Skip to main content
Log in

Validation and determination of nine PFCS in surface water and sediment samples using UPLC-QTOF-MS

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, an analytical method for the routine determination of nine perfluorinated compounds (PFCs), using ultra performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer (UPLC-QTOF-MS), was developed, validated, and used for their assay in surface water and sediments. The method yielded good linearity with a correlation coefficient (R2) ranging between 0.991 and 0.999 for all the compounds investigated. Limits of detection (LOD) ranged between 0.02 and 0.08 ng/l, while the limit of quantification (LOQ) ranged from 0.065 to 0.261 ng/l. Recovery studies were carried out in replicate assays, and percentage recoveries ranged between 56 and 112% for the nine perfluorinated compounds investigated. The method was applied to determine levels of perflurooctanoic acid (PFOA) and PFOS in surface water and sediment samples collected along the Plankenburg River in Stellenbosch, South Africa. Samples were pre-treated, extracted, and cleaned up via offline solid-phase extraction (SPE) procedures, using hydrophilic-lipophilic balance (HLB) C-18 cartridges. Levels of PFOA and PFOS found in surface water ranged between (12.8 ± 4.24 and 62.62 ± 4.86 ng/l) and (<LOD and 3.8 ng/l), respectively, while levels measured in corresponding sediment samples ranged between 0.14–0.33 ng/g (PFOA) and <LOD and 0.7 ± 0.013 ng/g (PFOS). Concentrations of PFOA and PFOS were suspected to be associated with anthropogenic activities in the vicinity of the sampling areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahrens, L., Norström, K., Viktor, T., Cousins, A. P., & Josefsson, S. (2015). Stockholm Arlanda Airport as a source of per-and polyfluoroalkyl substances to water, sediment and fish. Chemosphere, 129, 33–38.

    Article  CAS  Google Scholar 

  • Bao, J., Jin, Y., Liu, W., Ran, X., & Zhang, Z. (2009). Perfluorinated compounds in sediments from the Daliao River system of northeast China. Chemosphere, 77(5), 652–657.

    Article  CAS  Google Scholar 

  • Barton, C. A., Kaiser, M. A., & Russell, M. H. (2007). Partitioning and removal of perfluorooctanoate during rain events: the importance of physical-chemical properties. Journal of Environmental Monitoring, 9(8), 839–846.

    Article  CAS  Google Scholar 

  • Benford, D., de Boer, J., Carere, A., di Domenico, A., Johansson, N., Schrenk, D., Schoeters, G., de Voogt, P., Dellatte, E. (2008). Opinion of the scientific panel on contaminants in the food chain on perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts. EFSA Journal, 653, 1–131.

  • Berger, U., & Haukås, M. (2005). Validation of a screening method based on liquid chromatography coupled to high-resolution mass spectrometry for analysis of perfluoroalkylated substances in biota. Journal of Chromatography A, 1081(2), 210–217.

    Article  CAS  Google Scholar 

  • Chen, H., Reinhard, M., Nguyen, V. T., & Gin, K. Y.-H. (2016). Reversible and irreversible sorption of perfluorinated compounds (PFCs) by sediments of an urban reservoir. Chemosphere, 144, 1747–1753.

    Article  CAS  Google Scholar 

  • Daso, A. P., Fatoki, O. S., & Odendaal, J. P. (2013). Occurrence of polybrominated diphenyl ethers (PBDEs) and 2, 2′, 4, 4′, 5, 5′-hexabromobiphenyl (BB-153) in water samples from the Diep River, Cape Town, South Africa. Environmental Science and Pollution Research, 20(8), 5168–5176.

    Article  CAS  Google Scholar 

  • EFSA, P. S. (2008). Perflurooctanoic acid (PFOA) and their salts. Scientific Opinion of the Panel on Contaminants in the Food Chain, The EFSA Journal, 653, 1–131.

    Google Scholar 

  • Ericson, I., Domingo, J. L., Nadal, M., Bigas, E., Llebaria, X., van Bavel, B., & Lindström, G. (2009). Levels of perfluorinated chemicals in municipal drinking water from Catalonia, Spain: public health implications. Archives of Environmental Contamination and Toxicology, 57(4), 631–638.

    Article  CAS  Google Scholar 

  • Fiori, J., & Andrisano, V. (2014). LC–MS method for the simultaneous determination of six glucocorticoids in pharmaceutical formulations and counterfeit cosmetic products. Journal of Pharmaceutical and Biomedical Analysis, 91, 185–192.

