, WS, WD, and RH), correlation 
analysis was performed with IBM SPSS (version 21).

Backward trajectory model and fire incident analysis

Backward trajectories have often been utilized to 
understand the potential medium- and long-range 
transport of air masses that are being delivered at 
the recipient location at any given time. The Hybrid 
Single-Particle Lagrangian Integrated Trajectory 
(HYSPLIT) model developed by the National Oceanic 
and Atmospheric Administration’s Air Resources Lab-
oratory (Rolph et al., 2017; Stein et al., 2015) was used 
to locate the distant sources and to track the vertical 
movement of the air mass reaching the study region 
during the pre-lockdown, strict lockdown, unlock and 
post-lockdown phases. The trajectories of three cities 
were confined within close proximity, so these cit-
ies were considered as a single unit. More details on 
the HYSPLIT model can be found at http:// ready. arl. 
noaa. gov/ HYSPL IT. php. Three-day (72-h) backward 
trajectories at 500 m above ground level (AGL) were 
run using data from the Global Data Assimilation Sys-
tem (GDAS) of the National Centers for Environmen-
tal Prediction (https:// www. ready. noaa. gov/ archi ves. 
php), which has 1° × 1° latitude‐longitude grid spatial 
resolution and 3-h time resolution. MODIS (Moderate 
Resolution Imaging Spectroradiometer) fire data were 
retrieved from Fire Information for Resource Manage-
ment System (https:// firms. modaps. eosdis. nasa. gov/). 
Only fires with a confidence level equal to or greater 
than 75% were selected for further analysis. ArcGIS 
Pro software (version 2.5) has been used to integrate 
and analyze the trajectory and fire data, both spatially 
and temporally. In addition, the concentrations were 
compared between days with high and low fire activ-
ity to estimate the contribution of biomass burning to 
 PM2.5 pollution. High fire activity days were defined 
as the days with a daily cumulative fire radiative 
power (FRP) above the 75th percentile for the whole 
of 2020, while all other remaining days are defined as 
low fire activity periods. FRP is the measure of radiant 
heat output, which is related to the rate of fuel con-
sumption. A high FRP rate is directly linked to higher 

particulate matter emissions (Wooster et  al., 2005; 
Kaiser et al., 2011).

Results and discussion

Changes in the concentration of PM2.5

The panels of Fig.  1a-c present the daily trend of 
 PM2.5 concentrations during 2020 in Ghaziabad, 
Noida, and Faridabad, respectively. The concentra-
tion flow of  PM2.5 in all three cities follows a paral-
lel trend that begins to deteriorate immediately after 
the lockdown was enforced on 25 March 2020. The 
mean concentration of  PM2.5 in Ghaziabad declined 
to 43.83 ± 19.60  µg/m3 (LD1) from 135 ± 66.77  µg/
m3 (Pre-LD) just within 21  days of strict closure. 
Likewise, about 71.14 and 69.41% reduction in  PM2.5 
was observed in Noida and Faridabad during the first 
phase of lockdown (LD1). Fine PM remained at the 
lower level throughout the lockdown period in all 
three cities, with mean ± standard deviation (SD) of 
53.05 ± 25.16  µg/m3 (Ghaziabad), 44.99 ± 18.76  µg/
m3 (Noida), and 42.82 ± 24.09  µg/m3 (Faridabad) 
(Supplementary Table S3). Industrial sectors, thermal 
power plants, burning waste, vehicular emissions, and 
road dust from vehicle movement were the primary 
sources of fine PM in the study area (Kumari et  al., 
2020). Since all kinds of industrial operations and 
commercial activities were ceased during the lock-
down, this could be the main reason behind the  PM2.5 
reduction. Several authors have already reported simi-
lar observations in Indian urban cities (Bera et  al., 
2021; Das et al., 2021a; Dasgupta & Srikanth, 2020; 
Kolluru et  al., 2021; Kumar et  al., 2021; Kumari 
et al., 2020; Nigam et al., 2021; Saxena & Raj, 2021; 
Srivastava et  al., 2020). Most interestingly, a slight 
incline in PM level at the UL4 period (September 
2020) was observed, which increases drastically in 
UL5 and reached maximum level during post-LD. 
The maxima  PM2.5 concentrations of 531  µg/m3 for 
Ghaziabad, 474 µg/m3 for Noida, and 389 µg/m3 for 
Faridabad were recorded on 09/11/2020 (post-LD 
period).

The summary of the percent variation and Tukey’s 
post-hoc test between Pre-LD, LD, UL, and Post-LD is 
shown in Table 1. Tukey’s test results clearly indicate 
that there is a significant variation between the study 
phases. However, there are no substantial variations in 
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PM values   between LD and UL states, depicted by a 
p-value > 0.05. It is quite surprising to found that the 
 PM2.5 concentration during post-LD was three to four 
times higher than the LD and UL phases. Notably, 
it was even higher than the Pre-LD scenario. When 
compared with the Pre-LD phase, about 84%, 76%, 
and 56% of the increase in  PM2.5 levels were observed 
in Ghaziabad, Noida, and Faridabad, exclusively. This 
unforeseen rise in aerosol concentrations is attributed 
mainly to the progressive refurbishment of normal 
day-to-day activities, i.e., vehicle transport, industrial 
operations, and economic activities. This argument is 
consistent with the conclusions of Kumar et al. (2021) 
in India and Viteri et al. (2021) in Madrid, Spain, who 

found a marginal increase in the pollution level during 
the de-escalation period.

Comparison with the previous year (2019)

Meteorological patterns and emission sources directly 
influence air quality, hence showing solid tempo-
ral patterns. To inspect the influence of changes that 
happened during 2020, a comparison was made with 
mean and percentage variations during the simi-
lar period of 2019. It was one of the easiest ways to 
control the effects of meteorological factors (Gama 
et al., 2018). As shown in Fig. 2, reductions in  PM2.5 
are observed throughout 2020 compared to forgoing 

Fig. 1  Time series of daily mean  PM2.5 concentrations between January and December 2020 in (a) Ghaziabad, (b) Noida, and (c) 
Faridabad. The solid red line represents a 15-day moving average of  PM2.5
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phases to equivalent periods of 2019. Overall,  PM2.5 
concentrations in the study regions are on average 
21.84 µg/m3 (Ghaziabad), 18.67 µg/m3 (Noida), and 
14.97  µg/m3 (Faridabad) lower in 2020. Interest-
ingly, slight decline even before the lockdown lifted 
(Pre-LD), reflecting the probable reductions due to 
changes in emission sources and meteorology. The 
most significant decline was noted in Faridabad 
(30.35 µg/m3), followed by Ghaziabad (20.95 µg/m3) 
and Noida (11.31 µg/m3).

