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Abstract Discharges of untreated wastewater from
combined sewer overflows (CSOs) can affect hydraulic
stress and have significant environmental impacts on
receiving water bodies. Common flow rate and water
level sensors for monitoring of CSO events are expen-
sive in terms of investment costs, installation, operation
and maintenance. This paper presents a novel surrogate
method to detect CSO events by using two low-cost
temperature sensors. The novelty is the experimental
setup for installation of temperature sensors in CSO
structures and an algorithm developed to automatically
calculate the duration of CSO events considering the
response time of the system. The occurrence and dura-
tion of CSO events is computed based on the conver-
gence of the two temperature signals. The method was

tested under field conditions in a CSO structure, and the
results were compared to the information gathered from
a parallel installed flow sensor. The application of two
temperature sensors installed inside a CSO structure was
proven to be robust and accurate for the automatic
detection of the occurrence and duration of CSO events.
Within the 7-month test phase, 100% of the 20 CSO
events could be detected without false detections. The
accuracy of detecting the start and end of the CSO
events was 2 min in comparison to the flow sensor.
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Introduction

Discharges of untreated wastewater from combined sewer
overflows (CSOs) can lead to hydraulic stress, oxygen
depletion or a temporary increase of pollutant concentra-
tions in receiving waters (Ellis and Hvitved-Jacobsen
1996). The European Urban Waste Water Treatment Di-
rective (UWWTD) 91/271/EEC (EC 1991) indicates that
member states will decide on measures to limit pollution
fromCSOs, which could be based on higher dilution rates,
improvement of plant treatment capacity and regulation of
the overflow (spill) frequency (Zabel et al. 2001). The
directive does not define standards at European level, but
since the implementation of the Water Framework Direc-
tive (EC 2000), the characterisation of CSO events is of
great importance. In countries such as Belgium, Denmark,
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parts of Germany and the Netherlands, the overflow fre-
quency and partly also overflow duration are used as
design criteria for CSO structures (Dirckx et al. 2011).

Online monitoring is the basis to fully understand the
behaviour of CSO structures (Gruber et al. 2005;
Caradot et al. 2015). The collected information can be
used at operational level for function control, quality
assessment, prior determination for CSO maintenance
and improvement of the sewer system while
implementing control strategies (Alferes et al. 2013;
Benedetti et al. 2013). The information is also useful
to assess, improve and maintain combined sewer sys-
tems (e.g. Montserrat et al. 2015) as well as calibrating
hydraulic urban drainage models (Duchesne et al. 2001;
Montserrat et al. 2017).

Usually flow or water level sensors are widely used
for CSO monitoring. These systems allow to detect
occurrence, duration, volume and dynamics of a CSO
event. Generally, these sensors are expensive in terms of
purchase, installation and maintenance, especially in
application in urban drainage systems (US-EPA 1999).

Sensors have become increasingly cheaper and more
compact in design in recent years (Eggimann et al.
2017). Kinzli et al. (2016) concluded that low-cost water
level sensors in sewer systems are available, but show
limited robustness. They experienced several practical
problems due to mechanical stress, deficiencies in long-
term waterproofness, condensation resistance as well as
measurement failures due to sensor fouling. In addition,
level sensors usually require an available power supply
on site, which implies higher investment and operational
costs. Potential extra costs may arise due to an explosion
proofed sensor design in regions where this is mandato-
ry. Due to these facts the applicability of such low-cost
sensors and further the simultaneous CSO detection in
urban drainage systems are limited.

Therefore, a variety of publications attended on al-
ternative (surrogate) methods for CSO detection, which
can be classified in three categories depending on the
place of measurement: (i) CSO detection methods in the
sewer system, (ii) CSO detection methods in the receiv-
ing water body and (iii) model-based CSO detection
methods.

CSO detection methods in the sewer system

Rasmussen et al. (2008) used two electrical contacts as a
simple switch in the CSO structure. The installation can
be on the weir crest or in the overflow channel.

Investment costs excluding data transmission are ap-
proximately 200 € and no preconditions (advance infor-
mation) are required. Potential false detections by clog-
ging of the electrical contacts can significantly disturb
the measurement.

Siemers et al. (2011) used motion sensors to detect
flow acceleration in the CSO structure. Sensor costs are
about 200 € and also no preconditions are required but
potential false detections by wind in the sewer system
are possible.

Wani et al. (2017) used moisture sensors for CSO
detection. Sensor costs are in a range of 100–300 € and
again no preconditions or advance information are re-
quired. Potential false detections by a changing air hu-
midity in the sewer system are possible, where a low
signal-to-noise ratio can be observed.

Gruber et al. (2005) used water quality sensors for
CSO detection. Additional to a CSO detection also
pollutant concentrations and dynamics can be observed
by this method. The sensor costs are at least 15,000 €
and a high effort in operation is needed.

Jeanbourquin et al. (2011) and Lo et al. (2015) used
video image analysis for flow detection in the CSO
structure. The costs are around 1000 €, a large amount
of data as well as a high effort in data evaluation is
needed.

Montserrat et al. (2013) proposed an approach of
using a single low-cost temperature sensor installed in
the CSO structure. The detection of a CSO event is
based on the identification of an abrupt change in the
temperature signal. The investment costs without data
transmission are about 50 € and no advance information
is required. Potential false detections by similar air and
waste water temperature (low signal-to-noise ratio) are
possible.

A brief summary of the described methods is given in
Table 1.

CSO detection methods in the receiving water body

The following methods for CSO detection in the receiv-
ing water body give information about the detection of
a CSO occurrence. Detections of CSO duration and
CSO volume were not evaluated in these studies. De-
pendent on the chosen detection parameter (e. g. tem-
perature, caffeine concentration or others) a simulta-
neous measurement of the already existing background
exposure of the chosen parameter in the receiving water
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body is needed to distinguish between periods with and
without CSO influence.

Schilperoort et al. (2006) and Riechel et al. (2010)
conducted CSO detection by using temperature sensors
in the receiving water body. The sensor invest costs are
around 500 € but potential false detections by similar
river and waste water temperature are possible (low
signal-to-noise ratio).

Buerge et al. (2006) and Weyrauch et al. (2010) used
information from incremental samples and lab analysis
of selected micro pollutants like caffeine. These
methods based on incremental samples are not suitable
for a continuous CSOmonitoring. The costs are approx-
imately 100 € per lab analysis excluding sampling costs.

