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Abstract We analyzed data from 1138 wetland sites
across the conterminous United States (US) as part of
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the 2011 National Wetland Condition Assessment
(NWCA) to investigate the response of indicators of
wetland quality to indicators of human disturbance at
regional and continental scales. The strength and nature
of these relationships in wetlands have rarely been exam-
ined over large regions, due to the paucity of large-scale
datasets. Wetland response indicators were a multimetric
index of vegetation condition (VMMI), percent relative
cover of alien plant species, soil lead and phosphorus, and
water column total nitrogen and total phosphorus. Site-
level disturbance indices were generated from field obser-
vations of disturbance types within a circular 140-m radi-
us area around the sample point. Summary indices were
calculated representing disturbances for ditching, dam-
ming, filling/erosion, hardening, vegetation replacement,
and vegetation removal. Landscape-level disturbance as-
sociated with agricultural and urban land cover, roads, and
human population were based on GIS data layers quanti-
fied in 200, 500, and 1000-m circular buffers around each
sample point. Among these three buffer sizes, the land-
scape disturbance indicators were highly correlated and
had similar relationships with the response indictors. Con-
sequently, only the 1000-m buffer data were used for
subsequent analyses. Disturbance-response models built
using only landscape- or only site-level disturbance vari-
ables generally explained a small portion of the variance
in the response variables (R* < 0.2), whereas models using
both types of disturbance data were better at predicting
wetland responses. The VMMI was the response variable
with the strongest relationship to the disturbances assessed
in the NWCA (national model R* = 0.251). National mul-
tiple regression models for the soil and water chemistry
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and percent alien cover responses to disturbance indices
were not significant. The generally low percentage of
significant models and the wide variation in predictor
variables suggests that stressor-response relationships
vary considerably across the diversity of wetland types
and landscape settings found across the conterminous US.
Logistic regression modeling was more informative,
resulting in significant national and regional models
predicting site presence/absence of alien species and/or
the concentration of lead in wetland soils above
background.

Keywords Wetlands - Lead - Phosphorus - Nitrogen -
Vegetation - Human disturbance

Introduction

There is an increasing demand for information that can
enhance understanding of the ecological quality of the
world’s wetland resources beyond status and trends in
wetland extent or qualitative indicators of wetland func-
tion (e.g., Fennessy et al. 2007; Wardrop et al. 2013). Data
on the ecological condition of wetlands can be used to
report on the ambient status of the resource, target resto-
ration and protection efforts; evaluate the effects of miti-
gation and restoration practices; support regulatory deci-
sions; and track the impact of land-use decisions
(Scozzafava 2009; Scozzafava et al. 2011; Wardrop
et al. 2007a; Whigham et al. 2007). Accordingly, recent
years have seen attention given to development of quan-
titative, field-based methods in support of wetland man-
agement and protection. These efforts have resulted in
progress on development of new assessment methods,
definition of reference condition, and design of protocols
for obtaining a representative sample of wetlands (e.g.,
Fennessy et al. 2007; Stevens Jr. and Jensen 2007;
Wardrop et al. 2007b; Whigham et al. 2007).

Wetlands are affected by a wide variety of human
disturbances (hereafter, disturbance). Disturbance effects
on wetlands vary greatly depending on wetland type,
magnitude of the stress, and landscape setting. A distur-
bance may also have a significant effect at one scale, but be
insignificant at larger or smaller scales. Many studies have
illustrated the effects of different land uses and other
disturbances on wetland condition on a local or basin scale
(e.g., Mensing et al. 1998; Houlahan and Findlay 2004;
Hychka et al. 2007). The expectation that such relation-
ships exist has formed the basis for the design of many
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water quality monitoring efforts (e.g., Puckett 1995). How-
ever, the strength and nature of these relationships in
wetlands have rarely been examined over large regions,
due to the paucity of large-scale datasets.

In 2011, the US Environmental Protection Agency
(USEPA) conducted the National Wetland Condition
Assessment (NWCA) across the conterminous US, sam-
pling 1138 wetland sites to characterize vegetation, soil
chemistry, water chemistry, and presence of anthropo-
genic disturbances. Landscape disturbances in 200-,
500-, and 1000-m circular buffers around each selected
sample point were also quantified using available GIS
data layers. Our objectives were to use the large-scale
data to examine relationships between wetland response
and disturbance. We examined these relationships using
the GIS landscape data and site-level observations of
disturbance, to determine (1) strength of these wetland
response-disturbance relationships nationally and at
smaller scales, (2) the relative effect of landscape versus
local site-level disturbances, and (3) the wetland re-
sponse indicators that were most related to disturbance.
Analysis of the NWCA data provides a unique oppor-
tunity to investigate disturbance-response relationships
in wetlands at large continental and regional scales using
data designed and collected for this purpose.

Methods
NWCA overview and study variables

The purpose of the USEPA’s National Aquatic Re-
source Surveys (NARS) is to generate statistically
valid and environmentally relevant reports on the con-
dition of the nation’s aquatic resources every five
years. The NWCA is one component of the NARS
along with national surveys of lakes, streams, rivers,
and near-coastal systems. The NWCA was designed to
assess the regional ecological condition of broad
groups or subpopulations of wetlands, rather than for
individual wetlands or smaller spatial scales (e.g.,
individual states). The target population for the
NWCA was all wetlands of the conterminous United
States, not currently in crop production, including
tidal and nontidal wetted areas with rooted vegetation
and, when present, shallow open water less than 1 m in
depth (Olsen et al. 2019). A wetland’s jurisdictional
status under state or federal regulatory programs did
not factor into this definition.
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Details of the NWCA sampling design and site se-
lection are described in the NWCA technical report
(USEPA 2016a) and Olsen et al. (2019), and are briefly
described here. Site selection was completed in two
steps. A consistent national digital map of all wetlands
in the conterminous US was not available; however, the
US Fish and Wildlife Service (USFWS) conducts the
National Wetland Status and Trends (S&T) survey pe-
riodically to assess wetland extent. The approximately
5000 4-mi” plots from S&T were used to identify wet-
lands in the first step of site selection. In the second step,
a Generalized Random Tessellation Stratified (GRTS)
survey design (Stevens Jr. and Olsen 1999; Stevens Jr.
and Olsen 2004) for an area resource was applied to the
S&T wetland polygons and stratified by state with un-
equal probability of selection by NWCA wetland type
(Olsen et al. 2019).

Sites from the NWCA survey design were screened
using recent aerial photo interpretation and GIS analysis
to eliminate locations not suitable for NWCA sampling
(e.g., non-NWCA wetland types, wetlands converted to
non-wetland land cover due to development). Sites
might also be eliminated during field reconnaissance
if, for example, they were a non-target type or could
not be assessed due to accessibility or safety issues.
Dropped sites were systematically replaced from a pool
of replacement sites from the random design.