    Article  CAS  Google Scholar 

  • Fromme, H., Midasch, O., Twardella, D., Angerer, J., Boehmer, S., & Liebl, B. (2007). Occurrence of perfluorinated substances in an adult German population in southern Bavaria. International Archives of Occupational and Environmental Health, 80(4), 313–319.

    Article  CAS  Google Scholar 

  • Giesy, J. P., & Kannan, K. (2002). Peer reviewed: perfluorochemical surfactants in the environment. Environmental Science & Technology, 36(7), 146A–152A.

    Article  CAS  Google Scholar 

  • Guo, R., Sim, W.-J., Lee, E.-S., Lee, J.-H., & Oh, J.-E. (2010). Evaluation of the fate of perfluoroalkyl compounds in wastewater treatment plants. Water Research, 44(11), 3476–3486.

    Article  CAS  Google Scholar 

  • Higgins, C. P., & Luthy, R. G. (2006). Sorption of perfluorinated surfactants on sediments. Environmental Science & Technology, 40(23), 7251–7256.

    Article  CAS  Google Scholar 

  • Higgins, C. P., Field, J. A., Criddle, C. S., & Luthy, R. G. (2005). Quantitative determination of perfluorochemicals in sediments and domestic sludge. Environmental Science & Technology, 39(11), 3946–3956.

    Article  CAS  Google Scholar 

  • Hu, J., & Yu, J. (2010). An LC-MS-MS method for the determination of perfluorinated surfactants in environmental matrices. Chromatographia, 72(5–6), 411–416.

    Article  CAS  Google Scholar 

  • Jahnke, A., & Berger, U. (2009). Trace analysis of per-and polyfluorinated alkyl substances in various matrices—how do current methods perform? Journal of Chromatography A, 1216(3), 410–421.

    Article  CAS  Google Scholar 

  • Jain, D., & Basniwal, P. K. (2013). ICH guideline practice: application of validated RP-HPLC-DAD method for determination of tapentadol hydrochloride in dosage form. Journal of Analytical Science and Technology, 4(1), 9.

    Article  Google Scholar 

  • Lein, N. P. H., Fujii, S., Tanaka, S., Nozoe, M., & Tanaka, H. (2008). Contamination of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in surface water of the Yodo River basin (Japan). Desalination, 226(1–3), 338–347.

    Article  CAS  Google Scholar 

  • Lim, T. C., Wang, B., Huang, J., Deng, S., & Yu, G. (2011). Emission inventory for PFOS in China: review of past methodologies and suggestions. The Scientific World Journal, 11, 1963–1980.

    Article  CAS  Google Scholar 

  • Lin, Y., Liu, R., Hu, F., Liu, R., Ruan, T., & Jiang, G. (2016). Simultaneous qualitative and quantitative analysis of fluoroalkyl sulfonates in riverine water by liquid chromatography coupled with Orbitrap high resolution mass spectrometry. Journal of Chromatography A., 1435, 66–74.

    Article  CAS  Google Scholar 

  • Llorca, M., Farré, M., Picó, Y., & Barceló, D. (2009). Development and validation of a pressurized liquid extraction liquid chromatography–tandem mass spectrometry method for perfluorinated compounds determination in fish. Journal of Chromatography A, 1216(43), 7195–7204.

    Article  CAS  Google Scholar 

  • Loos, R., Gawlik, B. M., Locoro, G., Rimaviciute, E., Contini, S., & Bidoglio, G. (2009). EU-wide survey of polar organic persistent pollutants in European river waters. Environmental Pollution, 157(2), 561–568.

    Article  CAS  Google Scholar 

  • Martín, J., Rodríguez-Gómez, R., Zafra-Gómez, A., Alonso, E., Vílchez, J., & Navalón, A. (2016). Validated method for the determination of perfluorinated compounds in placental tissue samples based on a simple extraction procedure followed by ultra-high performance liquid chromatography–tandem mass spectrometry analysis. Talanta, 150, 169–176.

    Article  CAS  Google Scholar 

  • Moody, C. A., Kwan, W. C., Martin, J. W., Muir, D. C., & Mabury, S. A. (2001). Determination of perfluorinated surfactants in surface water samples by two independent analytical techniques: liquid chromatography/tandem mass spectrometry and 19F NMR. Analytical Chemistry, 73(10), 2200–2206.

