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Abstract Due to critical impacts of air pollution, predic-
tion andmonitoring of air quality in urban areas are impor-
tant tasks. However, because of the dynamic nature and
highspatio-temporal variability, predictionof theairpollut-
ant concentrations is a complex spatio-temporal problem.
Distribution of pollutant concentration is influenced by
various factors such as the historical pollution data and
weather conditions. Conventional methods such as the
supportvectormachine (SVM)orartificialneuralnetworks
(ANN) show some deficiencies when huge amount of
streaming data have to be analyzed for urban air pollution
prediction. In order to overcome the limitations of the
conventional methods and improve the performance of
urban air pollution prediction in Tehran, a spatio-temporal
systemisdesignedusingaLaSVM-basedonlinealgorithm.
Pollutant concentrationandmeteorological data alongwith
geographical parameters are continually fed to the

developed online forecasting system. Performance of the
system is evaluated by comparing the prediction results of
theAirQualityIndex(AQI)with thoseofa traditionalSVM
algorithm. Results show an outstanding increase of speed
bytheonlinealgorithmwhilepreservingtheaccuracyof the
SVM classifier. Comparison of the hourly predictions for
next coming24h,with thoseof themeasuredpollutiondata
in Tehran pollution monitoring stations shows an overall
accuracy of 0.71, root mean square error of 0.54 and coef-
ficientofdeterminationof0.81.These results are indicators
of the practical usefulness of the online algorithm for real-
timespatial and temporalpredictionof theurbanair quality.

Keywords Spatio-temporal . LaSVM . Online
prediction . Big data . Urban air quality . Tehran

Introduction

Air pollution is considered as one of the most crucial
problems in industrial and populated cities. Adverse effects
of air pollution on human health have been the subject of
many studies (Brunekreef and Holgate 2002; Chan-Yeung
2000; García Nieto et al. 2013) and development of effec-
tive techniques for monitoring and prediction of air pollu-
tion is of prime importance. Online air pollution forecast-
ing for the next few hours enables decision makers to urge
the vulnerable groups to avoid outdoor activities during the
risky times. Also, reliable forecasts can provide the re-
quired data for an urban air quality analysis and manage-
ment system. By using this information, decision makers
can take proper measures for emission reduction. The
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existing air quality monitoring stations in urban areas
continuously record high volumes of pollutant concentra-
tions. These data need to be effectively utilized for analysis
and prediction of the air quality indices.

Air pollution is affected by various factors such as the
atmospheric conditions and geographical parameters such
as the land use, traffic, elevation, and location (Zheng et al.
2013; Hasenfratz et al. 2012). Therefore, air pollution
prediction is regarded as a complex and nonlinear problem
(P. Wang et al. 2015; Ghaemi et al. 2015). Importance and
complexity of urban air pollution prediction problem have
led to the development of a wide variety of prediction
techniques. These approaches can be classified into the
two major categories of deterministic and statistical
methods (P. Wang et al. 2015). The widely used Gaussian
DispersionModel is one type of deterministic methods. In
these models, air quality is predicted by simulating the
physical and chemical processes of the atmosphere
(Bellander et al. 2001; Ranzato et al. 2012; Venegas
et al. 2014; Mansourian et al. 2011). Although dispersion
models have been shown to be exact (Finardi et al. 2008),
they require reliable information about the sources of the
pollutants as well as the physical and chemical character-
istics of the atmosphere. Collection of such continuously
varying information is quite difficult for large-scale appli-
cations. Moreover, employment of these models in real-
world problems with huge amount of data is very time-
consuming (Chaloulakou et al. 2003; Kumar and Goyal
2011; Zhang et al. 2013). Deficiencies of deterministic
models have led the statistical methods to bemore popular
in real-world problems (Chen et al. 2013). Kriging, re-
gression, and artificial intelligence are examples of statis-
tical models which have been widely applied to model the
spatial and temporal variation of the air pollution (Briggs
et al. 1997; Jerrett et al. 2001; Su et al. 2007; García Nieto
et al. 2013). Among them, artificial intelligence tech-
niques have shown high capabilities for solving the com-
plex and non-linear air pollution problems. Due to their
greater flexibility and accuracy, artificial neural networks
(ANN) have been widely used in air pollution prediction
(Pfeiffer et al. 2009; Kurt and Oktay 2010).Viotti et al.
(2002) and Elangasinghe et al. (2014) have utilized neural
networks to forecast urban and coastal air quality based on
the traffic level along with the weather conditions (Viotti
et al. 2002; Elangasinghe et al. 2014). Lack of sufficient
number of monitoring stations throughout the cities limits
the abilities of air pollution prediction methods to address
the spatial distribution of contamination. To overcome this
deficiency, Pfeiffer et al. (2009) and Wahid et al. (2013)