A total of 1138 sites were sampled in the NWCA
(Table 1), of which 967 were randomly selected proba-
bility sites used to make the national condition estimates
in the NWCA report (USEPA 2016b). An additional 21
sites were probability sites from state intensification
surveys that did not meet the design selection criteria
for NWCA. The remaining 150 sites were handpicked
in an effort to find least-disturbed reference sites (see
Herlihy etal. 2019). As the objective of this paper was to
analyze stressor-response relationships and not to make
unbiased population estimates of wetland condition, all
1138 sites, both random and handpicked, were used in
our analyses to maximize sample size. Sample sites
were distributed throughout the conterminous US
(Fig. 1). The spatial distribution across the country was
not uniform, but paralleled the distribution of wetlands
in the nation as represented in the S&T sample frame.

For our analyses, we studied the responses of a series
of wetland ecological indicators against a variety of site-
level field and GIS-derived landscape-level data de-
scribing disturbance variables (Table 2). We chose six
ecological indicators as response variables: two biolog-
ical measures, two soil chemistry indicators, and two
water chemistry indicators. These particular variables
are of high interest for ecological monitoring because
they are responsive to disturbance and capture a wide
variety of wetland ecological attributes (Trebitz et al.
2007; Stapanian et al. 2013). Site-level disturbance was

Table 1 Sample sizes in the National Wetland Condition Assessment (NWCA) and analyzed subpopulations

Full name Code Number of sites Number without Number without
water data soil data

National ALL 1138 522 99
NWCA aggregated ecoregion

Coastal Plain CPL 567 297 47

Eastern Mountains and Upper Midwest EMU 214 92 3

Interior Plains IPL 190 74 46

West w 167 59 3
NWCA aggregated wetland type

Estuarine herbaceous EH 272 87 36

Estuarine woody EwW 73 38 2

Palustrine, riverine, or lacustrine-herbaceous PRLH 358 131 52

Palustrine, riverine, or lacustrine-woody PRLW 435 266 9
HGM class

Depressions Depressions 283 115 43

Flats Flats 186 132

Riverine Riverine 269 139
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® NWCA 2011 Sites Sampled

NWCA Aggregated Ecoregions

Coastal Plains (CPL)

Eastern Mountains and Upper Midwest (EMU)
Interior Plains (IPL)

West (W)

Fig.1 Location of sites sampled in the National Wetland Condition Assessment (NWCA) and the boundaries of the aggregated ecoregions

used by the NWCA in the United States

described using the six variables in Table 2. The site-
level variables were aggregate indices used in the 2011
NWCA reports to estimate stressor extent and relative
risk (USEPA 2016a, 2016b). These six indices consol-
idated all of the disturbances observed during field
sampling into a manageable number of site-level distur-
bance groupings for statistical analysis. We also selected
seven GIS landscape-level variables for analysis
(Table 2). These seven were selected because they have
previously been associated with impact to surface wa-
ters and were readily available from national GIS data
layers (Herlihy et al. 1998; Rooney and Bayley 2011).

Field and laboratory methods
Field and laboratory methods for the NWCA are de-
scribed in detail by USEPA (2011a, b). Wetland sites

were sampled in 2011 during an index period ranging
from April to September depending on the growing
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season of the state in which the site was located. Sample
collection focused on a 0.5-ha assessment area (AA)
defined around each selected sample point. The AA
was generally circular with a 40-m radius, but for very
small or narrow wetlands, the AA shape was adjusted to a
polygon or irregular shape to fit within the constraints of
wetland boundaries. Within the AA, field crews (1) col-
lected a water sample if standing water of sufficient depth
(> 15 cm) to sink a pole-mounted dipper was present
(Trebitz et al. 2019), (2) sampled soil (Nahlik et al.
2019) and vegetation (Magee et al. 2019a), and (3)
completed checklists for presence of hydrologic alter-
ations and other human disturbances (Lomnicky et al.
2019).

We focused our water chemistry analysis on total
nitrogen (TN) and total phosphorus (TP) concentrations,
which were measured in the laboratory by acid persul-
fate digestion and colorimetry. About half of the sites
had no standing water, so they lacked water chemistry
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Table 2 Ecological indicator (response) and disturbance
(predictor) variables used in the analysis of the National Wetland
Condition Assessment data

Variable Code used in
Figures and
Tables
Ecological indicator variables (Response)
Relative percent cover alien plants 9 Alien
Vegetation multimetric index of condition =~ VMMI
Lead (mg/kg) in surface soil Soil Pb

Total phosphorus (mg/kg) in surface soil Soil P
Total nitrogen (1g/L) in water column TN
Total phosphorus (pg/L) in water column TP

Site-level disturbance variables (Predictor)

Damming disturbance index Dam
Ditching disturbance index Ditch
Filling/Erosion disturbance index Fill
Hardening disturbance index Harden
Vegetation Removal disturbance index VegRemoval

Vegetation Replacement disturbance index ~ VegReplace

Landscape-level disturbance variables (Predictor)

Percent agriculture land use/land cover Yo Agr
(LULC)
Percent developed LULC %Dev
Percent impervious surface Yolmp
Percent recreational LULC JoRec
Human population density (number/mi®) PopDen
Road density in buffer (kmv/km?) RoadDen
Hydrologically modified (canal/ditch) HydroMod

length (km)

data (Table 1). See Trebitz et al. (2019) for more detail
on water chemistry methods and additional results.
Four soil pit locations were systematically located in
the AA and excavated to a depth of 60 cm. One soil pit
was selected as representative of soil in the AA and
expanded to a depth of 120 cm. At the representative
pit, soil samples were collected for each soil layer more
than 8 cm thick and sent to the lab for extensive chem-
ical analysis (USEPA 2011a, 2011b). About 10% of the
sites had no soil data due to difficulties in obtaining
samples (Table 1). For this study, we focused only on
lead and total soil phosphorus (soil P) concentration data
from the uppermost layer collected and analyzed from
each site. Almost all (97%) of sites from which soils
were collected had chemistry data from a layer that
began within 10 ¢cm of the surface. In the laboratory,

lead was measured by inductively coupled plasma mass
spectroscopy (ICP-MS) and total phosphorus by a trace
element procedure, which calls for a nitric and hydro-
chloric acid extraction and measurement by ICP-MS
(USEPA 2011b).

