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Abstract We modified the robust analysis of variance
(RANOVA) method to calculate sampling uncertainty
of selected trace elements determined in soil samples
from two heterogeneous remote historic metal ore min-
ing areas. Classical RANOVA is down-weighting the
outlying values by replacing them during the calculation
process with mean ± c·σr. Because the arithmetic mean
is greatly influenced by outliers, it cannot represent a
robust statistic. The main novel contribution of this
work is use of median value that is independent on
outliers and replace all extreme values during the calcu-
lation process with median ± 2·σr. In our work, 18
duplicate, composite soil samples were collected,
digested with aqua regia in a closed microwave system,
and analyzed twice for selected trace elements. To ex-
tract homogenous groups within sampling areas and
make the results more accessible for interpretation, a
cluster analysis was done. Subsequently, histograms of
each element were prepared and statistical tests were
applied to determine the normal distribution of datasets.
For abnormally distributed elements, the outlying values
were identified by four different methods: boxplot,
mean ± c·σr, mean ± c·σ, and median ± 2·σr. For five
elements, the amount of outliers identified by the

median ± 2·σr procedure was less than 10 %, and for
these elements, the sampling uncertainty was computed
using a modified RANOVA method. The sampling un-
certainty computed with this method was 28.9% for Cd,
15.2 % for Co, 14.5 % for Mn, 12.7 % for Ni, and
16.3 % for Zn, whereas that computed with a traditional
model was 16.7 % for Cd, 9.2 % for Co, 20.5 % for Mn,
17.9 % for Ni, and 16.3 % for Zn.
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Introduction

In environmental studies, the main errors are usually
connected with the sampling step (Ramsey and
Argyraki 1997; Petersen et al. 2005; Ramsey and
Ellison 2007). The environmental parameters examined,
including element concentrations, may vary with time,
sampling season, temperature, and geology and topog-
raphy of sampling sites. In general, these types of errors
are usually very difficult to predict and can be extremely
large, so the estimation of sampling uncertainty, next to
analytical uncertainty, has become a standard procedure
in each analytical method (Grøn et al. 2007; Lyn et al.
2007a, b; Joint Committee…. 2008; Reiter et al. 2011;
Buczko et al. 2012; Esbensen and Wagner 2014). Rou-
tine and complex calculation of individual components
of the total uncertainty includes the following steps: (i)
testing of data distribution, (ii) identification of outliers
in datasets showing abnormal distribution, (iii) data
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transformation (when the amount of outliers in dataset
exceeds 10 % of total results), and (iv) calculation of
uncertainty with a classical or robust analysis of vari-
ance (Dołęgowska et al. 2015).

The results derived from analysis of environmental
samples are scarcely normally distributed. Because the
normal distribution plays a significant role in statistical
assessment of uncertainty, the first step relating to analy-
sis of data distribution and identification of extreme
values is crucial (Kuikin 2003; Reimann et al. 2005;
Filzmoser et al. 2008). The presence of more than 10 %
of outliers in dataset forces some additional mathematical
operations that have to be done before using a classical
analysis of variance. Data need to be transformed to
obtain better symmetry and achieve normality (Reimann
and Filzmoser 2000; Lee and Ramsey 2001; Filzmoser
et al. 2009a; Dołęgowska et al. 2015), because environ-
mental data are commonly positively skewed so the
square root or logarithm transformation is typical in a
conversion process. In practice, the log transformation is
mainly used for positively skewed data, whereas the
square root for slightly positively skewed data (Reiter
et al. 2011), but as shown by Reimann and Filzmoser
(2000), both these operations may fail to restore normal-
ity. They may reduce skewness but cannot accommodate
the compositional nature of the data (Reimann et al.
2008; Filzmoser et al. 2009b; Filzmoser et al. 2012). It
should be stressed that an effective transformation should
give the closest to normally distributed dataset and de-
pends on the type of distribution shape.When the amount
of extreme values does not exceed 10 % of the total
results, the sampling uncertainty can be calculated using
a robust analysis of variance, which is less susceptible to
extreme values. At this stage, the main problem is asso-
ciated with correct identification of extreme values
(Reimann and Garrett 2005; Rostron and Ramsey 2012).