have proposed a solution based on neural networks that
predicts air pollution by combination of the spatial param-
eters and monitoring station data (Wahid et al. 2013;
Pfeiffer et al. 2009). Although neural networks can be
used to model nonlinear problems, practical applications
of these models particularly in the case of work with big
input data, suffer from different drawbacks such as the
high computation time, overfitting, local minima and poor
generalization abilities (Niska et al. 2004; Singh et al.
2013). Due to their computational efficiencies and gener-
alization abilities (García Nieto et al. 2013; Ip et al. 2010),
recently, Support Vector Machines (SVM) have been
regarded as the interesting alternative approaches to the
conventional statistical models (Lu andWang 2005; Luna
et al. 2014; Yeganeh et al. 2012). As an example, Juhos
et al. (2008) used ANN and SVM methods in Szeged to
predict the concentration of NO and NO2 in high-traffic
areas. As compared with ANN, SVM showed more reli-
able forecasting results (Juhos et al. 2008). Concentrations
of CO for the next day have been predicted by combina-
tion of the SVM and the Partial Least Square approach
(Yeganeh et al. 2012).

Development of data measurement tools such as the
air quality monitoring stations and embedded sensors in
mobile devices provides various types of data about the
urban air quality. Such data are characterized by the
extreme volume, wide variety, and high velocity. There-
fore, conventional methods cannot typically handle the
volume, variety, and velocities associated with the air
pollution streaming data. In this respect, the existing
typical SVM algorithm is not able to process the huge
data that needs frequent and continuous updating. Be-
cause, once a typical SVM algorithm is trained, it works
as the stationarymodel afterward and when new training
samples are available, learning has to restart again using
the whole training samples which have been presented
so far (W. Wang et al. 2008). This process is computa-
tionally expensive and time-consuming. Online algo-
rithms are regarded as an alternative to the conventional
static methods. Because of their capabilities to deal with
voluminous and dynamic data, the online algorithms
have become popular among the scientists. In this
regard, a number of online algorithms based on the
SVM have been presented for prediction of the
dynamic phenomena such as the air pollution. Wang
et al. (2008) applied an online SVM algorithm to predict
the time series of pollutant concentrations. Pollutant
concentrations and meteorological data were used in
this study. Although the tested online SVM showed a
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good prediction performance, no geographical parame-
ters were used for prediction of the spatial distribution of
pollutants (W. Wang et al. 2008).

Main objective of this study is to propose and test a
SVM-based online system for prediction of the urban air
quality in Tehran, Iran. Pollutant concentrations and
meteorological data of Tehran, continuously measured
by the monitoring stations, are used as the input data.
Also, in order to address the problem of insufficient
coverage of monitoring stations throughout the city
and model the spatial distribution of pollutant concen-
trations, some geographical parameters are employed.
The proposed algorithm is continually trained based on
the streaming data received from the monitoring sta-
tions. To overcome the deficiencies of the typical
SVM in dealing with the big and streaming data, the
online algorithm includes a removal step which elimi-
nates redundant data during the training process. Reduc-
tion of the training samples leads to significant reduction
in the volume of data required for re-training. The
trained algorithm is then able to predict the air quality
in each selected location for the next 24 h. Prediction
maps are made accessible to the user via an air pollution
monitoring and prediction web site. Computation time
and accuracy of the online SVM is compared to those of
the typical SVM. Experimental results confirm useful-
ness of the system due to its acceptable accuracy and
processing time. The remainder of this paper continues
as follows. In material and methods section, the case
study, data sets, and data preparation steps are described.
The developed online algorithm for real-time air pollu-
tion prediction is also presented in this section. Results
are discussed in the next section. Finally, the last section
concludes the paper and provides the future directions.

Material and methods

Case study

Tehran, the capital of the Islamic Republic of Iran with
approximately 8.5 million inhabitants, is the largest
commercial and political center of the country. Tehran
is surrounded by the high altitude mountains in the
North and a vast desert in the South. Due to the increas-
ing number of vehicles and industrial areas, Tehran
suffers from severe air pollution. Figure 1 presents lo-
cations of the air pollution monitoring sensors and
weather stations throughout the city along with the

elevation map of Tehran. The exaggerated elevation
map is generated using the elevation data from NASA’s
90 m resolution SRTM data.

Parameters, dataset, and data preparation

The input parameters used in this study are composed of
the pollutant concentrations and meteorological and
geographic data. These are briefly described below.