Model-based CSO detection methods

CSO events can be detected indirectly by model-based
approaches. Due to the complexity of the used models
the need of sufficient data and a mandatory model
calibration are general constraints for these methods.
The advantage of such approaches is the possibility to
apply the available model for the comparison of differ-
ent CSO management scenarios in the system.

Thorndahl and Willems (2008), Schroeder et al.
(2011) and Yu et al. (2013) used a model approach of
rain hyetographs by rainfall depth and rainfall duration
time in combination with a hydrodynamic sewer model
for CSO detection. The developed model can further-
more be applied to develop future management strate-
gies. However, rainfall data of sufficient duration and
quality and a calibrated hydrodynamic sewer simulation
model including CSO structures are needed as a precon-
dition, which potentially demands a high effort in model
setup and model calibration. A compilation of the de-
scribed methods is given in Table 2.

Montserrat et al. (2013) presented the application
of a single low-cost temperature sensor installed
inside a CSO structure to detect CSO events for
the first time. That approach bases the detection of
a CSO event on the identification of an abrupt
change in the temperature signal. Although results
were reasonable for most of the evaluated CSO
structures, the approach led to false detections when
the signal-to-noise ratio was low.

This paper increases the robustness of the method
proposed in Montserrat et al. (2013) by adding a second
temperature sensor, improves the detection accuracy by
implementing an algorithm that accounts for the re-
sponse time of the system and automatically calculates
the duration of CSO events.

Materials and methods

The developed method requires the simultaneous
measurement signals of two temperature sensors in
a CSO structure. The first temperature sensor (S1) is
submerged into the wastewater stream to continu-
ously measure the wastewater temperature. The sec-
ond temperature sensor (S2) is installed on the crest
of the overflow weir or on the invert of the CSO
overflow channel to alternatively measure the tem-
perature of ambient air during dry weather condi-
tions (sensor S2 is not submerged) and the tempera-
ture of the overflowing wastewater during a CSO
event (sensor S2 is submerged).

In this paper, a CSO event is defined as a discharge
process from the drainage system to the receiving water
body. This implicates that one or more CSO events may
occur during one rainfall event.

Table 1 Compilation of methods for CSO detection in the sewer system

Publication CSO detection criteria Signal type CSO occurrence CSO duration CSO volume

Rasmussen et al. (2008) Short-circuit bridge of electrical contacts Binary (0/1) Yes Yes No

Siemers et al. (2011) Critical acceleration of sensor Binary (0/1) Yes Yes No

Wani et al. (2017) Critical gradient of moisture signal Binary (0/1) Yes Yes No

Gruber et al. (2005) Critical pollution concentration (by dillution) Binary (0/1) Yes Yes No

Jeanbourquin et al. (2011) Location change of surface particles over time Binary (0/1) Yes Yes Yes

Lo et al. (2015) Visual sensing combined with virtual image markers Binary (0/1) Yes Yes No

Montserrat et al. (2013) Critical gradient of temperature shift Binary (0/1) Yes Yes No
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The stated methodology is based on two
assumptions:

(i) Sensor behaviour in dry weather conditions: Sensor
S1 measures the wastewater temperature TS1, and
sensor S2 measures the ambient air temperature TS2.
The temperature signals of sensors S1 and S2 differ
in dry weather conditions.

(ii) Sensor behaviour during a CSO event: Both sen-
sors S1 and S2 measure the temperature of the
wastewater. The temperature signals of sensors S1
and S2 converge during a CSO event within a
defined temperature difference.

Description of the algorithm for data analysis

An algorithmwas developed based on the statedmethod
to treat the gathered data from the temperature sensors
and calculate the occurrence and duration of CSO
events. The algorithm detects the convergence of the
temperature signals TS1 and TS2 during a CSO event. In
addition, the algorithm includes heat transfer equations
to minimize the time delay in the detection.

Figure 1 shows the conceptual scheme of the algo-
rithm. The three different types of elements in the algo-
rithm are inputs and outputs (dotted frame), functions
(continuous frame) and parameters (dashed frame). The
grey fields show the elements necessary to calibrate the
algorithm if a new type of temperature sensor is used.

Sensor correction function FSENSOR(T)

The sensor correction function FSENSOR(T) considers
the potential deviations of the measured temperature
signals TS1 and TS2, which depends on the accuracy of
the specific sensor type. The determination of this func-
tion has to be done only once for a new type of temper-
ature sensor.

Since this function depends on the current tempera-
ture, measurements have to be performed over a range
of different temperature levels j (see Eq. 1).

FSENSOR Tð Þ ¼ TS1 T j
� �

−TS2 T j
� �� � j¼n

j¼1 ð1Þ

with FSENSOR(T): sensor correction function; TS1(Tj):
temperature signal of sensor S1 for temperature Tj;
TS2(Tj): temperature signal of sensor S2 for temperature
Tj; j: temperature level.

Time delay correction function tDELAY(T)

The temperature convergence of a body in an environ-
ment with constant temperature TENV can be determined
by Newton’s law of cooling (O’Connell and Haile
2005). This effect becomes relevant during the start
and end of a CSO event. Sensor S2 is situated on the
crest of the overflow weir or on the invert of the CSO
overflow channel. Therefore, as a CSO event initiates,
the temperature changes abruptly from the air tempera-
ture to the overflowing wastewater temperature, and the
opposite happens at the end of a CSO event.

The temperature convergence T(t) of two temperature
signals can be described by Eq. 2.

T tð Þ ¼ TENV þ T 0ð Þ−TENVð Þ*e− t
τ with τ ¼ ρ*cp*V

h*A
ð2Þ

with T(t): temperature of the body at time t; TENV:
temperature of the environment; T(0): initial tempera-
ture of the body with converging temperature at time =
0; τ: time constant (t); ρ: density of medium (gm−3); cp:
isobaric mass heat capacity (Jg−1 K−1); V: body volume
(m3); h: heat transfer coefficient (Js−1m−2K−1); A: heat
transfer surface area (m2).