PM2.5 levels remarkably dropped by 44.55%, 
41.04%, and 36.34%, respectively, between 2019 
and 2020 during LD (25 March–31 May) in Noida, 
Faridabad, and Ghaziabad. This is attributed to the 
blockage of all likely emissions, such as transport 
and industrial operations, as often observed in the 
literature. Despite the general decline, there have 
been some periods when concentrations of  PM2.5 
were higher in 2020 than they were in 2019, particu-
larly during UL4 (in September), shortly after most 

lockdown measures were relaxed. Faridabad saw 
a maxima surge in  PM2.5 of 98.36% and 21.69%, 
respectively, during UL4 and UL5. Though in 
Noida and Ghaziabad,  PM2.5 changes are + 30.69 
and + 32.94% in UL4 during 2020, which was 36.86 
and 38.96  µg/m3 in 2019. Post-LD concentrations 
remained lower in 2020 in the study area except in 
Ghaziabad, which displays a minor rise of about 
2.87%. This study results exhibited a range of val-
ues comparable with the range of changes reported 
in India (CPCB, 2021; Bera et  al., 2021; Das et  al., 
2021a, b; Gautam et  al., 2021; Mandal et  al., 2021; 
Ravindra et al., 2021; Saxena & Raj, 2021).

Effects of meteorological parameters

Figure  3 shows the bivariate polar plots of phase-
wise mean  PM2.5 concentrations in relation to wind 
speed and wind direction in their respective study cit-
ies. The color scale of the polar graphs shows the fine 

Table 1  Variation of  PM2.5 and Tukey’s post-hoc test results between before lockdown (Pre-LD), during lockdown (LD), unlock 
(UL), and post-lockdown (post-LD) periods across study cities

a SEM standard error of the mean
b LCL 95% lower confidence limit of the mean; UCL 95% upper confidence limit of the mean

Phases Variation (in %) Variation (µg/m3) SEM a q value p-value LCL b UCL b

Ghaziabad
LD vs Pre-LD  − 60.70  − 81.945 10.717 10.814 0.000  − 109.605  − 54.284
UL vs Pre-LD  − 54.63  − 73.751 8.921 11.691 0.000  − 96.777  − 50.725
UL vs LD 15.44 8.193 9.575 1.210 0.828  − 16.519 32.906
Post-LD vs Pre-LD 83.97 113.362 11.051 14.506 0.000 84.838 141.885
Post-LD vs LD 368.14 195.306 11.586 23.841 0.000 165.404 225.209
Post-LD vs UL 305.51 187.113 9.948 26.600 0.000 161.437 212.789
Noida
LD vs Pre-LD  − 63.27  − 77.507 9.961 11.004 0.000  − 103.216  − 51.797
UL vs Pre-LD  − 51.66 -63.287 8.292 10.793 0.000  − 84.689  − 41.885
UL vs LD 30.60 14.220 8.900 2.260 0.381  − 8.750 37.190
Post-LD vs Pre-LD 76.37 93.560 10.272 12.881 0.000 67.048 120.072
Post-LD vs LD 380.20 171.066 10.768 22.466 0.000 143.273 198.860
Post-LD vs UL 348.60 156.847 9.246 23.989 0.000 132.982 180.712
Faridabad
LD vs Pre-LD  − 60.40  − 65.308 8.730 10.579 0.000  − 87.840  − 42.776
UL vs Pre-LD  − 43.29  − 46.802 7.267 9.108 0.000  − 65.560  − 28.045
UL vs LD 43.21 18.505 7.800 3.355 0.084  − 1.626 38.637
Post-LD vs Pre-LD 55.77 60.304 9.003 9.473 0.000 37.068 83.540
Post-LD vs LD 293.36 125.612 9.438 18.823 0.000 101.253 149.971
Post-LD vs UL 174.66 107.106 8.104 18.691 0.000 86.190 128.022
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Fig. 2  Mean concentrations of  PM2.5 for the phases of pre-
lockdown (01 January to 24 March), lockdown (25 March to 
31 May), unlock (01 June to 31 October), and post-lockdown 
(01 November to 31 December) in 2019 and 2020: (a) Gha-

ziabad, (b) Noida, and (c) Faridabad. Differences represent 
the variations between the corresponding periods of 2019 and 
2020
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aerosol concentration, and the radial scale shows the 
wind speed. Depending on the local wind conditions 
at the sampling locations, a variation in concentrations 
can be evidently seen. The concentration decreases 
radially outwards from the core of the diagram. Bivari-
ate graphs signify that  PM2.5 sources were predomi-
nantly localized, as depicted by high concentrations in 
the center at low wind speeds (WS < 2 m/s). Lower WS 
during Pre-LD (< 5 m/s) and post-LD (< 2 m/s) facili-
tates the accumulation of pollutants, while higher WS 
(> 10 m/s) during UL eases the dispersion. Visualiza-
tion in Fig. 3a suggests that Ghaziabad receives local-
sourced particulate matter mainly from the south and 
southwest direction, where industrial sectors of Noida 
are located (within a 20-km radius). Along with its 
own sources, emissions from nearby industrial cities 
add up to the degree of pollution. While in Faridabad, 
 PM2.5 mass was dominated by local sources with low 
WS (< 5 m/s) and elevated concentrations in the center 
bin owing to the dearth of dispersion. Plots observed 
for Noida also revealed a pattern that is comparable to 
Faridabad (Fig. 3c). These results were reliable with the 
findings of Kumar et al. (2021) and Hama et al. (2020).

