Skip to main content
Log in

Transport of emerging contaminants: a column experimental study in granitic, gneissic, and quaternary alluvial soils from Porto Alegre, Southern Brazil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Emerging contaminants is a topic that has been in evidence, especially in the last decades. These compounds are pesticides, pharmaceuticals, and personal care products that are present in several locations, mainly in large urban centers. The aim of this work was to investigate the fate of seven compounds (atrazine, simazine, ametrine, tebuthiuron, 2,4-D, fipronil, and diclofenac) using leaching column experiments to evaluate accumulation and transfer in 5 different types of urban soils from Porto Alegre, Southern Brazil. Chemical analyses were carried out through liquid chromatography tandem mass spectrometry (LC-MS/MS). The results showed that the soil derived from quaternary sediments, with well-sorted sandy sediments, was the one in which the contaminants had higher mobility. This soil also has a pH above the average of the others in the city, a factor that may also be responsible for less retention of substances. Tebuthiuron is the substance with the greatest leaching potential overall. Column experiments are a relevant tool to understand the behavior of emerging contaminants in soils and implications on the population health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Philipp et al., 2008)

Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References 

  • Amarante, O. P., Brito, N. M., Santos, T. C. R., Nunes, G. S., & Ribeiro, M. L. (2003). Determination of 2,4-dichlorophenoxyacetic acid and its major transformation product in soil samples by liquid chromatographic analysis. Talanta, 60, 115–121.

    Article  Google Scholar 

  • Banzhaf, S., & Hebig, K. H. (2016). Use of column experiments to investigate the fate of organic micropollutants—a review. Hydrology and Earth System Sciences, 20, 3719–3737.

    Article  CAS  Google Scholar 

  • Bertelkamp, C., Reungoat, J., Cornelissen, E. R., Singhal, N., Reynisson, J., Cabo, A. J., ... & Verliefde, A. R. (2014). Sorption and biodegradation of organic micropollutants during river bank filtration: A laboratory column study. Water research, 52, 231-241.

  • Burke, V., Duennbier, U., & Massmann, G. (2013). The effect of aeration on the removal of wastewater-derived pharmaceutical residues from groundwater—a laboratory study. Water Science and Technology, 67, 658–666.

    Article  CAS  Google Scholar 

  • Burke, V., Greskowiak, J., Asmuß, T., Bremermann, R., Taute, T., & Massmann, G. (2014). Temperature dependent redox zonation and attenuation of wastewater-derived organic micropollutants in the hyporheic zone. Science of the Total Environment, 482, 53–61.

    Article  Google Scholar 

  • Dousset, S., Chauvin, C., Durlet, P., & Thévenot, M. (2004). Transfer of hexazinone and glyphosate through undisturbed soil columns in soils under Christmas tree cultivation. Chemosphere, 57, 265-272.

  • Gustafson, D. I. (1989). Groundwater ubiquity score: a simple method for assessing pesticide leachability. Environmental Toxicology and Chemistry: An International Journal, 8, 339–357.

    Article  CAS  Google Scholar 

  • Hasenack, H. (2008). Diagnóstico Ambiental de Porto Alegre: geologia, solos, drenagem, vegetação/ocupação e paisagem. Secretaria Municipal do Meio Ambiente

    Google Scholar 

  • Hebig, K. H., Groza, L. G., Sabourin, M. J., Scheytt, T. J., & Ptacek, C. J. (2017). Transport behavior of the pharmaceutical compounds carbamazepine, sulfamethoxazole, gemfibrozil, ibuprofen, and naproxen, and the lifestyle drug caffeine, in saturated laboratory columns. Science of The Total Environment, 590, 708-719.

  • IUPAC, International Union of Pure and Applied Chemistry, Pesticide Properties Data Base PPDB), http://sitem.herts.ac.uk/aeru/iupac/ Accessed 8 March 2019).

  • Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environmental Science & Technology, 366, 1202–1211.

    Article  Google Scholar 

  • Kümmerer, K. (2009). Antibiotics in the aquatic environment–a review–part I. Chemosphere, 75, 417-434

  • Mersmann, P., Scheytt, T., & Heberer, T. (2002). Column experiments on the transport behavior of pharmaceutically active compounds in the saturated zone. Acta hydrochimica et hydrobiologica, 30, 275–284.

    Article  Google Scholar 

  • Montagner, C. C., Vidal, C., & Acayaba, R. D. (2017). Contaminantes emergentes em matrizes aquáticas do Brasil: cenário atual e aspectos analíticos, ecotoxicológicos e regulatórios. Química nova, 40, 1094–1110.

    CAS  Google Scholar 

  • Montagner, C. C., Vidal, C., Acayaba, R. D., Jardim, W. F., Jardim, I. C., & Umbuzeiro, G. A. (2014). Trace analysis of pesticides and an assessment of their occurrence in surface and drinking waters from the State of São Paulo Brazil. Analytical Methods, 617, 6668–6677.

    Article  Google Scholar 

  • Müller, B., Scheytt, T., & Grützmacher, G. (2013). Transport of primidone, carbamazepine, and sulfamethoxazole in thermally treated sediments—laboratory column experiments. Journal of Soils and Sediments, 13, 953–965.

    Article  Google Scholar 

  • Murray, K. E., Thomas, S. M., & Bodour, A. A. (2010). Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. Environmental Pollution, 158, 3462–3471.

    Article  CAS  Google Scholar 

  • NIH, National Library of Medicine, PubChem, https://pubchem.ncbi.nlm.nih.gov/ (Accessed 8 March 2019).