Pollution data

Hourly air quality data have been collected from the 21
air pollution monitoring stations during the 6 years from
2008 to 2014. These stations record data of some im-
portant air pollutants including the carbon monoxide
(CO), nitrogen dioxide (NO2), sulfur dioxide (SO2),
ozone (O3), and particulate matter (PM10). These pol-
lutant concentrations are used to calculate the air quality
index (AQI). AQI is a commonly used indicator defined
by the United States Environmental Protection Agency
(EPA) for public use of the air quality conditions. In
order to calculate AQI for a particular location, an
indicator value I is calculated for each of the observed
pollutant concentrations (CO, NO2, SO2, O3, and PM10)
using Eq. (1) (Mintz 2012).

I ¼ Ihigh−I low
Chigh−Clow

C−Clowð Þ þ I low ð1Þ

Where I is the air quality index, C is the pollutant
concentration, Clow is the concentration breakpoint
which is less than or equal to C and Chigh is the concen-
tration breakpoint that is greater than or equal to C. Ilow
and IHigh are the index breakpoints corresponding to
Clow andChigh, respectively. Ilow, Ihigh,Clow, andChighare
extracted from the EPA’s table of breakpoints (Mintz
2012). After calculating all indicators for each location,
the maximum indicator value is considered as the AQI
in a given time. According to EPA’s table, AQI is then
classified in seven categories.

Standard AQI defined by EPA is used by the Air
Quality Control Company of Tehran. Therefore, the air
quality monitoring stations measure the pollutant con-
centrations which are used for AQI calculation. In this
study, AQI and its corresponding classes are used as the
target information of interest.

In addition to data of pollution, days of week and
hours of day are considered as the two other effective
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parameters. Consideration of the mean values of AQI
for all the pollutants of 6 months’ time period shows
interesting trends during the week days and day hours
(Fig. 2a, b. Low traffics on weekends lead to lower AQI,
and pollution levels increase in the first days of the
week. As can be seen, air pollution in Tehran reaches
its peaks between 6 to 10 A.M and 15 to 21 P.M.

Traffic and the terrain data

Three spatial parameters including the traffic, elevation,
and surface curvature are considered to monitor the
spatial distribution of air pollution. These are briefly
described as follows.

Traffic Traffic is a major source of air pollution in urban
areas (Halek et al. 2004). There is a significant relation-
ship between the traffic-related pollutants and distance
to the roads (Barzyk et al. 2009). Therefore, because of
the lack of reliable spatial information about the traffic,
in this study, air pollution caused by traffic is assumed to
be a function of distance from roads. Using the kernel
density estimation approach, a raster indicating the den-
sity of surrounding roads is created. By considering the
maximum distance of 300–500 m (Barzyk et al. 2009)
for impacts of roads on air pollution and geographical
and wind direction conditions of Tehran, distance of
300 m is selected as the maximum effective bandwidth.
Also, roads are weighted by their width and type.

Fig. 1 Geographic position of the study area and spatial distribution of the existing air pollution monitoring stations

Fig. 2 Trend of mean AQI of 6 months period during the week days (a) and day hours (b) in Tehran
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Although the non-directional distance function shows
deficiencies such as not considering the directionality
and complexities of the interactions between the space,
wind, and pollution, but it has been preferred because of
its simplicity and ease of use. Figure 3 demonstrates the
resulting raster output from application of the kernel
density approach. Dark areas highlight areas with higher
densities of road segments.

Elevation With an average altitude of 1190 m above
the sea level and 700 m altitude difference between
the lowest and highest locations, Tehran shows con-
siderable elevation variations. Elevation continually
increases from south to north. Due to the significant
differences in elevation among the various districts,
weather conditions are quite different in the northern
highlands and the flat southern and central areas.
Therefore, topographic conditions show considerable
influences on the air pollution patterns (Zheng et al.
2013). Also, Tehran contains seven hills with eleva-
tions higher than those of the surrounding areas.
Empirical observations show that air quality over
the hilly regions is better than those of the neighbor-
ing areas. In order to address the effects of elevation
on each point, this study utilizes the local mean
height along with the point height. The local mean
height of each point is calculated within a circular
area with an arbitrarily defined radius of 2500 m.
Then, point height and its difference with the local
mean height of each point are used as the input
parameters for pollution prediction.

Curvature Terrain attributes can have important influ-
ences on the levels of air contamination in urban areas.
Polluted air can be trapped in concave areas, and con-
tamination can be wiped off by the wind in convex
areas. Thus, convexity and concavity characteristics of
surfaces are employed as the important parameters in
this study. Convexity of a landscape is calculated using
Eq. (2) (Jenness 2010).

General curvature ¼ −2 r þ tð Þ ð2Þ

Where r and t are the second derivatives of elevation in x
and y directiosns, respectively. In order to calculate
curvature, a 3-cell by 3-cell moving window is used,
and the curvature is calculated from nine raster cells in
the window. Convex and concave surfaces respectively
have positive and negative values, and general curvature
value near zero indicates a flat area.

