Skip to main content

Advertisement

Log in

Secondary metabolites and metal content dynamics in Teucrium montanum L. and Teucrium chamaedrys L. from habitats with serpentine and calcareous substrate

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The purpose of this comparative analysis is the determination of the total quantity of metals (Mg, Ca, K, Ni, Fe, Mn, Zn, Cu, Cr and Pb) in soil samples, above ground plant parts and tea made of plants Teucrium montanum and T. chamaedrys from different serpentine and calcareous habitats as well as of the total quantity of phenolic compounds and antioxidant activity. The obtained results showed that the quantities of certain metals (Mg, Fe, Ni and Mn) in the soil from the serpentine habitats were greater in comparison with other metals (Ca, Zn and Pb) which were more frequently found in the soil from the calcareous habitats. The results demonstrated that the analysed plant samples from the serpentine habitats contained higher quantity of Fe, Ni and Cr as opposed to the plant samples from the calcareous habitats which contained greater quantity of Ca and Zn. Although the studied species accumulate analysed metals in different quantities, depending on the substrate type, they are not hyperaccumulators of these metals. The use of these species from serpentine habitats for tea preparation is safe to a great extent, because in spite of the determined metal absorption by plant organs, the tea does not contain dangerous quantity of heavy metals. The results showed greater total quantity of phenolic compounds and the higher level of antioxidant activity in the plant samples from serpentine habitats in comparison with the samples from calcareous habitats, which is an indicator of one of the mechanisms of adaptation to the serpentine habitat conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, E. B., Coleman, R. G., Keeler-Wolf, T., & Harrison, S. P. (2007). Serpentine geoecology of western North America. New York: Oxford University Press Inc..

    Google Scholar 

  • Arias, M., Perez-Novo, C., Lopez, E., & Soto, B. (2006). Competitive adsorption and desorption of copper and zinc in acid soils. Geoderma Regional, 133(3–4), 151–159.

    Article  CAS  Google Scholar 

  • Bech, J., Tume, P., Longan, L., Reverter, F., & Tempio, M. (2008). Concentration of Cd, Cu, Pb, Zn, Al, and Fe in soils of Manresa, NE Spain. Environmental Monitoring and Assessment, 145(1–3), 257–266.

    Article  CAS  Google Scholar 

  • Brady, U. K., Kruckeberg, R. A., & Bradshaw, J. H. D. (2005). Evolutionary ecology of plant adaptation to serpentine soils. Annual Review of Ecology, Evolution and Systematics, 36, 243–266.

    Article  Google Scholar 

  • Brooks, R. R. (1987). Serpentine and its vegetation: a multidisciplinary approach. In T. R. Dudley (Ed.), Ecology, phytogeography, and physiology series. Oregon, Portland: Dioscorides Press.

    Google Scholar 

  • Brooks, R. R. (1998). Geobotany and hyperaccumulators. In R. R. Brooks (Ed.), Plants that hyperaccumulate heavy metal (pp. 55–94). Wallingford: CAB International.

    Google Scholar 

  • Brunetti, G., Soler-Rovira, P., Farrag, K., & Senesi, N. (2009). Tolerance and accumulation of heavy metals by wild plant species grown in contaminated soils in Apulia region—southern Italy. Plant and Soil, 318, 285–298.

    Article  CAS  Google Scholar 

  • Carranza-Ălvarez, C., Alonso-Castro, A. J., Alfaro-De La Torre, M. C., & Garciá De La Cruz, R. F. (2008). Accumulation and distribution of heavy metals in Scirpus americanus and Typha latifolia from an artificial lagoon in San Luis Potosĭ, Mexico. Water, Air & Soil Pollution, 188(1), 297–309.

    Article  Google Scholar 

  • Chaney, R. L., Chen, K. Y., Li, Y. M., Angle, J. S., & Baker, A. J. M. (2008). Effects of calcium on nickel tolerance and accumulation in Alyssum species and cabbage grown in nutrient solution. Plant and Soil, 311, 131–140.

    Article  CAS  Google Scholar 

  • Dong, J., Wu, F. B., Huang, R. G., & Zhang, G. P. (2007). A chromium-tolerant plant growing in Cr contaminated land. International Journal of Phytoremediation, 9(3), 167–179.