The time constant τ describes the physical system
characteristics of heat transfer fromwater to air and from
air to water for the specific installation technique and
specific temperature sensors used. It is dependent on the

Table 2 Compilation of model based methods for CSO detection

Publication CSO detection criteria Signal type CSO occurrence CSO duration CSO volume

Thorndahl and Willems (2008) Critical rainfall height and rainfall
duration time

Binary (0/1) Yes Yes No

Schroeder et al. (2011) Critical rainfall height Binary (0/1) Yes Yes No

Yu et al. (2013) Critical accordance of rainfall data
and CSO data

Analog/digital Yes Yes Yes
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density ρ of the medium (gm−3), the isobaric mass heat
capacity cp (Jg

−1 K−1), the body volume V (m3), the heat
transfer coefficient h (Js−1m−2K−1) and the heat transfer
surface area A (m2).

To describe the duration until convergence of two
temperature signals in the same environmental condi-
tions, Eq. 2 can be transformed to Eq. 3, assuming that
the temperature of the environment is equal to the mea-
sured temperature of sensor S1 (TENV = TS1) and the
temperature of the body is equal to the measured tem-
perature of sensor S2 (T = TS2). The duration until con-
vergence is equal to the time delay parameter tDELAY(T).

The determination of the parameters for this function
has to be done only one-time for a new type of temper-
ature sensor.

tDELAY Tð Þ ¼ ln
TS2 0ð Þ−TS1

TS2 tð Þ−TS1
*τ ð3Þ

with tDELAY(T): time delay parameter; TENV: temper-
ature of the ambient air; T(0): initial temperature of the
body with converging temperature at time = 0; τ: time
constant (t).

CSO gap parameter tGAP

The CSO gap parameter tGAP defines the maximum time
gap between CSO occurrences within which they are
summarized as a single CSO event. This parameter is

dependent on the system’s dynamics and independent of
the used sensor type.

CSO detection parameter ΔTCSO

The CSO detection parameter ΔTCSO defines the max-
imum temperature difference between two temperature
signals, TS1 and TS2, within which the algorithm will
detect the start and end of a CSO event. It is dependent
on sensor specifications as accuracy, resolution, stability
and time-synchronicity. Once calibrated for a type of
sensor, it is independent from the measurement location.

CSO detection function FCSO(t)

The CSO detection function FCSO(t) is defined as a
binary index vector by the ratio of the temperature
difference functionΔT(t) and CSO detection parameter
ΔTCSO. The temperature difference function ΔT(t) is
defined in Eq. 4 by subtracting the temperature signals
TS1 and TS2. Potential sensor deviations are considered
by adding the sensor correction function FSENSOR(T).

ΔT tð Þ ¼ TS1 tð Þ−TS2 tð Þ þ FSENSOR TS1 tð Þð Þ ð4Þ
With ΔT(t): temperature difference function; TS1(t):

temperature signal of sensor S1; TS2(t): temperature
signal of sensor S2; FSENSOR(t): sensor correction
function.

For time t, a ratio less than or equal to 1.0 results in a
value of 1, which is tagged as a temperature match

Fig. 1 Conceptual scheme of the algorithm for CSO detection
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event. A ratio higher than 1.0 results in a value of 0,
indicating no temperature match. The functional rela-
tionship is stated in Eq. 5.

FCSO tð Þ ¼
1;

ΔT tð Þ
ΔTCSO

≤1

0;
ΔT tð Þ
ΔTCSO

> 1

8>><
>>: ð5Þ

with FCSO(t): CSO detection function; ΔT(t): tem-
perature difference function; ΔTCSO: CSO detection
parameter.

Index vector of detected temperature matches OCSO

The index vector of detected temperature matches dur-
ing a CSO event j is defined as OCSO,j. Each index
FCSO(ti) = 1 within the defined maximum time gap tGAP
is counted as a temperature match of a CSO event j. The
time delay correction is considered by subtracting the
time delay parameter t

DELAY
(T) (see Eq. 6).

OCSO; j tð Þ ¼ FCSO tið Þ j ¼ 1
h ii¼n

i¼1
−tDELAY Tð Þ withtiþ1−ti≤ tGAP

ð6Þ
with OCSO,j(t): index vector of detected temperature

matches during a CSO event j; FCSO(t): CSO detection
function at time step i; tGAP: CSO gap parameter;
tDELAY(T): time delay correction function.

Number of detected CSO events NCSO

The number of detected CSO events NCSO is defined as
the sum of detected index vectors OCSO,j (see Eq. 7).

NCSO ¼ ∑
n

j¼1
OCSO; j tð Þ ð7Þ

with NCSO: number of detected CSO events;
OCSO,j(t): index vector of detected temperature matches
during a CSO event j.

Calibration and validation process of the algorithm
for a new type of temperature sensor

For a new type of temperature sensor, an initial calibra-
tion and validation process of the algorithm is required
to determine the optimum values for the CSO detection
parameterΔTCSO and the CSO gap parameter tGAP. This
is conducted by calibrating against reference data. The

calibration process only depends on the type of used
temperature sensors and it is independent of the location
of detection or the experimental setup.

CSO detection function FCSO,REF(t) based
on the reference method

The CSO detection function FCSO,REF(t) based on the
reference method is defined as a binary index vector,
which determines the exceedance of a defined threshold
value. The determination of the threshold value is de-
pendent on the selected reference method. For time t, a
measurement value equal to or higher than the threshold
value results in a value of 1, which is tagged as a CSO
occurrence. A measurement value lower than the thresh-
old value results in a value of 0, which indicates no CSO
occurrence. The functional relationship is stated in Eq.
8.

FCSO;REF tð Þ ¼ 1; f tð Þ≥Threshold
0; f tð Þ < Threshold

�
ð8Þ

with FCSO,REF(t): CSO detection function by the
reference method; f(t): measurement signal by the refer-
ence method.

Index vector of the detected CSO occurrences
by the reference method

The index vector of detected discrete CSO occurrences
by the reference method during a CSO event j is defined
as OCSO,REF,j. Each index FCSO,REF(ti) = 1 is counted as
a discrete CSO occurrence of a CSO event j (see Eq. 9).

OCSO;REF; j tð Þ ¼ FCSO;REF tið Þ ¼ 1
� �

j ð9Þ

with OCSO,REF,j(t): sum of detected discrete CSO
occurrences during a CSO event j by the reference
method; FCSO,REF(t): CSO detection function at time
step i by the reference method.

Number of detected CSO events by the reference method

The number of detected CSO events by the reference
method is defined as NCSO,REF (see Eq. 10).

NCSO;REF ¼ ∑
n

j¼1
OCSO;REF; j tð Þ ð10Þ

withNCSO,REF: number of all detected CSO events by
the reference method; OCSO,REF,j(t): index vector of
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detected temperature matches during a CSO event j by
the reference method.

