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Chlorinated paraffins in hinges of kitchen appliances

Jannik Sprengel   · Walter Vetter   

additional statistic correlation between SCCP/MCCP 
amount and appliance type or manufacturer could be 
observed. CPs released from hinges by volatilization, 
abrasion, and cleaning processes could enter the envi-
ronment and come in contact with persons living in 
the corresponding households.
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Introduction

Chlorinated paraffins (CPs) are high-production vol-
ume polyhalogenated compounds whose safety is 
more and more disputed (Glüge et  al., 2016, 2018; 
Zellmer et  al., 2020). This highly complex group of 
polychlorinated n-alkanes is commonly subdivided 
according to the carbon chain length ranges which 
were available to producers as feedstocks from indus-
trial petroleum hydrocarbon fractionations (Tomy 
et  al.,  1997). Specifically, polychlorinated decanes 
to tridecanes are termed “short-chain chlorinated 
paraffins (SCCPs),” polychlorinated tetra- to hepta-
decanes are termed “medium-chain chlorinated par-
affins (MCCPs),” while those with more than seven-
teen carbon atoms are termed “long-chain chlorinated 
paraffins (LCCPs).” This differentiation according to 
chain length is of great importance because SCCPs 
were recently classified as persistent organic pollut-
ants (POPs) by addition to Annex A of the Stockholm 
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the presence of high amounts of CPs in the kitchen 
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Convention (Conference of the Parties of the Stock-
holm Convention, 2017), which is connected with a 
ban of production and use in ratifying countries after 
2017. However, the share of SCCPs was already low 
(~15% of the CP production volume, Glüge et  al., 
2016), long before the ban of SCCPs was initiated. As 
of today, virtually no restrictions exist for the use of 
MCCPs and LCCPs.

Due to their persistence and lipophilicity, CPs were 
identified in environmental samples all over the world 
(Fridén et  al., 2011; Krätschmer et  al., 2019; Yuan 
et  al., 2017b; Zeng et  al., 2011; Zhou et  al., 2020). 
However, several findings indicated that human expo-
sure to CPs must not necessarily originate from the 
intake of contaminated food. For instance, high CP 
levels collected via wipe tests in household kitch-
ens indicated a widespread occurrence although the 
sources could not be identified (Bendig et  al., 2013; 
Gallistl et al., 2017). Moreover, other studies showed 
that baking ovens and hand blenders were containing 
CPs (Gallistl et  al., 2018; Yuan et  al., 2017). How-
ever, further potential sources of CPs were likely to 
exist in urban environments including kitchens. One 
potential opportunity could be CP-containing lubri-
cants on hinges.

The goal of this study was to collect wipe tests 
from hinges from several kitchen appliances and ana-
lyze them for the possible presence of CPs. Samples 
were taken by wipe tests and extracted according to 
Gallistl et  al. (2018). Sample extracts were released 
from matrix by means of sulfuric acid (Bendig et al., 
2013), and SCCPs and MCCPs were quantified by 
means of gas chromatography with electron capture 
negative ion mass spectrometry conducted in the 
selected ion monitoring mode (GC/ECNI-MS-SIM), 
which is one of the most frequently used methods 
as of today (Table  S1). However, we also opted to 
improve the precision of this setup by using single 
chain CP mixtures as reference standards (Sprengel & 
Vetter, 2019).

Materials and methods

Chemicals and standards

n-Hexane (for pesticide residue analysis grade) was 
purchased from Th. Geyer (Renningen, Germany). 
2,2,4-Trimethylpentane (i-octane, for pesticide 