Considering this, the estimation of sampling uncertain-
ty is easywhen the followingprerequisites aremet: (i) data
are normallydistributed, (ii) abnormalitymaybe eliminat-
ed employing common transformation methods (e.g., log
transformation), (iii) the amount of outliers (<10%of total
results) allowsus touse the robustanalysisofvariance,and
(iv) thepresenceofoutliers does not result fromspecificity
of sampling area. When these assumptions are not ful-
filled, the calculation process is more complicated. The
principal objectives of this study were to (i) assess the
heterogeneity of sampling area using a cluster analysis
method, (ii) identify the amount of outliers by four differ-
ent methods, and (iii) estimate the level of sampling

uncertainty for selected elements determined in soil sam-
ples collected within heterogeneous remote historic metal
ore mining areas using a modified robust analysis of var-
iance (RANOVA)method.

When the RANOVA method can be applied?

Interpretation of results from analysis of environmental
samples is aprocess thatneedsamultifacetedapproach(de
Zorzi et al. 2002;Barbizzi et al. 2004;Reimannet al. 2005;
Buczko et al. 2012; Dołęgowska andMigaszewski 2013;
Gałuszka et al. 2015). Before computing the uncertainty
that arise from sampling and analysis of environmental
samples, the following aspects must be taken into consid-
eration. Firstly, it should be emphasized that environmen-
tal data are spatially dependent, whereas statistical calcu-
lations assume independent samples. Secondly, the single
element concentration is determined by a multitude pro-
cess, whereas most of statistical tests assume that the
sample comes from the same distribution. Moreover, en-
vironmental datamight be imprecise, dependingondiffer-
ent times of sampling, specificities of samples, or sample
preparations(ReimannandGarrett2005;Dołęgowskaand
Migaszewski 2015). According to these aspects, environ-
mental analysis requires a robust approach, more resistant
to outlying values that may come from different sources
and may disturb a normal distribution. Robust models
adopt that data distribution may diverge from the normal
shape, so they can be applied when the assumption of
normality is not fulfilled (Hoaglin et al. 2000; Erceg-
Hurn and Mirosevich 2008; Filzmoser et al. 2009b;
Rostron and Ramsey 2012). In this context, the robust
analysis of variance knownas theRANOVAmethodused
for calculation of sampling uncertainty is readily applied.

The main advantage of this method is accommoda-
tion of outlying values that are down-weighted during
calculation, so the final results are more reliable. Unfor-
tunately, the RANOVAmethod cannot be usedwhen the
outlying values exceed 10 % of the total results or when
these values are to be treated as a feature of the dataset.
The presence of more than 10 % of outliers in a dataset
may lead to bimodal or multimodal distribution, so the
estimation of variance may be invalid (Lee and Ramsey
2001; Ramsey and Ellison 2007). The RANOVA in-
tends that, during calculations, all values that exceed the
relation: mean + c·σr (where mean is a classical mean
and σr is a robust standard deviation) are replaced by
mean + c·σr, whereas all values that exceed mean − c·σr
are replaced by mean − c·σr. After this step, the mean
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and σr are recalculated. The process is repeated multiple
times, until the arithmetic mean stabilizes (converges) at
an acceptable level of accuracy. It can be easily calcu-
lated using the ROBCOOP4.EXE program, which is
based on an iterative approach and is dedicated to
geochemical surveys (Rostron and Ramsey 2012).

Extreme values—how they should be identified?

The preliminary estimation of element distribution in
environmental samples (e.g., plants, soils) may be prob-
lematic. Samples derived, for example, from derelict
metal ore mining areas where element concentrations
result from natural and anthropogenic sources need a
special attention. Geochemical changes in the environ-
ment induced by human activity lead to enrichment in
different elements. These also increase the probability of
occurrence of outliers in a dataset that makes the results
difficult to interpret. Geochemical datasets always con-
tain outliers that can be defined as variables originating
from different processes or sources, which belong to a
different population (Grünfeld 2005; Reimann and
Garrett 2005). Usually, outliers arise from a sample that
diverges from other samples. Hence, their presence in a
dataset may cause heavy tails in distribution or bimo-
dality (Hampel et al. 1986; Barnett and Lewis 1994;
Templ et al. 2008). To avoid this problem, outliers are
often removed from the data prior to computing. How-
ever, they carry important information about the study
area and they should not be ignored, even though their
presence disturbs the normal distribution, which is re-
quired in a classical analysis of variance. In general,
classical models are unsuitable for datasets containing
outliers, and the results obtained by these methods can
be erroneous (van der Laan and Verdooren 1987).

