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Abstract Effective measurement of exposure to air pol-
lution, not least NO2, for epidemiological studies along
with the need to better management and control of air
pollution in urban areas ask for precise interpolation and
determination of the concentration of pollutants in
nonmonitored spots. A variety of approaches have been
developed and used. This paper aims to propose, develop,
and test a spatial predictive model based on multivariate
adaptive regression splines (MARS) and principle com-
ponent analysis (PCA) to determine the concentration of
NO2 in Tehran, as a case study. To increase the accuracy

of the model, spatial data (population, road network and
point of interests such as petroleum stations and green
spaces) and meteorological data (including temperature,
pressure, wind speed and relative humidity) have also
been used as independent variables, alongside air quality
measurement data gathered by the monitoring stations.
The outputs of the proposed model are evaluated against
reference interpolation techniques including inverse dis-
tance weighting, thin plate splines, kriging, cokriging,
and MARS3. Interpolation for 12 months showed better
accuracies of the proposed model in comparison with the
reference methods.

Keywords Airpollution .Spatial interpolation .MARS .
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Introduction

NO2 has adverse effect on human life and environment.
Numerous studies have shown the effect of NO2 expo-
sure on respiratory problems and deterioration of asth-
matic patients (Pollution 2010). NO2 is also one of the
main causes of acidification of soil and eutrophication of
lakes (Hedley and Bolan 2003; Bouwman et al. 2002).
In order to protect vulnerable people and reduce envi-
ronmental damages, reliable data/maps about the NO2

concentration, especially in urban areas, are needed
(Briggs et al. 1997).

Creating dense network of air quality stations to
measure NO2 concentration is not cost effective. So,
either of the following two approaches are used to
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calculate and/or estimate NO2 concentrations. The first
approach is based on the classical dispersion models.
These models use the laws of physics and determine the
NO2 concentration in a vicinity as a function of meteo-
rology, street geometry, receptor locations, traffic vol-
umes, and emission factors (Zheng et al. 2013;
Vardoulakis et al. 2003). Dispersion models are usually
based on empirical assumptions and parameters that
might not be applicable to all urban environments. For
example, they may require the roughness coefficient of
the urban surfaces and the gaps between buildings,
which are challenging to be obtained precisely for a
large area. Therefore, such models are not efficient to
be used in large scale (Zheng et al. 2013).

The second approach is to use interpolation methods
to determine NO2 concentrations in an area based on the
values measured by air pollution monitoring stations.
Various techniques have been used for air pollution
interpolation, including deterministic methods (e.g.,
IDW (inverse distance weighting) (Bell 2006), RBF
(radial basis function) (Deligiorgi and Philippopoulos
2011), nearest-neighbor and polynomial methods
(Isaaks and Srivastava 1989b)) and stochastic methods
(e.g., simple kriging (Wong et al. 2004), ordinary
kriging (OK) (Janssen et al. 2008), kriging with external
drift (Pearce et al. 2009), and universal kriging (Jerrett
et al. 2005)). The problem with these conventional
techniques is that their performance is heavily affected
by the number and spatial distribution of available mon-
itoring stations (Singh et al. 2011). In addition, previous
studies show that air pollution concentration in urban
areas varies by location, nonlinearly, and depends on
multiple factors such as meteorology, traffic, land use,
and urban structure (Zheng et al. 2013; Vardoulakis
et al. 2003). Also, air pollution at any point is affected
by the density of air pollution in the surrounding areas
(Dong and Liang 2014; Hao and Liu 2016). These
issues are rarely addressed in the conventional interpo-
lation models.