Meteorological parameters influence the trans-
port, spread, and deposition of particulate matter 
in the atmosphere over any region on different time 
scales, i.e., from diurnal to seasonal, annual, and dec-
adal (Chowdhury et al., 2019; Coskuner et al., 2018). 
Monthly descriptive statistics of temperature, WS, and 
RH for the study cities in 2020 are shown in Supple-
mentary Tables S4, S5, and S6, respectively. Regres-
sion analysis was used to analyze the correlation 
between  PM2.5 and meteorological parameters. The 
correlation plot presented in Fig.  4 shows the strong 
negative association of  PM2.5 with wind speed in all 
three cities. At the same time, the relationship between 
 PM2.5 and temperature was weak positive (0.28) in 
Faridabad and weak negative (− 0.19) in Noida. Sur-
prisingly, no relationship was found in Ghaziabad. 
This demonstrates why mean  PM2.5 concentrations 
were higher in the center of the polar plots and vice 
versa. These bivariate plots and correlation analysis 
results strongly suggest that wind speed is the signifi-
cant factor that influences  PM2.5 levels in 2020.

Effects of community mobility

Figure  5 illustrates the fact that the transport sec-
tor has been severely affected by the enforced 

COVID-19 restrictions. All means of mobility 
sharply decreased in the initial periods of restriction 
and then inclined again after the officials restrained 
the control measures. On average, people’s activity 
reduced by 82.86% (retail and recreation), 49.43% 
(grocery and pharmacy), 85.71% (parks), 80.20% 
(public transport), and 68.92% (workplaces) during 
the period 24 March–31 May. Traveling to places 
like national parks, beaches, marinas, and public 
gardens was complete under control until Novem-
ber (Post-LD). The same was observed in all three 
cities, but the rates were higher in Noida, followed 
by Ghaziabad and Faridabad (Fig.  5). It is unsur-
prising to find that there is a considerable increase 
in residential activity, which indicates the migra-
tion of the population towards places of residence. 
Resumption of activities just after strict lockdown 
(i.e., after 31 May) traduced in positive mobility 
trend, especially for groceries (hypermarkets, food 
granaries, marketplaces, and specialty food shops) 
and pharmacies.

For the current study, the data from the Google 
COVID-19 Community Mobility database (Google, 
2020) was utilized as a proxy for transport activity. 
Correlation analysis was applied to identify the link 
between the variations in atmospheric  PM2.5 con-
centrations and community activity. The relationship 
observed between the mobility categories and  PM2.5 
changes is summarized in Table 2 and is found to be 
highly significant (at the level 99%; p < 0.01). The 
 PM2.5 variations were positively substantially related 
to grocery and pharmacy, retail and recreation, and 
public transport. A positive correlation shows that 
with a deterioration in mobility, the  PM2.5 value 
decreases and vice versa. In Fig. 5, a drastic reduction 
in these three mobility activities in the study cities 
could be clearly seen, which possibly directly influ-
enced the aerosol level. Parks and workplace mobility 
had a weakly positive association with  PM2.5. Sur-
prisingly, residential mobility showed a weak nega-
tive association with  PM2.5 variations. There are two 
possible explanations for these observations. Firstly, 
residential activities may not reflect the aid of motor 
vehicle transport. Another possible explanation is that 
the sharp decline in other kinds of activity could out-
weigh the effects of residential mobility. Overall, it 
becomes clear that the constraint in people’s mobility 
is one of the main reasons for the massive reduction 
in fine dust pollution.
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Impact of long-range transport and biomass burning

Air mass backward trajectories and the spatial dis-
tributions of fires over the study area before, during, 
and after lockdown are illustrated in Fig.  6. During 

the Pre-LD, the trajectories showed the unidirec-
tional movement of polluted air masses mainly from 
a north-westerly direction. The main areas in these 
regions are Haryana, Punjab, and the regions of 
Pakistan. In addition, patterns of slowly moving air 

Fig. 3  a Bivariate polar plots of  PM2.5 during different phases in Ghaziabad. b Bivariate polar plots of  PM2.5 during different phases 
in Faridabad. c Bivariate polar plots of  PM2.5 during different phases in Noida
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masses from the directions southwest (Gujarat), south 
(region of Central India), and east (Uttar Pradesh) 
were observed. During LD, the area was influenced 
by the dust from the Thar Desert. These clusters 
transported from Iran, Afghanistan, and Pakistan, 
which typically followed a more extensive flow pat-
tern across Haryana and Punjab before reaching the 
receptor site. Another cluster of air masses from the 
Arabian Sea followed a curve pattern from the south-
west direction. Far-reaching air masses have also been 
instigated from adjacent eastern regions of Bihar 
and Uttar Pradesh and the southern areas of Nepal, 
with the main dense springs being in urban areas of 
the Indo-Gangetic Plain. During UL, clusters from 

different wind directions were identified, although  
long-range regional transport from the southwest  
(from the Arabian sea) and southeast (from Bangla-
desh) dominated the carriage directions. Trajectory  
density plot of the Post-LD period showed that pol-
luted air masses to receptor location came to emanate  
from northwest, south, and east (Fig. 6: post-lockdown),  
while air mass cluster from the south path is a long-
range conveyance.

The fire numbers were highest during the LD, fol-
lowed by UL, Post-LD, and Pre-LD. Sparse and iso-
lated fire events in Pre-LD are attributed to the fact that 
it falls in the winter season (i.e., January and Febru-
ary). The density of the fire sources was highest in the 

Fig. 4  Correlation analysis plot between fine aerosol concentrations and meteorological parameters: (a) Ghaziabad, (b) Noida, and 
(c) Faridabad
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Fig. 5  Daily variations in the community mobility at (a) Ghaziabad, (b) Noida, and (c) Faridabad obtained from Google COVID-19 Community 
Mobility Reports 2020. Variations represent the daily percentage change in mobility compared to the baseline period
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northwestern regions of the study area. Most interest-
ingly, between 25 March and 31 May 2020, intensive 
fire events were observed in the states of Haryana, 
Punjab (northwest side), and Uttar Pradesh (east direc-
tion), which bring vast PM mass of biomass burning 
emissions into the study cities (Fig. 6: lockdown). Next 
to LD, intensive fire activities, especially in Haryana 
and Punjab, were also observed during UL and Post-
LD. The daily number of fire incidents and cumulative 
fire radiative power (MW) in 2020 is shown in the sup-
plementary Fig. S2. Observations of Fig. S2 agree with 
the evidence from previous studies, which indicated 
that in Haryana and Punjab, higher fire incidents occur 
during the spring season (i.e., March–May) (Kumar 
et  al., 2011), and paddy residue burning typically 
occurs in October and November (Chowdhury et  al., 
2019). In these months, a typical north-westerly wind 
transports the dust particles towards Delhi National 
Capital Region (NCR) and thus causes severe pollu-
tion episodes in this region (Chowdhury et al., 2019). 
A long-term (15 years from 2001–2002 to 2015–2016) 

study by Chowdhury et al. (2019) highlighted that the 
ambient  PM2.5 concentrations are 1.25 times higher in 
the downwind (study area) than the upwind areas of 
Delhi NCR (i.e., Haryana and Punjab).