residue analysis grade) was bought from Fluka Ana-
lytics (Seelze, Germany). Sulfuric acid (96–98%, 
p.a.) was obtained from Carl Roth (Karlsruhe, Ger-
many). Sodium sulfate (> 99%, water free, p.a.) and 
silica gel 60 (for column chromatography grade) were 
ordered from Sigma-Aldrich (Seelze, Germany). Per-
deuterated α-hexachlorocyclohexane (α-PDHCH) was 
used as a recovery standard and has been synthesized 
in our work group (Vetter & Luckas, 1995). 6´-MeO-
BDE 66 (BCIS), also synthesized in our work group 
(Vetter et al., 2011), was used as instrumental stand-
ard and added to standard and sample solutions prior 
to injection. Technical CP mixtures at 100  ng/µL 
were from Dr. Ehrenstorfer (Augsburg, Germany) 
and were additionally diluted to 10 ng/µL for quanti-
fication. Single-chain CP mixtures of  C10- to  C17-CPs 
(Table  S2) were synthesized in our working group 
(Sprengel & Vetter, 2019; Sprengel et al., 2019).

Sample preparation

During 2018, n = 29 hinges of kitchen appliances were 
sampled by wipe tests in private households in South-
ern Germany. Screened samples included nine refrig-
erators (R1–R9), seven baking ovens (B1–B7), five 
dish washers (D1–D5), four freezers (F1–F4) as well 
as one microwave oven, one steam cooker (SC), one 
pasta machine (PM), and one food processor. Addi-
tionally, seven known manufacturers were indicated 
by lowercase letters “a–g” in terminal position of the 
codes while unknown manufacturers were labeled “x” 
(e.g., R1a). In each case, a cotton wipe was wet with 
~ 2  mL n-hexane and wiped slowly and with slight 
pressure over the hinges of the respective appliances. 
Since only the accessible external part of the hinges 
could be wiped, the absolute amount of lubricant used 
in the corresponding hinges could not be determined. 
With the exception of the pasta machine, all appli-
ances were wiped only once to preserve function. 
Loaded wipes were stored in sealed amber glass vials 
(30 mL) at −18 °C until analysis. The sample cleanup 
followed the procedure described by Gallistl et  al. 
(2018). In brief, wipes were extracted with n-hexane, 
and the extract was weighed (Table  S3, SI). For the 
new and unused appliances B1 and PM, the extract 
was assumed to originate only from wiped lubricant. 
In used appliances, however, the sample weight must 
not necessarily consist of only lubricants, because 
other deposits like fat, dust, and other particles also 
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contribute to the weighed amounts. Hence, analyti-
cal results will be discussed based on absolute CP 
amounts in the samples (µg/wipe). The lipophilic 
matrix residue was destroyed with sulfuric acid and 
a subsequent cleanup by adsorption chromatography 
using silica gel (Bendig et al., 2013). Sample solutions 
were brought to ~ 100  µL under a gentle air stream 
for determination of the recovery and a qualitative 
estimate of CP levels. For CP quantification, sample 
solutions were diluted to 10–100  ng/µL, if needed, 
to match the concentration of the standards. Recov-
ery rates of the internal standard α-PDHCH were 
97 ± 26%.

Instrumentation

CPs were determined by gas chromatography coupled 
with electron capture negative ion mass spectrom-
etry (GC/ECNI-MS) using an Agilent 7890/5975C 
system (Agilent, Waldbronn, Germany). Separations 
were performed on a 30 m × 0.25 mm i.d., 0.25 µm  df 
Optima 5 MS (Macherey–Nagel, Düren, Germany) 
using the oven program of Gallistl and Vetter (2016). 
GC/ECNI-MS determinations were performed in 
selected ion monitoring (SIM) mode. CP quantifica-
tion followed methods described elsewhere (Reth 
et  al., 2005; Sprengel & Vetter, 2019). In short, the 
sum of the relative peak area of the [M-Cl]− frag-
ment ions of the  Cl4- to  Cl14-homologs was correlated 
exponentially with the calculated chlorine content. 
However, instead of SCCP/MCCP mixtures, self-
synthesized single-chain CP mixtures were used to 
create calibration curves for each chain length sepa-
rately. Additionally, correction factors for different 
degrees of chlorination were applied as described 
by Mézière et  al. (2020). The reported values were 
modified by taking into account increasing response 
in GC/ECNI-MS in the range  Cl6–Cl10, and strongly 
depleting responses at low (<  Cl6) and very high Cl 
degree (>  Cl10) (Reth et al., 2005; Yuan et al., 2017). 
Additionally, slight response differences between the 
chain lengths were observed and taken into account, 
creating a matrix of correction factors depending on 
the chain length and chlorine content of the homolog 
(Table  S4). Each correction factor was multiplied 
with the respective peak area to account for response 
differences. The relative differences between calcu-
lated and actual chlorine contents of the standards 