In order to address the shortcomings of the conven-
tional methods, various interpolation techniques have
been proposed in the literature. Among them, cokriging
(CK) and multivariate adaptive regression splines
(MARS) have been successfully applied on air pollution
interpolation problem. In CK approach, additional data
are provided and added to the interpolation calculations
as secondary variables (Singh et al. 2011; Isaaks and
Srivastava 1989a). Additionally, it exploits both the
autocorrelations and cross-correlations among all

involved variables including the target variable and the
predictor variables. Despite its benefits, it is not practical
to use more than two or three secondary variables in CK,
due to computational complexity (Wang et al. 2013).
MARS is another approach that has been used to im-
prove the accuracy of interpolation. In a study by
Shahraiyni et al. (2015), air pollutants have been inter-
polated using MARS and the performance is compared
with IDW, TPSS (thin plate splines), kriging, and CK.
Their MARS model utilizes latitude, longitude, and
elevation, as independent variables.

The main goal of this study is to increase the accura-
cy of interpolation of NO2 pollutant based on the mea-
surements of air pollution monitoring stations by adding
several predictor variables to MARS. However, the
main challenge is that when a large number of predictor
variables are introduced to MARS, the model cannot
adjust well and overfits (Kartal Koc and Bozdogan
2015). This situation even worsens when MARS is
going to be used for solving an interpolation problem,
like air pollution interpolation, with limited number of
sample points in a large study area.

In order to increase the accuracy of interpolation and
generating high-resolution maps of NO2, this study
develops and suggests a new model called PCAMARS
which is an extension to MARS by PCA (principal
component analysis). PCAMARS provides the possibil-
ity of using multiple secondary parameters for the inter-
polation of air pollution concentration. The proposed
method in this study, in addition to the monitored NO2

data, gathered by air pollution monitoring stations, uses
meteorological, topographical, and urban data as auxil-
iary inputs. It also takes the spatial effect into account by
considering the spatial correlation between NO2 and the
secondary variables.

PCAMARS was implemented and tested in Tehran
(the capital of Iran), which has substantial air pollution
problems, as case study area. The results of PCAMARS
have been compared with IDW, TPSS, OK, CK, and
MARS.

Theory

The presented interpolation method in this study
has been developed based on MARS and PCA.
The basics of the two methods are briefly described
in this section.
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MARS

MARS, as a nonlinear and nonparametric regression
method, was first introduced by Friedman (Friedman
1991) in 1991. MARS models nonlinear interaction
between the inputs and the output of a system using a
series of piecewise linear segments (splines) of different
gradients (Zhang and Goh 2013). These splines are
known as basis functions (BFs), which can be consid-
ered either linear or cubic (for simplicity, only the piece-
wise linear function is described here). The end points of
the segments are called knots. A knot marks the end of
one region of data and the beginning of another (Zhang
and Goh 2013). The result of using such a structure
brings high flexibility to MARS that can handle both
linear and nonlinear behavior (Zhang and Goh 2016).

MARS aims to model a function, of y = f(x), where
x = (x1, x2, x3,⋯, xm,⋯, xp) is the vector of p input var-
iables and y is the output variable in the form of Eq. (1),
as the weighted sum of piecewise linear BF, Bi, where
each ci is a constant coefficient and c0 is the intercept.

f̂̂ Xð Þ ¼ ∑
k

i¼1
ciBi Xð Þ þ c0 ð1Þ

MARS generates BFs by stepwise searching through
an adaptive regression algorithm (Zhang and Goh
2016). The MARS implementation procedure consists
of two phases, including a forward phase and a back-
ward phase. The forward phase creates an initial collec-
tion of BFs in the form of Eq. (1). In this phase, the
range of output variable is partitioned into several
groups, where for each partition, a separate BF is con-
sidered in the form of ciBi(X). The forward phase tries to
find the best possible location for the knots by minimiz-
ing the sum of squares error (SSE) of the overall model
(Rounaghi et al. 2015). The first phase normally results
in an over-fit model. Then, the backward phase prunes
the least effective BFs (Zhang and Goh 2013).

