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Abstract River water quality monitoring at limited tem-
poral resolution can lead to imprecise and inaccurate clas-
sification of physicochemical status due to sampling error.
Bayesian inference allows for the quantification of this
uncertainty, which can assist decision-making. However,
implicit assumptions of Bayesian methods can cause fur-
ther uncertainty in the uncertainty quantification, so-called
second-order uncertainty. In this study, and for the first
time, we rigorously assessed this second-order uncertainty
for inference of commonwater quality statistics (mean and
95th percentile) based on sub-sampling high-frequency
(hourly) total reactive phosphorus (TRP) concentration
data from three watersheds. The statistics were inferred
with the low-resolution sub-samples using the Bayesian
lognormal distribution and bootstrap, frequentist t test, and
face-value approach and were compared with those of the
high-frequency data as benchmarks. The t test exhibited a
high risk of bias in estimating the water quality statistics of
interest and corresponding physicochemical status (up to
99% of sub-samples). The Bayesian lognormal model
provided a good fit to the high-frequency TRP concentra-
tion data and the least biased classification of physico-
chemical status (< 5% of sub-samples). Our results suggest

wide applicability of Bayesian inference for water quality
status classification, a new approach for regulatory practice
that provides uncertainty information about water quality
monitoring and regulatory classification with reduced bias
compared to frequentist approaches. Furthermore, the
study elucidates sizeable second-order uncertainty due to
the choice of statistical model, which could be quantified
based on the high-frequency data.
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Abbreviations
BOD Biochemical oxygen demand
DO Dissolved oxygen
EU European Union
HDI95 95% highest density interval
OM Operational monitoring
PDF Probability density function
RMBE Relative mean bias error
SM Surveillance monitoring
TRP Total reactive phosphorus
WFD Water Framework Directive

Introduction

Global water quality has deteriorated in recent decades due
to increased pollution from different sources (Seitzinger
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et al. 2010). In particular, nutrient run-off from point and
diffuse sources into surface and ground waterbodies in-
creased problems such as eutrophication and anoxic con-
ditions and impeded water use (Smith 2003; Vörösmarty
et al. 2010). Water quality monitoring is an important tool
in analysing temporal and spatial trends of water quality,
identifying emerging environmental issues, planning mea-
sures tomitigate pollution, and evaluating the effectiveness
of such measures (Bradley et al. 2015). In the European
Union (EU), the Water Framework Directive (WFD) stip-
ulates targets of improvement of the water environment
and outlines water management measures that member
states should implement (EU 2000). According to the
WFD, physicochemical quality of waterbodies should be
monitored regularly and river basin management plans
produced accordingly. The physicochemical status for a
water quality variable is classified with statistics, such as
themean or percentiles, on a predefined classification scale
of the variable (EU 2003b; Collins and Voulvoulis 2014).
The Directive only specifies a minimum frequency of
monitoring, and hence, water quality is usually monitored
at limited frequency, which is typical also for other parts of
the world (Alexander et al. 1998; EU 2009).

Low-frequency water quality monitoring can cause
false grading of the physicochemical status of rivers due
to temporal sampling error (Carstensen 2007;
Skeffington et al. 2015; Krueger 2017), especially in
environments where sources, pollution delivery, and
dilution can be very dynamic between low and high
flows (Jordan et al. 2005; Jordan et al. 2012). Failure
to account for the uncertainty in status determination
may impede evaluation of water quality management
and policies. Under-grading the status would lead to
false incompliance with the WFD, making investments
into measures inefficient. Over-grading, on the other
hand, can make decision-makers overly optimistic.
The risk of false grading is widely challenging for water
management as the physicochemical status of
waterbodies is assessed in similar ways across the EU
and in countries beyond the European continent (e.g.
Buck et al. 2000; Zhao et al. 2016).

Uncertainty quantification of water quality data and
modelling characterises potential errors stemming from
different sources including sampling, analysis, and the
complexity of the system of interest (McMillan et al.
2012; Jia et al. 2018; Tasdighi et al. 2018). It can provide
decision-makers with critical information on the magni-
tude of uncertainty to guide management measures and
monitoring programs (e.g. Vandenberghe et al. 2007;
Brouwer and De Blois 2008). One approach to uncertainty

quantification is Bayesian statistics, which computes prob-
ability distributions of the statistics of interest (McBride
and Ellis 2001; Smith et al. 2001; Borsuk et al. 2002).
There have been increasing attempts in recent years to
evaluate water quality using Bayesian inference and
modelling (e.g. Liang et al. 2016; Xie et al. 2019;
Worrall et al. 2020). The Bayesian parametric approach
quantifies the uncertainty in the statistics by assuming a
particular shape of a population distribution; but the resul-
tant statistics can be biased if the assumption is inappro-
priate (Krueger 2017). A non-parametric alternative is the
bootstrap, which does not rely on any distributional as-
sumption, yet rests on the premise that datasets measured
at limited resolution are sufficiently representative of their
populations (Fortin et al. 1997; Hirsch et al. 2015; Krueger
2017). A second non-parametric alternative is the more
general multinomial model, which – however – requires
difficult prior judgements to be made about the data that
the low-resolution sampling had missed (Krueger 2017).
Choosing a distribution andmaking other implicit assump-
tions about the uncertainty in the data shifts uncertainty to
so-called second-order uncertainty. This type of uncertain-
ty has drawn attention recently in communities using
Bayesian statistics (Hosni 2014; Kaplan and Ivanovska
2018) of climate scientists (Steel 2016) and hydrochemists
(Cooper et al. 2014). In practice, it is difficult to assess
second-order uncertainty because the population distribu-
tion and its statistics are unknown. However, water quality
measured at high frequency can provide accurate informa-
tion on the population distribution and hence can be used
as a benchmark to assess otherwise inferred statistics.

