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Abstract Evaluation of the ecological status of river
sites in Canada is supported by building models using
the reference condition approach. However, geography,
data scarcity and inter-operability constraints have frus-
trated attempts to monitor national-scale status and
trends. This issue is particularly true in Atlantic
Canada, where no ecological assessment system is cur-
rently available. Here, we present a reference condition
model based on the River Invertebrate Prediction and
Classification System approach with regional-scale ap-
plicability. To achieve this, we used biological monitor-
ing data collected from wadeable streams across
Atlantic Canada together with freely available, nation-
ally consistent geographic information system (GIS)

environmental data layers. For the first time, we dem-
onstrated that it is possible to use data generated from
different studies, even when collected using different
sampling methods, to generate a robust predictive mod-
el. This model was successfully generated and tested
using GIS-based rather than local habitat variables and
showed improved performance when compared to a null
model. In addition, ecological quality ratio data derived
from the model responded to observed stressors in a test
dataset. Implications for future large-scale implementa-
tion of river biomonitoring using a standardised ap-
proach with global application are presented.
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Introduction

Our need to monitor the ecological condition of river
ecosystems has created two schools of ecological as-
sessment: multivariate prediction and multimetric de-
scription. The former has been widely applied in
Canada (e.g. Reynoldson et al. 1995), the UK (e.g.
Clarke et al. 1996), Australia (e.g. Davies 2000) and
some USA states (Bonada et al. 2006), whilst the latter
has been adopted mainly by continental Europe (e.g.
Hering et al. 2004; Buffagni et al. 2009) and also by
some US states (e.g. Barbour et al. 1999). Each ap-
proach is based on a comparison of observed conditions
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in natural or nearly natural reference sites and test sites
of regulatory concern. The reference condition approach
(RCA) in its simplest form is a comparison of an ob-
served condition (O) with an expected condition (E)
(Reynoldson et al. 2001). In Canada, a multivariate
prediction model, Benthic Assessment of Sediment
(BEAST), was developed by Reynoldson et al. (1995)
to assess the ecological quality of streams and rivers.

Recent efforts have led to the development of a
national-scale biomonitoring program managed by
Environment Canada, known as the Canadian Aquatic
Biomonitoring Network (CABIN; http://cabin.cciw.ca).
The establishment of the CABIN program has catalyzed
a process of data and metadata integration, which focus-
es on Canadian freshwater ecosystems. Adopting a
partner-network model (i.e. a model where several
groups and institutions contribute to the implementation
of the program), the program has focused on the sam-
pling of benthic macroinvertebrates, the most common-
ly used biological indicator group for biomonitoring of
rivers (e.g. Resh 2008). Predictive models have been
developed for selected regions of the country (e.g. the
Fraser River, British Columbia—BEAST, Reynoldson
et al. 2001) but not yet for Atlantic Canada (comprising
the provinces of New Brunswick, Prince Edward Island
(PEI), Nova Scotia and Newfoundland and Labrador).
However, these models require data to be collected in a
standardised format, with field-observed local habitat
variables required for model construction. This places
a significant constraint on the modelling process, partic-
ularly in data-sparse remote regions such as those found
in Canada, where biological data may exist in a com-
patible format, yet standardised field-observed variables
are either inconsistently measured, or absent.

Geospatial data are an effective surrogate for local
field-collected variables in providing the information
needed to develop multivariate prediction models
(Hawkins et al. 2000; Hargett et al. 2007; Poquet et al.
2009). Geology and climate, parameters widely mapped
using geographic information system (GIS), have been
recognized as large-scale drivers of macroinvertebrate
community composition in the literature (Omernik
1987; Snelder et al. 2004). One of the advantages of
using national-scale geospatial data is the ability to
directly compare habitat data consistently amongst loca-
tions, thereby reducing or eliminating the challenge of
data interoperability (i.e. the ability to integrate data
collected with different protocols or different operators
for ecological assessment), which can arise in bottom-

up, partner-based networks, such as EC’s CABIN
program.

This paper describes the development of a RCA
model based on the River Invertebrate Prediction and
Classification System (RIVPACS) approach using
landscape variables extracted from standardised geo-
spatial data paired with benthic macroinvertebrate data
generated from samples of wadeable streams across
New Brunswick, Nova Scotia, Prince Edward Island
and Newfoundland. The analyses also aim to validate
the developed model against independent datasets and
against a null model. A null model is formulated on an
assumption that the occurrence probabilities of taxa in
reference sites are not driven by natural-gradient var-
iables (Van Sickle et al. 2005), and thus, a null model
does not employ the procedure of clustering reference
sites into groups as per the standard RIVPACS ap-
proach. Finally, one local case study with known
environmental impairments was used to test the per-
formance of the method.