Vegetation sampling methods are described in detail
elsewhere (USEPA 2011a; Magee et al. 2019a) and
summarized here. Five 100-m” vegetation plots were
systematically placed in the AA according to
predetermined rules based on the shape of the AA. All
vascular plants in each plot were identified to the lowest
taxonomic level possible, typically to species. Taxa not
readily identified in the field were collected and identi-
fied in the lab by regionally expert botanists. Percent
cover for each species was estimated as a direct percent-
age (0-100%) of the 100-m? area of each vegetation
plot. Species trait information, including state-level co-
efficients of conservatism (C-values) and state-level
native status, was gathered from literature or database
sources, or in some cases developed, for each taxon-
state pair observed in the NWCA (USEPA 2016a;
Magee et al. 2019b).

The field data and species trait information were used
to calculate numerous candidate metrics of vegetation
condition, which were screened based on range, redun-
dancy, repeatability, and responsiveness, for potential
inclusion in a vegetation multimetric index (VMMI) that
would serve as the principle indicator of biological
condition for the NWCA (USEPA 2016b). VMMI de-
velopment, calculation, and use are detailed in Magee
et al. (2019a). Thousands of candidate VMMIs were
evaluated using a series of objective performance
criteria. The final VMMI was based on four broadly
applicable component metrics: floristic quality assess-
ment index, relative importance of native plants, number
of plant species tolerant to disturbance, and relative
cover of native monocots. This VMMI was scored to
range from 0 to 100 with higher values reflecting better
condition, and was applied nationally. However, to ac-
count for natural variation in the VMMI across the
conterminous US, different VMMI value thresholds
for delineating good, fair, and poor condition were de-
fined for each of 10 ecoregion-by-wetland type groups.
These condition thresholds were based on the distribu-
tion of VMMI values observed in least-disturbed sites
for each ecoregion-by-wetland type group. In addition
to the VMMI, we calculated a metric describing the
relative percent cover of alien (introduced and adventive
species) plants at each sample location (see USEPA
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2016a for calculation). Hereafter, we refer to relative
percent cover of alien plants as percent alien.

A checklist of hydrologic alteration observed in each
AA was completed. In addition, a human disturbance
checklist was completed at 13 10 x 10-m plots, one
located at the AA center and 12 arranged in the study
buffer surrounding the AA (Lomnicky et al. 2019). The
12 plots in the buffer were laid out in the four cardinal
directions (3 in each direction): the first plot at the edge
of the assessment area (40 m from the AA center), the
second plot at the farthest extent of the study buffer
(usually 140 m from the AA center), and the third plot
midway between the other two. The human disturbance
checklist data and the hydrologic alteration checklist
data were categorized into six indicators of human dis-
turbance: ditching, damming, filling/erosion, hardening,
vegetation removal, and vegetation replacement
(Table 2). A disturbance index was calculated for each
category of site-level disturbance based on the
proximity-weighted average of the number of human
disturbances observed in each plot as described in
Lomnicky et al. (2019). An index value of 0.59 would
indicate that one human disturbance from the distur-
bance checklist was observed in each of the 13 plots at
the site. The maximum value observed at a site in the
NWCA for any of the six site-level disturbance catego-
ries was 2.2, but it was very rare for a site to have values
greater than 1.

GIS landscape data

We used available GIS data layers to identify landscape
disturbance indicators for agriculture, development, im-
pervious surface, recreation, road density, human popu-
lation density, and hydrologic modification (Table 2).
Disturbances from agriculture, development, impervi-
ous surface, road density, and population density were
calculated for three circular buffers with 200-, 500-, and
1000-m radii around the randomly selected or
handpicked sample point using ArcGIS software. Dis-
turbances from recreation and hydrologic modification
were only calculated for a circular buffer of 1000-m
radius around the sample point. Agriculture, develop-
ment, and impervious surface data layers were based on
the 2006 National Land Cover Database (NLCD,
Homer et al. 2007; Yang et al. 2003). Development
included all four NLCD developed land classes (open
space, low, medium, and high density) and agriculture
included both pasture/hay and cultivated crop classes.
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Population density and road density data layers were
obtained from 2010 US Census TIGER shapefiles (US
Census Bureau 2010) and recreation disturbance was
based on the USGS Protected Areas Database of the
United States (PADUS; USGS 2012). We considered
areas coded as national parks, trails, and landmarks, as
well as recreation management areas, historic/cultural
areas, state parks, and local recreation areas to be
“Recreational.” Hydrologic modification was defined
as the total length of canals or ditches in the buffer as
represented in the National Hydrography Dataset Plus
(NHDPlus) version 2 (McKay et al. 2012).

Statistical analysis

About 8% of the sites were visited twice during the
sampling index period. Only data from the first site visit
was used in this paper; sample sizes are given in Table 1.
Skewed response variables (soil lead, soil P, TN, and
TP) were log transformed. Percent alien cover and soil
lead were also investigated as binary variables. For
binary analysis, percent alien cover was transformed to
presence/absence of alien species and soil lead was
transformed to levels above and below 35 mg/kg, which
was the background level for lead used as a threshold to
indicate human disturbance in the NWCA (Nahlik et al.
2019). We transformed all the disturbance variables to
achieve a roughly common 0-10 data range to make
comparisons more meaningful and to aid in the inter-
pretation of the logistic regression odds ratios. Thus, all
field-based disturbance indices were multiplied by 10,
landscape percentage variables divided by 10, popula-
tion density was log10 transformed, and hydrologically
modified length was analyzed in kilometers.

We analyzed the NWCA data nationally and within
different subpopulations (Table 1). Eleven subpopula-
tions were defined based on NWCA ecoregions,
NWCA aggregated wetland types, and hydrogeomor-
phic (HGM) classes (Table 1). Four aggregated
ecoregions (Coastal Plain (CPL), Eastern Mountains
and Upper Midwest (EMU), Interior Plains (IPL), and
West (W), mapped in Fig. 1) were used for NWCA
analysis and reporting (Herlihy et al. 2019) and each
one represents a subpopulation for our analysis. The
seven broad wetland types from the NWCA design were
combined into four NWCA aggregated wetland types
based on estuarine versus inland (palustrine, riverine, or
lacustrine (PRL)) status and dominant vegetation
(woody versus herbaceous) (Herlihy et al. 2019). Thus,
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the four vegetation subpopulations we considered were
represented by the NWCA aggregated wetland types,
estuarine-herbaceous (EH), estuarine-woody (EW),
PRL-herbaceous (PRLH), and PRL-woody (PRLW).
Shrub-scrub and forested types were considered woody,
whereas, emergent, unconsolidated bottom, or aquatic
bed types, and previously farmed emergent types were
considered herbaceous. We evaluated three HGM
(Brinson 1993) classes (depressions, flats, and riverine).
HGM subpopulations with fewer than 50 samples
(fringe and slope) were not analyzed. In addition, we
did not analyze the tidal HGM class because it had
virtually the same membership as the estuarine wetland
types.