In order to assess the second-order uncertainty of
competing statistical models, the present study com-
pared the performance of lognormal, gamma, and
Weibull distributions; their corresponding bimodal mix-
tures; and the non-parametric Bayesian bootstrap
against high-frequency distributions and statistics
uniquely calculated with an hourly dataset of total reac-
tive phosphorus (TRP) concentrations as the bench-
mark. The performances were compared against those
of the classical t test and face-value approach used in
regulatory practice. The data originated from three river
catchment observatories in Ireland that have different
hydrological responses to rainfall and thus cover a range
of potential monitoring scenarios. These datasets have
previously provided important insights into agri-
environmental policies (Murphy et al. 2015; Shore
et al. 2016) and nutrient hydrological pathway dynamics
and seasonality (Jordan et al. 2012; Mellander et al.
2012; Dupas et al. 2017). The specific objectives of
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the present study were to (1) assess the fitness of differ-
ent parametric models in reproducing the high-
frequency data and (2) compare the performances of
these and alternative statistical models in estimating
water quality statistics and determining the physico-
chemical status of the three study rivers.

Materials and methods

Study sites

TRP concentrations of three small rural catchments were
monitored as part of the Irish Agricultural Catchments
Programme (Fealy et al. 2010; Wall et al. 2011). Catch-
ment ‘Arable A’ (11.2 km2) is mainly managed for spring
barley, and catchments ‘Grassland A’ (7.6 km2) and
‘Grassland B’ (12.1 km2) support dairy/beef cattle and
sheep. Est imated organic P loadings were
9.7 kg ha−1 yr−1 in Arable A, 23.2 kg ha−1 yr−1 in Grass-
land A, and 14.8 kg ha−1 yr−1 in Grassland B, which were
proportional to livestock density (Jordan et al. 2012).
Treatment of waste water from rural housing relies on
septic tank systems, except in Arable A, where a small
package waste water treatment plant with capacity for up
to 75 people is operated in addition to the septic tanks.
Further characteristics of the catchments have been de-
scribed in detail in previous studies (Jordan et al. 2012;
Mellander et al. 2012).

Regulatory monitoring programs

The WFD recommends a five-class scheme of ‘high’,
‘good’, ‘moderate’, ‘poor’, and ‘bad’ ecological status.
The boundaries of these classes are predefined based on
the deviation of waterbodies from estimated undisturbed
or reference conditions (EU 2003b). The physicochemi-
cal status variables for rivers are biochemical oxygen
demand (BOD), dissolved oxygen (DO), pH, tempera-
ture, and nutrient concentrations. The overall ecological
status of a waterbody is classified using the physicochem-
ical statuses classified for multiple water quality variables
together with biological and hydromorphological statuses
(EU 2000; Collins and Voulvoulis 2014).

In the Irish regulations, considering the boundaries of
‘moderate’ status and above, statistics calculated from
monitoring data are compared with the predefined
boundaries (Table 1) to determine the physicochemical
status according to each variable (Anonymous 2009).
For the classification according to TRP, the mean and

the 95th percentile (95%ile) are assessed separately. The
status of a river is ‘high’ or ‘good’when either the mean
or the 95%ile lies within the boundaries of these classes.
When both of the statistics are in their corresponding
‘moderate’ classes, a river is classified as ‘moderate’
according to TRP.

The WFD requires member states to monitor the phys-
icochemical status of waterbodies via two types of moni-
toring programs for different purposes: surveillance mon-
itoring (SM) for the estimation of pollution and identifica-
tion of sources in large catchments and operational moni-
toring (OM) for the status assessment of waterbodies ‘at
risk of failing to meet their environmental objectives’ (EU
2000). Similar to other EU member states, the Irish Envi-
ronmental Protection Agency (EPA) measures water qual-
ity monthly under SM and five times per year under OM.
The water quality data for 3 years are collated to classify
the physicochemical status of a river.

High-frequency water quality monitoring

The TRP concentrations in the three study rivers were
rigorously monitored up to three times per hour over
3 years.Water at the outlets of the catchments was sampled
and analysed by colorimetry using a fully automated bank-
side analyser (Hach Sigmatax-Phosphax) (Jordan et al.
2005). The sub-hourly TRP data were aggregated to hour-
ly mean concentrations for data handling. The instruments
were calibrated and cleaned through an automated process
on a daily basis and were serviced weekly for data transfer
and quality management (Jordan et al. 2012). The detec-
tion limit of the chemical analysis for TRP was
0.003 mg P L−1 (Cassidy and Jordan 2011).

Frequency distribution analysis

The frequency distribution of the population of a water
quality variable such as TRP may be modelled by a
parametric probability density function (PDF) making
certain assumptions about the shape of the distribution.
Provided that the high-frequency data represent the pop-
ulation distribution, the empirical frequency distribution
of the data can be used as a benchmark distribution. In
this paper, assumed parametric distributions are com-
pared against the benchmark distribution to guide the
choice of parametric PDFs when estimating water qual-
ity statistics from low-frequency samples. To this end,
three unimodal distributions (lognormal, Weibull, and
gamma) and three bimodal mixtures of each of these
distributions were fitted to the high-frequency data of
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the three monitoring sites by maximum likelihood, and
their log-likelihoods were compared to assess model
preference. The unimodal models were chosen based
on standard practice (lognormal) and complementary
shapes (Weibull and gamma). The mixture models were
chosen based on the observed bimodality of some of the
high-frequency data. The maximum likelihood parame-
ters of the unimodal and mixture distributions were
estimated using the R packages MASS (Venables and
Ripley 2002) and mixR (Yu 2018), respectively.