    Article  CAS  Google Scholar 

  • Endt, D. V., Kijne, J. W., & Memelink, J. (2002). Transcription factors controlling plant secondary metabolism: what regulates the regulators? Phytochemistry, 61(2), 107–114.

    Article  Google Scholar 

  • Escarré, J. C., Lefébvre, C., Raboteau, S., Dos Santos, A., Gruber, W., Marel, J. C. C., et al. (2011). Heavy metal concentration survey in soils and plants of the Les Malines mining district (southern France): implications for soil restoration. Water, Air and Soil Pollution, 216, 485–504.

    Article  Google Scholar 

  • Gall, E. J., Boyd, S. R., & Rajakaruna, N. (2015). Transfer of heavy metals through terrestrial food webs: a review. Environmental Monitoring and Assessment, 187, 201–222.

    Article  Google Scholar 

  • Ganeva, G., & Zozikova, E. (2007). Effect of increasing Cu2+ concentrations on growth and content of free phenols in two lines of wheat (Triticum aestivum) with different tolerance. General and Applied Plant Physiology, 33(1–2), 75–82.

    CAS  Google Scholar 

  • Ghaderian, A. M., Mohtadi, A., Rahiminejad, R., Reeves, R. D., & Baker, A. J. M. (2007). Hyperaccumulation of nickel by two Alyssum species from the serpentine soils of Iran. Plant and Soil, 293, 91–97.

    Article  CAS  Google Scholar 

  • Gonneau, C., Genevois, N., Frérot, H., Sirguey, C., & Sterckeman, T. (2014). Variation of trace metal accumulation, major nutrient uptake and growth parameters and their correlations in 22 populations of Noccaea caerulescens. Plant and Soil, 384, 271–287.

    Article  CAS  Google Scholar 

  • Hamid, N., Bukhari, N., & Jawaid, F. (2010). Physiological responses of Phaseolus vulgaris to different lead concentrations. Pakistan Journal of Botany, 42(1), 239–246.

    CAS  Google Scholar 

  • Johnston, W. R., & Proctor, J. (1977). Metal concentrations in plants and soils from two British serpentine sites. Plant and Soil, 46(1), 275–278.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). New York, London, Taylor and Francis Group Boca Ration: CRC Press.

    Google Scholar 

  • Kachout, S. S., Mansoura, B. A., Leclerc, C. J., Mechergui, R., Rejeb, N. M., & Ouerghi, Z. (2009). Effects of heavy metals on antioxidant activities of Atriplex hortensis and A. rosea. Journal of Food, Agriculture and Environment, 7(3–4), 938–945.

    Google Scholar 

  • Kastori, R., Kádár, I., & Sekulić, P. (2006). Sampling soil and plants in noncontaminated and contaminated sites. Novi Sad: Institute of Field and Vegetable Crops.

    Google Scholar 

  • Kastori, R., Ilin, Ž., Maksimović, I., & Putnik-Delić, M. (2013). Potassium in plant nutrition potassium and vegetables. Serbia, Novi Sad: Faculty of Agriculture of Novi Sad.

    Google Scholar 

  • Kataeva, M. N., Alexeeva-Popova, N. V., Drozdova, I. V., & Beljaeva, A. I. (2004). Chemical composition of soils and plant species in the polar Urals as influence by rock type. Geoderma Regional, 122(2–4), 257–268.

    Article  CAS  Google Scholar 

  • Khan, M. A. M., Ulrichs, C., & Mewis, I. (2010). Influence of water stress on the glucosinolate profile of Brassica oleracea var. italica and the performance of Brevicoryne brassicae and Myzus persicae. Entomologia Experimentalis et Applicata, 137(3), 229–236.

    Article  CAS  Google Scholar 

  • Kim, M. S., Kim, C., Jo, H. D., & Ryu, W. Y. (1999). Effect of fungal elicitor and heavy metals on the production of flavonol glycosides in cell cultures of Ginkgo biloba. Journal of Microbiology and Biotechnology, 9, 661–667.

    CAS  Google Scholar 

  • Korkina, L. G. (2007). Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cellular and Molecular Biology, 53(1), 15–25.