    Article  CAS  Google Scholar 

  • Mudumbi, J., Ntwampe, S., Muganza, F., & Okonkwo, J. (2014). Perfluorooctanoate and perfluorooctane sulfonate in South African river water. Water Science and Technology, 69(1), 185–194.

    Article  CAS  Google Scholar 

  • Naile, J. E., Garrison, A. W., Avants, J. K., & Washington, J. W. (2016). Isomers/enantiomers of perfluorocarboxylic acids: method development and detection in environmental samples. Chemosphere, 144, 1722–1728.

    Article  CAS  Google Scholar 

  • Noorlander, C. W., van Leeuwen, S. P., te Biesebeek, J. D., Mengelers, M. J., & Zeilmaker, M. J. (2011). Levels of perfluorinated compounds in food and dietary intake of PFOS and PFOA in the Netherlands. Journal of Agricultural and Food Chemistry, 59(13), 7496–7505.

    Article  CAS  Google Scholar 

  • Olsen, G. W., Burris, J. M., Burlew, M. M., & Mandel, J. H. (2003). Epidemiologic assessment of worker serum perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations and medical surveillance examinations. Journal of Occupational and Environmental Medicine, 45(3), 260–270.

    Article  CAS  Google Scholar 

  • Opeolu, B., Fatoki, O., & Odendaal, J. (2010). Development of a solid-phase extraction method followed by HPLC-UV detection for the determination of phenols in water. International Journal of the Physical Sciences, 5(5), 576–581.

    CAS  Google Scholar 

  • Pan, G., & You, C. (2010). Sediment–water distribution of perfluorooctane sulfonate (PFOS) in Yangtze River Estuary. Environmental Pollution, 158(5), 1363–1367.

    Article  CAS  Google Scholar 

  • Paulse, A., Jackson, V., & Khan, W. (2009). Comparison of microbial contamination at various sites along the Plankenburg: and Diep Rivers, Western Cape, South Africa. Water SA, 35(4), 469–478.

    Article  CAS  Google Scholar 

  • Perra, G., Focardi, S. E., & Guerranti, C. (2013). Levels and spatial distribution of perfluorinated compounds (PFCs) in superficial sediments from the marine reserves of the Tuscan Archipelago National Park (Italy). Marine Pollution Bulletin, 76(1), 379–382.

    Article  CAS  Google Scholar 

  • Post, G. B., Cohn, P. D., & Cooper, K. R. (2012). Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature. Environmental Research, 116, 93–117.

    Article  CAS  Google Scholar 

  • Prevedouros, K., Cousins, I. T., Buck, R. C., & Korzeniowski, S. H. (2006). Sources, fate and transport of perfluorocarboxylates. Environmental Science & Technology, 40(1), 32–44.

    Article  CAS  Google Scholar 

  • Rand, A. A., & Mabury, S. A. (2017). Is there a human health risk associated with indirect exposure to perfluoroalkyl carboxylates (PFCAs)? Toxicology, 375, 28–36.

    Article  CAS  Google Scholar 

  • SAW (2015). State Administration of Work Safety (SAWS). Dangerous chemicals directory (2015 Edition) www.chinasafety.gov.cn (China).

  • Schwanz, T. G., Llorca, M., Farré, M., & Barceló, D. (2016). Perfluoroalkyl substances assessment in drinking waters from Brazil, France and Spain. Science of the Total Environment, 539, 143–152.

    Article  CAS  Google Scholar 

  • Shoeib, T., Hassan, Y., Rauert, C., & Harner, T. (2016). Poly-and perfluoroalkyl substances (PFASs) in indoor dust and food packaging materials in Egypt: Trends in developed and developing countries. Chemosphere, 144, 1573–1581.

    Article  CAS  Google Scholar 

  • So, M., Miyake, Y., Yeung, W., Ho, Y., Taniyasu, S., Rostkowski, P., et al. (2007). Perfluorinated compounds in the Pearl river and Yangtze river of China. Chemosphere, 68(11), 2085–2095.

    Article  CAS  Google Scholar 

  • Swartz, M. E., &Krull, I. S. (1997). Analytical method development and validation: CRC Press.

  • Tarafdar, A., & Sinha, A. (2018). Public health risk assessment with bioaccessibility considerations for soil PAHs at oil refinery vicinity areas in India. Science of the Total Environment, 616-617, 1477–1484. https://doi.org/10.1016/j.scitotenv.2017.10.166.

    Article  CAS  Google Scholar 

  • Trudel, D., Horowitz, L., Wormuth, M., Scheringer, M., Cousins, I. T., & Hungerbühler, K. (2008). Estimating consumer exposure to PFOS and PFOA. Risk Analysis, 28(2), 251–269.

