Skip to main content
Log in

Design of a high-coverage ground-based CO2 monitoring layout using a novel information theory-based optimization model

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Over the past decade, monitoring of the carbon cycle has become a major concern accented by the severe impacts of global warming. Here, we develop an information theory-based optimization model using the NSGA-II algorithm that determines an optimum ground-based CO2 monitoring layout with the highest spatial coverage using a finite number of stations. The value of information (VOI) concept is used to assess the efficacy of the monitoring stations given their construction cost. In conjunction with VOI, the entropy theory—in terms of transinformation—is adopted to determine the redundant (overlapping) information rendered by the selected monitoring stations. The developed model is used to determine a ground-based CO2 monitoring layout for Iran, the eighth-ranked country emitting CO2 worldwide. An NSGA-II optimization model provides a tradeoff curve given the objectives of (1) minimizing the size of monitoring network; (2) maximizing VOI, i.e., spatial coverage; and (3) minimizing transinformation, i.e., overlapping information. Borda count method is then employed to select the most appropriate compromise monitoring layout from the Pareto-front solutions given regional priorities and concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Daily bias-corrected OCO2_L2_Lite_FP.9r products were downloaded from https://disc.gsfc.nasa.gov.

References

  • Alfonso, L., & Price, R. (2012). Coupling hydrodynamic models and value of information for designing stage monitoring networks. Water Resources Research. https://doi.org/10.1029/2012WR012040

    Article  Google Scholar 

  • Annicchiarico, B., & Di Dio, F. (2017). GHG emissions control and monetary policy. Environmental and Resource Economics, 67(4), 823–851.

    Google Scholar 

  • Basu, S., Guerlet, S., Butz, A., Houweling, S., Hasekamp, O., Aben, I., et al. (2013). Global CO 2 fluxes estimated from GOSAT retrievals of total column CO 2. Atmospheric Chemistry and Physics, 13(17), 8695–8717.

    Google Scholar 

  • Bauner, D., Laestadius, S., & Iida, N. (2009). Evolving technological systems for diesel engine emission control: balancing GHG and local emissions. Clean Technologies and Environmental Policy, 11(3), 339–365.

    CAS  Google Scholar 

  • Boroumand, A., Rajaee, T., & Masoumi, F. (2018). Semivariance analysis and transinformation entropy for optimal redesigning of nutrients monitoring network in San Francisco bay. Marine Pollution Bulletin, 129(2), 689–694.

    CAS  Google Scholar 

  • Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., et al. (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences, 104(47), 18866–18870.

    CAS  Google Scholar 

  • Chhabra, A., & Gohel, A. (2017). Recent observations of atmospheric carbon dioxide over India. Current Sience, 112(12), 2364–2366.

    CAS  Google Scholar 

  • Ciais, P., Paris, J., Rivier, L., Ceulemans, R., Dolman, A. J., Flaud, J., et al. (2012). ICOS, integrated carbon observing system, a research infrastructure to integrate greenhouse gas observations in Europe. AGUFM, 2012, U34A–U3.

    Google Scholar 

  • Crisp, D. (2015). Measuring atmospheric carbon dioxide from space with the orbiting carbon observatory-2 (OCO-2). Earth Observing Systems XX, 9607, 960702.

    Google Scholar 

  • Crisp, D., Pollock, H. R., Rosenberg, R., Chapsky, L., Lee, R. A., Oyafuso, F. A., et al. (2017). The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmospheric Measurement Techniques, 10(1), 59–81.

    CAS  Google Scholar 

  • DeVries, T., Holzer, M., & Primeau, F. (2017). Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature, 542(7640), 215.

    CAS  Google Scholar 

  • Frankenberg, C., Pollock, R., Lee, R. A. M., Rosenberg, R., Blavier, J. F., Crisp, D., et al. (2015). The Orbiting Carbon Observatory (OCO-2): spectrometer performance evaluation using pre-launch direct sun measurements. Atmospheric Measurement Techniques, 8(1), 301–313.

    CAS  Google Scholar 

  • Fu, P., Xie, Y., Moore, C. E., Myint, S. W., & Bernacchi, C. J. (2019). A comparative analysis of anthropogenic CO2 emissions at city level using OCO-2 observations: A global perspective. Earth’s Future, 7(9), 1058–1070.