We conducted a series of exploratory analyses to
better understand the behavior of predictor
(disturbance) and response (ecological indicator) vari-
ables. First, we calculated a series of Pearson correla-
tions to examine relationships of the GIS buffer widths
(200, 500, and 1000 m), among the three land-cover/
land-use disturbance variables (percent agriculture, de-
veloped land, and impervious surface), and also, be-
tween percent agriculture and the VMMI, nationally
and for the 11 wetland subpopulations. Next, we looked
at patterns in the distribution of value ranges for the 13
predictor variables and for the six response variables
using box and whisker plots. Finally, we examined
Pearson correlations among the 13 predictor variables
and among the six response variables, nationally and by
subpopulation.

Our next step was to perform 144 multiple regres-
sions and 24 logistic regressions to evaluate relation-
ships between all predictor and response variables. For
the multiple regression analysis, this entailed looking at
combinations of six responses and two disturbance pre-
dictor groups (site-level and GIS landscape) for the
nation and 11 subpopulations (i.e., 12 total subpopula-
tions). For the logistic regression analysis, the relation-
ship between the two binary responses (soil lead above/
below background concentration, alien species present/
absent) and the disturbance variables was also investi-
gated for each of the 12 subpopulations. Recognizing
that we were doing multiple analyses on the same
dataset, we chose a correction of 0.05 divided by the
number of possible models (144 +24 =168). This re-
sulted in a pseudo-significance value of 0.0003 that we
used to identify meaningful models. This cutoff is loose-
ly based on a Bonferroni type of adjustment for multiple
comparisons where it is used to guard against false

significance (Ramsey and Schafer 2013). We also used
an additional cutoff of an adjusted R* of 0.2 or greater to
identify meaningful models. While lower R? values may
or may not be statistically significant, we felt that they
explained too small a proportion of the variance in the
response variables to be ecologically significant.

To investigate which set of disturbance variables, field
or GIS landscape, predict the responses better, we looked
at multiple regressions of the six response variables ver-
sus the field disturbance variables and versus the GIS
landscape disturbance variables for the entire dataset and
by subpopulation. For the regressions, the response/dis-
turbance/subpopulation combinations that had models
with adjusted R*>0.2 and p values < 0.0003 were further
investigated and compared using an extra sum of squares
F-test to see which of the two disturbance predictor sets,
field or GIS landscape, explained more of the variation in
the response. The extra sum of squares F-test determines
the reduction in the sums of squares between a full and
reduced model. The full model had all the field and GIS
landscape variables in it and the reduced models had
either just the landscape variables or just the field vari-
ables. A small difference in sums of squares between the
full and reduced models would produce a small F-value
and a large p value suggesting insufficient evidence to
show that the models (full and reduced) were different in
predicting the response.

We also sought to investigate the relative strengths of
site-level disturbance variables versus GIS landscape
disturbance variables. Multiple regression models with
adjusted R*>0.10 were evaluated to identify the
response/subpopulation combinations that merited fur-
ther investigation. For this set of response/
subpopulation combinations, we then combined the
site-level and GIS landscape predictor sets to make an
overall disturbance model and conducted an exhaustive
search to choose regression models based on the lowest
Bayesian Information Criteria (BIC) value (Ramsey and
Schafer 2013). Analyses were done using the LEAPS
package in R (Lumley and Miller 2009). Only the
combined site-level/landscape models with an adjusted
R*>0.2 and a p value <0.0003 were considered signif-
icant and were retained for reporting.

For the presence/absence variables, we regressed the
binary responses for lead in wetland soils and alien
species against the combined site-level and GIS land-
scape disturbance variables, did an exhaustive model
search, and chose the model with the lowest BIC value
using the BESTGLM package in R (McLeod and Xu
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2014). We only reported models that had a p value <
0.0003 as determined by a likelihood ratio test compar-
ing the BIC model to the null model. The odds ratios
associated with the predictors in these models were
tallied and McFadden’s R?, which can be used as a
goodness of fit statistic, was calculated.

Results
Effects of GIS buffer width

We investigated whether there were important relation-
ships for disturbance variables associated with different
GIS buffer radius lengths. The land-use/land-cover
(LULC) data gathered from the three buffer widths were
highly related to one another based on Pearson correla-
tions (Table 3). Buffer LULC percentages for agricul-
ture, developed land, and impervious surface were all
correlated at »> 0.7 across buffer sizes (Table 3). Corre-
lations for each of these three variables between the 500-
and 1000-m buffer sizes were all »>0.93, between the
200- and 500-m buffer widths were all »>0.84, and
even for the most disparate buffer sizes (200 vs.
1000 m) the correlations all were »>0.7.

To determine which buffer scale was most predictive
of wetland responses, we focused on % Agr correlations
with VMMI, because these variables had one of the
stronger correlations in the data and no missing values.
Overall, there was little difference in correlation using
data collected at the 200-, 500-, or 1000-m buffer sizes
(Table 4), although the 1000-m buffer had slightly
higher correlation coefficients both nationally (r=-—
0.43 versus —0.41 or —0.38) and for many of the
subpopulations. Because these analyses did not find
important differences among buffer sizes, just one buffer
size was chosen for further analyses, which also avoids
potential problems with multicollinearity among LULC

Table 3 Pearson correlation coefficients () among 3 different
GIS-circular buffer radii for percent agriculture (%Agr), percent
developed (%Dev), and percent impervious surface (%Imp) land
use/land cover

Buffer radii (m) Y Agr %Dev 9oImp
200 vs. 500 0.92 0.85 0.84
500 vs. 1000 0.95 0.93 0.93
200 vs. 1000 0.81 0.71 0.70
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predictors. The largest buffer size (1000 m) integrates a
larger area and had slightly higher correlations so we
only used the largest buffer size data in all subsequent
analyses.