Data and methods

Study area

Figure 1 shows locations of the 582 benthic macro-
invertebrate samples collected between 2002 and 2008
in the Atlantic Maritime ecozone. All samples were
collected in unique locations for reference sites (see
below for definitions), whilst repeated samples were
collected at some test sites. Forests in the Atlantic
Maritime ecozone constitute 90 % of the total land
cover and are referred to as the New England–Acadian
forests, comprising temperate broadleaf and mixed
forest (Benke and Cushing 2005). Newfoundland is
located in the north central boreal forest subregion
(Meades and Moores 1994), and it shows, in broader
terms, a cool summer subtype of a humid continental
climate, a hilly topography and forests that comprise
about 50 % of the area (Gauthier, Poulin, Theriault,
Ltd. 1977).

Benthic macroinvertebrate data employed in our
study were drawn from the following sources (see also
Table 1 for a summary):

(a) Environment Canada CABIN dataset (kick-net)
Riverine benthic macroinvertebrate data were

extracted from Environment Canada’s online
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CABIN database (http://cabin.cciw.ca, consulted
December 2009; data usage permission was
obtained wherever needed) for all samples locat-
ed in New Brunswick, Nova Scotia, PEI and
Newfoundland. All samples were previously col-
lected using a standardized travelling kick-net
method, which disturbs the stream substrate using
a triangular net of 400-μm mesh size, whilst
walking backwards upstream. The collector zig-
zags across the river from bank to bank in an

upstream direction for 3 min (Reynoldson et al.
2007). Physical habitat and water chemistry data
were collected following standardised procedures
outlined in detail in the CABIN protocol
(Reynoldson et al. 2007).

Two additional data sets were used: one
from Environment Canada’s National Agri-
Environmental Standards Initiative project
(http://tinyurl.com/EC-NAESI) and one from
a National Defense project based at Canadian

Table 1 List of data sources considered in the present paper with a summary of the main data set features

Dataset

Features CABIN database New Brunswicka

Standard CABIN NAESI National Defence

Sampling Years 2002–2008 2006 2008 2004, 2006, 2007, 2008

Provinces NB, NS, PEI, NL NB NB NB

Sampling net Kick-net U-net

Sampling mesh size 400 μm (a) 250 μm and >1 mm but
only latter retained and (b) 400

Sampling method Single 3-min sample Composite of 3×1-min samples 3 rep samples each of 3×1-min
collections

Habitat Composite

Season Fall

Taxonomic resolution Mixed level, adjusted

a Two datasets combined after specific data analysis (Brua et al. 2010)

Fig. 1 The distribution of
biomonitoring sites
employed for reference con-
dition approach model de-
velopment collected in New
Brunswick, Nova Scotia,
Prince Edward Island and
Newfoundland. Training
and validation datasets only
include sites classified as
‘reference’ (see text for fur-
ther explanation) whilst po-
tentially impacted samples
are indicated as ‘test’
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Forces Base Gagetown. Data from both projects
were collected according to the standard CABIN
approach with the only difference being that in the
former study, samples were a composite of three
independent 1-min samples, instead of a standard
single 3-min sample.

(b) Province of New Brunswick dataset (U-net)
An analysis by Brua et al. (2010) demonstrated

that benthic macroinvertebrate samples from two
datasets, one from the Canadian Rivers Institute
(CRI) and one from the New Brunswick
Department of Environment (NBDENV), were sta-
tistically comparable and were merged accordingly.

Samples were collected using a U-net (250-μm
mesh size for CRI data and 400-μm mesh size for
NBDENV data). Large rocks within the U-net sam-
pling area were rubbed by hand inside a U-net to
dislodge any clinging macroinvertebrates into the
net. Bottom sediments were disturbed by hand for
1 min to a depth of approximately 2 cm. At each
site, three replicate samples were taken, and within
each replicate, three 1-min U-net collections were
pooled. NBDENV samples were processed using a
400-μm sieve whilst CRI samples were split be-
tween a fine (250 μm to <1 mm) and coarse
(>1 mm) fraction. Only the coarse fraction of the
macroinvertebrate community data from the CRI
samples was retained for analysis to improve data
comparability (Monk and Curry 2007).