The mean values   of fine dust in times of low and 
high fire activity are shown in Table  3. The annual 
average concentration of  PM2.5 during high fire inci-
dent days was 16.19 µg/m3 (14.81%), higher than its 
level in the time of low activity days.  PM2.5 level in 
Pre-LD was slightly lower (− 4.44%) during low fire 
activity days than its rival. Interestingly, the fluc-
tuations in  PM2.5 between fire-impacted and low fire 
activity periods for LD, UL, and Post-LD were higher 
than the annual fluctuations. The rise in  PM2.5 dur-
ing LD, UL, and Post-LD due to high fire events 
was estimated to be 24.58%, 64.74%, and 26.27%, 
respectively. This increase in ambient dust lev-
els is attributed to the transport of pollutants from 
open biomass combustion in upwind rural areas, 
dust transport in the summer, and transport of pol-
lution emitted from brick kilns throughout the year 

Table 2  Results of Pearson’s correlation coefficient analysis of  PM2.5 and mobility

** Denotes significant correlations at p < 0.01

Retail and recreation Grocery and 
pharmacy

Parks Public transport Workplace Residential

Ghaziabad
Grocery and pharmacy 0.85**
Parks 0.83** 0.47**
Public transport 0.94** 0.70** 0.89**
Workplaces 0.84** 0.68** 0.69** 0.91**
Residential  − 0.89**  − 0.74**  − 0.72**  − 0.91**  − 0.96**
PM2.5 0.45** 0.46** 0.34** 0.42** 0.31**  − 0.31**
Noida
Grocery and pharmacy 0.89**
Parks 0.89** 0.61**
Public transport 0.95** 0.81** 0.88**
Workplaces 0.79** 0.70** 0.73** 0.92**
Residential  − 0.85**  − 0.81**  − 0.71**  − 0.90**  − 0.95**
PM2.5 0.43** 0.43** 0.38** 0.41** 0.28**  − 0.30**
Faridabad
Grocery and pharmacy 0.84**
Parks 0.82** 0.43**
Public transport 0.96** 0.83** 0.77**
Workplaces 0.83** 0.74** 0.62** 0.91**
Residential  − 0.90**  − 0.77**  − 0.69**  − 0.93**  − 0.96**
PM2.5 0.45** 0.50** 0.30** 0.45** 0.28**  − 0.31**
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(Cusworth et  al., 2018) add up to local sources. As 
discussed earlier, transport and industrial activities 
were entirely suspended during the LD and partially 
halted during the UL period, which leads to control 
of local sources. While comparing the results, the 
PM level during LD and UL might be much lower if 
not affected by long-range transport of dust and bio-
mass burning emissions. A recent investigation by 

Mendez-Espinosa et  al. (2020) found that the  PM2.5 
in Northern South America was increased by almost 
20  μg/m3 due to biomass burning events in March 
and April. A recent study in Reno, Nevada, USA, 
has highlighted an increase of 17.7% in COVID-19 
cases during the period hit by forest fires (Kiser et al., 
2021). This research is the first step towards a more 
profound understanding of the relationship between 

Fig. 6  Fire activity (MODIS) and density plots of back trajectories (HYSPLIT) over study region during pre-lockdown (01 January–24 
march), lockdown (25 March–31 May), unlock (01 June–31 October), and post-lockdown (01 November–31 December)

Table 3  Average  PM2.5 
mass and percentage 
changes at receptor site 
during high and low fire 
activity periods for 2020

a Variations in  PM2.5 
concentrations between 
high FRP and low FRP days

Period Mean  PM2.5 concentration (µg/m3) Variationsa

High FRP days Low FRP days Overall (µg/m3) in %

Pre-LD 117.22 ± 28.23 122.43 ± 67.30 121.87 ± 64.13  − 5.21  − 4.44
LD 49.46 ± 21.07 37.30 ± 15.18 46.95 ± 20.51 12.16 24.58
UL 151.82 ± 71.40 53.53 ± 38.94 60.59 ± 48.90 98.29 64.74
Post-LD 258.89 ± 101.86 190.88 ± 81.82 210.95 ± 92.76 68.01 26.27
2020 109.30 ± 97.97 93.11 ± 75.95 97.18 ± 82.20 16.19 14.81
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dust pollution, wildfire smoke events, and COVID-19 
incidents and mortality.

Summary and conclusion

Restrictions imposed to stop the spread of COVID-19 
over India have given a unique opportunity to study 
the potential factors that influence  PM2.5 mass. In this 
study, statistics and a model-based approach were 
applied to assess the influence of mobility, meteorol-
ogy, biomass burning, and long-range dust transport 
over three highly polluted north Indian cities. The 
salient conclusions from the study can be drawn as:

(1) A significant reduction has been observed dur-
ing the COVID-19 lockdown in all the cities, 
mainly due to the absence of local anthropo-
genic emissions.  PM2.5 has shown a variation 
of − 60.70%, − 63.27%, and − 60.40% for Ghazi-
abad, Noida, and Faridabad during the lockdown 
period than before lockdown. However, reduc-
tions in  PM2.5 concentration are not consistent 
throughout the year, and it reversed back to the 
pre-LD range at the end of 2020, that is, during 
post-lockdown. The  PM2.5 level was three- to 
four-folds higher after lockdown when compared 
to lockdown and relaxing periods.

(2) PM2.5 has also shown significant variations 
between 2019 and 2020. Once again, the reduc-
tions were maximum during the lockdown. Data 
has shown a reduction of 44.55%, 41.04%, and 
36.34% in Noida, Faridabad, and Ghaziabad, 
respectively. Despite the general trend of lower 
concentrations in 2020, during UL4, the  PM2.5 
level was higher in 2020 than in 2019.