Identification of outliers is not a trivial task
(Reimann and Garrett 2005; Filzmoser et al. 2008),
and their amount is a criterion in applying of the
RANOVA. The knowledge about statistical distribu-
tion of results may be obtained from histograms that
belong to the most popular statistical graphics. Un-
fortunately, the presence of outliers in a dataset
makes them commonly useless. As mentioned be-
fore, the outliers may be removed or their influence
may be reduced through their transformation, but the
decision about data transformation and the type of
transforming function should be based on the as-
sumed geometry inherent in the data not only in
the shape of histogram. However, if any operations

on outliers are to be taken, they must be properly
identified.

The most popular method used for identification
of outliers is mean ± c·σ, where mean is a classical
arithmetic mean, whereas c is a factor between 1 and
2 but typically set to 1.5. This method allows us to
identify about 2.5 % of the upper and lower extreme
values. In this method, the extreme values are defined
as values in the tails of statistical distribution. Be-
cause both mean and standard deviations are strongly
dependent on outlying values, this relation seldom
gives an appropriate estimation of threshold. In sta-
tistics, these two parameters illustrate the population
mean and standard deviations, but sometimes, they
may represent the second distribution arising from
the presence of outliers in a dataset (Reimann et al.
2005).

The better way to deal with outliers and their impact
on the data distribution is to use a method, which does
not rely on statistical assumptions and is based on pa-
rameters, which are robust against outliers. The use of
robust parameters makes that the whole relation does
not rely on outlying values. In this context, the more
adequate procedure for identification of extreme values
from environmental results is a median ± 2·σrmethod. It
is a direct analogy to mean ± c·σ, but the mean is
replaced by a median value and a standard deviation
by a median absolute deviation (σr) defined as a median
of absolute deviations from a median of all data (Tukey
1977; Rousseeuw et al. 2006). This method allows us to
identify extreme values that may originate from
superimposed processes (e.g., mining activity), not only
from the same source (Reimann et al. 2005).

Another method used for preliminary selection of
results and identification of outliers is the boxplot meth-
od (Hubert and van der Veeken 2007; Dawson 2011).
Like histograms, the boxplots give a lot of information
about data distribution. In this method, the dataset is
divided into four groups (based on the median value),
and subsequently, each group is divided into halves. The
25 % of all results are placed in each group. The lines
dividing the groups are called quartiles, and the groups
are called quartile groups. The central box collects 50 %
of the data. The upper quartile indicates that 75 % of the
data are below this quartile, and the lower quartile
indicates that 25% of data are below this quartile. When
the boxplot is short, it means that our data are similar to
each other, whereas the tall boxplot suggests differenti-
ation within the dataset. In this method, each outlier is a
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value that lies more than one and a half times the length
of the box from its either end (Rousseeuw et al. 2006).
According to Reimann et al. (2005), the boxplot and the
median ± 2·σrmethods are more adequate for estimation
of extreme values from geochemical surveys. In general,
the boxplot gives reliable results when the number of
outliers is about 15 %, whereas the median ± 2·σr is
about 15–25 %.

The last of the described method is the
mean ± c·σr, where the mean is a traditional arith-
metical mean and σr is a robust standard deviation
defined as a median of absolute differences between
duplicated measurements. This method is used for
elimination of outlying values during calculation of
uncertainty by the ROBCOOP4.EXE program. Because
this is based on the arithmetical mean, it can be success-
fully used when no outliers exist in a dataset or when they
comply with the definition of outliers (do not arise from
specificity of sampling area). It can be difficult when
geochemical data are taken under consideration
(Rostron and Ramsey 2012).

Fieldworks

Soil samples were collected within two remote historic
metal ore mining areas: Miedzianka Mount nature re-
serve (354 m a.s.l.) and Karczówka Mount landscape
reserve (335 m a.s.l.) in November of 2012. These sites
are located in the southwestern and north-central parts of
the Holy Cross Mountains, south-central Poland.
Miedzianka Mt. was a significant copper ore mining
center until the twentieth century, while Karczówka
Mt. was one of the most important lead ore mining
centers in the sixteenth to seventeenth century. Eight
composite and duplicate samples (each consisted of five
to ten increments) from Karczówka and ten samples of
the same pattern fromMiedzianka were collected within
an area of about 1 m2 (Fig. 1 of ESM 1). All samples
(about 2 kg each) were taken using a systematic random
sampling strategy from a depth of about 0.3–0.5 m. The
samples were in situ cleaned from alien material, over-
sized particles (Ø > 2 mm), and homogenized. The
duplicate samples were collected at a distance of about
1–2 m using the same procedure (Jung and Thornton
1997; Ramsey and Argyraki 1997). All samples were
finally transported to the Geochemical Laboratory of the
Institute of Chemistry and prepared for further analysis.