used were always below 5%. Quantification of two 
technical CP standards (SCCP 55.5% Cl  (C10- to 
 C13-CPs) and MCCP 52% Cl  (C14- to  C17-CPs)) at 
10 and 100  ng/µL resulted in a very good match of 
measured and actual amount (110 ± 7 and 104 ± 2%, 
respectively).

Quality assurance

All glassware was rinsed with detergent, demineral-
ized water, acetone, and distilled cyclohexane/ethyl 
acetate (46:54, w/w) prior to use. For each batch of 
10 wipe tests, a procedural blank and a cotton pad 
blank each were performed. Traces of  C10-,  C11-, and 
 C14-CPs were subtracted as relative peak areas from 
the samples, and only samples with at least 10 times 
the blank levels were considered for quantification. 
Limits of quantification (LOQ) and detection (LOD) 
were concentrations which gave a signal of the most 
abundant homolog group with a signal-to noise ratio 
of 10 and 3, respectively. Qualitative verification 
was achieved through rigorous comparison of reten-
tion time and isotope ratio as described previously 
(Sprengel & Vetter, 2019).

Statistical analysis

All statistical tests were performed with IBM SPSS 
Statistics 26 (Armonk, NY, USA). A Kolmogorov-
Smirnov test on the SCCP and MCCP amounts 
showed that the absolute CP amounts were not nor-
mally distributed. Therefore, non-parametric tests 
were used for statistical analyses. Samples from man-
ufacturer g and f (both n = 1) as well as the two sam-
ples of unknown manufacturers x were not included 
for Spearman´s correlation and Kruskal-Willis’s tests 
concerning the manufacturer.

Results and discussion

CPs were detected in wipes of 21 of 29 samples 
(detection frequency (DF) = 72%, Table  1). SCCPs 
and MCCPs showed similar DF (19 vs. 18 positive 
samples or 66% vs. 62% for SCCPs and MCCPs, 
Table  1). Sixteen samples featured both SCCPs 
and MCCPs albeit at varying ratios (Table  1). 
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Table 1  CP amounts and detection frequencies (DF) in wipe tests from hinges of 29 kitchen appliances. nd not detected (< 0.01 µg); 
nq not quantifiable. For the calculation of mean/median values, nd/nq were set as 0.5*MLD (0.01 µg)

a Unused appliance
b Baking oven contained SCCPs with >70% Cl, which could not be quantified, but gave large signals

SCCPs MCCPs ∑CP

Appliance Sample Purchase year Amount (µg) Chlorina-
tion degree 
(%)

Amount (µg) Chlorina-
tion degree 
(%)

Amount (µg) SCCP/
MCCP 
ratio

Refrigerator
n = 9

R1a 2008 0.60 56.8 2.3 56.9 2.9 0.26
R2x 2011 0.20 63.3 1.0 54.2 1.2 0.19
R3c 2015 0.87 65.5 1.1 55.6 2.0 0.77
R4d 2003 0.77 56.0 nd – 0.77 –
R5e 2003 0.28 58.4 0.15 51.3 0.43 1,86
R6a 2014 0.14 54.4 0.18 51.3 0.33 0.77
R7x 2003 0.04 nd – – –
R8a 2015 nd – nd – – –
R9a 2017 nd – nd – – –
Mean/median 0.30/0.20 (DF = 78%) 0.54/0.15 (DF = 56%) 0.86/0.33 (DF = 78%)