Temporal variability

In order to reduce the effects of temporal variability on
the analysis, all the samples included in the analysis
were collected in the fall, thus limiting the potential
impact of seasonal difference. Assessments of site-
level inter-annual variability are currently limited be-
cause repeat sampled data are not available for the
majority of sites. For the analyses in this paper, we
have included reference site data collected from 2002
to 2008, which may account for some sources of inter-
annual variability in the model development.

Taxonomic adjustment

Site data were collated in a taxon abundance matrix,
with individual taxa adjusted mostly to family level,
with some exceptions at higher levels (i.e. Acarina,
Collembola, Cyclopoida, Gastropoda, Hydracarina,

Nemata , Ol igochaeta , Or ibate i , Os tracoda,
Platyhelminthes, Prostigmata). After removing taxa
occurring in less than 5 % of the samples (McCune
and Grace 2002), 60 taxa remained as the focus of the
data analysis.

The data were expressed as relative abundance, i.e.
the sum of the abundance of all the taxa in a sample is
equal to 1. Relative abundance was chosen to reduce
noise from natural fluctuations in raw abundance
values.

GIS data extraction

A 3-arcsec (approximately 90 m) continuous Shuttle
Radar Topography Mission Digital Terrain Model
(SRTM-DTM) was used for watershed delineation
(Jarvis et al. 2006; and see http://srtm.csi.cgiar.org).
The SRTM-DTM was processed at a 30-m resolution
to remove all depressions through a combination of
filling and breaching. The stream and lake network
and associated metadata were created from the SRTM-
DTM using the Burn function. This simple method
allows the location of known mapped water features to
be embedded into the SRTM-DTM using a method
first introduced by Maidment (1996). Upstream catch-
ments for each of the benthic macroinvertebrate sam-
ple sites were delineated using the Spatial Analyst
Hydrology toolset in ArcGIS® version 9.2 (ESRI, St.
Paul, MN, USA). A series of geospatial variables were
then extracted for each of the delineated catchments
(Table 2).

Training, validation and test dataset

The analysis in this paper uses 582 samples collected
in Atlantic Canada. Samples were categorised accord-
ing to the CABIN protocol (Reynoldson et al. 2007):
(1) reference: no observed modifying influences with-
in the vicinity of the reach at the time of sampling, this
being confirmed by later, more detailed examination
of surrounding land use; (2) potential reference: no
observed modifying influences within the vicinity of
the reach at the time of sampling or (3) test: one or
more modifying influences present within the vicinity
of the reach at the time of sampling (http://cabin.
cciw.ca; Armanini et al. 2011). For the present paper,
both ‘reference’ and ‘potential reference’ samples
were merged into a single ‘reference sample’ category.
Two subsets of reference samples were created
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following the approach outlined by Hargett et al.
(2007): (a) a ‘training’ dataset used for model devel-
opment and (b) a ‘validation’ dataset used to measure
overall model performance (sensu Van Sickle et al.
2006). Thus, samples in the combined reference data-
set were randomly assigned to two subsets: 75 % to
the training dataset and 25 % to the validation set. This
procedure produced 128 training samples and 42 val-
idation samples, making a total of 170 samples, each
collected at a unique location (Fig. 1).

A third dataset included sites potentially impacted
accordingly to the CABIN protocol (Reynoldson et al.
2007) or provincial classification (Province of New
Brunswick, personal communication): 412 test sam-
ples were collected from the four provinces studied.
According to CABIN, sites are flagged as test sites for
a range of reasons, and they could thus include both
impacted and unimpacted sites.

A subset of potentially impacted sites with de-
tailed physical and chemical variables from the
Upper Mersey CABIN studies was selected to
explore the ability of the predictive model to re-
flect potential departure of sites from the regional
reference state. The Upper Mersey Study was orig-
inally designed as a comprehensive suite of refer-
ence and test sites to monitor aquatic health and
assess the ecological effects of forestry manage-
ment activities on benthic macroinvertebrate com-
munities in the upper Mersey watershed (http://
cabin.cciw.ca). Samples and the environmental var-
iables were collected using the standardised
CABIN protocol (Table 1; Reynoldson et al.
2007). The majority of samples collected on PEI
and Newfoundland were categorized as test sites,

and we recommend that further data collection in
the province should be oriented towards the col-
lection of reference data, if possible.