Sub-sampling experiment

The sampling distribution is the frequency distribution of a
certain statistic that is calculated with all possible samples
of a given size drawn randomly from a population, which
can be approximated numerically by a large number of
random draws. A statistic calculated with the high-
frequency data approximates the population statistic and
is used as a benchmark. The comparison between a sam-
pling distribution and a benchmark statistic quantifies the
sampling error (Lahiri 2003). The sampling distributions
of the mean and 95%ile were simulated to examine the
influence of sampling error on physicochemical status
classification. The sampling distributions were simulated
by randomly sub-sampling (12 × 3 data points for SM and
5 × 3 data points for OM) the 3-year high-frequency data
of each site 10,000 times with replacement and subse-
quently computing the statistics with each sub-sample.
The number of realisations was limited to 10,000 because
the sampling distributions showed negligible changes
when this number was increased up to 100,000, with
Kolmogorov-Smirnov (K-S) statistics ≤ 0.01 for both
mean and 95%ile. The sampling was not constrained to
certain workdays and hours to simulate the most compre-
hensive ranges of sampling errors.

The simulated sampling distributions were pooled
across the three sites to give information on the errors
in the estimated statistics that could be expected in
environments similar to those of this study. As the

magnitude of sampling errors at each site was propor-
tional to the benchmark statistics, the sampling errors
were converted to relative errors as

Re;i ¼ X i–X bð Þ=X b � 100 ð1Þ
where Xi is the sample statistic of interest calculatedwith
the ith sub-sample, Xb is the corresponding benchmark
statistic, and Re,i is the relative error of Xi.

Bayesian inference and uncertainty quantification

Bayesian inference yields posterior probability distribu-
tions of the statistics of interest, which fully describe
their uncertainty conditional on the model. After com-
paring several parametric models on the high-frequency
data (see “Results”), two candidate models emerged for
quantifying the uncertainty of inferring the mean and the
95%ile from low-frequency samples, namely, the log-
normal distribution and the Bayesian bootstrap. The
lognormal model emerged as the best fit among the
unimodal parametric distributions to the high-
frequency data (see “Results”). The Bayesian bootstrap
was selected as a candidate model owing to its flexibility
as it does not assume a shape of distribution. Posterior
distributions of TRP concentration were inferred using
the parametric lognormal model (Gelman et al. 2013)
and the Bayesian bootstrap (Rubin 1981; Aitkin 2010)
for the 10,000 OM and SM realisations sub-sampled
from the high-frequency datasets of the three sites. The
posterior parameters of these distributions were sampled
by Markov chain Monte Carlo (MCMC), with 1000
realisations (after 1000 burn-in samples). The MCMC
sampling was implemented using the Stan software for
the parametric distributions and MCMCpack for the
Bayesian bootstrap in the R environment (Martin et al.
2011; R Core Team 2017; Stan Development Team
2017) Convergence of the MCMC sampling was tested
with a subset of sub-samples using the Gelman-Rubin
diagnostic (Gelman et al. 2013). Posterior distributions
of the mean and the 95%ile were computed from the

Table 1 Class boundaries of physicochemical status in Irish rivers for TRP concentration

High Good Moderate

Mean (mg P L−1) ≤ 0.025
> 0:025
≤0:035

� > 0.035

95%ile (mg P L−1) ≤ 0.045
> 0:045
≤0:075

� > 0.075
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posterior parameter distributions. The Bayesian bimodal
mixture models, which were appropriate for the high-
frequency dataset (see “Results”), had to be abandoned
because they were over-parameterised and hence did not
converge given the low-resolution sub-samples. Uniform
prior distributions were used for the parameters of the
distribution models reflecting prior ignorance about the
parameters. The mathematical setups of the lognormal
model and the bootstrap are detailed in the “Appendix”.

Analysis of second-order uncertainty

To assess the second-order uncertainty of the lognormal
model and the bootstrap in estimating the mean and the
95%ile, the posterior distributions of the two statistics
computedwith the 10,000 random sub-samples from the
high-frequency data were compared against the bench-
mark statistics. To this end, the hit rate (HR) and the
length of the 95% highest density interval (HDI95) were
investigated. The hit rate, modified from a suggestion by
Schröter et al. (2016), is the proportion of sub-samples
from the sub-sampling experiment which include the
benchmark statistic within their posterior HDI95s:

HR ¼ 1=n � ∑n
i¼1hi; hi ¼

1;
0;

�
if Xb∈ HD2:5;HD97:5½ �

otherwise
ð2Þ

where n is the number of sub-samples from the high-
frequency dataset (n = 10,000), hi is the inclusion indi-
cator, and HD2.5 and HD97.5 are the 2.5th and 97.5th
percentiles, respectively. The HDI95 was obtained with
R scripts provided by Kruschke (2010).

Relative mean bias error (RMBE) of each posterior
distribution was calculated from the MCMC sample as

RMBE ¼ 1=N � ∑N
m¼1 Xm–Xbð Þ=Xb � 100 ð3Þ

where Xm is the mthMCMC realisation of the statistic of
interest (N = 1000). A positive RMBE indicates that the
posterior distribution generally overestimates the statis-
tic relative to the benchmark and a negative RMBE
indicates underestimation.

Regulatory approaches for physicochemical status
classification

The European Commission has outlined various ap-
proaches for physicochemical status classification (EU
2003a). One approach is termed ‘face-value approach’,
where raw sample statistics are directly used for

classification without any consideration of the uncer-
tainty in their estimation. Alternatively, within a
frequentist statistical framework, hypotheses that the
population statistics are significantly higher or lower
than specific class boundaries can be tested. A right-
tailed test verifies if a statistic is significantly higher than
a class boundary, reducing the risk of overestimating the
statistic, i.e. reducing under-grading (‘benefit-of-doubt’
approach) (Carstensen 2007). A left-tailed test examines
the opposite hypothesis, reducing the risk of over-
grading (‘fail-safe’ approach). In the Irish case, the
physicochemical statuses for BOD and nutrients are
determined using the right-tailed t test in the ‘benefit-
of-doubt’ approach. Sample mean and 95%ile are tested
whether they are significantly higher than the class
boundaries at a confidence level of 99%, and both t test
results are used to determine the physicochemical status
following the scheme described above.