Meteorological data

Five weather stations in Tehran have been established to
measure, record, and report various meteorological pa-
rameters. National Meteorological Organization is re-
sponsible for meteorological data. Wind direction and
speed, cloudiness, temperature, pressure and relative
humidity collected by these stations are the most impor-
tant meteorological parameters affecting the urban air
quality (Kurt et al. 2008). Thus, these parameters are
also fed to the developed air pollution prediction system.

Fig. 3 Road density map resulting from application of kernel density estimation with a bandwidth of 300 m in Tehran
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Development of the dynamic air pollution forecasting
system

An overview of the proposed online system for air
pollution prediction is illustrated in Fig. 4. Data of
pollutant concentration, weather conditions, and spatial
parameters are dynamically collected from different
sources and preprocessed as discussed in BParameters,
dataset, and data preparation^ sub-section. In order to
use the collected data for training, data cleanser com-
ponent converts data into a specific structure to be
fed to the LaSVM module. The LaSVM module
utilizes this data structure to train a prediction model.
Using the prediction model, LaSVM module predicts
the AQI label of the air pollution monitoring stations
for the next 24 h. The predicted AQI is then fed to
GIS component to create prediction maps using an
interpolation method. The output prediction maps are
stored in the map database. When a new request for
air quality prediction at a specific time and location is
sent by users, the related maps are retrieved from the
database and presented to the user via an air quality
monitoring and prediction website. The process is
repeated as a new set of data receives from the mon-
itoring stations.

In order to dynamically train the online system and
predict the AQI label, the proposed system utilizes an
online algorithm based on the SVM. SVM is a binary
classifier derived based on the statistical theory (Vapnik
1998) for classification and regression analysis. In a
linear condition, SVM constructs optimal hyperplanes
to separate the members of two classes while maximiz-
ing the distance between the closest samples of classes
(Vapnik 1998). However, in most real-world problems,
datasets may not be exactly modeled into the linearly
separable partitions. To handle the non-linear cases,
kernel functions are used to map the input data to a
higher-dimensional space (Haifeng et al. 2009). The
mapped data in the new space would be linearly sepa-
rable (Yu and Kim 2012).

Given a training set of data, {xi, yi}, i = 1, …, l, yi ∈
{−1, +1}, x

i
∈ Rd(the space of d dimension), where x

denotes the input data, called vectors, and y is the
corresponding labels, suppose there exists separating
hyperplanes which separate the samples with positive
labels from those of the negative labels. The closest data
points to the hyperplanes are defined as the support
vectors and distance between the closest positive and
negative samples is known as the margin.

By defining b as the bias, in the case of nonlinear
condition, the optimization problem can be formulated
as the Eqs. (3) and (4) (Burges 1998)1:

f xð Þ ¼ sign ∑l
i¼1αiyik xi; x j

� �þ b
� � ð3Þ

Subject to the constraints :

∑l
i−1α1y1 ¼ 0 and ≤α1≤C for all i

ð4Þ

Where K(xixj) is the kernel function and αidenotes the
Lagrange’s multiplier. The coefficient αi can be obtain-
ed by solving Eq. (5). The closest data points to the
hyperplanes with non-zero coefficients αi≠ determine
support vectors. The other samples αi = 0 are far from
the hyperplanes and have no impact on the construction
of the hyperplanes.

Maximize∑i
i¼1αi−

1

2
∑;

i¼1∑
l
j¼1αiα jyiy jK xix j

� � ð5Þ

C, the regularization constant, controls the trade-offs
between decreasing the errors and maximizing the mar-
gin (Yeganeh et al. 2012).

In typical practice, SVM classifier requires to receive
all training data beforehand. This means that this classi-
fier is trained once using the whole training data. Be-
cause of this characteristic, the typical SVM algorithm is
not a reasonable solution to address problems such as
the online and continuous air pollution prediction,
where training data are sequentially provided. Because,
whenever new samples are provided, the algorithmmust
be re-trained using all the available data (including old
and new coming data) (W.Wang et al. 2008). To address
this deficiency, an online SVM algorithm named
LaSVM which is the outputs of the recent efforts for
applying online algorithm rationally to the typical SVM
method, has been used in this study (Rüping 2001; Syed
et al. 1999; Wang et al. 2007). LaSVM is an online
kernel-based classifier which has been developed by
Bordes (Bordes et al. 2005). LASVM, on the contrary
to SVM, works in an online setting, where the algorithm
dynamically modifies its hyperplanes as new training
samples become available. It continuously receives new
training samples, finds out the correct label using the
trained model at that point of time, and updates its
hyperplanes, if necessary, based on the new inserted

1 Notation in part BDevelopment of the dynamic air pollution forecast-
ing system^ is borrowed from: (Burges 1998)
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samples. This characteristic of LaSVMmakes it suitable
for dealing with big and streaming data.