Data analysis

Biological data interoperability comparison

A permutational ANOVA (PERMANOVA; Anderson
2001), computed in the Vegan package (Oksanen et al.
2009) using 999 permutations, was used to assess
biological data compatibility attributable to data
source. Based on the information summarized in
Table 1, a three-factor PERMANOVA was performed
considering Years (8 years, 2002–2009), Province
(three provinces, NB, NL and NS) and Sampling
Method (CABIN Kick-net Single 3-min sample,
CABIN Kick-net Composite of 3×1-min samples
and Provincial U-net). Differences between the two
datasets collected in New Brunswick, described in
the “Study area” section (b), have not been tested
here as they have already been demonstrated as
interoperable (Brua et al. 2010). Both the calibra-
tion and validation datasets were used in the
PERMANOVA, representing a total of 170 refer-
ence samples.

Reference condition model development

We developed a predictive model based on the
RIVPACS approach, based on procedures described
in recent literature (Clarke et al. 1996, 2003; Moss et
al. 1999; Hawkins et al. 2000; Van Sickle et al. 2006)
and a paired null predictive model following the

Table 2 List of the environmental variables considered in the present paper and related acronyms with details on the GIS data layers
and sources

Group Variables Data layer Data source

Stream morphology Catchment area (km2) Digital elevation model NASA Shuttle Radar Topography
MissionAverage slope (%)

Climate Long-term average
precipitation (mm)

Climate (precipitation and
temperature)

Environment Canada—Meteorological
Service of Canada

Long-term average
temperature range (°C)

Geology Sedimentary and volcanic rocks (%) Geological map of Canada, major
rock categories

Geological Survey of Canada,
Natural Resources CanadaIntrusive rocks (%)

Sedimentary rocks (%)

Volcanic rocks (%)
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approach of Van Sickle et al. (2006). To date, RCA
models have been traditionally developed in Canada
following the BEAST approach (Reynoldson et al.
1995). However, for this model we have decided to
diverge from this approach and instead to develop a
RIVPACS-type approach, for two reasons: (1) the
RIVPACS approach is backed by a larger body of
international scientific literature and its features have
been widely discussed and studied in a variety of
ecological settings (see citations at the beginning of
the paragraph), and (2) RIVPACS-type models neces-
sarily limit operator choices during model develop-
ment, particularly in the biological clustering phase.
This latter point supports our desire to reduce the level
of subjectivity in model construction, which creates
inconsistencies in model performance amongst studies
and promotes model subjectivity.

Biological classification

To assess the biological similarity amongst samples of
community assemblages (sensu Faith et al. 1987), the
Bray–Curtis dissimilarity measure was selected as a
robust indicator of differences amongst benthic macro-
invertebrate samples (Reynoldson et al. 2001). The
dissimilarity matrix was built using relative abundance
data and considering only the calibration dataset. As
recommended by Reynoldson et al. (2001), benthic
macroinvertebrate sample data were not transformed,
as dominance of taxa is an important property of
biological communities.

Agglomerative hierarchical cluster analysis (Kaufman
and Rousseeuw 1990) was applied using the Agnes func-
tion in the R package Cluster (Maechler et al. 2005)
using an unweighted pair group method with arithmetic
averages. The agglomeration coefficient was computed
as it provides a measure of the average height of the
mergers in a dendrogram. To select the number of clus-
ters to be retained, an internal validation approach was
selected (Handl et al. 2005). The development of the
RIVPACS-style weighting approach limits the need to
optimize the clustering phase and identify the ‘best’
model (Moss et al. 1999).

To highlight potential taxa indicators of the different
clusters, the indicator value (IndVal) (Dufrene and
Legendre 1997) method was run using the duleg func-
tion in R. Only calibration samples were included in the
analysis. Such analysis should be seen as qualitative
only, not for the purpose of describing the different

clusters, as consideration of indicator value significance
would be inappropriate, due to circularity (i.e. the clus-
ters were observed within the same set of biological
observations).

Environmental drivers and development
of discriminant models

For the development of a RIVPACS-based RCA
model, the selection of one or more environmental
variables that can correctly discriminate amongst the
identified biological groups was performed using
the best-subsets multiple discriminant function
(DF) modelling procedure developed by Van
Sickle et al. (2006). Group size was used as a prior
probability in predicting group membership proba-
bilities from the DF model (Clarke et al. 2003).
The procedure by Van Sickle et al. (2006) uses
Wilk’s lambda values to measure group separation
and to rank the different models obtained by the
subset procedures. Van Sickle et al. (2006) sug-
gested that the root mean square error (RMSE) of
O/E can be used to gain information on the bias
and variability of prediction errors. Over-fitting was
visually checked in addition to looking at the
RMSE of O/E at increasing model orders (follow-
ing Van Sickle et al. 2006).