In the Bayesian approach, the uncertainty of classifi-
cation is quantified directly with the posterior distribu-
tion of themean and the 95%ile, respectively. In keeping
with the Irish monitoring program and classification
scheme described above, the probability, or confidence,
of classifying a river according to BOD or nutrient
concentrations as ‘high’, ‘good’ or ‘moderate’ can be
quantified as follows:

P Class ¼ Highð Þ ¼ P ma ∈High ∪ Q95 ∈ Highð Þ ð4Þ

P Class ¼ Goodð Þ ¼ P ma ∈ Good ∩ Q95 ∈ Goodð Þ

þ P ma ∈ Good ∩ Q95 ∈ Moderateð Þ
þ P ma ∈ Moderate ∩ Q95 ∈ Goodð Þ

ð5Þ

P Class ¼ Moderateð Þ ¼ P ma ∈ Moderate ∩ Q95 ∈ Moderateð Þ
ð6Þ

P(Class = X) indicates the posterior probability that
the physicochemical status of a river is in class X. P(ma

∈ X) and P(Q95 ∈ X) indicate the posterior probabilities
that the mean and the 95%ile, respectively, of a water
quality variable are within the boundaries of class X.

Results

Frequency distribution analysis

The high-frequency TRP concentrations at the monitoring
sites showed some bimodality with the higher mode
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possibly representing increased TRP concentrations during
storm events, when sediment is flushed from the system
(Jordan et al. 2005; Jordan et al. 2007). Comparing the
parametric distribution models, the bimodal lognormal
mixture showed the best fit to the high-frequency data at
all the monitoring sites as indicated by the highest log-
likelihoods (5.8 · 104–7.6 · 104, Fig. 1). The bimodal
gamma mixture also fitted the data well with log-
likelihoods of 5.8 · 104–7.5 · 104 (not shown). The
unimodal lognormal distribution yielded fits with log-
likelihoods of 5.6 · 104–7.2 · 104, which were the highest
among all unimodal distributions tested (Fig. 1). The
unimodal gamma and Weibull distributions and the bi-
modal Weibull mixture (not shown) exhibited lower log-
likelihoods of 5.3 · 104–6.9 · 104, 4.9 · 104–6.7 · 104 and
5.6 · 104–6.9 · 104, respectively. Although the bimodal
lognormal and gamma mixtures fitted the high-frequency
data best, they did not converge on low-frequency sub-
samples due to over-parameterisation with respect to the
information content in a sub-sample, and hence, the
unimodal lognormal model was preferred in the remain-
der of this study. Among the high-frequency datasets, the
lognormal model showed the highest log-likelihood for
Arable A (7.2 · 104), followed by Grassland A (6.0 · 104)
and B (5.6 · 104).

Sampling distributions

The simulated sampling distributions of the mean and the
95%ile were right skewed, suggesting that the chances of
underestimating the statistics due to the sampling error
were greater than the chances of overestimating them
(Fig. 2). However, the overestimations had a greater range
than the underestimations, which were bound below by
zero. Comparing the means of the sampling distributions

with the benchmark statistics revealed that the sampling
was unbiased for the mean and hardly biased for the
95%ile (Table 2). The skewness values of the sampling
distributions show that the sampling distributions of the
95%ile were more strongly right skewed than those of the
mean and that the sampling distributions became less
skewed as the sample size increased from OM (5/year) to
SM (12/year). The widths of the HDI95s of the sampling
distributions from SM were also less variable than those
fromOM. The HDI95s are comparable to or larger than the
widths of the ‘good’ classes for the mean and 95%ile of
TRP (see Table 1).

The sampling distributions expressed as relative error
were pooled across the three sites as a measure of expected
sampling error, which verified that the expected sampling
error for the mean and 95%ile decreased, showing
narrowed HDI95s, as the sample size increased (Fig. 3).
These results also indicate that the sampling error of the
95%ile was more variable across sub-samples than that of
the mean. The pooled relative sampling error showed no
bias for the mean and a negative bias for the 95%ile. The
expected error distributions were right-skewed, so their
medians were negative. As observed with the sampling
distributions at each site, the expected sampling error was
more right skewed for the 95th percentile than for the
mean, and their skewness decreased with the increase in
sample size for both statistics.

Second-order error of Bayesian inference

Given OM sub-samples, the posterior distributions
of the lognormal model tended to have wider
HDI95s than the posterior distributions estimated
by the bootstrap, and the lognormal model captured
the statistics in the posterior highest density interval

Fig. 1 Frequency distributions of hourly TRP concentration from 2011 to 2013 (high-freq), bimodal lognormal mixture (mixture), and
unimodal lognormal and gamma distributions fitted to the frequency distributions via maximum likelihood and their log-likelihoods

261 Page 6 of 17 Environ Monit Assess (2020) 192: 261



more often than the bootstrap, evidenced by greater
hit rates (Table 3). The difference between the two
methods was especially compelling for the 95%ile. That
is, the posterior distributions of the 95%ile estimated by
the bootstrap were narrow (HDI95s 0.01 mg P L−1), and
their hit rates were lower than 10%, whereas the poste-
rior distributions estimated by the lognormal model
were wider (median HDI95s 0.04–0.08 mg P L−1) and
captured the benchmark statistics for 75–92% of the
sub-samples. The estimation of the mean showed much
lower RMBEs than that of the 95%ile. The lognormal
model biased the estimation of the 95%ile either posi-
tively or negatively, while the bootstrap tended to neg-
atively bias the 95%ile across all sites.