Materials and methods

Soil samples were dried at an ambient temperature and
disaggregated to pass a 0.063-mm sieve using a
Pulverisette 2 Fritsch grinder and an Analysette 3 Spar-
tan shaker (FRITSCH, Germany). The soil samples
(0.5 g each) were digested in a closedmicrowave system
Multiwave 3000 (Anton Paar, Austria) according to the
procedure presented in Table 1. After digestion had been
completed, solutions were replenished up to 25 mL. The
concentrations of As, Cd, Co, Cr, Cu, Mn, Ni, Pb, and
Zn were determined using the ICP-MS method (ELAN
DRC II, PerkinElmer, USA), and according to the bal-
ance strategy, each sample was analyzed twice [38].
Instrumental and data acquisition parameters of the
ICP-MS instrument are summarized in Table 1. During
analysis, two internal standards Rh and Ir and two
standard reference materials CRM NIST 2710a (Mon-
tana I Soil) and GSS4 (Chinese Academy of Geological
Sciences) were applied. The average recovery was in the
range of 92–110 %.

Results and discussion

Statistical distribution of results strongly depends on
element concentrations. Differences in element contents
within sampling area may signify its heterogeneity,
which can be a fundamental source of sampling error
(Gy 1995; Hildebrandt et al. 2012). Both sampling and
analytical uncertainty are dependent on heterogeneity of
sampling area, so prior to any statistical estimation of
these components, the spatial distribution of elements
should be evaluated (Petersen et al. 2005; Bodnar et al.
2013). One of the most popular methods used for iden-
tification of homogenous groups of objects within a
dataset is a cluster analysis (Templ et al. 2008). This is
based on similarities or dissimilarities between data and
classifies the obtained results into clusters, which are
more practicable and more accessible for interpretation
than the original data. In this method, each single cluster
depicts a group of homogenous observations (elements)
that are similar to one another but are different from
elements of other groups (Filzmoser et al. 2009b). To
indicate a homogenous group within this study area, the
cluster analysis was done with STATSOFT Statistica
Software®. At the beginning, the results were normal-
ized with the Box-Cox method and standardized. Sub-
sequently, the analysis was completed using Ward’s
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Fig. 1 Location of the
investigated areas and sampling
sites

Table 1 Parameters of digestion process and ICP-MS instrument

Digestion parameter ICP-MS instrument parameters

Power 1000 W Plasma power 1275 W

Time 65 min Lens voltage 7.50 V

Time of growth 15 Plasma gas flow 15 L min−1

Time of real digestion 30 Nebulizer gas flow 1.03 L min−1

Time of cooling 20 Sweeps/reading 20

Temperature 220 °C Readings/replicate 3

Pressure 6 MPa Replicates 4

p growth rate 0.03 MPa s−1 Dwell time 50–150 μs depending on the analyte
Reagents HCl (6 mL), HNO3 (2 mL) MERC
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method with a square of Euclidian distance as a measure
of similarity. The dendrograms were performed at a
distance reported as 100·D/Dmax.

The spatial variability in element concentration was
foundwithin the samplingarea aswell as betweenprimary
and duplicate sites selected at the same sampling location.
Two identical homogenous groups are observed within
hierarchical clustering dendrograms (Fig. 2a) obtained
for primaryandduplicate sampling sites fromKarczówka.
The first cluster is formed by sites 25, 32, and 41 whereas
the other by sites 37, 57, 58, 59, and 60. The chemical
analysishas shownthat thehighest averageconcentrations
of As, Co, Ni, Zn, Cd, and Pb are noted in soil samples
collected from sites forming the first cluster. The Pb levels
wereeven20 timeshigher than thosenotedat sites forming
the second cluster. Twomain clusters are also recorded in
dendrograms obtained for sampling sites from
Miedzianka, but the bounding observed between primary
and duplicate sites is different (Fig. 2b). The dendrogram
of primary samples shows two main groups. The first
group is formed by sites 1, 43, and 52 and the other by
sites10,33,34,21,47, and58,asopposed tosite61,which

forms an independent bundle. It shouldbe stressed that the
highest concentrations of all the elements (except for Pb)
were recorded at site 61.Two clusters are also displayed in
thedendrogramofduplicate samples, but the first cluster is
formedbysites1,34,and52andtheotherby10,21,33,43,
47, 58, and 61. Moreover, within the second band, two
separate bundles are found; the first is formed by sites 33
and 61 and the other by sites 10, 21, 43, 47, and 58. The
coefficient of variance, which is a normalized measure of
dispersion of a probability distribution, was also calculat-
ed, and it varied from 36 to 140 % for elements from
Karczówka and from 40 to 170 % for elements from
Miedzianka.This also indicates that the differenceswithin
datasets are statistically significant.