In order to train the online system, collected data of
5 years from 2008 to 2013 is continually fed to the
LaSVM. By using the huge amount of data, LaSVM
would be able to model the complex behavior of air
pollution distribution in the study area. As shown in
training section of Fig. 4, LaSVM uses two steps called
the PROCESS and REPROCESS to handle the stream-
ing data. Assume that in (i-1)th step, the online algorithm
has found a set of support vectors using the current
samples and the margin conditions are satisfied. When
a new point xi is added, the PROCESS phase investi-
gates if xi can be considered as a support vector. If xiis
defined as a new support vector, coefficients (α) of other
points are updated. Updating may change the coefficient
of some of the support vectors to zero. The REPRO-
CESS phase, which starts after the PROCESS phase,
finds those support vectors which their coefficients were

changed to zero. These samples which do not have
impact on the training anymore, are no longer consid-
ered as the support vectors. After these steps, the hyper-
planes are recalculated by considering the new support
vectors. Thus, the algorithm is continually adjusted as
new training samples become available (Bordes et al.
2005). Next training step is completed using only the
support vectors extracted from the last steps and the
newly inserted samples. From now on, the newly
collected samples from the monitoring stations are
dynamically fed to LaSVM and the algorithm is
updated hourly as new sets of data are received. In
fact, LaSVM behaves as a function f(x) which de-
scribes relationships between the effective input pa-
rameters and the predicted AQI class. In this study,
the function is defined by Eq. (6) in which d and h
indices denote the day and hour, respectively. Out-
put of this function is the air quality label for a
given location in a given time.

Lhdþ1 ¼ f AQIhd;AQI
h
d−1;AQI

h
d−2;T

h
dþ1;RH

h
dþ1;P

h
dþ1;CC

h
dþ1;WShdþ1;DW

h
dþ1;HD

h
dþ1;DR

h
i ; LH

h
i ;PH

h
i ; SC

h
i

� � ð6Þ

Dataset Record Linkage Training and Prediction

MappingPresentation

Air Pollution 

Monitoring and 

Prediction Web Site

MApServer      

Map DataBase

User

DataBase

Air Pollution 

Data

Meteorological 

Data

GIS Data

Data 

Cleanser

AQI(d-2)h

AQI(d-1)h

AQI(d)h

T(d+1)h

RH(d+1)h

P(d+1)h

C(d+1)h

WS(d+1)h

DW(d+1)h

HD(d+1)h

DRi

LHi

SCi

AHi

PROCESS

REPROCESS

Find SVs

Remove non-SVs

Initial SVs

Final SVs

AQI Label 

Prediction

Web

LaSVM

Prediction 

Maps

GIS Component

GIS 

Component

In
te

rp
o
la

ti
o

n

L(d+1)h

Create raster

Fig. 4 Outline of the developed air pollution forecasting system
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Where d + 1 is the time of prediction and the first
three items respectively are the AQI values of the
processing day and the last 2 days. Predicted values
of temperature (T), relative humidity (RH), pressure
(P), cloud cover (CC), and wind speed (WS) corre-
sponding to the day and hour of prediction construct
the next array items. Day of week (DW) and hour of
day (HD) are also entered to the sample array. The
next four items are distance from major roads (DR),
local mean height (LH), point height (PH), and sur-
face curvature (SC) as described in previous sections.
Corresponding to each sample, there is a label (L)
which introduces the class of the AQI at prediction
time for the point of interest.

Once input parameters of each point are known, its
AQI label can be predicted by the updated LaSVM
using the function f(x). These points may be either the
monitoring stations or any arbitrarily selected loca-
tion within the city boundary. If the interested point is
a monitoring station, all parameters are available in
the databases; otherwise, the required parameters
should be calculated. For this purpose, the study area
is covered by a grid with cell size of 100 by 100 m.
Using the GIS component, AQI of the last 3 days and
meteorological data are interpolated for each cell
using the Inverse Distance Weighting (IDW) method.
In order to create pollution maps, the interpolated
values are used for prediction of the AQI class for
each cell, and the predicted values are used for cre-
ating pollution maps. The prediction maps are created
hourly as LaSVM is updated by receiving new pol-
lution and meteorological data from monitoring sta-
tions. The output maps are stored in a map database.
By receiving a request for prediction from the users
(prediction section in Fig. 4), location and time (day
and hour) of the point or points of interest are sent to
the system to be used for retrieving related pollution
maps. In order to visualize the output maps, Open
Source MapServer along with OpenLayers client li-
brary are implemented in this study.