    CAS  Google Scholar 

  • Golkar, F., Al-Wardy, M., Saffari, S. F., Al-Aufi, K., & Al-Rawas, G. (2020). Using OCO-2 satellite data for investigating the variability of atmospheric CO2 concentration in relationship with precipitation, relative humidity, and vegetation over Oman. Water, 12(1), 101.

    CAS  Google Scholar 

  • Guerlet, S., Butz, A., Schepers, D., Basu, S., Hasekamp, O. P., Kuze, A., et al. (2013). Impact of aerosol and thin cirrus on retrieving and validating XCO2 from GOSAT shortwave infrared measurements. Journal of Geophysical Research: Atmospheres, 118(10), 4887–4905.

    CAS  Google Scholar 

  • Guo, M., Li, J., Wen, L., & Huang, S. (2019). Estimation of CO2 emissions from wildfires using OCO-2 data. Atmosphere, 10(10), 581.

    CAS  Google Scholar 

  • Gurney, K. R., Baker, D., Rayner, P., & Denning, S. (2008). Interannual variations in continental scale net carbon exchange and sensitivity to observing networks estimated from atmospheric CO2 inversions for the period 1980 to 2005. Global Biogeochemical Cycles. https://doi.org/10.1029/2007GB003082

    Article  Google Scholar 

  • Harold Jeffreys. (1973). Scientific inference. Cambridge University Press.

  • Hosseini, M., & Kerachian, R. (2017). A data fusion-based methodology for optimal redesign of groundwater monitoring networks. Journal of Hydrology, 552, 267–282.

    Google Scholar 

  • Houweling, S., Krol, M., Bergamaschi, P., Frankenberg, C., Dlugokencky, E. J., Morino, I., et al. (2014). A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements. Atmospheric Chemistry and Physics, 14, 3991–4012.

    Google Scholar 

  • Howard, R. A. (1966). Information value theory. Transactions on systems science and cybernetics, 2(1), 22–26.

    Google Scholar 

  • Howard, R. A. (1968). The foundations of decision analysis. Transactions on systems science and cybernetics, 4(3), 211–219.

    Google Scholar 

  • Ishizawa, M., Mabuchi, K., Shirai, T., Inoue, M., Morino, I., Uchino, O., et al. (2016). Inter-annual variability of summertime CO2 exchange in Northern Eurasia inferred from GOSAT XCO2. Environmental Research Letters, 11(10), 105001.

    Google Scholar 

  • Kaminski, T., Rayner, P. J., Voßbeck, M., Scholze, M., & Koffi, E. (2012). Observing the continental-scale carbon balance: assessment of sampling complementarity and redundancy in a terrestrial assimilation system by means of quantitative network design. Atmospheric Chemistry and Physics, 12(16), 7867–7879.

    CAS  Google Scholar 

  • Khader, A. I., Rosenberg, D. E., & McKee, M. (2013). A decision tree model to estimate the value of information provided by a groundwater quality monitoring network. Hydrology and Earth System Sciences, 17, 1797.

    Google Scholar 

  • Khorshidi, M. S., Nikoo, M. R., Taravatrooy, N., Sadegh, M., Al-Wardy, M., & Al-Rawas, G. A. (2019). Pressure sensor placement in water distribution networks for leak detection using a hybrid information-entropy approach. Information Sciences, 516, 56–71.

    Google Scholar 

  • Kulawik, S. S., O’Dell, C., Nelson, R. R., & Taylor, T. E. (2019). Validation of OCO-2 error analysis using simulated retrievals. Atmospheric Measurement Techniques, 12(10), 5317–5334.

    CAS  Google Scholar 

  • Kutsch, W. L., Heiskanen, J., Vermeulen, A., Juurola, E., Rivier, L., Papale, D., Johannessen, T., Jordan, A., & Hammer, S. (2018). ICOS and global initiatives working towards policy-relevant, coordinated carbon and greenhouse gas observations. In EGU General Assembly Conference Abstracts (p. 12711), Vienna, AUT: ADS.