To check the normal distribution of datasets, the
histograms of each element were prepared and
p values using Shapiro-Wilk test were calculated. The
analysis of histograms and p values (95 %) shows that
results for Co (0.11) from Karczówka and Cr (0.06) and
Pb (0.09) from Miedzianka are normally distributed.
The sampling uncertainty (srsamp (%)) calculated with
the ANOVA method for Co, Cr, and Pb is 15.6, 20.2,

Fig. 2 Dendrograms of primary and duplicate sites from a Karczówka and b Miedzianka
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and 38.7 %, respectively. The other elements exhibit a
skewed right distribution, and for these elements, outly-
ing values were identified with the following methods:
boxplots, mean ± c·σ, mean ± 1.5·σr, and median ± 2·σr.
The percentage of detected outliers is different and
depends on the method used (as shown in Table 2 of
ESM 2). The boxplots find more than 10 % of extreme
values only for Cr and Ni from Karczówka and for As
and Co fromMiedzianka (as shown in Fig. 3a, b of ESM
1). No outlying values in the most datasets examined
have been found, but the length of Bboxes^may suggest
their differentiation. This is also confirmed by the anal-
ysis of histograms. The mean ± c·σ and the
median ± 2·σr procedures give a completely different
outcome. More than 10 % of outliers are identified with
the median ± 2·σr method for all the elements deter-
mined in the soil samples from Karczówka and for As
and Cu from Miedzianka, i.e., the elements with the
highest coefficient factor (154 and 171 %, respectively).
The amount of extreme values, which have been iden-
tified using the mean ± c·σ method, is dependent on the
c factor. When the c factor is 1.5, more than 10 % of
extreme values are identified only for As, Cu, Ni, Pb,
and Zn from Karczówka. In case that the c factor is 2,
the extreme values are not observed in any dataset.
Using the mean ± 1.5·σr method, more than 10 % of
outliers in all the examined datasets are identified.

In summary, the boxplot method combined with the
histograms gives primary information about data distri-
bution, but this information may be ambiguous (see the
boxplots of elements from Karczówka, Fig. 3a of ESM
1). The histograms allow us to inspect the data distribu-
tion, whereas boxplots show the median and skewness of
the distribution and allow for preliminary identification
of data outliers. Themethods that use an arithmetic mean,
which is strongly influenced by the extreme values, may
also disturb the correct interpretation of results. Hence,
the method that eliminates the direct relation with the
arithmeticmean and down-weights the impact of outliers,
such as the median ± 2·σr method, may be the most
suitable in the analysis of geochemical data.

Because the RANOVA method may be applied only
when the outlying values do not exceed 10% of the total
results, the sampling uncertainty can be calculated with
this method for

& As, Cd, Cu, Mn, Pb, and Zn from Karczówka and
Cd, Cu, Mn, Ni, and Zn from Miedzianka—after
identification of outlying values with the boxplot
method

& Cd, Cr, and Mn from Karczówka and all the deter-
mined elements from Miedzianka—after identifica-
tion of outlying values with the mean ± 1.5·σ
method

Table 2 Percentage of detected outliers identified with four different methods

As Cd Co Cr Cu Mn Ni Pb Zn

Boxplots

Karczówka <10 % <10 % Normal distribution >10 % <10 % <10 % >10 % <10 % <10 %

Miedzianka >10 % <10 % >10 % Normal distribution <10 % <10 % <10 % Normal distribution <10 %

Mean ± 1.5·σ

Karczówka >10 % <10 % Normal distribution <10 % >10 % <10 % >10 % >10 % >10 %

Miedzianka <10 % <10 % =10 % Normal distribution =10 % =10 % <10 % Normal distribution <10 %

mean ± 2.0·σ

Karczówka <10 % <10 % Normal distribution <10 % <10 % <10 % <10 % <10 % <10 %

Miedzianka <10 % <10 % <10 % Normal distribution <10 % <10 % <10 % Normal distribution <10 %

mean ± c·σr
Karczówka >10 % >10 % Normal distribution >10 % >10 % >10 % >10 % >10 % >10 %