Selection of the algorithm parameter C and the
type of kernel function and the corresponding param-
eters is a vital step in applying SVM for real-world
problems. In fact, the classification accuracy depends
on the proper selection of these parameters (Burges
1998). The most common kernel functions for con-
sideration are the Radial Basis (Gaussian), polyno-
mial, and linear functions (Hsu et al. 2003; García
Nieto et al. 2013; Juhos et al. 2008; Haifeng et al.

2009). In order to determine the best kernel function,
performance of the linear, RBF (Gaussian), and poly-
nomial (Degrees 2 and 3) functions were compared.
The results, showed that RBF is the most efficient
kernel function for this task (Table 1).

The RBF kernel on two samples x and x’, represented
as the feature vectors in some input space, is defined as
Eq. (7):

KRBF x; x
0

� �
¼ exp −γ x−x

0�� ��2h i
ð7Þ

Where γ is the RBF kernel parameter.
Grid search is applied to select the best parameters for

the algorithm, C and γ, using the leave-one-out cross-
validation approach (Cawley and Talbot 2004) on the
training set. In this study, values of 2 and 0.0019 were
obtained for C and γ, respectively.

Because of acting as a binary classifier, LaSVM
may not be directly used for a multiclass problem. In
order to perform a multiclass classification using a
binary classifier, multiple binary classifiers are com-
posed to simulate a multiclass classifier (Hastie and
Tibshirani 1998). One-against-one and one-against-
all strategies can be used to split each multiclass
classification into a series of binary classifications.
In this study, the one-against-all strategy has been
chosen to generate M-Class classifiers (M indicates
the number of classes). Each binary classifier sepa-
rates one class from the rest of the classes. For 7-
AQI classes of standard EPA’s definition, 7-binary
LaSVMs are constructed in this study. Each LaSVM
classifier is trained to separate a given class from the
other classes. In order to classify a new data point,
the corresponding class label of the LaSVM classi-
fier which generates the largest value is selected.
(Vapnik 1998) provide more information about the
multiclass classification.

Table 1 Comparison of the performance of LaSVM, using dif-
ferent kernel functions

Kernel function Accuracy RMSE R-squared

RBF 0.71 0.54 0.81

Polynomial (degree 2) 0.61 0.635 0.696

Polynomial (degree 3) 0.33 0.81 0.25

Linear 0.56 0.642 0.672
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Results and discussion

To develop an online system to dynamically predict the
air quality, the proposed algorithm should use the least
possible processing time while preserving the accuracy.
To this purpose, prediction results of the LaSVM are
compared to those of the typical SVM algorithm. The
main reason for selection of the SVM for comparison is
its similarity to the LaSVM and the reliability of its
results as compared to the conventional statistical
methods (Lu and Wang 2005; Luna et al. 2014;
Yeganeh et al. 2012). In this respect, collected data of
5 years from 2008 to 2013 are used to train both algo-
rithms. Comparison between the SVM and LaSVM is
limited to using the training data from 2008 up to when
due to the high volume of the input data the SVM
crashes. Accuracy (Hsu et al. 2003), root mean squared
errors (RMSE), and regression coefficient (R2)
(Yeganeh et al. 2012) as respectively defined in Eqs.
(8), (9), and (10) are used for evaluation and comparison
of the results.

Accuracy ¼ number of values which are correctly predicted=

total number of test data

ð8Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑n

i¼1 Y i−Y*
i



 

2
r

ð9Þ

R2 ¼ 1−∑n
i¼1 Y i−Y*

i

� �2
=∑n

i¼1 Y i−Y
� �2

ð10Þ

Where in Eqs. (9) and (10), Y*
i and Yi are respectively

the predicted and observed values. Y denotes the mean

of observed data in Eq. (10). In addition to the above
mentioned criteria, processing time requirements are
also considered as one of the evaluation parameters.
Since air quality is dynamically predicted, therefore,
reduction of the processing time for online applications
is an important parameter for dealing with the big
streaming data. Finally, performance of the LaSVM
has been evaluated using the independent test data and
the resulting output prediction map is presented as a
demonstrative example.

Processing time

The required processing times as a function of training
sample size for SVM and LaSVM algorithms are illus-
trated in Fig. 5. Although training times are nearly
similar for both algorithms at the beginning of the
training, increase of the sample size leads to exponential
growth of the processing time for SVM. With increased
number of samples to thousands, addition of even one
new sample leads to retraining times of hours for the
SVM. Particularly in this study, when the number of
training data reaches 16,000, retraining of SVM requires
more than 16 h. The exponential growth of the process-
ing time of SVM is due to its use of the all available data
for re-training after adding new samples. So, it is obvi-
ous that the typical SVM is not capable of being used for
online prediction of urban air pollution. Lower increase
in the processing time of LaSVM is due to its smarter
working principles for selecting smaller numbers of
samples including only the previously extracted support
vectors and the new sample data.