Patterns and relationships for disturbance and response
variables

The range of values observed for disturbance and re-
sponse variables across the NWCA sites sampled in the
conterminous US varied widely (Fig. 2), as might be
expected for such a large-scale survey. Among the site-
level disturbances (Fig. 2a), zero values were quite
common (i.e., no disturbance observed in any buffer
plot at a site). For the ditching, damming, filling/erosion,
and vegetative replacement indices, 78-87% of the sites
had zero index values. Vegetative removal and harden-
ing were the most commonly observed site-level distur-
bances with each present at some level in about 40% of
the sites. Nationally, the median index value for all site-
level disturbance indices was zero. Among the GIS
landscape disturbance variables (Fig. 2b and c¢), median
percent agriculture was 0.11 (interquartile range (IQR) =
0-23.4) and median percent developed land was 2.6
(IQR =0-5.4). Median population density was 18.4
people/mi® (IQR =4.8-70.3) and median road density
was 1.17 kmv/km? (IQR =0.46—1.84). There were many
zero values in the landscape data. Over 85% of the sites
had no recreation disturbance or hydrologically modi-
fied length. Similarly, 49% of the sites had no agricul-
tural LULC, 28% had no development, and 22% had no
impervious surface. A much lower percentage of sites
had zero population (0.8%) or zero road density (11%).
Even when non-zero, percent developed and impervious
land cover were quite low (< 10%) in the vast majority
of sites (Fig. 2b). VMMI and percent alien cover data
ranged widely, with minimum values of zero and max-
imum values over 90, but the IQR for VMMI was 44-70
versus 0—7 for percent alien cover (Fig. 2d). Median soil
concentrations for P (556 mg/g) were higher than those
for lead (17.3 mg/kg), whereas for water chemistry, the
median concentration of TP was 121 pug/L and TN was
1080 pg/L (Fig. 2e).

The degree of covariance among predictor variables
and among response variables, as assessed by using a
Pearson correlation of »>0.5 criteria, varied consider-
ably among metrics and among subpopulations. Among
the disturbance predictor variables, percent impervious
surface, percent developed land, and road density were
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Table 4 Comparison of Pearson

correlations (1) between vegeta- Subpopulation 200-m radius 500-m radius 1000-m radius
tion multimetric index (VMMI)
and percent agriculture for three National —-0.38 -0.41 -0.43
GIS buffer radii NWCA aggregated ecoregion
Coastal Plain —-0.41 —042 -042
Eastern Mountains and Upper Midwest -0.44 —0.48 -0.50
Interior Plains -0.22 -0.23 -0.26
West -0.18 -022 -0.24
NWCA aggregated wetland type
Estuarine herbaceous -0.07 -0.08 -0.18
Estuarine woody —-0.16 —0.16 —0.13
Palustrine, riverine, lacustrine-herbaceous -0.31 -0.34 -0.37
Palustrine, riverine, lacustrine-woody -0.40 -0.40 -0.39
HGM class
Depressions -0.32 -0.34 -0.35
Flats -0.45 -0.52 -0.54
Riverine -0.34 -0.35 -0.33

correlated with each other at »> 0.5, both nationally and
for all subpopulations. Human population density and
road density were correlated at »>0.5 for all subpopu-
lations except HGM flats. The median correlation
among all disturbance variables across subpopulations
was 0.05, while the maximum correlation (» = 0.96) was
between percent impervious surface and percent devel-
oped land in the IPL. Among the 6 response variables,
correlations between TP and TN were always > 0.5. All
subpopulations, except the EMU (r=—0.48), had neg-
ative correlations >0.5 between VMMI and percent
alien species. Soil lead and P were not correlated with
each other or any of the other wetland response
variables.

The distribution of percent agriculture in the 1000-m
buffer varied greatly among different wetland subpopu-
lations (Fig. 3a). It was significantly different across
ecoregions (one-way ANOVA F=115, p<0.0001),
wetland types (F=72.3, p<0.0001), and HGM classes
(F=36.2, p<0.0001). Agriculture was virtually absent
in the surrounding 1000-m radius area for estuarine EH
and EW sites, but common in the inland PRLH vegeta-
tion types (Fig. 3a). Among ecoregions, percent agricul-
ture was high in the IPL (>10% for 82% of sites) but
rare in the West (> 10% for 13% of sites). Sites in the
CPL and EMU had similar distributions of percent
agriculture, which were intermediate to levels seen in
the IPL and W. Variability in percent developed land
among wetland subpopulations (Fig. 3b) was much

lower than was observed for percent agriculture. Among
ecoregions, it was highest in the EMU. Distributions of
road density were similar across both ecoregion and
wetland type (Fig. 3c).

Efficacy of site-level versus GIS landscape disturbance
variables in regressions

Separate multiple-regression models using only site-
level or only GIS landscape-level disturbance variables
suggested that landscape-level predictors had somewhat
higher explanatory power (Fig. 4). The adjusted R’
values for the models with GIS landscape predictors
only were higher than those for models with site-level
predictors for 62 of the 72 model comparisons run (1
national and 11 subpopulation models for each of 6
predictor variables). Typically, landscape-only models
had an adjusted R* between 0.01 to 0.1 units higher than
site-level-only models. For response variable and sub-
population combinations where 10% or more of the
overall variance was explained, the R® for GIS
landscape-level predictors typically exceeded those of
site-level predictors by 10-20 percentage points, and
only three site-level-only models had a higher adjusted
R? than landscape-only models (Fig. 4).

Among the 72 separate site-level and GIS land-
scape models, 12 were considered significant having
adjusted R* > 0.2 and p values < 0.0003; nine of these
fit the data reasonably well as determined by visual
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Fig.2 Box and whisker plots showing the distribution of National
Wetland Condition Assessment data across all sampled sites for a.
index values for site-level disturbance variables; b. % land use/
land cover (%LULC) for GIS landscape disturbance variables in
the 1000-m buffer; ¢. GIS landscape disturbance values for log10
population density (number/mi?), untransformed road density
(km/km?), and untransformed hydrologically modified length

inspection of the residual plots. The residuals were
randomly dispersed about the zero line and we did
not see evidence of non-constant variance, non-line-
arity, or large outliers in the plots. Among these nine
models, only one, the response-subpopulation com-
bination of the VMMI in the EMU, had significant

@ Springer

(km) in the 1000-m buffer; d. index values for % alien cover and
vegetation multimetric index (VMMI); and e. concentrations of
soil lead (Pb) and soil phosphorus (P) in mg/kg, and water column
total nitrogen (TN) and total phosphorus (TP) in pug/L. Boxes
show the median and interquartile range; whiskers show the
10th/90th percentiles. Points beyond the 10th and 90th percentiles
are not plotted. Variable codes are given in Table 2

models for both the landscape-only and site-level-
only predictors. For this model, the extra sum of
squares F-test for the site-level variables (p value <
0.00000001) showed there was a strong difference
between the full and reduced models, and that the full
model (i.e., with both field and GIS variables) was
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Fig. 3 Box and whisker plots showing the distribution of (a)
percent agricultural land (%Agr), (b) percent developed land
(%Dev), and (c) road density (RoadDen in km/km?) in the 1000-
m radius buffer for the four NWCA aggregated ecoregions and

better. Similarly, the extra sum of squares F-test for
the GIS landscape variables alone compared to the
full dataset (p value=0.0004) also shows the full
model performing better. Consequently, we used the
full models, including site-level and landscape dis-
turbance variables, for the remaining analyses.