When the sample size was increased from OM to SM,
the posterior HDI95s narrowed from 0.03–0.04 (median) to
0.01–0.02mg PL−1 (median) for themean and from 0.04–
0.08 (median) to 0.05–0.07 mg P L−1 (median) for the
95%ile in case of the lognormal model (Table 3). The hit

rates decreased by 2–3 percentage points for the mean and
by 2–11 percentage points for the 95%ile. In Arable A,
however, the hit rates were still as high as 90% for both
statistics with the SM sub-samples. Themedian RMBE for
both statistics became closer to zero in Arable A (mean by
3 percentage points, 95%ile by 10 percentage points) but
deviated farther from zero in Grassland A (mean by 2
percentage points, 95%ile by 4 percentage points) and
Grassland B (mean by 2 percentage points, 95%ile by 3
percentage points). However, the distributions of RMBE
generally narrowed to zero with increasing sample size;
e.g. in Arable A from − 33–77% to −25–33% (central
95%) for the mean and from −43–137% to −43–35%
(central 95%) for the 95%ile.

The posterior distributions of the mean estimated by
the bootstrap tended to be slightly narrower with in-
creased sample size with HDI95 for OM extending to
0.12 mg P L−1 (97.5th percentile) and for SM to
0.09 mg P L−1 (97.5th percentile) (Table 3). However,

Fig. 2 Mean and 95%ile calculated with the high-frequency data (2011–2013) and their sampling distributions simulated by sub-sampling
the high-frequency data according to operational (OM; a and b) and surveillance (SM; b and c) monitoring schemes
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their hit rates were enhanced by 6–12 percentage points,
and the median RMBEs narrowed towards zero by 2
percentage points. The median RMBEs for the 95%ile
moved closer to zero by 11–14 percentage points, which

improved the hit rates by 2–10 percentage points. How-
ever, these posterior distributions were still narrower
than those of the lognormal model with much lower
hit rates, and their RMBEs varied more widely (e.g. −

Fig. 3 Sampling distributions of relative errors of mean (a and c) and 95th percentile (b and d) pooled across study sites simulated under
operational monitoring (OM; a and b) and surveillance monitoring (SM; c and d) scenarios

261 Page 8 of 17 Environ Monit Assess (2020) 192: 261

Table 2 Mean, skewness, and width of 95% highest density interval (HDI95) of sampling distributions of mean and 95th percentile
simulated under operational monitoring (OM) and surveillance monitoring (SM) scenarios

Operational monitoring Surveillance monitoring

Mean 95%ile Mean 95%ile

Mean Arable A 0.00 − 0.01 0.00 − 0.01
(mg P L−1) Grassland A 0.00 − 0.01 0.00 − 0.01

Grassland B 0.00 0.00 0.00 0.00

Skewness Arable A 2.58 3.36 1.61 1.75

(−) Grassland A 1.58 3.08 1.07 2.47

Grassland B 1.38 1.9 0.87 1.34

HDI95 Arable A 0.05 0.2 0.04 0.14

(mg P L−1) Grassland A 0.03 0.09 0.02 0.06

Grassland B 0.04 0.18 0.03 0.14



30 to 91% (central 95%) for Arable A) than those of the
lognormal model (e.g. – 31 to 58% (central 95%) for
Arable A). Examples of uncertainties in the mean and
95%ile quantified by the Bayesian lognormal model and
bootstrap given unrepresentative sub-samples are pro-
vided in Fig. 5 in the Appendix.

Uncertainty of physicochemical status classification

The performance of the different statistical models
in classifying the physicochemical status was

assessed by comparing their classification results
based on OM and SM sub-samples with the status
determined with the high-frequency data, the ‘cor-
rec t ’ benchmark status . The resul ts were
summarised as the percentage of sub-samples
exhibiting certain behaviour, which is also referred
to as the ‘frequency’ of that behaviour in the sub-
sampling experiment. The classification was most
frequently false in Arable A (39% under OM, 20%
under SM) using the face-value approach (Fig. 4),
where the benchmark statistics were located in the

Table 3 Second-order uncertainty of estimated mean and 95%ile from random low-resolution sub-samples using Bayesian lognormal
model and bootstrap

HRa HDI95
b (mg P L−1) RMBE c (%)

(%) 2.5% Median 97.5% 2.5% Median 97.5%

Operational monitoring (OM)

Mean Lognormal Arable A 91 0.01 0.03 0.07 − 33 4 77

Grassland A 86 0.01 0.03 0.11 − 29 0 69

Grassland B 88 0.02 0.04 0.12 − 26 − 1 64

Bootstrap Arable A 85 0.01 0.02 0.05 − 35 − 4 55

Grassland A 79 0.01 0.03 0.09 − 31 − 4 55

Grassland B 78 0.01 0.03 0.12 − 29 − 5 57

95%ile Lognormal Arable A 92 0.03 0.04 0.07 − 43 13 137

Grassland A 75 0.05 0.07 0.12 − 52 − 11 105

Grassland B 81 0.06 0.08 0.14 − 42 − 5 122

Bootstrap Arable A 9 0.01 0.01 0.01 − 48 − 13 127

Grassland A 6 0.01 0.01 0.01 − 60 − 16 119

Grassland B 6 0.01 0.01 0.01 − 52 − 15 164

Surveillance monitoring (SM)

Mean Lognormal Arable A 89 0.01 0.01 0.03 − 25 − 1 33

Grassland A 84 0.01 0.02 0.04 − 21 − 2 30

Grassland B 85 0.01 0.02 0.04 − 20 − 3 28

Bootstrap Arable A 91 0.01 0.02 0.03 − 25 − 2 34

Grassland A 87 0.01 0.02 0.06 − 22 − 2 34

Grassland B 90 0.02 0.03 0.09 − 21 − 3 38

95%ile Lognormal Arable A 90 0.03 0.05 0.09 − 31 3 58

Grassland A 64 0.03 0.06 0.14 − 43 − 15 35

Grassland B 74 0.03 0.07 0.16 − 34 − 8 49

Bootstrap Arable A 19 0.01 0.01 0.02 − 30 − 2 91

Grassland A 9 0.01 0.02 0.02 − 44 − 3 86

Grassland B 8 0.01 0.02 0.02 − 39 − 1 117

aHit rate
b Length of 95% highest density interval of the posterior distribution
c Relative mean bias error

For the HDI95 and the RMBE, the median and central 95% across all sub-samples are given
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‘good’ class, which was narrower than the sam-
pling distributions and near the ‘good/moderate’
boundary (see Fig. 2). The classification was less
frequently false in Grassland A (17% under OM,
5% under SM) and Grassland B (6% under OM,
0% under SM) with the same approach, where the
‘true’ classes were ‘moderate’, which is wider than
‘good’. Especially in Grassland B, the benchmark
statistics were far from the ‘good/moderate’
boundaries (Fig. 2); hence, the classification was

least susceptible to sampling error. The misclassi-
fication decreased as TRP was sampled more fre-
quently in the SM scenario.