Computation of O/E measure

Following the recommendations of Hawkins et al.
(2000), Clarke & Murphy (2006) and Van Sickle et
al. (2007), we have included only the relatively com-
mon taxa, to increase the power of detecting deviation
from reference conditions using our model. Hence and
to this end, we have selected a cutoff level of 0.5 (i.e.
when probability of occurrence of a taxon exceeds
50 %) to include taxa in the predictive model,
following Van Sickle et al. (2007). Taxa richness
O/E was computed based on the algorithm of Van
Sickle et al. (2006; 2007) for both DF-based and
null predictive models.

Prediction of habitat group membership

Following selection of the best DF model, estimates of
the probabilities that a new site belonged to each of the
clusters were calculated. The probability of a new
sample belonging to a given group was based on the
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Mahalanobis distance of the sample site from the
centre of each group (Clarke et al. 2003). The model
was further assessed by evaluating if predictor varia-
bles at a site were within the range of predictor vari-
ables at reference sites (Moss et al. 1987; Clarke et al.
1996; Hawkins et al. 2000). To this end, a chi-squared
test based on the multivariate distance between the set
of predictor values observed in a test samples and
those in reference samples was used to assess outliers.
Sites were flagged as outliers where α<0.01, accord-
ing to the procedure of Hawkins et al. (2000).

Null model development

Recently, benthic scientists have explored application
of the concept of null distribution of biota in different
fields of environmental sciences including bioassess-
ment (Van Sickle et al. 2005), although the full impli-
cations of such a theoretical model shift have not been
fully explored. Such ‘null models’ are formulated
based on an assumption that the occurrence probabil-
ities of taxa in reference sites are not driven by region-
ally discrete natural gradient variables (Van Sickle et
al. 2005), and as a result, there is no support for the
clustering of reference sites into groups. For example,
Van Sickle and Hughes (2000) have highlighted the
need to contrast the many predictive models devel-
oped in the Oregon (USA) for biomonitoring purposes
against a simple assumption of null distribution to
validate the need for clustering of the communities.
Therefore, a null model has been derived for this
analysis assuming that all reference samples belong
to a single group.

Comparison of null model and predictive models

The O/E of taxa richness was used to compare the DF-
based and null models using three approaches: (1) the
mean of the O/E measure as, theoretically, the mean O/
E values of a reference site should be as close to 1 as
possible in order to avoid over- or underestimation of
ecological quality at test sites; (2) the standard devia-
tion of the O/E measure, as a measure of the ability of
a model to explain the “natural” (non-anthropogenic)
sources of assemblage variation amongst sites. Since
the null model makes no attempt to account for such
variation, it has the highest SD(O/E) and hence serves
as a baseline for DF-based model performance; and (3)
the ability of the O/E measure to reflect changes in

environmental stressors and to detect potential stress
condition of the biological community. The modelling
procedure used to develop the predictive model has
been compiled as a set of function scripts for the R
language (R Development Core Team 2009), partly
based on scripts of Van Sickle et al. (2006), and is
freely available from the senior author upon request.

Results

Biological data interoperability comparison

A three-factor PERMANOVA analysis was performed
to compare taxa composition based on Years, Province
and Sampling Method (Table 1). As expected, a por-
tion of the variance observed was due to inter-annual
variability (partial R2=0.13, P=0.001). The inter-
annual component interacted significantly both with
Province and Sampling methods (partial R2=0.001
and 0.002, respectively), but the portion of variance
explained for Province and Sampling methods was
very small (partial R2=∼2 % for both variables). A
significant effect with a limited variance explained
was observed for both Sampling Methods (partial
R2=6 %, P=0.001) and Province (partial R2=3 %,
P=0.001). No significant interactions were observed
between Province and Sampling Method. Overall, the
low amount of variance explained by Sampling
Method, Province and by the relative Year interactions
indicates considerable overlap in taxa composition for
the components comprising the separate factors. This
confirmed data interoperability and justified merging
of those datasets.