  • Oliveira Júnior, R. S., & Regitano, J. B. (2009). Dinâmica de pesticidas no solo. Química e mineralogia do solo. Viçosa: Sociedade Brasileira de Ciência do Solo, 187-248.

  • Petrie, B., Barden, R., & Kasprzyk-Hordern, B. (2015). A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Research, 72, 3–27.

    Article  CAS  Google Scholar 

  • Petrovic, M., Radjenovic, J., Postigo, C., Kuster, M., Farre, M., de Alda, M. L., Barceló, D. (2008). Emerging contaminants in waste waters: sources and occurrence, In: Emerging contaminants from industrial and municipal waste. Springer. Berlin, pp. 1–35.

  • Philipp, R. P., Machado, R., Nardi, L. V. S., & Lafon, J. M. (2008). O magmatismo granítico Neoproterozóico do Batólito Pelotas no sul do Brasil: novos dados e revisão da geocronologia regional. Brazilian Journal of Geology32(2), 277-290.

  • Philipp, R. P., & de Campos, R. S. (2004). Geologia, petrografia e litogeoquímica dos Gnaisses Porto Alegre, RS, Brasil: implicações geotectônicas. Pesquisas em Geociências, 31, 79–94.

    Article  Google Scholar 

  • Philipp, R. P., Pimentel, M. M., & Chemale, F., Jr. (2016). Tectonic evolution of the Dom Feliciano Belt in Southern Brazil: geological relationships and U-Pb geochronology. Brazilian Journal of Geology, 46, 83–104.

    Article  Google Scholar 

  • Richardson, S. D., & Ternes, T. A. (2018). Water analysis: emerging contaminants and current issues. Analytical Chemistry, 90, 398–428.

    Article  CAS  Google Scholar 

  • Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G., & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere, 93, 1268–1287.

    Article  CAS  Google Scholar 

  • Roisenberg, C., Viero, A. P., Roisenberg, A., Schwarzbach, M. S., & Morante, I. C. (2003). Caracterização geoquímica e gênese dos principais íons das águas Subterrâneas de Porto Alegre, RS. Revista Brasileira de Recursos Hídricos, 8, 137-147.

  • Salvia, M. V., Experton, J., Geandel, C., Cren-Olivé, C., & Vulliet, E. (2014). Fate of pharmaceutical compounds and steroid hormones in soil: study of transfer and degradation in soil columns. Environmental Science and Pollution Research, 21, 10525–10535.

    Article  CAS  Google Scholar 

  • Scheytt, T. J., Mersmann, P., & Heberer, T. (2006). Mobility of pharmaceuticals carbamazepine, diclofenac, ibuprofen, and propyphenazone in miscible displacement experiments. Journal of Contaminant Hydrology, 83, 53-69.

  • Schriks, M., Heringa, M. B., van der Kooi, M. M., de Voogt, P., & van Wezel, A. P. (2010). Toxicological relevance of emerging contaminants for drinking water quality. Water Research, 44, 461–476.

    Article  CAS  Google Scholar 

  • Siemens, J., Huschek, G., Walshe, G., Siebe, C., Kasteel, R., Wulf, S., & Kaupenjohann, M. (2010). Transport of pharmaceuticals in columns of a wastewater irrigated Mexican clay soil. Journal of Environmental Quality, 39, 1201–1210.

    Article  CAS  Google Scholar 

  • Silva, G. M. S., & Pinheiro, R. (2005). Análise da automedicação no município de Vassouras–RJ. Infarma, 17, 59–62.

    Google Scholar 

  • Tetzner, N. F., Maniero, M. G., Rodrigues-Silva, C., & Rath, S. (2016). On-line solid phase extraction-ultra high-performance liquid chromatography-tandem mass spectrometry as a powerful technique for the determination of sulfonamide residues in soils. Journal of Chromatography A, 1452, 89–97.

    Article  CAS  Google Scholar 

  • Terzić, S., Senta, I., Ahel, M., Gros, M., Petrović, M., Barcelo, D., & Jovančić, P. (2008). Occurrence and fate of emerging wastewater contaminants in Western Balkan Region. Science of the Total Environment, 399, 66–77.

    Article  Google Scholar 

  • Tomazelli, L. J., & Villwock, J. A. (2005). Mapeamento geológico de planícies costeiras: o exemplo da costa do Rio Grande do Sul. Gravel, 3, 109-115.

  • Unold, M., Kasteel, R., Groeneweg, J., & Vereecken, H. (2009). Transport and transformation of sulfadiazine in soil columns packed with a silty loam and a loamy sand. Journal of Contaminant Hydrology, 103, 38–47.

    Article  CAS  Google Scholar 

Download references

Funding

The study is financially supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2015/18790-3) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, soil column experiment setups, and field data collection were performed by Paulo Henrique Prado Stefano, Ari Roisenberg, and Elias Bittencourt Gomes. The chemical analyses were performed by Cassiana Carolina Montagner and Bianca Veloso Goulart. The first draft of the manuscript was written by Paulo Henrique Prado Stefano, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paulo Henrique Prado Stefano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefano, P.H.P., Roisenberg, A., Gomes, E.B. et al. Transport of emerging contaminants: a column experimental study in granitic, gneissic, and quaternary alluvial soils from Porto Alegre, Southern Brazil. Environ Monit Assess 193, 262 (2021). https://doi.org/10.1007/s10661-021-09026-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09026-w

Keywords

Navigation