Fig. 5 Comparison of the required training times (vertical axes) for the LaSVM and SVM algorithms as a function of sample size
(horizontal axis in units of 1000)
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The trend of time consumption in LaSVM training
with respect to larger numbers of training samples is
indicated in Fig. 6. In spite of the increasing trends of
training time at the smaller numbers of samples, the
processing time of LaSVM algorithm starts to signifi-
cantly decrease after adding about 15,000 samples. The
decrease of the processing time coincided with the in-
crease in the number of support vectors (Fig. 6). In fact,
reduction of the processing time happens when an
adequate number of support vectors is found by the
LaSVM, and appropriate separating hyperplanes are
constructed. This situation leads the number of support
vectors to remain almost constant. Stability of the number
of support vectors leads to relative stabilization of the
processing time. As shown in Fig. 6, the processing time
starts to stabilize after the sample size of 19,000. Number
of support vectors used in each step of the training is
shown in Fig. 7. The relative stability of the number of
support vectors as shown in Fig. 7 may be attributed to

equality of the added and removed support vectors,
during the PROCESS and REPROCESS phases and
representativeness and validity of the constructed
hyperplanes which are not violated by inserting the new
training samples. However, the stability of the number of
support vectors leads to stability and consistency of the
online algorithm.

Accuracy and precision

Three indicators of output performance including the
accuracy, RMSE and regression coefficients for the
SVM and LaSVM are almost the same at early stages
of the training (Fig. 8a). However, removal of the non-
support vectors from LaSVM algorithm leads to a slight
difference between the accuracies of the LaSVM and
SVM. Despite these trivial differences, after finding an
adequate number of support vectors and definition of the
representative hyperplanes, the accuracy of LaSVM is

Fig. 7 Number of support vectors used by the LaSVM algorithm during the training phase with different sample sizes (in units of 1000)

Fig. 6 Required training times of the LaSVM algorithm (vertical axes) as a function of wider ranges of sample sizes (horizontal axis in units
of 1000)
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Fig. 8 Comparison of the accuracy (a), RMSE (b), and regression coefficients (c) of SVM and LaSVM as a function of training sample size
(in units of 1000)
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almost similar to the accuracy of the SVM. The same
behavior can be seen in RMSE and regression coeffi-
cient diagrams (Fig. 8b, c). Average difference of accu-
racy, RMSE and regression coefficients of LaSVM and
SVM for varying training sample sizes ranging from
1000 up to 16,000 are 0.041, 0.046, and 0.17 respec-
tively. The scatter plots displaying correlations between
the accuracy, RMSE and regression coefficients of the
SVM and LaSVM are illustrated in Fig. 9. The present-
ed scatter plots show that there is a high correlation
between the result of SVM and LaSVM, which prove
that the proposed system can achieve the SVM accura-
cy. Numerical results of the correlation coefficients of
RMSE, accuracy, and regression coefficients between
the SVM and LaSVM are also presented in Table 2.

Regarding the fact that comparison between the
SVM and LaSVM is based on the limited number of
training samples, up to when the SVM stops working
due to the high processing time. Results of independent
train and test of the LaSVM using the 5 year training
data (2008–2013) and data of 2014 as the test are
presented in Table 3 Average accuracy is calculated
using Eq.11 as follows.

AverageAaccuracy ¼ sum of the accuracy column=number of classes

ð11Þ

Table 4 highlights the confusion matrix, accuracy,
and precision of the LaSVM for prediction of seven

AQI classes for test data of the year 2014. Accuracy
and precision columns show the accuracy and preci-
sion of each class. Accuracy and number of samples
of each class and the relationship between the accu-
racy and number of samples are presented in Fig. 10.
As shown in Fig. 10c, accuracy shows a nonlinear
relationship with the number of samples. It seems
that small sample sizes up to 1000 results in an
unacceptable accuracy. The proposed algorithm pro-
vides more reliable results for classes with sufficient
numbers of samples, whereas the accuracy is lower
for classes (5 and 6) with smaller numbers of samples
and class 7 cannot be predicted by the algorithm due
to scarce number of samples in this class. The accu-
racy of the predicted AQI for air pollution stations
using the 1-year test data is presented in Fig. 11. It
should be mentioned that some of the observed errors
may be attributable to relying on the non-directional
and simple distance-based kernel function for model-
ing the spatial dependencies between the pollution
rates and road densities. Effective consideration of
the wind speed, frequency, and direction and their
integration with distance functions is expected to
increase the performance of predictions.