Function of true positive and false positive temperature
matches OCSO,TRUE(t) and OCSO,FALSE(t)

A fitting temperature match is defined as a simulta-
neous detection by the algorithm and the reference
method. This value can be classified in a more general
way as a Btrue positive^ temperature match regarding
to statistical hypothesis testing (Fawcett, 2006). An
unfitting temperature match is defined as a detection
only by the algorithm and not by the reference meth-
od. This identified false observation can be indicated
as a Bfalse positive^ temperature match.

The number of true positive matches OCSO,TRUE(t),
where a discrete CSO occurrence is detected by both
the algorithm and the reference method is determined
by the subtraction of the index vectors OCSO(t) and
OCSO,REF(t) and addition of an index vector of value 1.
All time steps with a pair of zero values (OCSO(t) = 0
and OCSO,REF(t) = 0) have to be removed before the
resulting index vectors can be used in the algorithm,
because they represent instances of no temperature
matches of both methods. The resulting indices of
value 1 indicate the true positive temperature matches
OCSO,TRUE(t), whereas the indices of value 2 indicate
the false positive temperature matches OCSO,FALSE(t)
(see Eq. 11).

OCSO tð Þ�����!
−OCSO;REF tð Þ�������!þ 1

!¼ 1; →OCSO;TRUE tð Þ
2; →OCSO;FALSE tð Þ

�

ð11Þ

with OCSO(t): index vector of detected temperature
matches; OCSO,REF(t): index vector of detected temper-
ature matches by the reference method; OCSO,TRUE(t):
index vector of true positive temperature matches;
OCSO,FALSE(t): index vector of false positive temperature
matches.

Objective function 1: percentage of detected CSO events
PCSO,EVENTS (%)

The percentage of detected CSO events PCSO,EVENTS

is defined as the percentage of all detected CSO
events with respect to the reference method (see

Eq. 12). A percentage of 100% indicates a perfect
fit of all detected CSO events by both methods.

PCSO;EVENTS ¼ ∑NCSO

∑NCSO;REF
*100 ð12Þ

with PCSO,EVENTS: percentage of detected CSO
events; NCSO: number of all detected CSO events;
NCSO,REF: number of all detected CSO events by the
reference method.

Objective function 2: percentage of true positive
matches PCSO,TRUE (%)

The percentage of true positive matches PCSO,TRUE is
defined as the percentage of detected temperature
matches in accordance with the reference method (see
Eq. 13). A percentage of 100% represents the perfect fit
of all detected temperature matches by both methods.

PCSO;TRUE ¼ 100−
∑OCSO;REF−∑OCSO;TRUE

∑OCSO;REF
*100

ð13Þ
with PCSO,TRUE: percentage of true positive matches

(%); OCSO,REF: number of detected discrete CSO occur-
rences by reference method; OCSO,TRUE: number of true
positive matches.

Objective function 3: percentage of false positive
matches PCSO,FALSE (%)

The percentage of false positive matches PCSO,FALSE is
defined as the percentage of non-compliant detected
temperature matches with respect to the reference meth-
od (see Eq. 14). A percentage of 0% indicates no false
detected temperature matches by the algorithm.

PCSO;FALSE ¼ 100−
∑OCSO;REF−∑OCSO;FALSE

∑OCSO;REF
*100

ð14Þ
with PCSO,FALSE: percentage of false positive

matches (%);OCSO,REF: number of detected temperature
matches by reference method; OCSO,FALSE: number of
false positive matches.

The performance of the algorithm calibration can be
evaluated in a validation process for a sufficient number
of CSO events. The same reference method for CSO
detection as in the calibration process can be used in
parallel to the CSO detection algorithm. To quantify the
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quality of the validation process, the same three quality
criteria as in the calibration process are used.

Materials

To select the appropriate type of temperature sensor for
application in a CSO structure, several attributes should
be considered during the selection process. In addition
to the investment and operational costs, the sensor size,
its robustness and water resistance, effort required for
installation, maintenance and data readout, and possibil-
ity of an independent power supply and explosion
proofed design (if required) are of importance.

For temperature monitoring in this study, two low-
cost temperature sensors with an integrated data logger
were used in combination with a compatible contactless
data reader. The HOBO® Pendant UA-001-64 sensor
(Onset Computer Corporation) embedded in a water-
proof polypropylene casing (dimensions: 58 × 33 ×
23 mm, weight: 18 g) was used as the temperature
sensor. The compact dimensions of the sensor should
prevent clogging in the sewer system. An independent
power supply was provided from a 3VCR-2032 lithium
battery with a durability of about 1 year. The internal
memory of 64 kb for logging 52,000 10-bit readings
allows continuous data storage for 36 days using a 1-
min logging interval (which was chosen as the logging
interval for this study). According to the manufacturer,
the measurement limits range from – 20 to 50 °C, with
an accuracy of ±0.53 °C (drift less than 0.1 °C/year) and
a resolution of 0.1 °C.

Experimental setup — case study Graz (Austria)

To validate the developed methodology, an experimen-
tal setup in a CSO structure in Graz (Austria) was
implemented. The CSO structure is equipped with sev-
eral onlinemonitoring devices and has been in operation
since 2002 (Gruber et al. 2005; Gamerith et al. 2011). As
shown in Fig. 2, the temperature sensor S1 (temperature
signal TS1) was installed at the bottom of a floating
pontoon in the CSO chamber to continuously measure
the wastewater temperature. The temperature sensor S2
(temperature signal TS2) was installed on the invert of
the CSO overflow channel to measure both the temper-
ature of the ambient air during dry weather conditions
and the temperature of overflowing wastewater during a
CSO event. A previously installed flow measurement
device in the CSO overflow channel (ultra-sonic flow

meter) was used as a reference for CSO detection. For
visual inspection and video recording, a waterproof
webcam was directly installed in the CSO chamber.

Laboratory tests were performed to determine the
sensor correction function FSENSOR(T) (refer to Eq. 1)
separately for water and air conditions by reducing the
temperature stepwise in intervals of 5 °C starting from
40 down to 5 °C. The measurement duration for each
temperature level was defined with 10 min.

As a result, the relative deviation of the measured
temperature signals was determined as a constant value
of 0.1 °C for all of the analysed temperature levels for
both water and air conditions, which leads to a constant
sensor correction function of type FSENSOR(T) = 0.1.