    Article  Google Scholar 

  • USEPA (2009). Provisional health advisories for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). http://water.epa.gov/action/advisories/drinking/upload/2009_01_15_criteria_drinking_pha-PFOA_PFOS.pdf (Date assessed: 15/Dec/2016).

  • Wang, T., Wang, Y., Liao, C., Cai, Y., & Jiang, G. (2009). Perspectives on the inclusion of perfluorooctane sulfonate into the Stockholm convention on persistent organic pollutants1. Environmental Science & Technology, 43(14), 5171–5175.

    Article  CAS  Google Scholar 

  • Wang, X., Wang, S., & Cai, Z. (2013). The latest developments and applications of mass spectrometry in food-safety and quality analysis. TrAC Trends in Analytical Chemistry, 52, 170–185.

    Article  CAS  Google Scholar 

  • Wang, T., Wang, P., Meng, J., Liu, S., Lu, Y., Khim, J. S., & Giesy, J. P. (2015). A review of sources, multimedia distribution and health risks of perfluoroalkyl acids (PFAAs) in China. Chemosphere, 129, 87–99.

    Article  CAS  Google Scholar 

  • Wang, P., Lu, Y., Wang, T., Meng, J., Li, Q., Zhu, Z., Sun, Y., Wang, R., & Giesy, J. P. (2016). Shifts in production of perfluoroalkyl acids affect emissions and concentrations in the environment of the Xiaoqing River Basin, China. Journal of Hazardous Materials, 307, 55–63.

    Article  CAS  Google Scholar 

  • Wang, J., Zhang, X., Ling, W., Liu, R., Liu, J., Kang, F., & Gao, Y. (2017). Contamination and health risk assessment of PAHs in soils and crops in industrial areas of the Yangtze River Delta region, China. Chemosphere, 168, 976–987. https://doi.org/10.1016/j.chemosphere.2016.10.113.

    Article  CAS  Google Scholar 

  • Weinberg, I., Dreyer, A., & Ebinghaus, R. (2011). Waste water treatment plants as sources of polyfluorinated compounds, polybrominated diphenyl ethers and musk fragrances to ambient air. Environmental Pollution, 159(1), 125–132.

    Article  CAS  Google Scholar 

  • Wilhelm, M., Bergmann, S., & Dieter, H. H. (2010). Occurrence of perfluorinated compounds (PFCs) in drinking water of North Rhine-Westphalia, Germany and new approach to assess drinking water contamination by shorter-chained C4–C7 PFCs. International Journal of Hygiene and Environmental Health, 213(3), 224–232.

    Article  CAS  Google Scholar 

  • Wille, K., Bussche, J. V., Noppe, H., De Wulf, E., Van Caeter, P., Janssen, C., et al. (2010a). A validated analytical method for the determination of perfluorinated compounds in surface-, sea-and sewagewater using liquid chromatography coupled to time-of-flight mass spectrometry. Journal of Chromatography A, 1217(43), 6616–6622.

    Article  CAS  Google Scholar 

  • Wille, K., Noppe, H., Verheyden, K., Bussche, J. V., De Wulf, E., Van Caeter, P., et al. (2010b). Validation and application of an LC-MS/MS method for the simultaneous quantification of 13 pharmaceuticals in seawater. Analytical and Bioanalytical Chemistry, 397(5), 1797–1808.

    Article  CAS  Google Scholar 

  • Zhang, T., Sun, H. W., Wu, Q., Zhang, X. Z., Yun, S. H., & Kannan, K. (2010). Perfluorochemicals in meat, eggs and indoor dust in China: assessment of sources and pathways of human exposure to perfluorochemicals. Environmental Science & Technology, 44(9), 3572–3579.

    Article  CAS  Google Scholar 

Download references

Funding

The authors wish to acknowledge the financial support of the National Research Foundation (NRF), South Africa, through the Thuthuka Research Grant No. 84185 awarded to Prof B. O. Opeolu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. O. Fagbayigbo.

Electronic supplementary material

ESM 1

(DOCX 475kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fagbayigbo, B.O., Opeolu, B.O., Fatoki, O.S. et al. Validation and determination of nine PFCS in surface water and sediment samples using UPLC-QTOF-MS. Environ Monit Assess 190, 346 (2018). https://doi.org/10.1007/s10661-018-6715-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6715-2

Keywords

Navigation