The backward step starts with the over-fit model, f̂
Xð Þ withm BFs, resulted from the first step as input and
iteratively eliminates a BF from the current model to
create models with m − 1, m − 2,… , 2, 1, 0 BFs, re-
spectively. In each iteration, a BF whose removal will
result in the minimum increase in the overall SSE is
eliminated. Eventually, the model with the lowest Gen-
eralized Cross Validation (GCV) value will be selected
as the final MARS model (Shahraiyni et al. 2015). The
GCV equation is a goodness-of-fit test that penalizes

large number of BFs and serves to reduce the chance
of overfitting. GCV is defined as Eq. (2), where m is the
number of BFs, d is penalizing parameter (the penalty
for each basis function), n is the number of observation,
and f(xi) denotes the predicted values of the MARS
model (Zhang and Goh 2013). It can be said that d is a
smoother variable that controls the trade-off between
simple and complex models (Rounaghi et al. 2015).

GCV ¼
1
�
n∑

n
i¼1 yi− f xið Þ½ �2

1− mþd� m−1ð Þ=2
n

h i2 ð2Þ

Principle component analysis

High dimensional input space, correlation among vari-
ables, and scarcity of training samples can cause prob-
lems for the learning processes (Juhos et al. 2008). This
problem, particularly when the goal is to spatially inter-
polate values for many locations within a city based on
few observation points, can be exacerbated and even in
some cases, it can prevent the model from proper train-
ing. Dimension reductionmethods can be used to reduce
many correlated variables into a number of uncorrelated
variables.

The dimension reduction by PCA leads to transfor-
mation of the input variables into a set of new uncorre-
lated variables known as the principal components,
while trying to maintain the maximum variation and
dispersion in the data. Equations (3) and (4) define the
linear transformation from the input space to the princi-
pal component space, where P is an orthogonal linear
transformation matrix, Z is the matrix of original data in
which each row represents a variable, and Y is a matrix
of transformed variables where each row represents an
uncorrelated principle components (Markhvida et al.
2018).

PZ ¼ Y ð3Þ

p1;T1
⋯ p1;Tm

⋮ ⋱ ⋮
pm;T 1

⋯ pm;Tm

2
4

3
5 zT1 x1ð Þ ⋯ zT1 xnð Þ

⋮ ⋱ ⋮
zTm x1ð Þ ⋯ zTm xnð Þ

2
4

3
5

¼
y1 x1ð Þ ⋯ y1 xnð Þ
⋮ ⋱ ⋮

ym x1ð Þ ⋯ ym xnð Þ

2
4

3
5 ð4Þ
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The PCA obtains the transformation matrix P from the
eigenvalues (λ1,λ2, … ,λ1) of the covariance matrix of
the original variables. The rows of this matrix P are the
corresponding eigenvector (Ensor et al. 2017). The eigen-
vectors (principle components, PCs) determine the direc-
tions of the new space, and the eigenvalues determine their
magnitude. To decidewhich eigenvector(s) can be dropped
without losing too much information for the construction
of the lower-dimensional subspace, we need to inspect the
corresponding eigenvalues. The eigenvectorswith the low-
est corresponding eigenvalues bear the least information
about the distribution of the data and can be dropped
(Campos et al. 2018).

Materials and methods

Case study

The study area, Tehran (the capital of Iran), is located in
the northern half of the country (longitude between

35.56 and 35.83 N and latitude between 51.20 and
51.61E) with an area of almost 730 km2 (Fig. 1). Tehran
has a population of about 8.5 million. In the northern
parts, the city reaches to the Alborz Mountains and the
rest of the area is covered with hills and in some part
with flat plains. The average height of the city in the
northern, middle, and southern regions is 1700, 1200,
and 1100, respectively.

Air Quality Control Agency of Tehran municipality
has been measuring air pollutants such as CO, NO2,
SO2, O3, and PM10 using 21 air pollution monitoring
stations (Fig. 2a), and the outputs have been saved as
hourly averaged records. In general, spatial heterogene-
ity in concentrations varies among pollutants and
sources (Marshall et al. 2008). As an example, Fig. 2b
shows the NO2 air pollution concentration in Tehran at 9
AM on September 21, 2012, which illustrates that the
emission of NO2 in different locations, even among
adjacent stations, can vary significantly. The difference
between the maximum and the minimum amounts of
NO2 among stations is more than 50 μg/m3. In other

Fig. 1 Case study area, Tehran, Iran
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words, NO2 follows diverse patterns in different loca-
tions (e.g., station 1 and station 7) so that even nearby
stations may have dissimilar values.