The parameters of the time delay function tDELAY(T)
were determined separately for water and air conditions
(refer to Eq. 3). Two parameters, V (body volume) and
A (heat transfer surface area), were calculated indepen-
dently of the environmental conditions based on the
known sensor geometry of V = 4.4 × 10−5 m3 and A =
1.9 × 10−3 m2. To determine the time delay function
tDELAY(T) at the start of a CSO event (temperature
change from air to overflowing wastewater), the density
of wastewater was assumed to be equal to that of water,
ρ = 1.0 × 106 g−3. The isobaric mass heat capacity of
water was assumed to be cp = 4.1813 Jg−1 K1 based on
literature (O’Connell and Haile 2005), and the heat
transfer coefficient for water was determined from lab-
oratory tests to be h = 800 Js−1m−2 K−1. The time con-
stant τ was calculated to be τ = 121.0 s.

To determine the time delay function tDELAY(T) at the
end of a CSO event (temperature change from
overflowing wastewater to air), the density of air was
approximated to ρ = 1.0 × 103 g−3. The isobaric mass
heat capacity of air was assumed to be cp =
1.012 Jg−1 K−1 based on literature (O’Connell and Haile
2005), and the heat transfer coefficient for air was de-
termined from laboratory tests to be h = 0.1 Js−1m−2 K−1.
The time constant τ was calculated with τ = 234.4 s,
which indicates a slower convergence behaviour for
air compared to water conditions.

Results and discussion

The CSO structure in Graz (Austria) was studied for a
period of 7 months (from August 2012 to March 2013),
in which a total of 20 CSO events occurred.
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The start and end times as well as the durations of all
CSO events detected by the reference method are pre-
sented in Table 3. The durations of the detected CSO
events vary from 13 to 316 min. A graphical analysis of
all detected CSO events is available as appendix in
Online Resource 1.

Calibration results of the algorithm for the used type
of temperature sensor

An initial calibration procedure was conducted to deter-
mine the optimum value of the CSO detection parameter
ΔTCSO for the used type of temperature sensor.

Therefore, the results of a reference method (ultra-
sonic flow meter, situated in the CSO overflow
channel) and the proposed method were compared.
For both methods the defined objective functions
PCSO,EVENTS, PCSO,TRUE and PCSO,FALSE were calculat-
ed and compared. CSO detection by the reference meth-
od was defined by a threshold value of a 5 L/s flow rate,
which leads to a detection of 20 CSO events in total
during the observation period by using a defined CSO
gap parameter tGAP of 10 min.

Calibration of the CSO detection parameter ΔTCSO
was performed by calculating the values of the stated
objective functions for a sequence of different values of

Fig. 2 Experimental setup for CSO detection at a CSO structure in Graz (Austria)

Table 3 Detected CSO events by the reference method in the case study Graz (Austria) from August 05, 2012 to March 05, 2013

CSO event Start time–end time Duration CSO event Start time–end time Duration
(#) (date—dd.mm.yyyy hh:mm) (min) (#) (date—dd.mm.yyyy hh:mm) (min)

1 22.08.2012 20:17–22.08.2012 20:30 13 11 24.09.2012 20:18–24.09.2012 23:09 171

2 26.08.2012 08:30–26.08.2012 12:45 255 12 02.10.2012 03:03–02.10.2012 04:07 64

3 31.08.2012 11:43–31.08.2012 11:57 14 13 02.10.2012 08:10–02.10.2012 08:48 38

4 31.08.2012 17:11–31.08.2012 17:59 48 14 15.10.2012 18:49–15.10.2012 21:54 185

5 31.08.2012 21:06–01.09.2012 01:40 274 15 15.10.2012 23:16–16.10.2012 03:53 277

6 01.09.2012 18:56–01.09.2012 19:52 56 16 27.10.2012 16:31–27.10.2012 20:00 209

7 12.09.2012 19:35–12.09.2012 22:21 166 17 27.10.2012 21:35–27.10.2012 22:25 50

8 12.09.2012 23:41–13.09.2012 00:20 39 18 01.11.2012 04:55–01.11.2012 06:39 104

9 19.09.2012 11:02–19.09.2012 11:21 19 19 05.11.2012 04:37–05.11.2012 09:53 316

10 19.09.2012 17:31–19.09.2012 18:56 85 20 28.11.2012 21:00–28.11.2012 21:47 47

Environ Monit Assess (2018) 190: 209 Page 9 of 18 209



ΔTCSO from 0.1 up to 1.5 °C in an interval of 0.1 °C
(minimum values for ΔTCSO and intervals are defined
by the temporal measurement resolution of the temper-
ature sensor).

Based on the results of a previous sensitivity analysis,
a number of five CSO events were determined as the
minimum number of required CSO events for calibra-
tion. Using more CSO events for calibration always
results in the same value for ΔTCSO, which indicates
that no better calibration could be expected by using a
higher number of CSO events.

A number of five consecutive CSO events (refer to
CSO events 1–5 in Table 3) were used for calibration
purposes. Table 4 shows a summary of all detected
temperature matches O and all detected CSO events N
for the investigated values of ΔTCSO. A total of 614
discrete CSO occurrences OCSO,REF, which is propor-
tional to five detected CSO events NCSO,REF, was de-
tected by the reference method. The detected tempera-
ture matches of the algorithm ranges from 606
(ΔTCSO = 0.1 °C) to 1066 (ΔTCSO = 1.5 °C). The num-
ber of CSO events detected by the algorithm ranges
from 4 (ΔTCSO = 0.1 °C) to 11 (ΔTCSO = 1.5 °C).

The values of the objective functions PCSO,EVENTS,
PCSO,TRUE and PCSO,FALSE for the calibration process
are presented in Table 5. The percentage of CSO events
detected by the algorithm PCSO,EVENTS = 100% shows

that only for a range of ΔTCSO = 0.2 to 0.4 °C all five
CSO events were detected by the algorithm. With
ΔTCSO = 0.1 °C, only 80% of all events were detected,
whereas withΔTCSO ≥ 0.5 °C, the number of events was
always overestimated. The percentage of true positive
temperature matchesOCSO,TRUE applying a progressive-
ly increasingΔTCSO showed values from 97.9 to 99.2%.
In addition, the percentage of false positive temperature
matches OCSO,FALSE steadily increased from 0.8 to
74.74%.