four aggregated wetland types. See Table 1 for definition of
ecoregion and wetland type codes. Boxes show the median and
interquartile range; whiskers show the 10th/90th percentiles.
Points beyond the 10th and 90th percentiles are not plotted

Disturbance-response multiple regression models

For the final multiple regression analyses, we included
both site-level and GIS landscape disturbance variables
and built a single model for each of the six response
variables at the national scale and for each of the
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subpopulations. Out of the 72 resulting models, 12
passed the significance screening criteria (adjusted R* >
0.2 and p values <0.0003, Table 5). The response vari-
able for seven of these models was VMML. In the other
five significant models, the response variable was soil
lead once, TP twice, and TN twice. We were not able to
build a significant model for soil P or percent aliens. The
disturbance predictor variable most commonly observed
in the significant models was percent agriculture, found
in nine of the 12 models; the next most common predic-
tor was ditching, which occurred in seven models. Sig-
nificant models were found in all the wetland subpopu-
lations except for EH and CPL. All of the disturbance
variables except hardening appeared in at least one of the
12 models. The models had between one and five
predictor variables with an average of about four.
The model with the highest adjusted R* of 0.577
was for TP in the EW subpopulation. For this model,
the significant disturbance variables were ditching,
percent developed, human population density, and
hydrologic modified length. Bivariate scatter plots
for these variables versus TP are shown in Fig. 5.
Bivariate correlations for these four scatterplots ranged
from —0.3 to +0.5 with ditching being the strongest
correlation. Note that some of these relationships are
defined by just a few influential observations. The
overall regression model fit (observed versus predict-
ed plot) for this model (TP in EW) is shown in
Fig. 6 to illustrate the highest R* model fit.

@ Springer

Adjusted R squared for Site-level Disturbance Variables

Disturbance-response logistic regression models

We were able to build significant logistic regression
models (p<0.0003) to predict the presence/absence of
alien species at a site at the national scale and for 10 of
the 11 wetland subpopulations (Table 6). The IPL was the
only subpopulation lacking a significant logistic regression
relationship for alien species. Models had between one and
six variables with an average of three variables per model.
Hardening and percent agriculture were highly significant
variables in the national model and most subpopulation
models. McFadden’s R? varied between 0.07 (in EH and
CPL) and 0.23 (in EMU). Values between about 0.2 and
0.4 suggest a very good fit (McFadden 1978).

The logistic regression coefficients in Table 6 can be
interpreted as odds ratios. For every one unit increase in
the value of the disturbance variable, it is estimated that
the odds of having alien species present as opposed to
absent is X times more likely (where X is the odds ratio).
Recall that we transformed the disturbance variables for
regression analysis so that a unit change in the percentage
variables is 10 percentage points (percent divided by 10)
and a unit change in population density is a factor of 10
(log10 transformed). These transformations are especial-
ly useful for the logistic regression, making the odds
ratios more comparable among disturbance variables.
The EMU ecoregion had the highest McFadden’s R*
(0.23) and relatively large values for the odds ratios
(Table 6). For every 10-percentage-point increase in
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Fig. 5 Scatter plots showing the relationship between water column total phosphorus (TP) and the disturbance variables in the estuarine-

woody wetland type. Disturbance variable codes are given in Table 2

percent agriculture in the EMU, it is estimated that it is
2.07 times more likely that a site will have alien plant
species. Similarly, for a one-point increase in the vegeta-
tive replacement index, it is estimated to be 3.05 times
more likely to have a site with alien plant species present.

It was also possible to build significant logistic regres-
sion models, at the national scale and for nine subpopula-
tions, to predict surface concentrations of lead in wetland
soils that were above or below the NWCA threshold
background concentration of 35 mg/kg (Table 7). The only
subpopulations without a significant model were the EW
wetland type and the flats HGM class. The logistic regres-
sion models had between one and four predictor variables
with an average of two per model, and McFadden’s R
ranged between a low of 0.07 in the CPL and PRLW and a
high of 0.34 in the IPL. Human population density was a
highly significant variable in all the individual logistic
regression models except in the W ecoregion and in the
EH wetland type where hydrologic modification and per-
cent developed land were significant variables. Nationally,
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for a 10-fold increase in population density, it is estimated
that it would be 2.31 times more likely to have lead in
wetland soils above background (Table 7). The odds ratios
for population density in the individual subpopulation
models ranged from 2.11 (PRLW) to 7.40 (IPL).

Discussion

Effect of GIS buffer radius on landscape-level
disturbance

The high correlation among land-cover composition
within 200-, 500-, and 1000-m circular buffers around
each site makes it difficult to establish any one buffer
size as being the best predictor of wetland disturbance
(Table 3). This makes it very difficult to determine
patterns regarding which land-cover buffer size was
most related to disturbance. Pearson correlation coeffi-
cients between percent agricultural land and stressors
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Fig. 6 Observed water column
total phosphorus (TP) versus
multiple regression model pre- -
dicted TP in the estuarine-woody =]
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were all within a few hundredths of each other for the
different buffer sizes (Table 4). Thus, at the national
scale surveyed by the NWCA, it does not appear that
any one of the tested buffer sizes performs significantly
better than another, and we built all of our models using
the 1000-m landscape buffer data as it had slightly
higher correlations and integrated a larger surface area.
Brazner et al. (2007) studied the responsiveness of Great
Lakes wetland indicators at multiple spatial scales and

100 1000

Model fitted TP (ug/L)

found that most biological assemblages responded to
disturbances characterized at larger spatial scales
(1000 m and whole-watershed scale), and that the 100-
m buffer scale was relatively uninfluential. Since the
1000-m scale is the largest we tested here, we cannot
rule out the possibility that still larger spatial scales
would improve predictions even for the VMMI. It
would have been interesting to test watershed scale
variables with our data but it was not logistically feasible

Table 6 Significant logistic regression models predicting presence/absence of alien species. Numbers are the regression coefficients (odds
ratios) for the significant disturbance variables in each model (variable codes are given in Table 2). R? is McFaddens R? for logistic regression

Subpopulation ~ R? Fill Harden =~ VegRemoval VegReplace Y%Agr  %Dev 9oImp PopDen  RoadDen
National 0.15 1.30 1.29* 1.13 1.29* 0.73* 1.30*
CPL 0.07 1.33* 1.21* 1.16
EMU 0.23 2.55 3.05 2.07*

w 0.10 1.66

EH 0.07 1.37 3.17*

EW 020 278 0.20 5.08

PRLH 0.12 1.25% 1.23* 3.27

PRLW 0.11 1.46* 1.22% 0.62* 1.75%
Depression 0.11 2.06 1.17 0.53 1.61*
Flats 0.14 1.32 1.43*