Biological community classification for the RIVPACS-
based model

Bray–Curtis dissimilarities had a median of 0.59 (aver-
age value of 0.60) with an inter-quartile range between
0.49 and 0.71. Visual assessment of dendrogram and
breaks in slope of the agglomeration function indicated
the selection of three groups as an optimal clustering.

The majority of group 1 (n=31) sites were located
in southern and central New Brunswick and central
Nova Scotia. Sites were characterised by an interme-
diate to large watershed area with low slope and ele-
vation relative to the other groups. Group 2 (n=39)
sites were strongly affiliated with southern New
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Brunswick, particularly Fundy National Park, and
Cape Breton with a single site in Newfoundland.
These sites were associated with intermediate to high
slopes within the catchment and low to intermediate
elevations relative to the other groups. Group 3 (n=
58) sites were located across the study region with no
clear geographical affiliation. Due to the large number
of sites within group 3, there was a wide range in
elevation with sites characterised by a small to inter-
mediate catchment area relative to the other groups.
Differences in stream-type distribution between test
and reference sites were visually assessed, and the
range of variation of variables, such as elevation and
catchment size, were fully overlapping across the three
groups reducing the risk of stream-type differences
between test and reference sites.

From a biological standpoint, IndVal analysis identi-
fied several indicator taxa for each group (Table 3). Most
notably, group 1 was characterized by Chironomidae
(Diptera) and Naididae (Haplotaxida); group 2 by
Baetidae (Ephemeroptera) and Ephemerellidae
(Ephemeroptera), Rhyacophilidae (Trichoptera),
Chloroperlidae (Plecoptera) and Perlodidae (Plecoptera)
and group 3 by Hydropsychidae (Trichoptera) and
Brachycentridae (Trichoptera), Oligochaeta and
Platyhelminthes. The biological community structure
appears to reflect changes in stream habitat with
Ephemeroptera, Plecoptera and Trichoptera taxa,
known for their preference for well-oxygenated
water, characterizing the cluster with higher slope
and thus more turbulent flows (i.e. group 2),
whilst more potamal taxa dominated the sites with
low slope and elevation (i.e. group 1). The group
3 was characterized by generalist taxa able to
colonize the range of environmental conditions
experienced in the sites of group 3.

Identification of environmental drivers and development
of a DF models using best-subset procedure

More than 250 possible configurations were computed
using the selected predictors in the screening or best-
subset procedure, and five best models were retained
for each model order (defined as the number of pre-
dictors included in the DF model) for an overall output
of 36 models. For the training sites, the overall preci-
sion and accuracy increased with the order of the best
DF models, i.e. the RMSE (O/E), decreased (Fig. 2).
However, models with an order greater than 4 did not

appear to provide an improvement in both precision
and accuracy. Therefore, a fourth-order model was
selected, and by examining the best model in terms
of RMSE(O/E) for each index, two DF solutions were
presented as best possible models: (1) long-term an-
nual temperature range (in degree Celsius), intrusive
rocks (in percent), sedimentary rocks (in percent) and
sedimentary and volcanic rocks (in percent) and (2)
long-term annual temperature range (in degree
Celsius), sedimentary rocks (in percent), sedimentary
and volcanic rocks, and average slope (in percent). For
the training dataset, the two models showed equal
Wilks’ lambda values (0.426), but the first model
showed higher cross-validated classification accuracy

Table 3 Indicator value (IndVal) for the three biological groups
selected for the development of the RIVPACS-based model

Class Taxa IndVal (%)

1 Chironomidae 62

Naididae 52

Oribatei 49

Polycentropodidae 49

Hydroptilidae 43

Empididae 42

Corydalidae 38

Enchytraeidae 36

Leuctridae 35

2 Baetidae 89

Rhyacophilidae 69

Chloroperlidae 57

Perlodidae 57

Ephemerellidae 51

Heptageniidae 46

Lepidostomatidae 44

3 Hydropsychidae 66

Brachycentridae 60

Oligochaeta 56

Platyhelminthes 50

Elmidae 49

Perlidae 47

Philopotamidae 46

Tipulidae 46

Leptophlebiidae 42

Hydracarina 42

Gastropoda 38

Glossosomatidae 37

Only values higher than 33 % are presented
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(73 as compared with 68 %). The first model was thus
selected as best model. The DF model was then used
to classify the entire dataset available (training, vali-
dation and test dataset).