The best calibration results were achieved by using a
value forΔTCSO of 0.2 °C, resulting in 608 true positive
temperature matches of total 614 by the reference meth-
od and 5 false positive matches as well as the detection
of all 5 CSO events. Related to the defined objective
functions, the percentage of detected CSO events is
100%, and the ratios of true positive and false positive
temperature matches are 99.02 and 0.81%, respectively.

Validation results of the algorithm

Validation of the algorithm was performed by applying
the determined value for the CSO detection parameter of
ΔTCSO = 0.2 °C to calculate the objective functions for a
number of 15 independent CSO events (refer to CSO
events 6–20 in Table 3).

Table 4 Calibration results of detected temperature matches O and CSO events N for different values of ΔTCSO

ΔTCSO OCSO,REF OCSO OCSO,TRUE OCSO,FALSE NCSO,REF NCSO

(°C) (−) (−) (−) (−) (−) (−)

0.1 614 606 601 5 5 4

0.2 614 613 608 5 5 5

0.3 614 611 606 5 5 5

0.4 614 619 606 13 5 5

0.5 614 627 608 19 5 6

0.6 614 636 611 25 5 6

0.7 614 642 609 33 5 6

0.8 614 650 610 40 5 6

0.9 614 668 609 59 5 6

1.0 614 701 611 90 5 8

1.1 614 743 609 134 5 8

1.2 614 823 610 213 5 8

1.3 614 881 609 272 5 9

1.4 614 949 610 339 5 10

1.5 614 1066 609 457 5 11
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Table 6 shows the validation results of all detected
temperature matches O and all detected CSO events N
for a value of ΔTCSO = 0.2 °C. A total of 1882 discrete
CSO occurrences OCSO,REF were detected by the refer-
ence method, which is proportional to the 15 detected
CSO events NCSO,REF. A number of 1873 temperature
matches OCSO were detected by the proposed method,
resulting in 1834 of 1882 true positive temperature
matches and 39 false positive temperature matches as
well as the detection of all 15 CSO events.

The values of the objective functions PCSO,EVENTS,
PCSO,TRUE and PCSO,FALSE for the validation process by
using ΔTCSO = 0.2 °C are presented in Table 7. All of
the CSO events used for validation could be detected
(PCSO,EVENTS = 100%). The percentage of true positive
temperature matches PCSO,TRUE is 97.5%, and the per-
centage of false positive temperature matches
PCSO,FALSE is 2.1%.

Related to the defined objective functions, the per-
centage of detected CSO events is 100%, and the ratios

of true positive and false positive temperature matches
are 97.5 and 2.1%, respectively.

Results considering time delay correction

Figure 3 shows a graphical analysis of CSO event #6,
which was detected by the reference method on Sep-
tember 01, 2012, from 18:56 to 19:52, with a duration of
56 min.

Figure 3a shows the measured flow rates in the CSO
overflow channel. The start and end of the CSO event
detected by the reference method are marked by grey
vertical dashed lines. The pre-defined threshold value
for a CSO detection of 5 L/s is marked as a grey
horizontal dashed line.

Figure 3b shows the temperature signals TS1 in the
CSO chamber (black solid line) and TS2 in the CSO
overflow channel (black dashed line).

Figure 3c shows the difference between the temper-
ature signals TS1 and TS2. The black horizontal dashed
lines indicate the CSO detection parameter ΔTCSO = ±
0.2 °C, and the black vertical dashed lines mark the start
and end of the CSO event detected by the algorithm.
The start and end of the detected CSO event detected by
the reference method are marked as grey vertical dashed
lines for comparison.

The CSO event detected by the algorithm starts at
exactly the same time and ended 1 min later for a
duration of 57 min (the reference method had a duration
of 56 min; see Fig. 3d, e).

A detailed analysis of the observed time delay in the
detection of the algorithm and its correction is presented
in Fig. 4. Detection values of time delay without correc-
tion are marked as grey points, and values with time
delay correction are marked as black points. Without

Table 5 Calibration results of the objective functions PCSO,EVENT,
PCSO,TRUE and PCSO,FALSE for different values of ΔTCSO

ΔTCSO PCSO,EVENTS PCSO,TRUE PCSO,FALSE
(°C) (%) (%) (%)

0.1 80.00 97.88 0.81

0.2 100.00 99.02 0.81

0.3 100.00 98.70 0.81

0.4 100.00 98.70 2.12

0.5 120.00 99.02 3.09

0.6 120.00 99.51 4.07

0.7 120.00 99.19 5.37

0.8 120.00 99.35 6.51

0.9 120.00 99.19 9.61

1.0 160.00 99.51 14.66

1.1 160.00 99.19 21.82

1.2 160.00 99.35 34.69

1.3 180.00 99.19 44.30

1.4 200.00 99.35 55.21

1.5 220.00 99.19 74.43

Table 6 Validation results of detected temperature matches O and CSO events N for a value of ΔTCSO = 0.2 °C

ΔTCSO OCSO,REF OCSO OCSO,TRUE OCSO,FALSE NCSO,REF NCSO

(°C) (−) (−) (−) (−) (−) (−)

0.2 1882 1873 1834 39 15 15

Table 7 Validation results of the objective functions PCSO,EVENT,
PCSO,TRUE and PCSO,FALSE for a value of ΔTCSO = 0.2 °C

ΔTCSO PCSO,EVENTS PCSO,TRUE PCSO,FALSE
(°C) (%) (%) (%)

0.2 100.00 97.45 2.07
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correction, all time delays at the start and the end of a
CSO event have positive values, which indicate that, in
this case, start and end of all detected CSO events are

always later compared to the reference method. Without
correction, maximum deviations of 7 min (start) and
4 min (end) are obtained. The resulting deviations in

Fig. 3 Graphical analysis of the detected CSO event #6: comparison of the developed algorithm and reference method

Fig. 4 Analysis of time delays for the start, the end and the duration of detected CSO events (uncorrected time delay = grey; corrected time
delay = black)
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the duration of the detected CSO events are always
negative, which indicates shorter CSO event durations
by the reference method. Without correction, maximum
deviations in the duration of CSO events of − 6 min are
obtained. With time delay correction, maximum devia-
tions of 2 min (start), 2 min (end) and 2 min (duration)
are obtained.

Application of the method

The presented method for CSO detection is capable of
estimating occurrence and duration of CSO events with
very simple hardware (low-cost temperature sensors)
and a more advanced software (the corresponding
algorithm).