(3) A significant negative correlation of WS with 
 PM2.5 and higher concentration of aerosols dur-
ing low wind speed (as observed in Bivariate 
polar plots) has shown the impact of wind speed 
on the pollution dispersal.

(4) A decrease in people’s mobility during the lock-
down and unlocking periods is the resultant of 
reductions in pollution load due to control of 
local emission sources. Daily changes in  PM2.5 
have shown a significant positive association 
with all type of mobility, except residential. Par-

allel changes in both mobility and fine dust con-
centrations evidently revealed the contribution 
of vehicular emissions on PM load.

(5) Trajectories are shown that the study area 
receives air mass mainly from the northwest 
direction, from Haryana, Punjab, and parts of 
eastern Pakistan. Long transport of air mass 
from Thar Desert was observed in lockdown, 
whereas during unlocking period, the same was 
from Arabian Sea and Bangladesh.

(6) The maximum number of fire events was 
recorded in LD, followed by UL and Post-LD. 
These observations are in good agreement with 
previous studies. There have been striking differ-
ences in the  PM2.5 concentrations of fire impacted 
and non-fire impacted days. Such an increase in 
fine dust showing the influence of biomass burn-
ing on the pollution load of nearby regions, espe-
cially those is located in downwind direction.

Overall, COVID-19 lockdown retrieved the air 
quality in the urban cities where anthropogenic 
activities degraded the green environment. How-
ever, at the same time, this improvement in air 
quality is impermanent. Therefore, it must be con-
cluded that partial lockdown would be a beneficial 
approach in case of a sudden rise in pollution load. 
However, reducing ongoing fossil fuel consumption, 
switching from fossil fuel to less-polluting natural 
gas or renewable biomass energy sources, develop-
ing green transport networks, and circumventing 
biomass burning are efficient directions to achieve 
long-term improvements in air quality.

Acknowledgements We would like to thank all State Pol-
lution Control Boards (SPCB) and Central Pollution Control 
Board (CPCB), Ministry of Environment, Forest and Climate 
Change, Government of India for providing free access to air 
pollution and meteorology data. We would also like to thank 
NOAA Air Resources Laboratory (ARL) for the provision of 
the HYSPLIT transport model and/or READY website (http:// 
www. ready. noaa. gov). We also acknowledge NASA’s Fire 
Information for Resource Management System for providing 
MODIS (collection 6.1) fire data and R language core team for 
the openair package.

Author contribution Mr. M. Arunkumar: Conceptualiza-
tion, data curation, software, investigation, writing–original 
draft. Dr. S. Dhanakumar: Conceptualization, supervision, 
writing–review and editing.

 618 Page 14 of 17

http://www.ready.noaa.gov
http://www.ready.noaa.gov


Environ Monit Assess (2021) 193: 618

1 3

Data availability The data used in the manuscript are pub-
licly available. Data on fine particulate matter and meteorologi-
cal parameters are available under the open data platform of 
Central Pollution Control Board, Government of India: https:// 
app. cpcbc cr. com/ ccr/#/ caaqm- dashb oard- all/ caaqm- landi ng. 
Active fire data presented in this study are openly available 
in https:// firms. modaps. eosdis. nasa. gov. Google Community 
Mobility Reports publicly available in https:// www. google. 
com/ covid 19/ mobil ity/.

Declarations 

Competing interest The authors declare no competing inter-
ests.

References

About District | ghaziabad | India. https:// ghazi abad. nic. in/ en/ 
about- distr ict/. Accessed 5 June 2021

ARL. Air resources laboratory - HYSPLIT - hybrid single- 
particle lagrangian integrated trajectory model. https:// 
www. ready. noaa. gov/ HYSPL IT. php. Accessed 5 May 2021

ARL. Gridded Meteorological Data Archives. NOAA’s air 
resources laboratory. https:// www. ready. noaa. gov/ archi ves.  
php. Accessed 5 May 2021

Bera, B., Bhattacharjee, S., Shit, P. K., Sengupta, N., & Saha, 
S. (2021). Significant impacts of COVID-19 lockdown on 
urban air pollution in Kolkata (India) and amelioration 
of environmental health. Environment, Development and 
Sustainability, 23(5), 6913–6940. https:// doi. org/ 10. 1007/ 
s10668- 020- 00898-5

Carslaw, D. C., & Ropkins, K. (2012). Openair—An R pack-
age for air quality data analysis. Environmental Model-
ling & Software, 27, 52–61. https:// doi. org/ 10. 1016/j. 
envso ft. 2011. 09. 008

Census of India. (2011). Provisional population totals, census of 
India - Urban agglomerations/cities having population 1 lakh 
and above state. In: Census of India. http:// censu sindia. gov. 
in/ 2011- prov- resul ts/ paper2/ data_ files/ India2/ Table_3_ PR_ 
UA_ Citie es_ 1Lakh_ and_ Above. pdf. Accessed 22 May 2021

Chowdhury, S., Dey, S., Di Girolamo, L., Smith, K. R.,  
Pillarisetti, A., & Lyapustin, A. (2019). Tracking ambi-
ent PM2.5 build-up in Delhi national capital region dur-
ing the dry season over 15 years using a high-resolution 
(1 km) satellite aerosol dataset. Atmospheric Environ-
ment, 204, 142–150. https:// doi. org/ 10. 1016/j. atmos env. 
2019. 02. 029

Comunian, S., Dongo, D., Milani, C., & Palestini, P. (2020). 
Air pollution and COVID-19: The role of particulate 
matter in the spread and increase of COVID-19’s mor-
bidity and mortality. International Journal of Environ-
mental Research and Public Health, 17(12), 4487.