Data

The hourly averaged observations of NO2 of the moni-
toring at a specific time were used in this study as the
dependent variable to be interpolated across the city
using the proposed model. The model, in addition to
the NO2 observations at the specific time, exploits some
independent variables to increase the accuracy of the
interpolation. Meteorological data, elevation, POI (point
of interest), road network structure, and population,
which represent the dynamism of urban areas (Zheng
et al. 2013; Honarvar and Sami 2018; Yu et al. 2016;
Zheng et al. 2015), were used as independent variables.

The meteorological conditions often have direct effect
on the local air quality in urban environment through
accumulation or ventilation of pollutants and regional
transport of clean or polluted air (Seo et al. 2018). There-
fore, meteorological observations, including air pressure,
temperature, relative humidity, and wind speed, were
collected from Iran Meteorological Organization and
were used as input variables. Elevation has also consid-
erable influence on the air pollution patterns (Zheng et al.
2013), especially in hilly cities like Tehran. In this regard,
digital evaluation model of Tehran was used as another
independent variable in this study.

Additionally, road network, as an indicator of traffic-
related pollutants, as well as urban blocks with population
data and POIs, as indicators of human activity–related air
pollutants, were considered as independent variables in the
model. Among them, the category of POIs and their

density in a region indicate the land use and the function
of the region (Hsieh et al. 2015; Yu et al. 2016; Zheng et al.
2013) which can directly affect the local air pollution. Four
classes of POIs, including gas and petrol facilities (having
strong positive correlations with NO2 pollutant) and green
areas and sport fields (having strong negative correlations
with NO2) were retrieved from Open Street Map and used
in the model.

In the proposed model, the data is converted into
raster of 500-m resolution. The whole analysis is per-
formed in the same resolution, and finally, the output
interpolation map is generated.

Model

The overall structure of the proposed model for interpo-
lation of NO2, called PCAMARS, is shown in Fig. 3. As
the figure shows, the average hourly measurement of
NO2 of the monitoring stations at a specific time togeth-
er with the respective independent parameters are fed to
the model. These data are processed in three steps and
eventually the interpolation map of NO2 is generated
(Fig. 3).

In the first step, the raw data are processed and
transformed to the proper structure that is needed for
the second step, using GIS analytic methods. This step
turns existing vector and raster data into raster layers
with the same resolution. Accordingly, the following
processes are applied to different data.

& Meteorological parameters including temperature,
pressure, relative humidity, and wind speed are col-
lected continuously frommeteorological monitoring
stations. Therefore, to enter these parameters as

Fig. 2 Monitoring stations and spatial variability of NO2 in Tehran. aDistribution of air qualitymonitoring stations in Tehran. bNO2 reports
from 21 stations in Tehran at 9 AM on September 21, 2012
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independent variables into the model, meteorologi-
cal data are interpolated into raster data using IDW
with optimal power.

& Two independent variables, namely, elevation and
average elevation of the region, are extracted from
the DEM through resampling and focal statistics,
respectively. The proper radius of focal statistics
analysis is considered to be equal to the distance
that generates the maximum correlation between
NO2 and the neighborhood elevations at the moni-
toring stations. To determine the optimal radius,
Bivariate Moran’s I index (Hu and Rao 2009) is
employed. The model starts with a low radius for
neighborhood selection and increases the radius at a
regular interval. The radius that maximize the value
of bivariate Moran’s I between the dependent and
independent variables (in this case, the dependent
variable is NO2 pollutant and the independent vari-
able is the elevation) will be used as the appropriate
radius for focal statistics analysis. The output of
focal statistics is the average elevation raster.