The method proved robust, detecting 20 CSO events
without any false detection during the investigation
period. An optimum value of 0.2 °C for the CSO detec-
tion parameter ΔTCSO was identified for the applied
type of temperature sensor through the calibration and
validation process, which leads to a maximum percent-
age of true positive temperature matches (99.02%) and a
minimum percentage of false positive temperature
matches (0.81%) (Table 5). The maximum deviation in
CSO duration compared to the reference method was
2 min.

The calibrated algorithm is generally transferable to
other CSO structures provided that the same type of
temperature sensor is used. An application of a different
type of temperature sensor with divergent specifications
in accuracy, resolution, stability and time-synchronicity
requires a new calibration process, which is structured in
four steps. The first step is the determination of the
sensor correction function FSENSOR(T) in the lab with
the accuracy of the sensor type (°C) as only influence
factor. The overall accuracy is of lower importance than
the relative consistency of the sensor signals. The sec-
ond step of the calibration process is the determination
of the time delay correction function tDELAY(T) in the
lab. Its influence factor is the thermal response time of
the sensor characterized by the density ρ of the medium
(gm−3), the isobaric mass heat capacity cp (Jg−1 K−1),
the body volume V (m3), the heat transfer coefficient h
(Js−1m−2K−1) and the heat transfer surface area A (m2).
A fast response time of the sensor of 5 min or less is
recommended. The third step is the definition of the
CSO gap parameter tGAP, which is influenced only by
the flow dynamics in the CSO structure and is indepen-
dent of the sensor type. In this study, a value of 10 min

was suitable for CSO detection. The fourth step deter-
mines the CSO detection parameter ΔTCSO against a
reference CSO detection method inside the CSO struc-
ture. This parameter is characterized by the sensor spec-
ifications like resolution, stability and time-synchronic-
ity. In this study, the optimal value of this parameter was
determined by 0.2 °C. The related sensor specifications
were 0.14 °C for resolution, 0.1 °C per year for stability
and ± 1 min per month for time-synchronicity.

The transfer of the presented method for a calibrated
sensor type to other monitoring locations is possible
without further calibration efforts.

The applied ultra-sonic flow measurements as a ref-
erence method have been successfully used to validate
the presented method. If enough data are available, the
reference dataset can be split into a training period in
which a sufficient number of CSO events occur. The
quality of the calibration can be quantified during the
validation period by calculating defined objective func-
tions, which are based on the detection rate of the
algorithm. Sensitivity analyses showed that five CSO
events were sufficient to determine the CSO detection
parameter ΔTCSO. Using a lower number of events
introduces some uncertainty in defining the CSO detec-
tion parameter, whereas a higher number has no further
influence on the final parameter value.

Advantages and limitations of the method

The CSO detection method has been designed to mini-
mize false CSO detections. These false detections may
occur under dry weather conditions when air and waste-
water temperatures inside the CSO structure reach equal
values. This situation might happen due to (i) natural
temperature variability (e.g. increased air temperature in
summer time), (ii) due unexpected discharges in the
sewer system, (iii) incomplete submersion of tempera-
ture sensor T1 inside the wastewater stream, (iv) a partial
or complete submersion of temperature sensor T2 by
backwater effects from the receiving water body.

This study shows that the proposed method is robust
against false detections for the following two reasons.
The first reason is the defined minimum CSO detection
duration of 10 min. Therefore, potential short-term con-
vergences do not lead to false detections. The second
reason is the CSO detection parameterΔTCSO of 0.2 °C,
which is a precise value to determine the convergence of
the temperature signals. False detections seem to be
improbable regarding to the variable temperature pattern
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of domestic wastewater inside a combined sewer sys-
tem. The monitoring period in this study of 7 months
from August to March included seasonal periods of
summer, autumn and winter without false detections.

It is recommended to place temperature sensor T1
inside the wastewater stream in a way that it is at any
time completely submerged. Sensor T2 can be placed
directly on top of the overflow weir crest or at the invert
of the overflow channel. Sensor T2 should not be
installed in the airspace behind the overflow wave, in
depressions on the invert or in the area of the overflow
channel which can be flooded with water from the river
due to backwater effects.

The minimum duration of 10 min for detectable CSO
events is depending on the temperature difference of the
two temperature measurements TS1 and TS2. This is
caused by the physical inertia of the heat transfer from
the water or gas environment to the sensor and vice
versa, which can be described by Newton’s law of
cooling. If the duration of the overflow event is shorter
than the time needed by the sensor to adapt to the
changed temperature, it is not possible to reliably detect
the occurring CSO event. Therefore, a temperature
match for at least one-time step should be obtained. This
is not a significant limitation compared to other surro-
gate methods, even compared to the reference method
used in this study. Most of these methods are uncertain
for detecting small overflow events. Additionally, some
methods have problems regarding to false detections,
which could be avoided completely with the presented
method.

A potential risk exists that the sensors in the CSO
chamber are clogged with sanitary products or the sen-
sors are covered with sewer sediments. Due to the small
size of the used sensors, different methods of installation
can easily be applied to reduce these risks.

The used type of sensor was robust in operation for
the entire duration of 7 months in the study. The sensors
did not show any measurement failures caused by
changing conditions during summer and winter period
or caused by CSO events. The chosen maintenance
frequency of 1 month was sufficient to prevent sensor
clogging or fouling.

An advantage of the used temperature sensors is their
independent battery power supply with a durability of
1 year. Therefore, no extra cabled power supply is
required on site, which reduces investment and opera-
tional costs.

Legislation in some countries stipulates that sen-
sors and other electronic equipment with voltage
supply higher than 12 V installed directly in sewer
systems have to be designed to be explosion-proof.
The temperature sensors employed in this study use
a low battery voltage supply of 3 V, which enables
their applicat ion in sewer systems without
explosion-proof requirements.

Data retrieval in this study was performed manu-
ally. This implies a demand on man power, which is
costly and time consuming and also implies safety
issues. If it is not possible to enter the CSO structure
periodically, or if several CSO structures should be
monitored, additional compatible equipment for au-
tomatic data transmission (e.g. Bluetooth, Wi-Fi,
GSM, etc.) is desirable.