  • Lee, S. K., Yoon, Y. J., & Kim, J. W. (2007). A study on making a long-term improvement in the national energy efficiency and GHG control plans by the AHP approach. Energy policy, 35(5), 2862–2868.

    Google Scholar 

  • Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., Pickers, P. A., Korsbakken, J. I., Peters, G. P., Canadell, J. G. & Arneth, A. (2018). Global carbon budget 2018. Earth System Science Data, 10(4), 2141–2194.

  • Liu, D., Lei, L., Guo, L., & Zeng, Z. C. (2015). A cluster of CO2 change characteristics with GOSAT observations for viewing the spatial pattern of CO2 emission and absorption. Atmosphere, 6(11), 1695–1713.

    Google Scholar 

  • Liu, T., Xu, G., Cai, P., Tian, L., & Huang, Q. (2011). Development forecast of renewable energy power generation in China and its influence on the GHG control strategy of the country. Renewable Energy, 36(4), 1284–1292.

    Google Scholar 

  • Ludwin, W. G. (1978). Strategic voting and the Borda method. Public Choice, 33(1), 85–90.

    Google Scholar 

  • Lumini, A., & Nanni, L. (2006). Detector of image orientation based on Borda Count. Pattern Recognition Letters, 27(3), 180–186.

    Google Scholar 

  • Mahjouri, N., & Kerachian, R. (2011). Revising river water quality monitoring networks using discrete entropy theory: the Jajrood River experience. Environmental Monitoring and Assessment, 175(1–4), 291–302.

    Google Scholar 

  • Masoumi, F., & Kerachian, R. (2008). Assessment of the groundwater salinity monitoring network of the Tehran region: application of the discrete entropy theory. Water Science and Technology, 58(4), 765–771.

    CAS  Google Scholar 

  • Memarzadeh, M., Mahjouri, N., & Kerachian, R. (2013). Evaluating sampling locations in river water quality monitoring networks: application of dynamic factor analysis and discrete entropy theory. Environmental Earth Sciences, 70(6), 2577–2585.

    Google Scholar 

  • Messerschmidt, J., Geibel, M. C., Blumenstock, T., Chen, H., Deutscher, N. M., Engel, A., et al. (2011). Calibration of TCCON column-averaged CO2: The first aircraft campaign over European TCCON sites. Atmospheric Chemistry and Physics, 11(21), 10765–10777.

    CAS  Google Scholar 

  • Mogheir, Y., De Lima, J. L. M. P., & Singh, V. P. (2004). Characterizing the spatial variability of groundwater quality using the entropy theory: I Synthetic data. Hydrological Processes, 18(11), 2165–2179.

    Google Scholar 

  • Mogheir, Y., & Singh, V. P. (2002). Application of information theory to groundwater quality monitoring networks. Water Resources Management 16, 37–49. https://doi.org/10.1023/A:1015511811686

  • Mondal, N. C., & Singh, V. P. (2012). Evaluation of groundwater monitoring network of Kodaganar River basin from Southern India using entropy. Environmental Earth Sciences, 66(4), 1183–1193.

    Google Scholar 

  • Nalini, T., Basha, S. K., Sadiq, A. M. M., Kumari, V. S., & Kaviyarasu, K. (2019). Development and characterization of alginate / chitosan nanoparticulate system for hydrophobic drug encapsulation. Journal of Drug Delivery Science and Technology, 52, 65–72.

    CAS  Google Scholar 

  • Nikoo, M. R., Beiglou, P. H. B., & Mahjouri, N. (2016). Optimizing multiple-pollutant waste load allocation in rivers: an interval parameter game theoretic model. Water Resources Management, 30(12), 4201–4220.

    Google Scholar 

  • Ozkul, S., Harmancioglu, N. B., & Singh, V. P. (2000). Entropy-based assessment of water quality monitoring networks. Journal of Hydrologic Engineering, 5(1), 90–100.

    Google Scholar 

  • Parker, R., Boesch, H., Cogan, A., Fraser, A., Feng, L., Palmer, P. I., et al. (2011). Methane observations from the Greenhouse Gases Observing SATellite: Comparison to ground-based TCCON data and model calculations. Geophysical Research Letters. https://doi.org/10.1029/2011GL047871

    Article  Google Scholar 

  • Parkinson, C. L., Ward, A., & King, M. D. (2006). Earth science reference handbook: a guide to NASA’s earth science program and earth observing satellite missions. National Aeronautics and Space Administration, 277.