Coskuner, G., Jassim, M. S., & Munir, S. (2018). Characteriz-
ing temporal variability of PM2. 5/PM10 ratio and its rela-
tionship with meteorological parameters in Bahrain. Envi-
ronmental Forensics,  19(4), 315–326. https:// doi. org/ 10. 
1080/ 15275 922. 2018. 15197 38

CPCB. (2021). Continuous stations status, central control 
room for air quality management - All India. In: Cent. 
Pollut. Control Board, Gov. India. https:// app. cpcbc cr.  
com/ ccr/#/ caaqm- dashb oard- all/  caaqm- landi ng . 
Accessed 3 March 2021

Cusworth, D. H., Mickley, L. J., Sulprizio, M. P., Liu, T., 
Marlier, M. E., DeFries, R. S., & Gupta, P. (2018). 
Quantifying the influence of agricultural fires in north-
west India on urban air pollution in Delhi, India. Envi-
ronmental Research Letters, 13(4), 044018. https:// doi. 
org/ 10. 1088/ 1748- 9326/ aab303

Das, M., Das, A., Sarkar, R., Saha, S., & Mandal, P. (2021a). 
Regional scenario of air pollution in lockdown due 
to COVID-19 pandemic: Evidence from major urban 
agglomerations of India. Urban Climate, 37, 100821. 
https:// doi. org/ 10. 1016/j. uclim. 2021. 100821

Das, P., Mandal, I., Debanshi, S., Mahato, S., Talukdar, S., 
Giri, B., & Pal, S. (2021b). Short term unwinding lock-
down effects on air pollution. Journal of Cleaner Pro-
duction, 296, 126514. https:// doi. org/ 10. 1016/j. jclep ro. 
2021. 126514

Dasgupta, P., & Srikanth, K. (2020). Reduced air pollution 
during COVID-19: Learnings for sustainability from 
Indian Cities. Global Transitions, 2, 271–282. https:// 
doi. org/ 10. 1016/j. glt. 2020. 10. 002

District Faridabad, Government of Haryana | Historic City | 
India. https:// farid abad. nic. in/. Accessed 5 June 2021

Gama, C., Monteiro, A., Pio, C., Miranda, A. I., Baldasano, 
J. M., & Tchepel, O. (2018). Temporal patterns and 
trends of particulate matter over Portugal: A long-term 
analysis of background concentrations. Air Quality, 
Atmosphere & Health, 11(4), 397–407. https:// doi. org/ 
10. 1007/ s11869- 018- 0546-8

Gautam, A. S., Dilwaliya, N. K., Srivastava, A., Kumar, S., 
Bauddh, K., Siingh, D., & Gautam, S. (2021). Tem-
porary reduction in air pollution due to anthropogenic 
activity switch-off during COVID-19 lockdown in north-
ern parts of India. Environment, Development and Sus-
tainability, 23(6), 8774–8797. https:// doi. org/ 10. 1007/ 
s10668- 020- 00994-6

Ghosh, S., & Ghosh, S. (2020). Air quality during COVID-19 
lockdown: Blessing in disguise. Indian Journal of Bio-
chemistry & Biophysics, 57, 420–430.

Google (2020) Survey Indonesia community mobility report. 
https:// www. google. com/ covid 19/ mobil ity/. Accessed 5 
June 2021

Gouda, K. C., Singh, P., Nikhilasuma, P., Benke, M., Kumari, 
R., Agnihotri, G., & Himesh, S. (2021). Assessment of air 
pollution status during COVID-19 lockdown (March–May 
2020) over Bangalore City in India. Environmental Moni-
toring and Assessment, 193(7), 1–13. https:// doi. org/ 10. 
1007/ s10661- 021- 09177-w

Grange, S. K., Lewis, A. C., & Carslaw, D. C. (2016). Source 
apportionment advances using polar plots of bivariate cor-
relation and regression statistics. Atmospheric Environ-
ment, 145, 128–134. https:// doi. org/ 10. 1016/j. atmos env. 
2016. 09. 016

Gulia, S., Goyal, N., Mendiratta, S., Biswas, T., Goyal, S. 
K., & Kumar, R. (2021) COVID 19 Lockdown-air qual-
ity reflections in Indian cities.  Aerosol and Air Quality 

Page 15 of 17    618

https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing
https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing
https://firms.modaps.eosdis.nasa.gov
https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/
https://ghaziabad.nic.in/en/about-district/
https://ghaziabad.nic.in/en/about-district/
https://www.ready.noaa.gov/HYSPLIT.php
https://www.ready.noaa.gov/HYSPLIT.php
https://www.ready.noaa.gov/archives.php
https://www.ready.noaa.gov/archives.php
https://doi.org/10.1007/s10668-020-00898-5
https://doi.org/10.1007/s10668-020-00898-5
https://doi.org/10.1016/j.envsoft.2011.09.008
https://doi.org/10.1016/j.envsoft.2011.09.008
http://censusindia.gov.in/2011-prov-results/paper2/data_files/India2/Table_3_PR_UA_Citiees_1Lakh_and_Above.pdf
http://censusindia.gov.in/2011-prov-results/paper2/data_files/India2/Table_3_PR_UA_Citiees_1Lakh_and_Above.pdf
http://censusindia.gov.in/2011-prov-results/paper2/data_files/India2/Table_3_PR_UA_Citiees_1Lakh_and_Above.pdf
https://doi.org/10.1016/j.atmosenv.2019.02.029
https://doi.org/10.1016/j.atmosenv.2019.02.029
https://doi.org/10.1080/15275922.2018.1519738
https://doi.org/10.1080/15275922.2018.1519738
https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing
https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing
https://doi.org/10.1088/1748-9326/aab303
https://doi.org/10.1088/1748-9326/aab303
https://doi.org/10.1016/j.uclim.2021.100821
https://doi.org/10.1016/j.jclepro.2021.126514
https://doi.org/10.1016/j.jclepro.2021.126514
https://doi.org/10.1016/j.glt.2020.10.002
https://doi.org/10.1016/j.glt.2020.10.002
https://faridabad.nic.in/
https://doi.org/10.1007/s11869-018-0546-8
https://doi.org/10.1007/s11869-018-0546-8
https://doi.org/10.1007/s10668-020-00994-6
https://doi.org/10.1007/s10668-020-00994-6
https://www.google.com/covid19/mobility/
https://doi.org/10.1007/s10661-021-09177-w
https://doi.org/10.1007/s10661-021-09177-w
https://doi.org/10.1016/j.atmosenv.2016.09.016
https://doi.org/10.1016/j.atmosenv.2016.09.016