The right-tailed t test frequently over-graded the phys-
icochemical status (43–99% under OM, 6–94% under
SM) (Fig. 4). Particularly in Arable A, the physicochem-
ical status was correctly graded for only 1% and 6% of the
OM and SM sub-samples, respectively. The confidence
intervals of the t-distributions were 0.02 ± 0.02 mg P L−1

and 0.01 ± 0.01 mg P L−1 when estimated with the OM

Fig. 4 Proportions of physicochemical status classes determined
with the face-value approach and the right-tailed t test and the
confidences of classification estimated with the Bayesian

lognormal model (Logn) and the Bayesian bootstrap (BB) given
10,000 operational and surveillance monitoring sub-samples
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and SM sub-samples, respectively (not shown), i.e. fre-
quently larger than or comparable to the widths of the
‘good’ classes (0.02 mg P L−1 for mean and
0.04 mg P L−1 for 95%ile, see Table 1).

Using the lognormal model for classification in-
creased the proportions of classes determined correctly
by less than 3% compared to the face-value approach in
Arable A, where the benchmark statistics were ‘good’.
In Grassland A and B, where the benchmark statistics
were ‘moderate’, the lognormal model increased the
proportions classifying the status correctly by 2–5 per-
centage points compared to the face-value approach.
The model biased the classification less for these sites
because even when the sample 95%ile was falsely in the
‘good’ class (face-value approach), large portions of the
posterior distributions were located correctly in ‘moder-
ate’ (see an example in Fig. 5b).

When physicochemical status was classified using the
bootstrap, the posterior distributions were concentrated
around the sub-sampled data points. By definition of per-
centile, 95% of the data points of a sub-sample are distrib-
uted lower than its 95%ile. Consequently, the posterior
distributions of the 95%ile estimated by the bootstrap were
also located lower than the sample 95%iles (see an exam-
ple in Fig. 5d). Accordingly, the bootstrap tended to bias
the classification towards high classes. That is, the chances
of classification as ‘moderate’ decreased, and the chances
of classification as ‘high’ or ‘good’ increased compared to
the face-value approach, which used the sample 95%iles.
This effect enhanced the chances of accurately classifying
Arable A, where the correct class was ‘good’, but
undermined the accuracy in Grassland A and B where
the correct class was ‘moderate’.

The Bayesian inference methods are capable of com-
puting the confidence of classification with the posterior
distributions of the statistics using Eqs. (4)–(6). The
classification is strongly confident when the data points
of a sample are concentrated in a certain class and
weakly confident when a sample is widespread as dem-
onstrated in the examples in Fig. 5. Distributions of the
confidences of classification calculated with the sub-
samples are displayed as box plots in Fig. 4. The me-
dians of the confidences were close to the proportions of
classification estimated with the face-value statistics. In
the OM scenario in Arable A and Grassland A, classifi-
cations were more than 90% confident in pointing to
‘wrong’ classes with more than 5% of the sub-samples.
The Bayesian bootstrap tended to show higher confi-
dences for ‘high’ and ‘good’ classes than the lognormal
model.

Discussion

Errors in Bayesian statistical models

Although the lognormal distribution did not represent
the high-frequency data perfectly, it provided the best fit
of the unimodal distributions tested here across all mon-
itoring sites as measured by the maximum log-
likelihood (Fig. 1). This lognormal distribution of TRP
concentration contrasts with Johnes (2007), who de-
scribed daily total phosphorus concentrations using the
gamma distribution, which performed sub-optimally
here. Cassidy and Jordan (2011) fitted sub-hourly total
phosphorus data with the power-law distribution, which
was not tested here because it did not represent low
values accurately in the previous study.

In agreement with the good fit of the lognormal
distribution to the high-frequency data in this
study (Fig. 1), the lognormal model estimated the
benchmark statistics (mean and 95%ile) with the
lowest relative mean bias errors (RMBEs) and the
highest hit rates (Table 3). Given OM sub-samples,
whose resolution was extremely low, the model
captured the benchmark statistics within its HDI95s
(Table 3) because its posterior distributions were
conservatively wide (see an example in Fig. 5c, d).
The RMBE distributions demonstrate that the pos-
terior distributions were subject to sampling error
when unrepresentative samples were given, as also
exemplified in Fig. 5. With the increased sample
size of the SM scenario, the model gained preci-
sion but introduced a bias in estimating the bench-
mark statistics indicated by reduced hit rates and
median RMBEs deviating from zero (Table 3).
This result supports the finding by Krueger
(2017) that parametric models can result in biased
inference when samples do not accurately repre-
sent the population. Only in Arable A, where the
lognormal model fitted the high-frequency data
with the highest likelihood (Fig. 1), the hit rates
remained high and median RMBEs moved closer
to zero with increased sample size, suggesting that
the second-order uncertainty at this site was
lowest.