    CAS  Google Scholar 

  • Kosiorek, M., Modrzewska, B., & Wyszkowski, M. (2016). Levels of selected trace elements in Scots pine (Pinus sylvestris L.), silver birch (Betula pendula L.), and Norway maple (Acer platanoides L.) in an urbanized environment. Environmental Monitoring and Assessment, 188(10), 598.

    Article  Google Scholar 

  • Kruckeberg, A. R. (1984). California serpentines: Flora, vegetation, geology, soils and management problems. Berkeley: University of California Press.

    Google Scholar 

  • Lambers, H., Stuart Chapin III, F., & Pons, L. T. (2008). Plant physiological ecology. New York: Springer.

    Book  Google Scholar 

  • Lavid, N., Schwartz, A., Yarden, O., & Tel-Or, E. (2001). The involvement of polyphenols and peroxidase activities in heavy metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta Medica, 212(3), 323–331.

    CAS  Google Scholar 

  • Lazarus, B. E., Richards, J. H., Claassen, V. P., O'Dell, R. E., & Ferrell, M. A. (2011). Species specific plant-soil interaction influence plant distribution on serpentine soils. Plant and Soil, 342, 327–344.

    Article  CAS  Google Scholar 

  • Li, L., Fu, L. Q., Achal, V., & Liu, Y. (2015). A comparison of the pontential health risk of aluminium and heavy metals in tea leaves and tea infusion of commercially available green tea in Jiangxi, China. Environmental Monitoring and Assessment, 187, 228–240.

    Article  Google Scholar 

  • Lombini, A., Dinelli, E., Ferrari, C., & Simoni, A. (1998). Plant-soil relationships in the serpentine screes of Mt. Prinzera (northern Apennines, Italy). Journal of Geochemical Exploration, 64(1), 19–33.

    Article  CAS  Google Scholar 

  • Lyon, G. L., Brooke, R. R., Peterson, P. J., & Butler, G. W. (1968). Trace elements in a New Zealand serpentine flora. Plant and Soil, 29, 225.

    Article  CAS  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). London: Academic Press.

    Google Scholar 

  • Michalak, A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies, 15(4), 523–530.

    CAS  Google Scholar 

  • Montilla, I., Parra, M. A., & Torrent, J. (2003). Zinc phytotoxicity to oilseed rape grown on zinc-loaded substrates consisting of Fe oxide-coated and calcite sand. Plant and Soil, 257(1), 227–236.

    Article  CAS  Google Scholar 

  • Pais, I., & Jones, J. B. (2000). The handbook of trace elements. Florida: St. Luice Press.

    Google Scholar 

  • Pandy, P., & Tripathi, K. (2010). Bioaccumulation of heavy metal in soil and different plant parts of Albizia procera (Roxb.) seedling. The Bioscan, 5, 263–266.

    Google Scholar 

  • Pavlova, D. (2009). Morphological variation in Teucrium chamaedrys in serpentine and non-serpentine populations. Soil and biota of serpentine: a world view. Northeast Naturalist, 16(5), 39–55.

    Article  Google Scholar 

  • Piluzza, G., & Bullitta, S. (2011). Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the mediteranean area. Pharmaceutical Biology, 49(3), 250–247.

    Article  Google Scholar 

  • Politycka, B., & Adamska, D. (2003). Release of phenolic compounds from apple residues decomposing in soil and the influence of temperature on their degradation. Polish Journal of Environmental Studies, 12(1), 95–98.

    CAS  Google Scholar 

  • Quettier, D. C., Gressier, B., Vasseur, J., Dine, T., Brunet, C., Luyckx, M. C., et al. (2000). Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology, 72(1–2), 35–42.

    Article  Google Scholar 

  • Reeves, R. D., Baker, A. J. M., Becquer, T., Echevarria, G., & Miranda, Z. J. G. (2007). The flora and biogeochemistry of the ultramafic soils of Goiás state Brazil. Plant and Soil, 293(1), 107–119.

    Article  CAS  Google Scholar 

  • Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2(4), 152–159.

    Article  Google Scholar 

  • Rivero, R. M., Ruiz, J. M., Garcia, P. C., Lopez-Lefebre, L. R., Sanchez, E., & Romero, L. (2001). Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Science, 160(2), 315–321.