Baking oven
n = 7

B1aa 2018 nd – 380 52.7 380 –
B2a 2016 0.07 61.2 4.2 53.1 4.3 0.02
B3a 2008 nqb 71.6 2.5 55.3 2.5 –
B4a 2017 0.23 55.8 0.93 49.1 1.2 0.25
B5b 2015 0.17 61.3 0.96 53.6 1.1 0.18
B6a 2007 nd – 0.09 51.7 0.09 –
B7a 2017 nd – nd – – –
Mean/median 0.06/0.01 (DF = 57%) 48/0.94 (DF = 86%) 48/1.1 (DF = 86%)

Dishwasher
n = 5

D1a 2008 0.39 58.8 160 48.7 160 0.00
D2b 2015 0.02 61.6 6.1 51.1 6.1 0.00
D3d 2006 0.63 56.3 0.51 56.3 1.1 1.23

– D4a 2016 0.49 59.3 nd – 0.49 –
D5a 2017 nd – nd – – –
Mean/median 0.31/0.39 (DF = 80%) 34/0.51 (DF = 60%) 34/1.1 (DF = 80%)

Freezer
n = 4

F1b 2015 0.80 62.7 1.3 55.5 2.1 0.61
F2a 2014 0.18 55.0 0.13 51.1 0.31 1.34
F3e 2016 nd – nd – – –
F4e 2006 nd – nd – – –
Mean/median 5.3/3.5 0.25/0.09 (DF = 50%) 0.37/0.07 (DF = 50%) 0.62/0.16 (DF = 50%)

Microwave oven (a) 2008 nd – nd – – –
Steam cooker (SC) (a) 2006 0.49 59.3 2.4 51.1 2.9 0.21
Pasta machine (PM)a (f) 2003 10 58.8 750 55.6 760 0.01
food processor (g) 2007 nd – nd – – –
All
n = 29

Mean/median 0.79/0.23 (DF = 66%) 62/1.0 (DF = 62%) 63/1.2 (DF = 72%)
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Accordingly, only three samples contained solely 
SCCPs and two just MCCPs.

The production dates of at least 24 samples defi-
nitely predated classification of SCCPs as POPs (Con- 
ference of the Parties of the Stockholm Convention, 
2017), which might explain the high DF of SCCPs. 
In accordance with the ban of SCCPs in the European  
Union, the only sample (B1a) manufactured after 2017  
did not contain any measurable amount of SCCPs 
(Table  1). Noteworthy, several SCCP-containing  
products were produced after the ban of SCCPs in 
Europe in 2012 (European Parliament, Council of the 
European Union, 2012). However, it could not be une-
quivocally determined if the SCCP share in the lubri-
cant exceeded the 0.15% that is legally allowed (Euro-
pean Parliament, Council of the European Union, 
2019). A moderate but significant correlation between 
appliance age and SCCP concentration (Spear-
man’s ρ = 0.470, p = 0.042) supported this hypothesis 
(Fig.  S1). However, MCCP amounts (0.09–750  µg/
wipe; median 1.0 µg/wipe) were generally higher than 
those of SCCPs (0.02–10  µg/wipe; median 0.23  µg/
wipe), with only eight samples containing less than 
1 µg/wipe MCCPs compared to one sample featuring 
> 1 µg/wipe SCCPs (Table 1). However, SCCP/MCCP 
ratios in samples with both CP classes were not uni-
form among appliance types and manufacturers, and 
a Kruskal-Wallis test indicated no significant impact 
(p > 0.05) of appliance type or manufacturer (which 
are usually producing in different countries) on SCCP 
or MCCP amount, chlorination degree, or SCCP/
MCCP share.

The highest amounts of both SCCPs (10  µg) and 
MCCPs (750  µg) were detected in wipe tests of a 
20-year-old but unused pasta machine (Table 1). In this 
case, CPs contributed with ~ 5% to the lubricant mass 
collected by the wipe (15  mg). The use of MCCPs 
in lubricants in the EU has been reported for at least 
three decades (European Chemicals Bureau, 2005). 
A second wipe test of sample PM gave ~ 19% of the 
CP amount of the first wipe of the hinges, contributing 
again with 5% to the sample weight. Hence, it was evi-
dent that a high share of CP-containing lubricant could 
be collected by the wipe tests.