Miedzianka >10 % >10 % >10 % Normal distribution >10 % >10 % >10 % Normal distribution >10 %

median ± 2·σr
Karczówka >10 % >10 % Normal distribution >10 % >10 % >10 % >10 % >10 % >10 %

Miedzianka >10 % <10 % =10 % Normal distribution >10 % =10 % =10 % Normal distribution <10 %
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& Al l the e l emen t s f rom Karczówka and
Miedzianka—after identification of outlying values
with the mean ± 2.0·σ method

& None of these elements—after identification of out-
lying values with the mean ± 1.5·σr method

& Cd, Co, Mn, Ni, and Zn from Miedzianka—after
identification of outlying values with the
median ± 2·σr method

In the RANOVA method described by Rostron and
Ramsey (2012), the outlying values are defined as
values exceeding the relation mean ± c·σr (vide subsec-
tion Extreme values – how they should be identified?).
Because the median ± 2·σr technique is more suitable for
identifying outliers in geochemical data, we used it by
analogy to Rostron and Ramsey (2012) to calculate the
sampling uncertainty. During the calculation process, all
extreme values lower than median − 2·σr were replaced
by median − 2·σr and all higher than median + 2·σr were
replaced by median + 2·σr. After this process was
completed, the median (if it changed) and robust standard

deviation were recalculated. After each operation, the
histograms were made and datasets were tested for
normality. The statistical operation was repeated as
p value (calculated with Shapiro-Wilk test) was constant
or when normality was achieved. The sampling
uncertainty (srsamp (%)) calculated with this method for
Cd, Co,Mn, Ni, and Zn fromMiedzianka was as follows:
28.9 % for Cd, 15.2 % for Co, 12.7 % for Ni, 14.5 % for
Mn, and 16.3 % for Zn. The sampling uncertainty
calculated with a traditional RANOVA model using the
ROBCOOP4.EXE programwas 16.7% for Cd, 9.2% for
Co, 20.5% forMn, 17.9% for Ni, and 16.3% for Zn.We
decided to compare these results and calculate uncertainty
with a traditional RANOVA method because the amount
of outliers recognized with the mean ± 1.5·σ technique
was lower than 10 % for the elements examined. The
higher sampling uncertainty computed with a modified
model compared to a traditional one was obtained for Cd
and Co. As for Cd, during a recalculating process, the
element distribution approached multimodality (as
shown in Fig. 4 of ESM 1).

Fig. 3 Histograms and boxplots of data distribution from a Karczówka and b Miedzianka
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The calculation process was completed when the p
value began to decrease. This may suggest that, for this
element sampling, uncertainty should be calculated only
after data transformation. As for Co, the distribution
shape has changed as shown in Fig. 4, and the p value
has increased from 0.000 to 0.003. It is noteworthy that
for Mn, Ni, and Zn, the recalculating process led to
achieve normality. The final uncertainty computed with
this method compared to the uncertainty computed with
a traditional model was lower for Mn and Ni and
remained unchanged for Zn. Using the boxplot method,
we did not find the outlying values in the datasets
modified by recalculation process (Fig. 4 of ESM 1),
but the Bbox length^ still pointed to their differentiation.

Conclusions

The following conclusions can be drawn from the
datasets obtained from this study:

1. The spatial distribution of elements in heteroge-
neous areas is difficult to predict. The outlying
values identified in the datasets derived from the

analysis of soil samples may not comply with the
statistical definition of outliers.

2. The level of sampling uncertainty assessed for soil
samples may be high (even above 30 %) and may
arise from heterogeneity of the study area, which is
the fundamental source of sampling errors.

3. The RANOVA can be successfully used to calculate
the uncertainty arising from sampling provided that
the outlying values in each dataset are properly
identified.

4. Different methods used for identification of outly-
ing values may give completely different outcome.
The selection of correct method should always pre-
cede complex characterization of a study area and
localization of potential sources of elements.

5. The graphical methods, e.g., histograms or
boxplots, give preliminary information about the
data distribution. The presence of outliers in a
dataset commonly makes them useless, so their
analysis must be done thoroughly, and they cannot
be the sole source of our knowledge about the data
distribution.

6. The modified RANOVA method using the
median ± 2·σr procedure for elimination of outlying
values during the calculation process is more

Fig. 4 Histograms and boxplots of data distribution after recalculation process
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suitable for assessing the sampling uncertainty of
results derived from geochemical studies. The use
of robust parameters makes them independent on
outliers which, on the other hand, cannot be elimi-
nated in geochemical studies. It should be noted
that they always carry important information about
the study area.
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