Only one sample out of 170 reference samples
and only one sample of the 412 test sites were
flagged as outliers (α<0.05) based on the chi-
squared test. A comparison of the RMSE of O/E
measures between DF-based predictive and null
models in training and validation datasets showed
a slight improvement in accuracy for the DF-based
predictive models (Table 4). Similar results were
obtained for the two models when looking at stan-
dard deviation of the O/E ratio (Table 4). Box
plots of O/E values for reference and selected test
datasets, namely the Upper Mersey and PEI
National Park dataset as far as the test dataset are
concerned, indicated no overlap between the datasets
(Fig. 3). This result was evident for both null and DF
models. In the PEI National Park dataset, the two mod-
els showed comparable results, whilst in the Upper
Mersey the null model showed a higher deviance from
the reference sites in the null model. The O/E measures
both for the DF-based and the null-based models
responded to changes in the availability of dissolved
oxygen (Table 5), whilst no response was observed for
both total Nitrogen and Phosphorous concentrations.
Nevertheless, the number of cases available was limited
to 17, due to lack of environmental data for site
interpretation.

Discussion

Models used to support sound and sustainable envi-
ronmental management require the availability of con-
sistent data with spatiotemporal coverage appropriate
for the management questions being posed. Efforts
have been made to establish large-scale and long-
term hydrological, physicochemical and biological
monitoring programs to collect and store information
about the status of the environment. However, these
programs are difficult to sustain over large land areas
such as Canada, as they require careful spatiotemporal
coordination. In reality, annual data are often collected
sequentially at non-matching stations and/or at differ-
ent times of year (Armanini et al. 2011). In such
situations, maximizing inter-operability of the avail-
able data is key to reducing the need for further data

Fig. 2 Root mean-square
errors of O/E taxa richness
from predictive models are
based on 36 best discrimi-
nant function models from
training (squares) and vali-
dation (circles). The RMSE
of the null model is depicted
by a solid line for the train-
ing dataset and a dashed line
for the validation dataset.
Median, 25–75 %, and
minimum-maximum range
are represented by square,
box and whisker,
respectively

Table 4 Comparison of the distribution of selected biological
metrics O/E ratio in the training and validation datasets (see
method for details) for the DF-based and the null-based models

Taxa richness Training Validation

Mean SD RMSE Mean SD RMSE

DF-based model 1.009 0.191 0.190 1.087 0.105 0.135

Null-based
model

1.000 0.237 0.236 1.084 0.152 0.172

SD standard deviation of the O/E metric, RMSE root mean
square error of the O/E metric
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collection and makes the best use of resources already
invested in a monitoring network. Standard models
that can support different data sources and rely on
easily accessible environmental information are need-
ed to build large-scale models that support simple and
rigorous adaptability and replicability. However, po-
tential issues due to differences in sampling methods,
seasonal differences and other sources of variability
highlight the need to assess dataset properties before
merging datasets. Here, such differences have been
minimised, with no relevant differences observed,
allowing the merging of different data sources, broad-
ening the applicability of the derived RCA model.

Assuring that bioassessment models incorporate all
sources of natural variability and are capable of high-
lighting anthropogenic change are key goals of bioas-
sessment. However, financial and resource constraints
pose a significant challenge for the full implementation
of bioassessment programs.

Inter-annual variability is the most commonly
neglected feature of assessment systems with a few

notable exceptions (e.g. Humphrey et al. 2000).
Unfortunately, in Atlantic Canada, a multi-year dataset
for all reference sites is not available to account for
such variability at the site level. Due to the lack of
available data, inter-annual variability was assessed by
incorporating reference samples collected across mul-
tiple years within the model. Future versions of the
model should focus on more fully exploring variation
at the individual site level where data can be obtained.
Moreover, changes to stream ecosystems arising from
anthropogenic climate change simply underline the
importance of establishing systematic long-term mon-
itoring across a subset of reference sites—a practice
never fully adopted within the CABIN program to
date.