According to the SCCP shares to the sum of CPs 
in CP-positive hinges, the samples could be separated 
in two groups:

• Group 1: < 20% SCCP (B1a-B6a, D1a, D2b, R2x, 
SC, PM)

• Group 2: > 20% SCCP (R1a, R3c-R7x, D3d, D4a, 
F1b, F2a)

The low SCCP shares of group 1 could originate 
from impurities in MCCP formulations (Fig.  1).  
For example, Chinese CP formulations are rather 
classified by chlorination degree (e.g., 52% chlo-
rine in CP-52 products) than by chain length ranges 
(Glüge et al., 2018). Chinese technical CP products 
consist of three major classes, i.e., 42% (CP-42), 
52% (CP-52), and 70% (CP-70), respectively. In 
the present samples, the Cl content of MCCPs was 
48.7–56.9% (Table 1). Apart from two samples with 
chlorine contents of < 51%, this range was close to 

Fig. 1  SCCP/MCCP-ratios 
of the CP-positive wipe 
tests of 21 kitchen appli-
ances
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the %Cl content determined for the 52% Cl MCCP 
mixture (54.3% Cl). CP-52 formulations have been 
shown to contain highly varying amounts of SCCPs 
(Gao et  al., 2012, 2016; Li et  al., 2018; Sprengel 
& Vetter, 2020). Low shares of SCCPs (i.e., 4% 
and 8%, respectively) were previously detected in 
two CP-52 products, mainly consisting of MCCPs 
(Sprengel & Vetter, 2020). Arguably, the CP for-
mulations in most appliances were CP-52 with low 
SCCP shares, and higher Cl degrees could indi-
cate the partial release of more volatile CPs with 
low(er) Cl degree. For instance, Gallistl et  al. sug-
gested that CPs applied in baking ovens could be 
released and transferred into the prepared food or 
into the air (Gallistl et  al., 2018). Recently, it was 
shown that CPs can be volatilized from its source in 
a baking oven environment (Perkons et  al., 2019). 
However, CP mixtures with lower chlorine contents 
than 52% were probably applied in appliances B4a 
and D1a. Noteworthy, the %Cl content of SCCPs 
(54.4–71.6%) was generally higher than in MCCPs 
(Table 1).

Baking ovens were the only appliance type exclu-
sively containing low SCCP shares (group 1). They 
also showed the highest overall DF of CPs (86%, 
Table  1) and were the only product group where 
MCCPs showed a higher DF (86%) than SCCPs 
(DF = 57%). Similarly, a previous study conducted on 
baking oven doors showed that MCCPs were much 
more prominent (Gallistl et  al., 2018). Accordingly, 
SCCP amounts found in baking ovens were among 
the lowest (0.07–0.23 µg/wipe) of all samples. How-
ever, the MCCP amounts varied by four orders of 
magnitude (Table  1). The maximum MCCP amount 
in baking ovens of 380 µg/wipe was detected in a new 
and unused instrument (B1a), which corresponded to 
~ 14% of the wiped lubricant (2.6 mg lubricant mass). 
The chlorine content of 52.6% in sample B1a indi-
cated the use of a CP-52 product. Other baking oven 
samples showed much lower MCCP amounts (median 
value: 0.94  µg MCCPs/wipe), which could indicate 
a release of CP containing lubricant during usage 
and/or cleaning processes. However, Spearman’s, 
Kruskal-Willis’s, and Kendall-Tau’s correlation tests 
between chlorine content and appliance age did not 
support this hypothesis (p >> 0.05 in all cases).

In contrast to group 1, SCCP amounts in group 
2 samples were too high (> 20%) to label them as 
impurities in MCCP feedstocks (max. 1% of the CP 

formulation, European Parliament, Council of the 
European Union, 2019). These samples indicated an 
intentional application of SCCP-containing formu-
lations. Possibly, CP stocks containing both SCCPs 
and MCCPs as has been reported for several Chinese 
CP products (Gao et al., 2012, 2016; Li et al., 2018) 
were used in these cases. Irrespective of these uncer-
tainties, it is not advisable to determine only SCCPs 
or MCCPs or LCCPs in samples, because they fre-
quently co-occur in environmental samples.