& The main roads, POIs, and urban blocks with
population are also entered as inputs. The idea
is that the density of these parameters at the
surroundings of each location significantly

influences the air pollution concentration at that
location. Therefore, in order to calculate the
density of the surrounding roads, POIs, and pop-
ulation at each location, KDE (Kernel Density
Estimation) analysis (De Smith et al. 2007;
Bailey and Gatrell 1995) was applied on each
of these input layers. To calculate KDE, we
needed to determine the search radius. The opti-
mal search radius is also calculated by the max-
imization of the bivariate Moran’s I and a den-
sity raster for each input layer is created.

The outputs of the first step are 14 variables,
pertaining to 4 meteorological parameters (wind
speed, temperature, pressure, and relative humidity),
4 POI density variables (gas station density, petrol
station density, parks and green area density, and
sport fields density), 2 elevation parameters (average
elevation and DEM), population density, and road
network density, as well as the coordinates (latitude
and longitude) variables. Therefore, at each pixel, 14
input values exist as input to the next step. Since each
of the 14 values has different range scales, they are
normalized using min–max normalization technique
(Hosseini and Kaneko 2011).

Fig. 3 The model architecture
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In the second step, PCA is used to reduce the dimen-
sionality of the data and extract uncorrelated features
from the input variables. The PCA receives the 14
independent variables from the first step and calculates
14 principle components as output. Then, the first three
principal components that encompass high percentages
of the total variance (in most cases more than 80%) are
fed as input to the third step.

In the third step, a MARS model is trained using the
value of NO2 at the monitoring stations and the three
principal components of their respective pixels. The
forward pass improves the performance of the model
by adding BFs and selecting appropriate place for the
knots. This improvement is achieved by lowering the
SSE. Then, pruning phase eliminates the least-
contributing terms, so that at the end, the final MARS
model which has the best GCVis determined. At the end
of this step, the interpolation model is ready.

Using the interpolation model, the value of NO2 for
all the pixels are estimated, based on the 14 independent
variables. Having the NO2 values for all pixels, the
output NO2 map of the area is generated.

Evaluation measure

Leave-One-Out Cross Validation (LOOCV) (Wong
et al. 2004) was used in this study to calculate the
performance of PCAMARS for interpolation of NO2

across the study area. LOOCV removes one of the
samples (observations of one of the monitoring stations)
from the dataset and trains the model using the remain-
ing samples. While the observation values for NO2 at
the removed sample point is known (yi), the expected
value is calculated from the trained model (yi). This
process continues for other sample points and finally
the root-mean-square error (RMSE) is computed ac-
cording to Eq. (5).

RMSE ¼ n−1∑n
i¼1 yi−yi

� ���� ���2
� �1=2

ð5Þ

Results and discussion

In order to demonstrate and evaluate the proposed mod-
el, it was implemented and ran in the case study area.
For the evaluation purpose, the PCAMARS has been

compared with IDW, TPSS, kriging (OK), cokriging
(CK), and MARS3.

In order to validate the model, the data for 12months,
from September 2012 to August 2013, were used so that
for each month; ten random times during the month
were selected. For each time, the respective average
hourly NO2 measurements of the 21 monitoring stations
were retrieved from the database. The NO2 measure-
ments along with the meteorological data of the respec-
tive time, elevation, POI, road network and population
were feed to the model. As an example, Fig. 4 demon-
strates the normalized maps of input parameters on
January 20, 2013. The model was trained for that spe-
cific time and the output interpolation map was gener-
ated. Therefore, the model was trained 120 times and
120 NO2 interpolation maps were produced. LOOCV
was used to calculate the RMSE of NO2 interpolation
for each specific time (see BEvaluation measure^).

IDW, TPSS, OK, CK, and MARS3 along with the
proposed PCAMARSmodel were calibrated and trained
in the same condition for the selected 120 times. The
input data for IDW, TPSS, and OK was latitude and
longitude, but for CK and MARS3, elevation was also
used as secondary data. The optimal weight for IDWand
smoothing parameter for TPSS were equal to 1 and 1e+
20, respectively. Furthermore, the best semi-variogram
for OK and CKwas spherical model. Similarly, MARS3
and PCAMARS were trained and their proper models
were determined.