Environ Monit Assess (2021) 193: 618 

1 3

Research,  21,  200308. https:// doi. org/ 10. 4209/ aaqr. 
200308

Hama, S. M., Kumar, P., Harrison, R. M., Bloss, W. J., Khare, 
M., Mishra, S., & Sharma, C. (2020). Four-year assess-
ment of ambient particulate matter and trace gases in the 
Delhi-NCR region of India. Sustainable Cities and Soci-
ety, 54, 102003. https:// doi. org/ 10. 1016/j. scs. 2019. 102003

IQAir. (2020). World air quality report. 2020 World Air Qual. 
Rep. 1–35. https:// www. iqair. com/ world- most- pollu ted- 
cities/ world- air- quali ty- report- 2019- en. pdf

Jain, S., & Sharma, T. (2020). Social and travel lockdown 
impact considering coronavirus disease (COVID-19) on 
air quality in megacities of India: Present benefits, future 
challenges and way forward. Aerosol and Air Quality 
Research, 20(6), 1222–1236. https:// doi. org/ 10. 4209/ aaqr. 
2020. 04. 0171

Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, 
N., Jones, L., & Van Der Werf, G. R. (2011). Biomass burn-
ing emissions estimated with a global fire assimilation system 
based on observed fire radiative power. Biogeosciences, 9(1), 
527–554. https:// doi. org/ 10. 5194/ bgd-8- 7339- 2011

Kiser, D., Elhanan, G., Metcalf, W. J., Schnieder, B., & Grzymski,  
J. J. (2021). SARS-CoV-2 test positivity rate in Reno, 
Nevada: Association with PM2. 5 during the 2020 wild-
fire smoke events in the western United States. Journal of 
exposure science & environmental epidemiology, 1–7.

Kolluru, S. S. R., Patra, A. K., & Nagendra, S. S. (2021). Asso-
ciation of air pollution and meteorological variables with 
COVID-19 incidence: Evidence from five megacities in 
India. Environmental Research, 195, 110854. https:// doi. 
org/ 10. 1016/j. envres. 2021. 110854

Kumar, D., Singh, A. K., Kumar, V., Poyoja, R., Ghosh, A., & 
Singh, B. (2021). COVID-19 driven changes in the air 
quality; a study of major cities in the Indian state of Uttar 
Pradesh. Environmental Pollution, 274, 116512. https:// doi. 
org/ 10. 1016/j. envpol. 2021. 116512

Kumar, R., Naja, M., Satheesh, S. K., Ojha, N., Joshi, H., 
Sarangi, T., ... & Venkataramani, S. (2011). Influences of the 
springtime northern Indian biomass burning over the cen-
tral Himalayas.  Journal of Geophysical Research: Atmos-
pheres, 116(D19). https:// doi. org/ 10. 1029/ 2010J D0155 09

Kumari, S., Lakhani, A., & Kumari, K. M. (2020). COVID-19 
and air pollution in Indian cities: World’s most polluted cit-
ies. Aerosol and Air Quality Research, 20. https:// doi. org/ 10. 
4209/ aaqr. 2020. 05. 0262

Lal, N. S., Thomas, J. R., Satheendran, S., Varghese, A.,  
Aravind, U. K., & Aravindakumar, C. T. (2020). Air qual-
ity disturbance zone mapping in greater Cochin region of 
Kerala state, India using geoinformatics. Spatial Informa-
tion Research, 28(6), 723–734. https:// doi. org/ 10. 1007/ 
s41324- 020- 00329-7

Mandal, J., Samanta, S., Chanda, A., & Halder, S. (2021). 
Effects of COVID-19 pandemic on the air quality of three 
megacities in India. Atmospheric Research, 259, 105659. 
https:// doi. org/ 10. 1016/j. atmos res. 2021. 105659

Masum, M. H., & Pal, S. K. (2020). Statistical evaluation of 
selected air quality parameters influenced by COVID-19 
lockdown. Global Journal of Environmental Science and 
Management, 6(Special Issue (Covid-19)), 85–94. https:// 
doi. org/ 10. 22034/ GJESM. 2019. 06. SI. 08

Mendez-Espinosa, J. F., Rojas, N. Y., Vargas, J., Pachón, J. E., 
Belalcazar, L. C., & Ramírez, O. (2020). Air quality vari-
ations in Northern South America during the COVID-19 
lockdown. Science of the Total Environment, 749, 141621. 
https:// doi. org/ 10. 1016/j. scito tenv. 2020. 141621

MoHFW. (2020). MoHFW _ Home. In: Minist. Heal. Fam. Wel-
fare, Govt. India. https:// www. mohfw. gov. in/. Accessed 12 
June 2021

Nigam, R., Pandya, K., Luis, A. J., Sengupta, R., & Kotha, M. 
(2021). Positive effects of COVID-19 lockdown on air 
quality of industrial cities (Ankleshwar and Vapi) of west-
ern India. Scientific Reports, 11(1), 1–12. https:// doi. org/ 
10. 1038/ s41598- 021- 83393-9

R Core Team. (2018). R: A language and environment for sta-
tistical computing. R Found Stat Comput

Rahaman, S., Jahangir, S., Chen, R., Kumar, P., & Thakur, S. 
(2021). COVID-19’s lockdown effect on air quality in Indian 
cities using air quality zonal modeling. Urban Climate, 36, 
100802. https:// doi. org/ 10. 1016/j. uclim. 2021. 100802

Ravindra, K., Singh, T., Biswal, A., Singh, V., & Mor, S. 
(2021). Impact of COVID-19 lockdown on ambient air 
quality in megacities of India and implication for air pol-
lution control strategies. Environmental Science and Pol-
lution Research, 28(17), 21621–21632. https:// doi. org/ 10. 
1007/ s11356- 020- 11808-7

Rolph, G., Stein, A., & Stunder, B. (2017). Real-time environ-
mental applications and display system: READY. Envi-
ronmental Modelling & Software, 95, 210–228. https:// 
doi. org/ 10. 1016/j. envso ft. 2017. 06. 025

Saxena, A., & Raj, S. (2021). Impact of lockdown during 
COVID-19 pandemic on the air quality of North Indian 
cities. Urban Climate, 35, 100754. https:// doi. org/ 10. 
1016/j. uclim. 2020. 100754