Riverine 0.08 1.43 1.23

*Variable significant in model at p < 0.001, all other variables significant at p < 0.05
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Table 7 Significant logistic regression models predicting wetland
soil lead concentration above/below a background concentration
of 35 mg/kg. Numbers are the regression coefficients (odds ratios)

for the significant disturbance variables in each model
(subpopulation codes are given in Table 1, variable codes are
given in Table 2). R* is McFaddens R? for logistic regression

Subpopulation R Fill VegRemoval Yo Agr %Dev YoImp %Rec PopDen HydroMod
National 0.1 0.87 1.12 231%

CPL 0.07 2.67*

EMU 0.11 0.73 2.29%

IPL 0.34 7.40%

W 0.11 1.26*
EH 0.16 2.22% 1.34
PRLH 0.19 0.81 0.44 4.34%*

PRLW 0.07 0.83 2.11%

Depressions 0.21 0.52 0.79 0.41 4.85%

Riverine 0.08 2.73%

*Variable significant in model at p < 0.001, all other variables significant at p < 0.05

to delineate watersheds for all 1138 sites. On the other
hand, Rooney and Bayley (2011) and Rooney et al.
(2012) reported that small buffers and local conditions
were better predictors of plant diversity and plant IBI
scores in Alberta wetlands than were larger buffers and
landscape condition, and Galatowitsch et al. (2000)
found local disturbance more influential to plant com-
position in Minnesota prairie wetlands than distal dis-
turbance. Studies that have compared multiple wetland
taxonomic groups (e.g., plants, amphibians, macroin-
vertebrates) have found that different organisms respond
to different aspects of disturbance at different scales
(e.g., Mensing et al. 1998; Findlay and Houlahan
1997; Brazner et al. 2007) which must be taken into
account for effective conservation planning.

Disturbance-response relationships

The generally low percentage of models having signif-
icant R* and the wide variation in predictor variables
selected suggests that stressor-response relationships
vary considerably across the diversity of wetland types
and landscape settings found across the conterminous
US. Of the 72 possible models, 12 were significant
when adjusted for multiple comparisons and only five
explained over 30% of the variance (adjusted R*>0.3)
(Table 5). The composition of the significant predictor
disturbance variables incorporated into each model var-
ied widely by subpopulation and response variable. The
relatively low R? values for significant relationships are
not surprising, when considering the large scale of the
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NWCA. The wide spatial variance and range of different
natural and anthropogenic factors that can affect the
response variables likely make it impossible to achieve
high R? values with these kinds of regression models. In
addition, some of the wetland subpopulations, in partic-
ular the estuarine ones, had a high proportion of com-
paratively low-disturbance sites (based on the NWCA
disturbance gradient) leaving little signal to model
(Herlihy et al. 2019). We are not aware of any other
wetland analyses at the spatial scale of the NWCA, but
in similar large-scale lake and stream survey analyses,
water chemistry-disturbance relationships rarely had R’
values over 0.4 and were more typically in the 0.2-0.3
range (Herlihy et al. 1998, Herlihy et al. 2013; Herlihy
and Sifneos 2008; ). With large comparative datasets as
the NWCA, R* values < 0.1 can be statistically signifi-
cant due to large sample sizes, leaving open the matter
of their ecological significance.

Despite the large-scale and the accompanying vari-
ability of the NWCA, we were able to build significant
stressor response models for the VMMI, nationally and
for six of the 11 wetland subpopulations. Significant
subpopulation models included two ecoregions (EMU,
R*=0.374, and W, R* = 0.260), two NWCA aggregated
wetland types (PRLH, R*=0.235, and PRLW, R*=
0.248), and two HGM classes (flats, R*=0.397, and
riverine, R* = 0.229) (Table 5). All the disturbance var-
iables we assessed were significant in one of the VMMI
regression models except for hardening. Percent agri-
culture and ditching were the variables present in the
majority of VMMI models. Adjacent agriculture would
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likely provide propagule sources to wetlands, and both
agriculture and ditching could provide dispersal vectors
into wetlands; these two factors (propagule abundance
and dispersal routes) have been identified as the two
main ways in which adjacent land use affects wetland
plant communities (Houlahan et al. 2006). Note that the
VMMI was developed using NWCA least- and most-
disturbed sites to select and score individual vegetation
metrics (Magee et al. 2019a) so it may be more tuned to
the field-based stressor gradient than the other response
indicators. Least- and most-disturbed NWCA sites were
defined, in part, using indices calculated from the
NWCA buffer and heavy-metal data but not GIS land-
scape measures or water chemistry (Herlihy et al. 2019).

Other researchers have found stronger correlations
between wetland vegetation condition and disturbance
in smaller scale surveys. In Ohio, Stapanian et al.
(2013) analyzed 20 disturbance variables from 149
wetlands to predict a vegetation index of biotic integ-
rity (IBI). They found a model R* of 0.61 for emergent
wetlands, 0.54 for forested wetlands, but no significant
model for shrub wetlands. They reported that the IBI
was better predicted by wetland-scale measures, spe-
cifically substrate and habitat disturbance, as opposed
to measures of the surrounding landscape. However,
Mack (2006) reported regression models of similar
strength as Stapanian et al. (2013) for the same three
Ohio wetland classes relating the vegetation IBI to a
landscape disturbance index based only on remote
sensing data. In Florida, a floristic quality assessment
index (FQAI) for 75 depressional herbaceous wetland
systems was related to adjacent 100-m buffer land-use
intensity by Cohen et al. (2004). They reported an R*
of 0.48 with similar results across northern, central,
and southern Florida ecoregions. Plant richness was
correlated with road density and forest cover using
multiple regression in Southeastern Ontario wetlands
with similar R? results (0.56-0.63) across a range of
buffer sizes from 250 to 2000 m (Findlay and
Houlahan 1997). We think the difference in correlation
strength observed in the NWCA compared to these
smaller scale surveys has to do with the degree of
heterogeneity in wetland types and landscape setting.
In a larger scale survey of Great Lakes wetlands,
Brazner et al. 2007 found relationships between wet-
land vegetation and disturbance variables of similar
strength to those we observed in the NWCA. They
found that percent row crop agriculture and develop-
ment were the most important predictors.