  • Perez, C. A., Cament, L. A., & Castillo, L. E. (2011). Methodological improvement on local Gabor face recognition based on feature selection and enhanced Borda count. Pattern Recognition, 44(4), 951–963.

    Google Scholar 

  • Rakitin, A. V., Poberovskii, A. V., Timofeev, Y. M., Makarova, M. V., & Conway, T. J. (2013). Variations in the column-average dry-air mole fractions of CO2 in the vicinity of St Petersburg. Izvestiya, Atmospheric and Oceanic Physics, 49(3), 271–275.

    Google Scholar 

  • Sánchez, L., Vásquez, C., & Viloria Silva, A. J. (2018). The data envelopment analysis to determine efficiency of Latin American countries for greenhouse gases control in electric power generation. Retrieved from http://repositorio.cuc.edu.co/handle/11323/1751

  • Sarlak, N., & Sorman, A. U. (2006). Evaluation and selection of streamflow network stations using entropy methods. Turkish Journal of Engineering and Environmental Sciences, 30(2), 91–100.

    Google Scholar 

  • Shiga, Y. P., Michalak, A. M., Randolph Kawa, S., & Engelen, R. J. (2013). In-situ CO2 monitoring network evaluation and design: A criterion based on atmospheric CO2 variability. Journal of Geophysical Research: Atmospheres, 118(4), 2007–2018.

    CAS  Google Scholar 

  • Schlaifer, R. (1959). Probability and Statistics for Business Decisions: An Introduction to Managerial Economics Under Uncertainty. New York, NY: McGraw-Hill.

    Google Scholar 

  • Shannon, C. E. (1998). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423.

    Google Scholar 

  • Singh, V. P. (1998). Entropy-based Parameter Estimation in Hydrology. Netherlands: Kluwer.

    Google Scholar 

  • Singh, V. P. (2000). The entropy theory as a tool for modeling and decision-making in environmental and water resources.

  • Sun, Y., Frankenberg, C., Wood, J. D., Schimel, D. S., Jung, M., Guanter, L., et al. (2017). OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science. https://doi.org/10.1126/science.aam5747

    Article  Google Scholar 

  • Tavakoli, A., Kerachian, R., Nikoo, M. R., Soltani, M., & Estalaki, S. M. (2014). Water and waste load allocation in rivers with emphasis on agricultural return flows: application of fractional factorial analysis. Environmental Monitoring and Assessment, 186(9), 5935–5949.

    Google Scholar 

  • Van Newenhizen, J. (1992). The Borda method is most likely to respect the Condorcet principle. Economic Theory, 2(1), 69–83.

    Google Scholar 

  • Wunch, D., Wennberg, P. O., Osterman, G., Fisher, B., Naylor, B., Roehl, C. M., et al. (2017). Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON. Atmospheric Measurement Techniques, 10, 2209–2238.

    CAS  Google Scholar 

  • Wunch, D., Toon, G. C., Blavier, J. F. L., Washenfelder, R. A., Notholt, J., Connor, B. J., et al. (2011). The total carbon column observing network. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1943), 2087–2112.

    CAS  Google Scholar 

  • Yoshida, Y., Ota, Y., Eguchi, N., Kikuchi, N., Nobuta, K., Tran, H., et al. (2010). Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse Gases Observing Satellite. Atmospheric Measurement Techniques Discussions, 3, 4791–4833.

    Google Scholar 

  • Yoshida, Y., Kikuchi, N., Morino, I., Uchino, O., Oshchepkov, S., Bril, A., et al. (2013). Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data. Atmospheric Measurement Techniques, 6(6), 1533–1547.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Nikoo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhtiari, P.H., Nikoo, M.R., Golkar, F. et al. Design of a high-coverage ground-based CO2 monitoring layout using a novel information theory-based optimization model. Environ Monit Assess 193, 150 (2021). https://doi.org/10.1007/s10661-021-08933-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-08933-2

Keywords

Navigation