The RMSE of each model was calculated afterward,
and the NO2 distribution map was generated for Tehran
(Fig. 5). RMSE values of all techniques are shown in
Tables 1 and 2. Table 1 presents the average RMSE on a
monthly basis, and Table 2 shows the average RMSE of
all 12 months.

According to Tables 1 and 2, the RMSE of the TPSS
in comparison with other methods is peculiarly high.
Based on literature, TPSS works well for the production
of smooth surfaces from a large number of samples, but
when large variations over short distances occur, the
performance of TPSS, drops dramatically (Institute
1996). Due to the drastic changes of NO2 emissions in
Tehran (Fig. 2), it can be concluded that TPSS is not a
suitable method for interpolation of this pollutant in this
city.

CK has performed better than other conventional
methods. In Fig. 5, the impact of input parameters in
the output of models is visible. With closer exploration
of NO2 map, created by CK in Fig. 5, the effect of
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elevation can be seen. The northern part of Tehran is
elevated, and as we move towards the south, this eleva-
tion gradually decreases. This change in the pattern of
elevation is entirely outlined in the output of CK. On the
other hand, the CK does not explicitly consider local
variations through correlation parameters. For this rea-
son, the interpolation created by CK shows a strong
smoothing effect (Wang et al. 2013).

Comparing the results of the five benchmark models,
namely, IDW, TPSS, OK, CK, and MARS3, showed

that in most cases, MARS3 had better accuracy. This
higher accuracy is a sign of the ability and capability of
MARS in the domain of modeling and spatial predic-
tion. This output also is in line with the results of
Shahraiyni et al. (2015). But, as it can be seen, the
supremacy of MARS3 is not absolute (Table 1).
MARS3 has just three predictor variables including,
latitude, longitude, and elevation which are not enough
to comprehend the underlying pattern of NO2

distribution.

Fig. 4 Normalized maps of input parameters on January 20, 2013
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According to Tables 1 and 2, PCAMARS has shown
significant superiority over the five benchmark
methods. In PCAMARS, input parameters are richer in
terms of data diversity. By examining the output of
PCAMARS, we can see that the allocation pattern of
NO2 has been significantly influenced by input param-
eters and spatial effect. This makes PCAMARS

fundamentally different from other techniques. There
are 3 months (October, April, and August) among
12 months in which the accuracy of MARS3 was higher
than PCAMARS. It should be noted that MARS is a
novel technique in the domain of interpolation, so there
are not many researches about its performance and
behavior. Based on the experience of the authors, one

Fig. 5 Spatial prediction of NO2 by all techniques on January 20, 2013
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of the main reasons that could be incorporated in yield-
ing the ascendency of MARS3 over PCAMARS, in
some cases, is the number of samples in association with
the number and type of predictor variables. The pro-
posed architecture works very well especially by reduc-
ing multi-collinearity problem and can incorporate sev-
eral secondary predictor variables. Another advantage
of PCAMARS over MARS3 is that PCAMARS con-
siders the spatial correlation between the dependent
variable and independent variables by exploiting
Moran’s I index for calculation of the parameters maps
(see BModel^).

The output map of all techniques in Fig. 5 confirms
each other very well. For example, in the northern and
northwestern regions, there is a high level of NO2 emis-
sions. There is also a decrease of NO2 concentration in
the southern and southeastern of Tehran. It should be
noted that the number of classes and the classification
range of display in maps of Fig. 5 have been equalized
for all techniques.

PCAMARS has the ability to consider the complex
relationship between the input variables. The final
output of PCAMARS for spatial modeling of NO2

concentration on December 21, 2013 was obtained as
Eq. (6). It is notable that BF1, BF2, and BF4 only
show the effects of one variable in the form of basis
function for NO2 pollutant concentration. But BF3
represents the effect of interaction of two variables
on the NO2 concentration, including that the intensity
of BF2 is approximately two and four times more
than BF1 and BF3, respectively.