The Bayesian bootstrap assumes that an observed
sample is representative of the population and its
estimation solely depends on that sample (Ebtehaj
et al. 2010). The bootstrap does not place (prior)
probability on data values missing from the sample
(Krueger 2017), and its posterior distributions are
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discrete (Ebtehaj et al. 2010). Consequently, in the
present study, the posterior distributions of the boot-
strap were concentrated around the ‘observed’ data
points even when the sub-samples were unrepresen-
tative (Fig. 5). The posterior distributions of the boot-
strap for the mean had widths and hit rates compara-
ble to those estimated by the lognormal model, be-
cause the mean had relatively small sampling errors
and was calculated by a continuous equation (see
“Appendix”). The 95%ile, however, was calculated
in a discrete manner from the results of the bootstrap;
thus, its posterior distributions were narrow, discrete,
and multimodal. Due to these characteristics of the
bootstrap, this method failed to capture the bench-
mark 95%iles within the HDI95s of the posterior dis-
tributions in more than 80% of the cases (Table 3).
Since the posterior distributions of the bootstrap con-
centrated narrowly on unrepresentative values, this
method can mislead decision-makers with a falsely
high level of confidence. The bootstrap performed
especially poorly in the estimation of the 95%ile,
which is important ecologically since eutrophication
is caused by rapid proliferation of algae at high nutri-
ent concentrations (Hilton et al. 2006; Xu et al. 2014).
The Bayesian bootstrap combined with a prior distri-
bution of missing data, the multinomial model, can
allow inference in ranges with missing data and result
in wide posterior distributions (Krueger 2017), which
would enable uncertainty quantification without a
distributional assumption, yet at the cost of greater
imprecision induced by difficult prior choices.

Comparison of classification methods

Using the face-value approach in this study, there
were sizeable chances (maximum 39%) of
misclassifying physicochemical status (Fig. 4).
The chance of the misclassification was especially
high with the OM scenario and when the bench-
mark statistics were in the narrow ‘good’ class or
close to class boundaries, verifying the results of
Skeffington et al. (2015). Moreover, the face-value
approach does not provide any information about
uncertainty and thus is not capable of managing
the risk of misclassification (Carstensen 2007). The
incapability of the approach to transmit the uncer-
tainty in the classification would exacerbate the
policy difficulty induced by the high chance of
misclassification.

The right-tailed t test, which is a frequentist
statistical approach suggested by the European
Commission and currently used by the Irish EPA
among other agencies in the EU, aims to reduce the
risk of falsely diagnosing incompliance with envi-
ronmental regulations (‘benefit-of-doubt’ approach)
(Carstensen 2007). This approach, therefore,
yielded overly optimistic classifications in our
sub-sampling experiment (Fig. 4), which would
leave rivers with poor water quality unmanaged.
The left-tailed t test, in contrast, would have result-
ed in pessimistic status classifications (‘fail-safe’
approach), which would arguably be more attuned
to the precautionary prescriptions of the WFD (e.g.
the ‘one-out-all-out’ principle). However, if a river
in ‘good’ conditions or above is pessimistically
classified as ‘moderate’ or worse, unnecessary man-
agement measures would be executed.

The Bayesian lognormal model, in addition to
providing a coherent measure of uncertainty con-
ditional only on the assumed distributional form,
either enhanced or decreased the accuracy of clas-
sification compared to the face-value approach,
depending on the location of the benchmark statis-
tics, but to minimal degrees (0–5%, Fig. 4). The
classification results of the lognormal model did
not show any clear relation with the directions of
the biases indicated by the RMBEs (Table 3), pos-
sibly because the biases were small compared to
the classification scale. The lognormal model does
not necessarily improve the accuracy of classifica-
tion, but it provides uncertainty information of the
classification without bias as with the t test meth-
od. The uncertainty information can be presented
as probabilities of classification or probability dis-
tributions of mean and 95%ile (see an example in
the Appendix and Fig. 5) and would allow
decision-makers to take the possibility of misclas-
sification into account.

The Bayesian bootstrap often biased physico-
chemical status towards ‘high’ or ‘good’ and away
from ‘moderate’ compared to the face-value ap-
proach (2–12% of cases) (Fig. 4) due to the
over-reliance of its posterior distribution on ob-
served data. This effect of the bootstrap was less
pronounced when the sample size was increased
from OM to SM because a larger sample is likely
to be more representative of the population. Nev-
ertheless, hit rates for the 95%ile remained as low
as 8–19%. The tendency of the Bayesian bootstrap
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to over-grade rivers with over-confidence given
low-frequency samples would mislead policies not
to manage rivers that in fact need improvement.

Efficacy of high-frequency water quality data

The high-frequency nutrient concentration data used
in this study proved highly beneficial for assessing
the second-order uncertainty of the inference
methods. The performance of the lognormal model,
despite being a popular choice, should be evaluated
on further high-frequency datasets from contrasting
environments. High-frequency monitoring data
should further be used to benchmark the inference
methods and statistical models applied to other
water quality variables so that the uncertainty in
overall WFD physicochemical status classification
can be quantified.

High-frequency data are also valuable for construct-
ing empirical distributions of expected sampling error
by sub-sampling (sampling distributions). These distri-
butions of expected error may be used in a Bayesian
statistical setup as prior distributions for parametric or
non-parametric population models in new monitoring
situations. The prior information can reduce the risk of
false status classification due to low-resolution monitor-
ing by assigning informed probabilities to values not
observed in the data at hand. The general applicability of
these priors will improve as sampling distributions from
diverse environments are pooled as in this study. While
our set of nine catchment years is clearly limited, we
suggest that a large number of high-frequency datasets
across the world be analysed in this way and the resul-
tant sampling distributions pooled to arrive at a more
robust prior distribution of sampling error. A large
enough dataset may even allow discerning drivers of
the variation of sampling uncertainty across different
environments and thus a more differentiated selection
of priors.