    Article  CAS  Google Scholar 

  • Rusak, G., Gutzeit, H., & Ludwig-Müller, J. (2005). Structurally related flavonoids with antioxidative properties differentially affect cell cycle progression and apoptosis of human acute leukemia cells. Nutrition Research, 25(2), 143–155.

    Article  CAS  Google Scholar 

  • Schützendübel, A., & Polle, A. (2002). Plant responses to abiotic stresses: heavy metal–induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53(372), 1351–1365.

    Google Scholar 

  • Seenivasan, S., Anderson, A. T., & Muraleedharan, N. (2016). Heavy metal content in tea soils and their distribution in different parts of tea plants, Camellia sinensis (L). O. Kuntze. Environmental Monitoring and Assessment, 188, 428–436.

    Article  Google Scholar 

  • Shah, A., Niaz, A., Ullah, N., Rehman, A., Akhlaq, M., Zakir, M., et al. (2013) Comparative study of heavy metals in soil and selected medicinal plants. Journal of Chemistry, 1 ̶ 5. doi:10.1155/2013/621265

  • Shallari, S., Schwartz, C., Hasko, A., & Morel, J. L. (1998). Heavy metals in soils and plants of serpentine and industrial sites of Albania. Science of the Total Environment, 209(2–3), 133–142.

    Article  CAS  Google Scholar 

  • Singleton, V. L., Orthofer, R., & Lamuela, R. R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178.

    Article  CAS  Google Scholar 

  • Stanković, S. M. (2011). Ecological study of Teucrium montanum L.—population, phenological and plant part variability of secondary metabolites concentration. International botanical congress Botanikertagung 2011. Berlin. Germany. Conference book 255.

  • Stanković, S. M. (2012). Biological effects of secondary metabolites of species from the genus Teucrium L. of Serbian flora. Kragujevac, University of Kragujevac, Dissertation.

  • Stanković, M., Topuzović, M., Solujić, S., & Mihajlović, V. (2010). Antioxidant activity and concentration of phenols and flavonoids in the whole plant and plant parts of Teucrium chamaerdys L. var. glanduliferum Haussk. Journal of Medicinal Plants Research, 4(20), 2092–2098.

    Google Scholar 

  • Stanković, M., Nicifirović, N., Topuzović, M., & Solujić, S. (2011). Total phenolic content, flavonoid concentrations and antioxidant activity, of the whole plant and plant parts extracts from Teucrium montanum L. var. montanum, f. supinum (L.) Reichenb. Biotechnology & Biotechnological Equipment, 25(1), 2222–2227.

    Article  Google Scholar 

  • Stanković, S. M., Petrović, M., Godjevac, D., & Dajić-Stevanović, Z. (2015). Screening inland halophytes from the Central Balkan for their antioxidant activity in relation to total phenolic compounds and flavonoids: are there any prospective medicinal plants? Journal of Arid Environments, 120, 26–32.

    Article  Google Scholar 

  • Veličković, M. J., Dimitrijević, S. D., Mitić, S. S., Mitić, N. M., & Kostić, A. D. (2014). The determination of the phenolic composition, antioxidative activity and heavy metals in the extracts of Calendula officinalis L. Advanced Technologies, 3(2), 46–51.

    Google Scholar 

  • Yan, X., Zhang, F., Zeng, C., Zhang, M., Devcota, P. L., & Yao, T. (2012). Relationship between heavy metal concentrations in soils and grasses of roadside farmland in Nepal. International Journal of Environmental Research and Public Health, 9(9), 3209–3226.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This investigation was supported by Ministry of Science and Technological Development of the Republic of Serbia (III41010). The authors acknowledge Ana Vučićević for manuscript lecturing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan S. Stanković.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zlatić, N.M., Stanković, M.S. & Simić, Z.S. Secondary metabolites and metal content dynamics in Teucrium montanum L. and Teucrium chamaedrys L. from habitats with serpentine and calcareous substrate. Environ Monit Assess 189, 110 (2017). https://doi.org/10.1007/s10661-017-5831-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5831-8

Keywords

Navigation