We have successfully created a RCA model based
solely on GIS information with an accuracy level
comparable to other approaches undertaken using lo-
cally derived field variables (e.g. Hawkins et al. 2000).
Using GIS data can greatly reduce the cost of devel-
oping RCA models (Hargett et al. 2007) as it allows

Fig. 3 Box plots of O/E
values for ‘reference’, ‘test’
and Upper Mersey datasets
for DF-based (a) and null
(b) predictive models. Mean
and plus/minus standard er-
ror (±SE) are represented by
line and box, respectively

Table 5 Coefficients of determination r2 (reported in italic if p value is above 0.05) for selected environmental variables and O/E
measures in the Upper Mersey datasets (see “Data and methods” for details) for the DF-based and the null-based models

DF-based O/E Null-based O/E

Variable Mean SD N r2 p value r2 p value

Dissolved oxygen (mg/L) 6.80 1.73 17 0.237 0.047 0.313 0.020

Nitrogen—total (mg/L) 0.20 0.07 17 0.061 0.338 0.199 0.072

Phosphorus—total (mg/L) 0.03 0.02 17 0.001 0.916 0.124 0.165

SD standard deviation of the environmental variable, N number of valid cases
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the re-use of existing data and promotes data interop-
erability amongst scarce biological studies including
those with missing or divergent field information. In
this study, GIS-derived variables which served as the
main predictors of community clustering were related
to geology and climate. Geology (e.g. rock type) and
climate (e.g. temperature range) are major influences
of river habitat structure and also of benthic commu-
nity composition (Omernik 1987; Snelder et al. 2004).
Moreover, such GIS-based broad scale variables seem
to be less influenced by human activities than field
collected information, e.g. water chemistry or channel
substrate (Poquet et al. 2009). However, caution
should be exercised when using geospatial data, since
metadata for each layer may be inadequate to support
their use, as without ground-truthing and data quality
assessment, data merging can be problematic. For this
reason, we would urge a wider adoption of metadata
standards for each GIS layer to support replicability
and quality assurance to facilitate their widespread use
for model development.

Moreover, the wide range of applicability of the
model was confirmed by the limited number of refer-
ence and test sites flagged as outliers (chi-squared
test). Only one out of more than 400 test samples not
used in model development was found to be out of the
range of applicability of the model in Atlantic Canada.
The Upper Mersey test dataset, selected due to the
presence of catchment disturbance, showed divergent
O/E values with respect to the calibration and valida-
tion reference dataset, confirming the ability of the
model to detect impairment signals in the system.
Moreover, the O/E metrics responded positively to
changes in the availability of Oxygen in a dataset
subject to sylviculture practices. Nevertheless, no re-
sponse to concentration of nitrogen (N) and phospho-
rous (P) was evident and this might be linked to the
low average concentrations observed at the test sites
for both parameters. According to the values sug-
gested by Chambers et al. (2012), both average values
were well below the suggested N and P thresholds for
preserving high water quality.

From a standpoint of parsimony, the performance
of complex RCA models should be demonstrably
superior to a null model (Van Sickle et al. 2006;
Carlisle et al. 2008), as there is the need to demon-
strate that the DF model has succeeded in explaining
observed patterns in assemblage variation across the
region of applicability (Van Sickle et al. 2005). In the

data analysed here, an improvement in precision was
observed when using a RCA model as compared with
a null model. Standard deviation of O/E measures
showed improved values both in the training and
validation datasets when compared to the null models.
The DF-based predictive model from this analysis
outperformed the null model overall. However, the
performance of the null model is still noteworthy. If
adequate (null) performance can be similarly demon-
strated elsewhere, it could have significant implica-
tions for the development of a cost-effective, nation-
wide assessment system, an important consideration in
a geographically diverse country such as Canada, with
a significant portion of remote river habitat.

Innovation in the field of bioassessment can be
achieved by combining multivariate prediction and
multi-metric methods, i.e. computing biological based
diagnostic metrics with an O/E approach to enhance
the diagnostic power of reference condition models.
With the increasing availability of stressor-specific
metrics (e.g. Von der Ohe and Liess 2004; Armanini
et al. 2011), managers increasingly have an option to
employ tools that combine the strong predictive char-
acter of a multivariate prediction system with the
diagnostic potential of biological metrics. Two exam-
ples where such an approach has experienced some
limited success are the BMWP metric in the UK
(Clarke et al. 1996) and the SIGNAL approach in
Australia (Davies 2000). Nevertheless, to integrate
biological metrics into RCA models, additional re-
search is required both for model development (e.g.
Van Sickle et al. 2006) and for O/E interpretation.

In conclusion, we have demonstrated an approach to
regional ecological bioassessment model development
based on the predictive model and reference condition
approaches. Future efforts should focus on the applica-
tion of similar RCA models at regional scale to other
remote areas such as northern Canada, with a view to
implementing innovative biological diagnostics using
O/E measures for improved management of freshwater
ecosystems, including the incorporation of the temporal
component of natural variability.
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