NO2 ¼ 76:358−16:112� BF1þ 32:65

� BF2−8:6937� BF3þ 44:605� BF4
BF1 ¼ max 0; x1þ 2:3324ð Þ
BF2 ¼ max 0; 0:55517−x2ð Þ
BF3 ¼ BF2�max 0; 2:8871−x1ð Þ
BF4 ¼ max 0; x1−2:8871ð Þ

ð6Þ

Generally, the number of input parameters is not a
limitation for MARS, but the results of this study indi-
cated that incorporating a large number of predictor var-
iables with paucity of samples, specifically when there is
no precise information about the exact functional rela-
tionships among the variables, yields no satisfactory per-
formance (Koc and Bozdogan 2015). For this reason,
PCA has been employed to achieve higher accuracy.

In terms of accuracy, by utilizing PCAMARS, we are
able to predict NO2 more accurately. The accuracy of
PCAMARS combined with its low computational cost
makes it a good tool to measure the exposure to NO2

Table 1 RMSE values

September 2012 October 2012 November 2012 December 2012 January 2013 February 2012

IDW 28.07 27.08 41.12 30.22 26.80 38.24

TPSS 44.43 44.24 94.75 80.31 46.37 62.44

OK 25.02 25.22 33.86 25.26 24.23 34.85

CK 23.33 22.56 30.88 23.17 21.75 30.82

MARS3 21.40 20.21 28.90 18.70 20.63 30.06

PCAMARS 17.26 20.57 27.98 16.74 19.36 28.83

March 2013 April 2013 May 2013 June 2013 July 2013 August 2013

IDW 19.67 14.05 17.45 20.15 22.76 33.70

TPSS 32.66 18.20 23.25 27.85 33.80 41.63

OK 17.24 13.54 15.67 20.93 23.44 35.98

CK 15.93 11.87 14.46 19.46 19.43 31.35

MARS3 13.47 10.15 11.50 17.78 17.20 19.56

PCAMARS 10.55 10.39 11.47 14.46 15.87 25.39

Table 2 Twelve-month
average RMSE of
methods

Method Average RMSE

IDW 26.61

TPSS 45.83

OK 24.61

CK 22.08

MARS3 19.13

PCAMARS 18.24
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appropriately. In this context, the authority will be able
to make citizens cognizant of the density of NO2 in
different parts of city. Therefore, citizens can reduce
their exposure to NO2 as much as possible. This is
especially relevant for vulnerable groups such as chil-
dren, elderly people, asthmatics, or people suffering
respiratory disease (Contreras and Ferri 2016). Addi-
tionally, the accurate maps of NO2 can be used as an
important monitoring tool for in epidemiology studies
(Robinson et al. 2013).

Conclusion

Miscellaneous models have been proposed for interpo-
lation and estimation of air pollution concentration. In
this paper, a new model called PCAMARS has been
introduced for interpolation of NO2 in urban areas. The
proposed method is simple, accurate, and easy to imple-
ment. PCAMARS provides the ability to collectively
exploit several (secondary) independent variables for
interpolation of the observations of air pollution moni-
toring stations. Such capability is significantly important
for the study areas where the number and distribution of
monitoring stations are not sufficient for accurate inter-
polation. Additionally, the proposed model takes the
spatial effect into account by considering the spatial
correlation between NO2 and the secondary variables.
The performance of the proposed model was measured
against five methods, including IDW, TPSS, OK, CK,
and MARS3, as standard methods, for interpolation of
NO2 pollutant in Tehran, with an area of 730 km2 and
only 21 monitoring stations. The results showed prom-
ising performance of PCAMARS in comparison with
other methods.

As future studies, the performance of the model for
interpolation of other air pollutant should be investigat-
ed thoroughly. Moreover, the accuracy of model can be
improved by the utilization of more advanced dimen-
sion reduction techniques such as random forest.
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