Srivastava, S., Kumar, A., Bauddh, K., Gautam, A. S., & 
Kumar, S. (2020). 21-day lockdown in India dramati-
cally reduced air pollution indices in Lucknow and New 
Delhi, India. Bulletin of Environmental Contamina-
tion and Toxicology, 105, 9–17. https:// doi. org/ 10. 1007/ 
s00128- 020- 02895-w

Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, 
M. D., & Ngan, F. (2015). NOAA’s HYSPLIT atmos-
pheric transport and dispersion modeling system. Bulletin 
of the American Meteorological Society, 96(12), 2059–
2077. https:// doi. org/ 10. 1175/ BAMS-D- 14- 00110.1

Todorović, I. (2020). Air pollution sharply falls worldwide on 
COVID-19 lockdowns. https:// balka ngree nener gynews. 
com/ air- pollu tion- sharp ly- falls- world wide- on- covid- 19- 
lockd owns/. Accessed 27 April 2021

Torkmahalleh, M. A., Akhmetvaliyeva, Z., Darvishi Omran, 
A., Darvish Omran, F., Kazemitabar, M., Naseri, M., ... & 
Xie, S. (2021). Global air quality and covid-19 pandemic: 
Do we breathe cleaner air?. Aerosol Air Qual Res 21. 
https:// doi. org/ 10. 4209/ aaqr. 200567

Uria-Tellaetxe, I., & Carslaw, D. C. (2014). Conditional bivari-
ate probability function for source identification. Environ-
mental Modelling & Software, 59, 1–9. https:// doi. org/ 10. 
1016/j. envso ft. 2014. 05. 002

Viteri, G., de Mera, Y. D., Rodríguez, A., Rodríguez, D., 
Tajuelo, M., Escalona, A., & Aranda, A. (2021). Impact of 
SARS-CoV-2 lockdown and de-escalation on air-quality 

 618 Page 16 of 17

https://doi.org/10.4209/aaqr.200308
https://doi.org/10.4209/aaqr.200308
https://doi.org/10.1016/j.scs.2019.102003
https://www.iqair.com/world-most-polluted-cities/world-air-quality-report-2019-en.pdf
https://www.iqair.com/world-most-polluted-cities/world-air-quality-report-2019-en.pdf
https://doi.org/10.4209/aaqr.2020.04.0171
https://doi.org/10.4209/aaqr.2020.04.0171
https://doi.org/10.5194/bgd-8-7339-2011
https://doi.org/10.1016/j.envres.2021.110854
https://doi.org/10.1016/j.envres.2021.110854
https://doi.org/10.1016/j.envpol.2021.116512
https://doi.org/10.1016/j.envpol.2021.116512
https://doi.org/10.1029/2010JD015509
https://doi.org/10.4209/aaqr.2020.05.0262
https://doi.org/10.4209/aaqr.2020.05.0262
https://doi.org/10.1007/s41324-020-00329-7
https://doi.org/10.1007/s41324-020-00329-7
https://doi.org/10.1016/j.atmosres.2021.105659
https://doi.org/10.22034/GJESM.2019.06.SI.08
https://doi.org/10.22034/GJESM.2019.06.SI.08
https://doi.org/10.1016/j.scitotenv.2020.141621
https://www.mohfw.gov.in/
https://doi.org/10.1038/s41598-021-83393-9
https://doi.org/10.1038/s41598-021-83393-9
https://doi.org/10.1016/j.uclim.2021.100802
https://doi.org/10.1007/s11356-020-11808-7
https://doi.org/10.1007/s11356-020-11808-7
https://doi.org/10.1016/j.envsoft.2017.06.025
https://doi.org/10.1016/j.envsoft.2017.06.025
https://doi.org/10.1016/j.uclim.2020.100754
https://doi.org/10.1016/j.uclim.2020.100754
https://doi.org/10.1007/s00128-020-02895-w
https://doi.org/10.1007/s00128-020-02895-w
https://doi.org/10.1175/BAMS-D-14-00110.1
https://balkangreenenergynews.com/air-pollution-sharply-falls-worldwide-on-covid-19-lockdowns/
https://balkangreenenergynews.com/air-pollution-sharply-falls-worldwide-on-covid-19-lockdowns/
https://balkangreenenergynews.com/air-pollution-sharply-falls-worldwide-on-covid-19-lockdowns/
https://doi.org/10.4209/aaqr.200567
https://doi.org/10.1016/j.envsoft.2014.05.002
https://doi.org/10.1016/j.envsoft.2014.05.002


Environ Monit Assess (2021) 193: 618

1 3

parameters. Chemosphere, 265, 129027. https:// doi. org/ 
10. 1016/j. chemo sphere. 2020. 129027

WHO. (2020). Listings of WHO’s response to COVID-19. In: 
World Heal. Organ. https:// www. who. int/ news/ item/ 29- 
06- 2020- covid timel ine. Accessed 15 May 2021

Wooster, M. J., Roberts, G., Perry, G. L. W., & Kaufman, Y. J. 
(2005). Retrieval of biomass combustion rates and totals 
from fire radiative power observations: FRP derivation 

and calibration relationships between biomass consump-
tion and fire radiative energy release. Journal of Geophys-
ical Research: Atmospheres, 110(D24). https:// doi. org/ 10. 
1029/ 2005J D0063 18

Publisher’s Note Springer Nature remains neutral with regard 
to jurisdictional claims in published maps and institutional 
affiliations.

Page 17 of 17    618

https://doi.org/10.1016/j.chemosphere.2020.129027
https://doi.org/10.1016/j.chemosphere.2020.129027
https://www.who.int/news/item/29-06-2020-covidtimeline
https://www.who.int/news/item/29-06-2020-covidtimeline
https://doi.org/10.1029/2005JD006318
https://doi.org/10.1029/2005JD006318

	Influence of meteorology, mobility, air mass transport and biomass burning on PM2.5 of three north Indian cities: phase-wise analysis of the COVID-19 lockdown
	Abstract 
	Introduction
	Materials and methods
	Study cities
	PM2.5 data collection and statistical analysis
	Community mobility data
	Meteorology analysis
	Backward trajectory model and fire incident analysis

	Results and discussion
	Changes in the concentration of PM2.5
	Comparison with the previous year (2019)
	Effects of meteorological parameters
	Effects of community mobility
	Impact of long-range transport and biomass burning

	Summary and conclusion
	Acknowledgements 
	References