Conclusions

This study benchmarked inference methods and
statistical models in water quality monitoring and
status classification by sub-sampling a high-
frequency TRP concentration dataset of nine catch-
ment years from Ireland. The high-frequency
dataset, used as the benchmark in this study, en-
abled the assessment of second-order uncertainty

caused by the selection of inference methods as
well as low-frequency monitoring. The t test, which
is common regulatory practice in the EU, biased the
classification in 44–100% of the cases in the sub-
sampling experiment. Bimodal mixture distribu-
tions, despite fitting the high-frequency data best,
did not converge on the low-resolution sub-samples
in this study due to over-parameterisation. The
Bayesian lognormal model of the distribution, de-
spite not fitting the high-frequency data perfectly,
classified WFD physicochemical status with mini-
mal bias (less than 5% of sub-samples) compared
to the face-value approach. This inference method
provided reliable uncertainty information to assist
policies and thereby outperformed the Bayesian
bootstrap, the face-value approach, and the
frequentist t test. High-frequency nutrient concen-
tration data can guide the selection of inference
methods and potentially provide prior information
for water quality monitoring. These findings and
principles are widely applicable, and further accu-
mulation of high-frequency monitoring data at dif-
ferent sites and for different variables would enable
the selection of inference methods and development
of efficient priors to expand. Bayesian modelling
can be applied to quantify uncertainty of classifying
not only the physicochemical status but also the
biological status and, consequently, the overall eco-
logical status (Moe et al. 2016; Loga et al. 2018). It
is important to discuss further how to apply Bayes-
ian methods to the overall procedure of WFD status
classification and which statistical models to use.
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Appendix

Bayes rule

In Bayes theory, a posterior probability distribution of a
parameter vector of interest π(θ|y) is calculated by
updating a prior probability distribution π(θ) with a
likelihood function L(θ|y):

π θjyð Þ ¼ L θjyð Þ π θð Þ=∫L θjyð Þπ θð Þdθ ð7Þ
where θ is the parameter vector of interest and y is a

vector of observed data, i.e. TRP concentration in this
study.

Parametric estimation with Bayesian lognormal
distribution

In a Bayesian parametric model, the data population is
assumed to follow a certain shape, whose parameters are
estimated via Bayes rule. The likelihood function of the
lognormal model is

L μ; σjyð Þ ¼ 1=σ
ffiffiffiffiffiffi
2π

p
� 1=y∙exp −1=2∙ logy−μð Þ2=σ2

h i
ð8Þ

where μ and σ are location and scale parameters,
respectively, and y and s2 are sample mean and variance,
respectively, of the log-transformed TRP concentration
data y (Gelman et al. 2013). Uniform distributions in the
ranges (−∞, +∞) and (0, +∞) were used as prior proba-
bility distributions for μ and σ, respectively.

The joint posterior distribution π(μ, σ| y) was sam-
pled by MCMC using the proportionality property π(θ|
y) ∝ L(θ | y) π(θ) of Bayes rule. One thousand
realisations were generated after 1000 burn-in samples
through Hamiltonian Monte Carlo using the Stan soft-
ware in the R environment (R Core Team 2017; Stan
Development Team 2017).

For each realisation of parameters μ and σ, the arith-
metic mean of TRP was calculated as ma = exp (μ + σ2/
2), resulting in the posterior distribution of ma. The
posterior distribution of the 95%ile of TRP was calcu-
lated accordingly using the quantile function for the
lognormal distribution (Johnson et al. 1995).

Non-parametric estimation with Bayesian bootstrap

The Bayesian bootstrap used in this study followed the
method described in Aitkin (2010). A grid Y = {Y1, Y2,
…, YJ, …, YD} was defined over the range of feasible
values of TRP with equidistant bins. The bin size was

set equal to the detection limit (δ) of TRP (Krueger
2017). With this setup, the probability that the variable
is located in the Jth bin YJ is pJ = NJ/∑JNJ, the proportion
of the population count NJ in YJ. The maximum value of
the grid YD was defined as 1.5 times the maximum value
of the high-frequency data; Y1 was defined as 0 mg P
L−1 and δ as 0.003 mg P L−1, the detection limit
(Cassidy and Jordan 2011).

The likelihood function of the multinomial distribu-
tion given sample counts nJ is

L p1; p2;⋯; pDjyð Þ ¼ n!=∏D
J¼1nJ!

� � �∏D
J¼1p

n J
J ð9Þ

The Dirichlet distribution is a natural conjugate to the
multinomial distribution and assigns prior belief of how
many data points are contained in a bin YJ via parameter
αJ.

π p1; p2;⋯; pDð Þ ¼ Г ∑D
J¼1α J

� �
=∏D

J¼1Г α Jð Þ� �
�∏D

J¼1p
α J−1
J ð10Þ

The total sum of αJ assigned over the grid Y is

α≡∑D
J¼1α J, which represents the total weight of the

assigned prior information. In this study, because of
ambiguity in choosing αJ (Krueger 2017), the Haldane
prior distribution with α = 0 was used, i.e. neglecting
any unobserved bins.

The posterior distribution of pJ as product of the
likelihood and the prior represents the probabilities of
proportions of the population falling into certain bins
given the observed data y and the prior assumptions.

π p1; p2;⋯; pDjyð Þ∝ Г ∑D
J¼1n J þ aJ

� �
=∏D

J¼1Г nJ þ aJð Þ� �

�∏D
J¼1p

n Jþa J−1
J

ð11Þ

The posterior distribution of pJ was sampled by 1000
realisations using the R package MCMCpack (Martin
et al. 2011).

As for the lognormal model, from each realisation of
π(p1, p2, ⋯, pD| y), the arithmetic mean of the TRP
concentration was calculated asma ¼ ∑D

J¼1pJYJ, yield-
ing the posterior distribution of ma. Accordingly, the
posterior of the 95%ile was calculated as the largest
value of the empirical cumulative distribution function
that was smaller than or equal to 0.95.
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Examples of sampling error in inference of statistics
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mons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article's Creative Com-
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