Prediction for a specific time

In order to further demonstrate the usefulness of the
system for completion of a daily prediction task, air

(a) Accuracy (b) RMSE (c) Regression Coefficient 
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Fig. 9 Scatter plots of the relations between the accuracy (a), RMSE (b), and regression coefficients (c) of the SVM and LaSVM

Table 2 Correlation coefficients (R2) of the accuracy, RMSE, and
regression coefficients of SVM and LaSVM

Accuracy RMSE Regression coefficient

0.86 0.92 0.7

Table 3 Overall and average accuracy, RMSE, and regression
coefficients of the LaSVM algorithm for online processing of test
data of the year 2014

Overall accuracy Average accuracy RMSE R-squared

0.71 0.52 0.54 0.81
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pollution has been predicted for a particular time and
day (8/11/2012 at 9 A.M). This day was chosen due to
various reports for having high air pollution and warn-
ings for sensitive groups in media. The predicted pollu-
tion map is shown in Fig. 12. Comparison of the pre-
dicted and observed air quality labels over the pollution
stations for 9 A.M of day 8/11/2012 shows that the air

quality class for 18 of the 21 stations are accurately
predicted (Fig. 13). Map-based output of the online
system can be used to highlight the risky areas and
provide preemptive warnings for sensitive groups. Also,
the output maps can be used for detailed analysis of the
spatial distribution of pollution for understanding and
improving the air quality state.

Table 4 Confusion matrix for prediction of seven AQI classes by the LaSVM for data of the year 2014

Predicted observed 1 2 3 4 5 6 7 Sum Accuracy

1 31,906 13,844 867 49 80 70 0 46,816 0.68

2 14,913 52,357 1574 22 77 9 0 68,952 0.76

3 1178 3254 7938 9 21 10 0 12,410 0.64

4 147 184 217 625 10 2 0 1185 0.52

5 10 121 44 7 219 0 0 401 0.55

6 9 23 27 0 30 85 0 174 0.49

7 11 43 8 0 0 0 0 62 0

Sum 48,174 69,826 10,675 712 437 176 0 130,000

Precision 0.66 0.75 0.74 0.88 0.5 0.48 0

Fig. 10 Performance indicators of the LaSVM including the accuracy (a), number of samples (b), and relationships between the accuracy
and number of samples (c) for test data of year 2014
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Conclusion and future work

An online air quality prediction system for Tehran based
on the LaSVM algorithm has been developed in this

study. Because of the capabilities to solve the problem
of dealing with big streaming data collected by the air
quality and weather stations, the online learning algo-
rithm is able to continuously predict the air pollution.

Fig. 11 The accuracy of AQI prediction for 21 pollution monitoring stations for data of the year 2014

Fig. 12 Predicted map of the air pollution by LaSVM for 9 A.M of day 8/11/2012
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Along with the historical air quality and weather data,
this system also utilizes terrain and traffic-related data to
spatiotemporally predict the air pollution concentration.
Real-time data provided by the monitoring stations
along with the geographical data are continuously fed
to the algorithm to predict the AQI labels. The predic-
tion maps are hourly produced and can be accessed via a
website. Performance of the system has been compared
with those of the conventional SVM. Processing time
and statistical error estimators including the accuracy,
RMSE, and regression coefficients have been used as
the performance indicators. The advantage of the devel-
oped system is that the processing time significantly
decreases by removing the nonsupport vector samples
in the training step, and without decreasing the accuracy.

The developed system can serve decision makers and
the public by providing sufficient information to perform
preemptive arrangements for dealing with severe air pol-
lution conditions. By identifying the risky areas and times
that air pollution is harmful, somemeasures such as setting
special warnings for sensitive groups can be used to de-
crease the daily exposure to pollution and outdoor activi-
ties. Such solutions can significantly reduce the respiratory
and cardiovascular diseases caused by the air pollution.

The proposed online system was able to continuously
work with the streaming data of Tehran on a single ma-
chine. However, it is possible to improve the performance
of the system by dividing its workload among multiple
processing machines, using Apache Hadoop parallel com-
puting framework. Via Hadoop, the input data can be
partitioned into different parts; each part will be saved
and processed on a processing node where the support
vectors will be extracted, and finally, all extracted support
vectors can be used for constructing the model. In this

regard, extending the proposed solution for working on
Hadoopwill be conducted in the future. Another important
issue about the proposed system is the imbalanced dataset
which does not allow the algorithm to be trained properly
for classes with a smaller number of samples. Improving
the system to be able to deal with the problem of imbalance
dataset is considered as another direction in our future
research. We will also examine the feasibility of the pro-
posed online algorithm to separately monitor the behavior
of each pollutant concentration, particularly CO2 and
PM10. Comparing the proposed method with new ANN
methods as well as the deep learning can also be consid-
ered as a future direction. In this research, a simple
distance-based kernel function has been used to model
spatial dependencies between the pollution and road den-
sities. By employing sophisticated functions based on
exploration of the relationships between the wind, space,
and pollution, we expect to considerably enhance the
performance and reliability of the results in the future.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestrict-
ed use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if
changes were made.
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