We did not find significant national models for per-
cent aliens, soil P, soil lead, TP, or TN, and neither
percent aliens nor soil P concentration had significant
models for any of the subpopulations. However, signif-
icant models for TP, TN, and soil lead were obtained for
a few individual wetland subpopulations. Soil and water
chemistry may be more strongly related to factors out-
side the scope of the site-level and landscape variables
assessed in the NWCA. For example, in a more detailed
analysis of the NWCA water chemistry data, Trebitz
et al. (2019) found the strongest relationships between
water quality and land use at the basin level (12-digit
hydrologic unit code), rather than the 200—-1000-m
buffers used for NWCA GIS data. Comparative studies
of water chemistry across wetlands of the Laurentian
Great Lakes have likewise found water quality respon-
sive to LULC across large spatial scales (Crosbie and
Chow-Fraser 1999; Trebitz et al. 2007). Houlahan and
Findlay (2004) also concluded that effects of land use on
wetland sediment and water quality can extend over
comparatively large distances, and that effective conser-
vation would not be achieved with the creation of nar-
row buffer zones alone. It is also likely that responses to
disturbance for soil and water chemistry are more com-
plex than simple linear relationships with land-cover
composition or the NWCA indices describing site-
level disturbance intensity. Trebitz et al. (2007) utilized
an index of agricultural intensity based on principal
components analysis that had stronger relations to wet-
land nutrient concentrations than those reported by
others in the same region using simple percent agricul-
ture as a disturbance measure.

Based on results of the multiple regression models, it
appears that wetland vegetation condition was more
strongly related to both the site-level and landscape-
level disturbances measured in the NWCA than were
the other five response variables. It should be emphasized
that our aim in these multiple regression analyses was to
look for large-scale associations between wetland distur-
bance and response variables, rather than to build predic-
tive models of the response variables. A thorough predic-
tive model would likely require the addition of natural
driver variables (e.g., hydroperiod, temperature, eleva-
tion) to the model to improve model performance by
accounting for underlying natural gradients and separat-
ing them from disturbance effects (Brazner et al. (2007)).

We chose multiple regression for evaluating
disturbance-response relationships because it yields re-
sults that are easy to compare across response variables
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and wetland subpopulations. In our analyses, we address
the influence of natural factors by using different wet-
land subpopulations to minimize within-group variance
(Herlihy et al. 2019). It is also important to note that our
results focus only on one set of predictor variables that
might be used to describe the response variables. Our
analysis does not imply that these disturbances are caus-
al variables nor that they are necessarily the “best” set of
predictor variables.

Site-level versus GIS landscape disturbance variables

The best multiple regression models included both site-
level and landscape disturbance variables. However, we
were also interested in examining whether regression
models based solely on site-level field data performed
differently than models based solely on GIS landscape
variables (Fig. 4). Across all six response variables and
all subpopulations examined, landscape-only models
and site-level-only models often explained little of the
variance (R* < 0.2). In the five cases where either type of
model had an R? over 0.3, there was no clear pattern of
which performed better (landscape performed better
three times, site-level twice). Overall, landscape-only
models tended to have about 0.05-0.1 higher R” than
site-level-only models but that was typically a difference
of ~0.15 versus 0.05. Our analyses suggest that both
scales of disturbance data are important in predicting
wetland responses.

Predicting alien plant presence and soil lead in wetlands

We were able to build significant national and subpopu-
lation logistic regression models predicting site presence/
absence of alien species and soil lead above/below the
NWCA background concentration of 35 mg/kg, despite
the fact that we could not build a significant national linear
regression model for either of them as continuous vari-
ables. It may be that anthropogenic disturbance predicts
whether alien species or lead gets into the wetland to
begin with but that there is a very different set of factors
that explain the actual percentage cover of alien species or
soil lead concentrations. For example, local biogeochem-
ical processing and hydrology may be what explains lead
concentration once it is actually present in the wetland.
Similarly, the actual percentage of alien cover may be
driven primarily by within-wetland factors such as resis-
tance to their establishment by other plants and not dis-
turbance variables.

@ Springer

Landscape percent agriculture was the most common
variable in the logistic regression models predicting the
presence/absence of alien plant species and is the most
universal indicator, among our study variables, of the
potential for alien species invasions. The site-level dis-
turbance indices for filling/erosion and hardening were
also significant predictors. All three of these variables
were in the national model and one, two, or all three of
them were retained as predictors in models across the
various wetland subpopulations. All of the tested distur-
bance variables strongly reflect human influence and are
possible pathways for alien species to get into the study
wetlands, filling with soil from outside the wetland
potentially introduces seed sources, and hardening dis-
turbs the native plant community and potentially allows
adventive species a competitive advantage (Hobbs and
Huenneke 1992; Mclntyre and Lavorel 1994).

For predicting the occurrence of wetlands with sur-
face soil lead above background concentrations, human
population density in the 1000-m landscape buffer
around the study wetland was the most significant var-
iable, with the highest logistic regression odds ratios.
This was somewhat surprising in that we initially
thought that road density might be a stronger predictor
due to the legacy effect of leaded gasoline. The GIS road
layer, however, does not discriminate among road types
(e.g., freeway versus back road), so perhaps population
density is a better proxy for traffic volume than road
density. Road density did not appear in any of the lead
models. While several other disturbance variables were
retained in one or more predictive models, none ap-
peared as frequently as population density and their
odds ratios were not nearly as high.

Summary and conclusions

The landscape disturbance indicators were highly correlat-
ed among the 200-, 500-, and 1000-m radius circular
landscape buffers and gave similar results when related
to response indictors, but the larger 1000-m buffer gener-
ally gave slightly stronger predictions. Thus, only the
1000-m buffer data were used for subsequent analyses.
Disturbance-response models built using only landscape
variables or only site-level variables often explained only a
small portion of the variance in the response variable (R* <
0.2). Overall, landscape-only models tended to have about
0.05-0.1 higher R? than site-level-only models. Our anal-
yses suggest that both types of disturbance data are
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important in predicting wetland responses as the strongest
regression models contained both site-level and landscape
disturbance variables. The VMMI was the response vari-
able that was most related to the disturbances we assessed
(national model R*=0.251). Percent agriculture and
ditching were the disturbance variables that occurred in
most of the VMMI models across the different wetland
subpopulations. National multiple linear regression models
for the soil and water chemistry, and percent alien cover
responses, were not significant, but it was possible to build
significant models predicting presence/absence of alien
species and presence of soil lead above/below the NWCA
background concentration of 35 mg/kg in many of the
tested wetland subpopulations. This suggests that distur-
bance determines whether alien species and lead are pres-
ent but that processes other than disturbance (e.g., wetland
species composition, biogeochemistry) control their abun-
dance or concentration once present.
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