Comparison with already existing methods

For an objective evaluation of the characteristics of the
introduced methods, a comparison with already existing
methods for CSO detections is essential. The compari-
son is summarized in Table 8 by the following criteria:

& CSO occurrence, duration and volume
& CSO detection rate
& Costs
& Required information
& Effort
& Transferability

Most of the available surrogate methods have the
same CSO detection ability (CSO occurrence and CSO
duration) as the proposed method. All detection
methods based on measurements in the receiving water
body are only able to detect CSO occurrence. The CSO
volume is only detectable by common flow measure-
ments (Sonnenberg et al. 2011), video image analysis
(Jeanbourquin et al. 2011) and model cluster analysis
(Yu et al. 2013).

In the majority of cases the described methods in
literature provide no values for CSO detection rate. Only
Schroeder et al. (2011) and Montserrat et al. (2013)
provide detection rates. Both methods have a lower
detection rate than the proposed method.

All described methods are more or equally expensive
compared to the proposed method.
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Provided that the described or comparable sensors in
respect of accuracy, resolution, stability and time-
synchronicity are applied, the proposed method and five
othermethods need no advance information for application
at CSO structures. The majority of methods require pre-
information about specific measurement data or simulation
models. The overall effort of the proposed method is low
regarding installation, operation, data retrieval and data
evaluation. The manual data retrieval process can be car-
ried out during a monthly inspection and the script-based
data evaluation requires basic skills in a mathematical
computing software environment or programming

languages like R (R Core Team 2017), Scilab (Scilab
enterprises 2017) or Matlab (MathWorks 2017).

Except of CSO detection based on flow or water level
(Sonnenberg et al. 2011), all other methods require a
script-based data evaluation based on different program-
ming languages.

The transferability of the stated methods is comparable
with the methods using electrical contacts (Rasmussen
et al. 2008), moisture sensors (Wani et al. 2017) and a
single low-cost temperature sensor (Montserrat et al.
2013). All other methods have a lower potential of trans-
ferability regarding economic aspects.

Table 8 Comparison with already existing methods for CSO detection

CSO occurrence, duration and volume

Presented method Existing methods

The method is able to detect occurrence and duration of a CSO
event with an accuracy of 2 min.

Similar methods: (a), (g), (h), (j), (l), (m), (n), (o)
Worse methods: (c)–(f)
Better methods: (b), (i), (k)

CSO detection rate

Presented method Existing methods

The method has a CSO detection rate of 100% out of 20 CSO events. Method (h) stated a CSO detection rate of 90% out of 168 CSO events.
Method (o) stated a CSO detection rate of 80% out of 57 rainfall

events.

Costs

Presented method Existing methods

The method has invest costs excluding data transmission of about
100 € per CSO structure.

Similar methods: (e), (f), (l), (n), (o)
Cheaper methods: none
Dearer methods: (a)–(d), (g)–(k), (m)

Required information

Presented method Existing methods

The method requires no advance information for application using
the described sensor type.

Similar methods: (a), (b), (l), (n), (o)
Low information need: (c)–(f)
High information need: (g)–(k), (m)

Effort

Presented method Existing methods

The method has low effort in installation, operation and data evaluation.
Manual data retrieval represents a higher effort. The overall effort is low.

Similar methods: (a), (c), (d), (o)
Lower effort: (n)
Higher effort: (b), (e)–(m)

Transferability

Presented method Existing methods

The transferability of the method is high, including all criteria from above. Similar methods: (a), (n), (o)
Average transferability: (b)–(d), (i), (j)
Low transferability: (e)–(h), (k)–(m)

(a) Rasmussen et al. (2008) (b) Sonnenberg et al. (2011) (c) Schilperoort et al. (2006)

(d) Riechel et al. (2010) (e) Weyrauch et al. (2010) (f) Buerge et al. (2006)

(g) Thorndahl and Willems (2008) (h) Schroeder et al. (2011) (i) Jeanbourquin et al. (2011)

(j) Lo et al. (2015) (k) Yu et al. (2013) (l) Siemers et al. (2011)

(m) Gruber et al. (2005) (n) Wani et al. (2017) (o) Montserrat et al. (2013)
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Conclusions

The application of two temperature sensors installed
inside a CSO structure was proven to be a robust and
accurate surrogate method for the automatic detection of
the occurrence and duration of CSO events. Within the
7-month test phase, all 20 CSO events could be detected
without false detections.

For the used type of temperature sensor, an optimum
value of 0.2 °C for the CSO detection parameter ΔTCSO
achieved the best results in detection. A parameter varia-
tion in the range of 0.1 to 1.5 °C has shown that a value of
0.2 °C leads to a maximum percentage of true positive
temperature matches and a minimum percentage of false
positive temperature matches, which enables the detection
all CSO events compared to conventional ultra-sonic flow
measurements without false detections.

The accuracy of detecting the start and end of the CSO
events was 2 min in comparison to the reference method.

Compared to existing approaches for CSO detection
the proposed approach has a higher detection rate com-
pared to other methods. The invest costs are low and no
preconditions or advance information are required using
the stated sensors. The overall effort is low and the
transferability regarding economic aspects to other
CSO structures is high.

The proposed method can be used at different monitor-
ing locations using the same settings as long as the same
types of temperature sensors are used. The transfer of the
proposed methodology to other CSO structures is easily
possible. This transferability offers a cost-effective oppor-
tunity to simultaneously monitor several CSOs in a sewer
system at the same time. The spatially distributed informa-
tion on duration of CSO events can be used for the
calibration and validation of sewer simulation models
(Montserrat et al. 2017; Wani et al. 2017).

A possibility to further increase the detection rate of
the method could be the integration of a rain gauge
signal as an additional trigger for a CSO event. A simple
low-cost system would be sufficient to detect if it is
raining or not, since an exact measurement of the pre-
cipitation intensity is not absolutely necessary.

The method could be extended to have the capacity to
detect the presence of water in the sewer system coming
from the river caused by backwater effects. Such extension
is based on the addition of an extra temperature sensor
directly submerged in the river at the CSO outlet.

A potential risk of clogging the sensors with hygienic
articles or covering the sensors with sewer sediment

exists. Due to the small size and weight of the sensors,
installation techniques to reduce this risk can easily be
applied. In operation, a monthly inspection of the sen-
sors is recommended and can be combined with the data
retrieval process.

Using low-cost temperature sensors instead of com-
mon measurement systems for CSO monitoring has the
potential to significantly decrease the purchasing and
operational costs of local sewer operators.
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