Interestingly, wipes of CP-containing hinges of 
freezers (F1b, F2a) and all CP-containing refrigera-
tors (exception: R2x) showed high shares of SCCPs. 
This indicated a preferred use of shorter CP chain 
lengths in lubricants of cooling appliances (Fig. 2).

CP patterns are strongly depending on the analyti-
cal method, and comparisons between different stud-
ies are difficult to draw (Mézière et  al., 2020; van 
Mourik et al., 2016). However, comparison of CP pat-
terns of samples within the present study seemed to be 
appropriate. SCCPs were dominated by varying ratios 
of  C11- >  C12- and/or  C13-CPs (Fig.  2), reflecting the 
heterogeneous nature of technical SCCP products (Li 
et  al., 2018; Yuan et  al., 2017a). However, the small 
 C10-CP shares in all samples were in agreement with 
the commercial mixtures analyzed in the previous 
studies.  C14-CPs were, with the exception of sample 
R1a, the dominant MCCP homolog group (Fig.  2), 
again corresponding to compositions of MCCP mix-
tures (van Mourik et al., 2016; Yuan et al., 2017b).

The varying CP homolog patterns produced further 
evidence that these may be influenced by consumer 
usage habits (frequency and mode of usage, clean-
ing), because it appeared unlikely that such a high 
number of different technical CP products had been 
applied in the past, despite the wide range of appli-
ance types and production years. However, the CP 
pattern in two subsequent wipes of the pasta machine 
was nearly identical (Fig. S2). Hence, changes in the 
CP patterns by mechanical cleaning were regarded to 
be rather minimal, but they could gradually emerge 
after years of use. One wipe of a baking oven hinge 
(B3a), however, stood out due to its very high SCCP 
chlorine content of 71.6% Cl. This indicated the use 
of a highly chlorinated CP mixture, since alteration of 
a short-chain CP-52 mixture (e.g., by volatilization or 
transformation) would have required a shift from on 
average ~ 5 to ~ 9 chlorine atoms per molecule which 
seemed unlikely.
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Several of the kitchen appliances discussed so 
far could directly expose consumers by releasing  
CPs. Similarly, dishwashers could transfer CPs onto 
the cleaned utensils and into wastewater. Also, the 
lubricant of the pasta machine would come in direct 
contact with the dough during use, which could lead 
to the contamination of food, similarly to observations  
made with hand blenders (Yuan et  al., 2017b). Last 
but not least, regular cleaning of the kitchen (usually 
with dishcloths or sponges) could partly remove CPs 
together with lubricant (see above). For instance, up 
to 55  µg CPs were determined in initially  CP-free 
dishcloths after a 2-week use (Gallistl et  al., 2017). 
Considering the high CP amounts in two unused 
appliances, especially new and previously unused 
appliances, could represent a hitherto overlooked 
source of CP exposure. Vice versa, it could not be 
excluded that used appliances were initially richer in 
CPs (i.e., similarly high as the new ones in this study). 
These diffuse sources could lead to human exposure 
and/or environmental contamination with CPs prior 
to disposal of the appliances. Additionally, since 66% 
of the sampled appliances contained POPs (SCCPs), 
the eventual disposal of many kitchen appliances in 
the future could be greatly complicated.

Conclusions

Wipe tests enabled us to show that CPs were pre-
sent in 72% of hinges of kitchen appliances. We also 
established an improved quantification method using 
single chain length CP standards, allowing for more 
specific and precise CP determinations. Although no 
correlation between appliance, manufacturer, or age 
and CP amount could be established, the exception-
ally high amounts in two unused appliances indicated 
a release of CPs over time. This previously unknown 
CP source may lead to increased exposure for the 
consumer.
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Fig. 2  Chain length distri-
butions of the SCCPs and 
MCCPs found in wipe tests 
from hinges of 21 kitchen 
appliances
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